KR102109221B1 - 고체 촬상 장치 및 전자 기기 - Google Patents

고체 촬상 장치 및 전자 기기 Download PDF

Info

Publication number
KR102109221B1
KR102109221B1 KR1020147028648A KR20147028648A KR102109221B1 KR 102109221 B1 KR102109221 B1 KR 102109221B1 KR 1020147028648 A KR1020147028648 A KR 1020147028648A KR 20147028648 A KR20147028648 A KR 20147028648A KR 102109221 B1 KR102109221 B1 KR 102109221B1
Authority
KR
South Korea
Prior art keywords
reflective layer
solid
state imaging
imaging device
reflective
Prior art date
Application number
KR1020147028648A
Other languages
English (en)
Other versions
KR20150018775A (ko
Inventor
케이스케 하타노
아츠시 토다
Original Assignee
소니 세미컨덕터 솔루션즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 세미컨덕터 솔루션즈 가부시키가이샤 filed Critical 소니 세미컨덕터 솔루션즈 가부시키가이샤
Publication of KR20150018775A publication Critical patent/KR20150018775A/ko
Application granted granted Critical
Publication of KR102109221B1 publication Critical patent/KR102109221B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

일방의 면을 회로 형성면으로 하고, 타방의 면을 수광면으로 하는 반도체 기체(21)와, 반도체 기체(21)에 마련된 광전 변환부(22)와, 광전 변환부(22)상에서 회로 형성면에 마련된 반사층(24)과, 반사층(24)에 배치된 절연부(23)를 구비하는 고체 촬상 장치를 구성한다.

