KR102110486B1 - 인공 뉴럴 네트워크 클래스-기반 프루닝 - Google Patents
인공 뉴럴 네트워크 클래스-기반 프루닝 Download PDFInfo
- Publication number
- KR102110486B1 KR102110486B1 KR1020170173396A KR20170173396A KR102110486B1 KR 102110486 B1 KR102110486 B1 KR 102110486B1 KR 1020170173396 A KR1020170173396 A KR 1020170173396A KR 20170173396 A KR20170173396 A KR 20170173396A KR 102110486 B1 KR102110486 B1 KR 102110486B1
- Authority
- KR
- South Korea
- Prior art keywords
- neural network
- artificial neural
- neurons
- activation frequency
- object classes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G06N3/0445—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/40—Software arrangements specially adapted for pattern recognition, e.g. user interfaces or toolboxes therefor
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/061—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using biological neurons, e.g. biological neurons connected to an integrated circuit
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Neurology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Multimedia (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Human Computer Interaction (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP16205831.7A EP3340129B1 (en) | 2016-12-21 | 2016-12-21 | Artificial neural network class-based pruning |
| EP16205831.7 | 2016-12-21 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20180072562A KR20180072562A (ko) | 2018-06-29 |
| KR102110486B1 true KR102110486B1 (ko) | 2020-05-13 |
Family
ID=57583087
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020170173396A Active KR102110486B1 (ko) | 2016-12-21 | 2017-12-15 | 인공 뉴럴 네트워크 클래스-기반 프루닝 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10552737B2 (enExample) |
| EP (1) | EP3340129B1 (enExample) |
| JP (1) | JP6755849B2 (enExample) |
| KR (1) | KR102110486B1 (enExample) |
| CN (1) | CN108229667B (enExample) |
| TW (1) | TWI698807B (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024043771A1 (ko) * | 2022-08-24 | 2024-02-29 | 동국대학교 산학협력단 | 사이버 공격에 강인한 인공 신경망 구조 재구성 장치 및 방법 |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108268947A (zh) * | 2016-12-30 | 2018-07-10 | 富士通株式会社 | 用于提高神经网络的处理速度的装置和方法及其应用 |
| US10892050B2 (en) * | 2018-04-13 | 2021-01-12 | International Business Machines Corporation | Deep image classification of medical images |
| KR101989793B1 (ko) | 2018-10-22 | 2019-06-17 | 한국기술교육대학교 산학협력단 | 컨볼루션 신경망을 위한 가속기 인식 가지 치기 방법 및 기록 매체 |
| KR102796861B1 (ko) | 2018-12-10 | 2025-04-17 | 삼성전자주식회사 | 인공 신경망을 압축하기 위한 장치 및 방법 |
| KR102865734B1 (ko) * | 2019-01-02 | 2025-09-26 | 삼성전자주식회사 | 뉴럴 네트워크 최적화 장치 및 뉴럴 네트워크 최적화 방법 |
| US11551093B2 (en) * | 2019-01-22 | 2023-01-10 | Adobe Inc. | Resource-aware training for neural networks |
| KR102214837B1 (ko) * | 2019-01-29 | 2021-02-10 | 주식회사 디퍼아이 | 컨벌루션 신경망 파라미터 최적화 방법, 컨벌루션 신경망 연산방법 및 그 장치 |
| JP7099968B2 (ja) * | 2019-01-31 | 2022-07-12 | 日立Astemo株式会社 | 演算装置 |
| JP7225876B2 (ja) | 2019-02-08 | 2023-02-21 | 富士通株式会社 | 情報処理装置、演算処理装置および情報処理装置の制御方法 |
| DE102019202816A1 (de) * | 2019-03-01 | 2020-09-03 | Robert Bosch Gmbh | Training neuronaler Netzwerke für effizientes Implementieren auf Hardware |
| KR102368962B1 (ko) | 2019-03-22 | 2022-03-03 | 국민대학교산학협력단 | 멤리스터 어레이 회로를 제어하기 위한 게이트 회로를 포함하는 뉴럴 네트워크 시스템 |
| JP7150651B2 (ja) * | 2019-03-22 | 2022-10-11 | 株式会社日立ソリューションズ・テクノロジー | ニューラルネットワークのモデル縮約装置 |
| JP2022095999A (ja) * | 2019-04-19 | 2022-06-29 | 国立大学法人北海道大学 | ニューラル計算装置、および、ニューラル計算方法 |
| KR102782971B1 (ko) | 2019-05-08 | 2025-03-18 | 삼성전자주식회사 | 인공 신경망 모델을 트레이닝하는 컴퓨팅 장치, 인공 신경망 모델을 트레이닝하는 방법 및 이를 저장하는 메모리 시스템 |
| JP6787444B1 (ja) | 2019-05-23 | 2020-11-18 | 沖電気工業株式会社 | ニューラルネットワーク軽量化装置、ニューラルネットワーク軽量化方法およびプログラム |
| CN112070221B (zh) * | 2019-05-31 | 2024-01-16 | 中科寒武纪科技股份有限公司 | 运算方法、装置及相关产品 |
| US11514311B2 (en) * | 2019-07-03 | 2022-11-29 | International Business Machines Corporation | Automated data slicing based on an artificial neural network |
| US12141699B2 (en) | 2019-08-29 | 2024-11-12 | Alibaba Group Holding Limited | Systems and methods for providing vector-wise sparsity in a neural network |
| JP7111671B2 (ja) * | 2019-09-05 | 2022-08-02 | 株式会社東芝 | 学習装置、学習システム、および学習方法 |
| DE102019128715A1 (de) * | 2019-10-24 | 2021-04-29 | Krohne Messtechnik Gmbh | Verfahren zur Erzeugung eines neuronalen Netzes für ein Feldgerät zur Vorhersage von Feldgerätfehlern und ein entsprechendes System |
| US11816574B2 (en) * | 2019-10-25 | 2023-11-14 | Alibaba Group Holding Limited | Structured pruning for machine learning model |
| JP7396117B2 (ja) * | 2020-02-27 | 2023-12-12 | オムロン株式会社 | モデル更新装置、方法、及びプログラム |
| JP7495833B2 (ja) * | 2020-07-07 | 2024-06-05 | 株式会社日立ソリューションズ・テクノロジー | Dnnモデル圧縮システム |
| EP3945470A1 (en) * | 2020-07-31 | 2022-02-02 | Aptiv Technologies Limited | Methods and systems for reducing the complexity of a computational network |
| KR20220048832A (ko) | 2020-10-13 | 2022-04-20 | 삼성전자주식회사 | 인공 신경망 프루닝 방법 및 장치 |
| US12340313B2 (en) | 2020-11-30 | 2025-06-24 | Moffett International Co., Limited | Neural network pruning method and system via layerwise analysis |
| CN115393662A (zh) * | 2021-05-08 | 2022-11-25 | Oppo广东移动通信有限公司 | 图像处理方法、装置、计算机设备及存储介质 |
| JP7700650B2 (ja) * | 2021-11-25 | 2025-07-01 | 富士通株式会社 | モデル削減プログラム、装置、及び方法 |
| GB202118066D0 (en) | 2021-12-14 | 2022-01-26 | Univ Dublin | Class separation aware artificial neural network pruning method |
| US12061632B2 (en) * | 2022-03-29 | 2024-08-13 | Treasure Data, Inc. | Interactive adaptation of machine learning models for time series data |
| US20250190694A1 (en) * | 2023-12-07 | 2025-06-12 | International Business Machines Corporation | Limiting undesired large language model (llm) output |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140180986A1 (en) | 2012-12-24 | 2014-06-26 | Google Inc. | System and method for addressing overfitting in a neural network |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5787408A (en) * | 1996-08-23 | 1998-07-28 | The United States Of America As Represented By The Secretary Of The Navy | System and method for determining node functionality in artificial neural networks |
| JP2000298661A (ja) * | 1999-04-15 | 2000-10-24 | Fuji Xerox Co Ltd | ニューラルネットワーク装置 |
| US7308418B2 (en) * | 2004-05-24 | 2007-12-11 | Affinova, Inc. | Determining design preferences of a group |
| JP4175296B2 (ja) * | 2004-06-25 | 2008-11-05 | キャタピラージャパン株式会社 | 建設機械のデータ処理装置及び建設機械のデータ処理方法 |
| EP2533176A1 (en) * | 2005-11-15 | 2012-12-12 | Bernadette Garner | Method for determining whether input vectors are known or unknown by a neuron |
| US7800490B2 (en) * | 2008-01-09 | 2010-09-21 | Sensormatic Electronics, LLC | Electronic article surveillance system neural network minimizing false alarms and failures to deactivate |
| WO2012055045A2 (en) * | 2010-10-27 | 2012-05-03 | Solido Design Automation Inc. | Method and system for identifying rare-event failure rates |
| US9147155B2 (en) * | 2011-08-16 | 2015-09-29 | Qualcomm Incorporated | Method and apparatus for neural temporal coding, learning and recognition |
| KR101359352B1 (ko) * | 2012-06-28 | 2014-02-21 | 한국과학기술원 | 시각신경 회로장치 및 이를 이용한 시각신경 모방 시스템 |
| CN103209417B (zh) * | 2013-03-05 | 2016-01-20 | 北京邮电大学 | 基于神经网络的频谱占用状态的预测方法以及装置 |
| US9747554B2 (en) * | 2013-05-24 | 2017-08-29 | Qualcomm Incorporated | Learning device with continuous configuration capability |
| US9721204B2 (en) * | 2013-10-28 | 2017-08-01 | Qualcomm Incorporated | Evaluation of a system including separable sub-systems over a multidimensional range |
| US10373054B2 (en) * | 2015-04-19 | 2019-08-06 | International Business Machines Corporation | Annealed dropout training of neural networks |
| CN107563497B (zh) * | 2016-01-20 | 2021-03-19 | 中科寒武纪科技股份有限公司 | 用于稀疏人工神经网络的计算装置和运算方法 |
| US11315018B2 (en) * | 2016-10-21 | 2022-04-26 | Nvidia Corporation | Systems and methods for pruning neural networks for resource efficient inference |
-
2016
- 2016-12-21 EP EP16205831.7A patent/EP3340129B1/en active Active
-
2017
- 2017-10-25 TW TW106136613A patent/TWI698807B/zh active
- 2017-11-28 CN CN201711214867.7A patent/CN108229667B/zh active Active
- 2017-12-01 JP JP2017231460A patent/JP6755849B2/ja active Active
- 2017-12-15 KR KR1020170173396A patent/KR102110486B1/ko active Active
- 2017-12-21 US US15/851,173 patent/US10552737B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140180986A1 (en) | 2012-12-24 | 2014-06-26 | Google Inc. | System and method for addressing overfitting in a neural network |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024043771A1 (ko) * | 2022-08-24 | 2024-02-29 | 동국대학교 산학협력단 | 사이버 공격에 강인한 인공 신경망 구조 재구성 장치 및 방법 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108229667B (zh) | 2019-09-10 |
| TWI698807B (zh) | 2020-07-11 |
| CN108229667A (zh) | 2018-06-29 |
| TW201824093A (zh) | 2018-07-01 |
| JP2018129033A (ja) | 2018-08-16 |
| US20180181867A1 (en) | 2018-06-28 |
| JP6755849B2 (ja) | 2020-09-16 |
| EP3340129B1 (en) | 2019-01-30 |
| KR20180072562A (ko) | 2018-06-29 |
| US10552737B2 (en) | 2020-02-04 |
| EP3340129A1 (en) | 2018-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102110486B1 (ko) | 인공 뉴럴 네트워크 클래스-기반 프루닝 | |
| EP3891662B1 (en) | Automated generation of machine learning models | |
| CN112508186B (zh) | 训练用于图像识别的神经网络的方法和神经网络设备 | |
| CN111598238A (zh) | 深度学习模型的压缩方法及装置 | |
| KR102788176B1 (ko) | 뉴럴 네트워크 학습 방법 및 그 시스템 | |
| US20220076077A1 (en) | Quality estimation model trained on training signals exhibiting diverse impairments | |
| US20190138929A1 (en) | System and method for automatic building of learning machines using learning machines | |
| CN113011532A (zh) | 分类模型训练方法、装置、计算设备及存储介质 | |
| CN113392867A (zh) | 一种图像识别方法、装置、计算机设备及存储介质 | |
| CN119314020B (zh) | 基于脉冲神经网络的视觉识别方法及装置 | |
| CA3143928A1 (en) | Dynamic image resolution assessment | |
| KR20210111677A (ko) | 뉴럴 네트워크의 클리핑 방법, 뉴럴 네트워크의 컨벌루션 계산 방법 및 그 방법을 수행하기 위한 전자 장치 | |
| US20240078432A1 (en) | Self-tuning model compression methodology for reconfiguring deep neural network and electronic device | |
| JP7507172B2 (ja) | 情報処理方法、情報処理システム及び情報処理装置 | |
| CN113139466B (zh) | 基于单隐层神经网络的图像识别方法及相关设备 | |
| CN112598020B (zh) | 目标识别方法及系统 | |
| US12468979B2 (en) | Early stopping of artificial intelligence model training using control limits | |
| CN110717578A (zh) | 神经网络压缩方法、图像处理方法及装置 | |
| CN115222012A (zh) | 用于压缩神经网络的方法和装置 | |
| US20220405561A1 (en) | Electronic device and controlling method of electronic device | |
| CN116126815A (zh) | 基于剪枝和量化训练的自动驾驶模型压缩方法及装置 | |
| JPWO2023032438A5 (enExample) | ||
| CN120564761B (zh) | 一种基于长短期记忆网络优化的变压器故障声纹检测方法 | |
| JP7055211B2 (ja) | データ処理システムおよびデータ処理方法 | |
| CN119106714A (zh) | 用于联机手写字符识别模型的量化方法、装置及存储介质 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20171215 |
|
| PG1501 | Laying open of application | ||
| A201 | Request for examination | ||
| A302 | Request for accelerated examination | ||
| PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20200114 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20171215 Comment text: Patent Application |
|
| PA0302 | Request for accelerated examination |
Patent event date: 20200114 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20171215 Patent event code: PA03021R01I Comment text: Patent Application |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20200312 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20200507 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20200508 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| PR1001 | Payment of annual fee |
Payment date: 20240424 Start annual number: 5 End annual number: 5 |