Description

고체 촬상 장치 및 전자 기기{SOLID-STATE IMAGE PICKUP APPARATUS AND ELECTRONIC APPARATUS}
본 기술은, 이면 조사형의 고체 촬상 장치 및 이 고체 촬상 장치가 탑재되는 전자 기기에 관한 것이다.
고체 촬상 장치의 구조로서, 기체(基體)의 전극이나 배선 등이 형성되어 있는 면과 반대측의 면에 포토 다이오드를 형성하고, 이면에서 광을 조사하여 광전 변환을 행하는 이면 조사형의 고체 촬상 장치가 제안되어 있다(예를 들면, 특허 문헌 1 참조). 이 이면 입사형의 고체 촬상 장치의 화소 구조를 도 20에 도시한다. 도 20에 도시하는 고체 촬상 장치는, 반도체 기체(41)의 윗면측을 광입사면으로 하고, 그 반대측의 면이 회로 형성면이다. 이 고체 촬상 장치의 화소 구조는, 반도체 기체(41) 내에, 광전 변환부(42)로서 포토 다이오드(PD)를 구비한다. 또한, 회로 형성면에는, 금속막에 의해 형성되는 반사판(44)이 형성되어 있다. 반사판(44)은, 반도체 기체(41)를 투과한 광을 반사하여, 재차 광전 변환부(42)에 입사시킨다. 이에 의해, 고체 촬상 장치의 감도의 향상이 도모되어 있다.
특허 문헌 1 : 일본 특개2006-261372호 공보
이면 조사형의 고체 촬상 장치에서, 광전 변환부에 입사한 광은, 장파 장측에서 광전 변환부를 투과하는 성분이 존재한다. 이 때문에, 광전 변환부에 입사한 광을 전부 광전 변환시켜, 감도에 기여시키기가 어렵다.
따라서, 포토 다이오드에 입사한 광을 광전 변환한 효율을 높임에 의해, 감도의 향상이 가능한 고체 촬상 장치 및 전자 기기를 제공하는 것이 바람직하다.
본 기술의 한 실시의 형태의 고체 촬상 장치는, 일방의 면을 회로 형성면으로 하고, 타방의 면을 수광면으로 하는 반도체 기체와, 반도체 기체에 마련된 광전 변환부와, 광전 변환부 상에서 회로 형성면에 마련된 반사층과, 반사층에 배치된 절연부를 구비한다. 본 기술의 한 실시의 형태의 전자 기기는, 상기 고체 촬상 장치와, 고체 촬상 장치의 출력 신호를 처리하는 신호 처리 회로를 구비한다.
본 기술의 한 실시의 형태의 고체 촬상 장치에 의하면, 회로 형성면측에 반사층을 구비함에 의해, 반도체 기체를 투과한 광을 반사층에서 반사하여, 재차 광전 변환부에 입사시킬 수 있다. 이 때문에, 고체 촬상 장치의 감도의 향상이 가능해진다.
본 기술 한 실시의 형태에 의하면, 감도의 향상이 가능한 고체 촬상 장치, 및, 전자 기기를 제공할 수 있다.
도 1은 고체 촬상 장치의 개략 평면 구성을 도시하는 평면도.
도 2는 제1 실시 형태의 고체 촬상 장치의 구성을 도시하는 단면도.
도 3은 제1 실시 형태의 고체 촬상 장치의 반사층의 구성을 도시하는 평면도.
도 4는 제1 실시 형태의 제1 변형예의 반사층의 구성을 도시하는 평면도.
도 5는 제1 실시 형태의 제2 변형예의 반사층의 구성을 도시하는 평면도.
도 6은 제1 실시 형태의 제3 변형예의 반사층의 구성을 도시하는 평면도.
도 7은 제1 실시 형태의 제4 변형예의 반사층의 구성을 도시하는 평면도.
도 8은 제1 실시 형태의 제5 변형예의 반사층의 구성을 도시하는 평면도.
도 9는 제1 실시 형태의 제6 변형예의 반사층의 구성을 도시하는 평면도.
도 10은 고체 촬상 장치의 화소부의 평면 구성을 도시하는 도면.
도 11은 제1 실시 형태의 제7 변형예의 반사층의 구성을 도시하는 평면도.
도 12는 제1 실시 형태의 제8 변형예의 반사층의 구성을 도시하는 평면도.
도 13은 제1 실시 형태의 제9 변형예의 반사층의 구성을 도시하는 평면도.
도 14는 반사층의 절연부의 패턴을 설명하기 위한 평면도.
도 15는 제2 실시 형태의 고체 촬상 장치의 구성을 도시하는 단면도.
도 16은 제2 실시 형태의 고체 촬상 장치의 반사층의 구성을 도시하는 평면도.
도 17은 제3 실시 형태의 고체 촬상 장치의 구성을 도시하는 단면도.
도 18은 제3 실시 형태의 고체 촬상 장치의 반사층의 구성을 도시하는 평면도.
도 19는 전자 기기의 구성을 도시하는 도면.
도 20은 비교예에 관한 고체 촬상 장치의 구성을 도시하는 단면도.
도 21은 비교예에 관한 고체 촬상 장치의 반사층의 구성을 도시하는 평면도.
도 22A는 비교예에 관한 고체 촬상 장치의 제조 공정도.
도 22B는 도 22A에 계속된 고체 촬상 장치의 제조 공정도.
도 22C는 도 22B에 계속된 고체 촬상 장치의 제조 공정도.
도 22D는 도 22C에 계속된 고체 촬상 장치의 제조 공정도.
도 22E는 도 22D에 계속된 고체 촬상 장치의 제조 공정도.
도 22F는 도 22E에 계속된 고체 촬상 장치의 제조 공정도.
도 22G는 도 22F에 계속된 고체 촬상 장치의 제조 공정도.
도 23은 종래의 고체 촬상 장치의 구성을 도시하는 단면도.
이하, 본 기술을 실시하기 위한 최선의 형태의 예를 설명하는데, 본 기술은 이하의 예로 한정되는 것이 아니다.
또한, 설명은 이하의 순서로 행한다.
1. 고체 촬상 장치의 개요
2. 제1 실시 형태(고체 촬상 장치)
3. 제2 실시 형태(고체 촬상 장치)
4. 제3 실시 형태(고체 촬상 장치)
5. 전자 기기
<1. 고체 촬상 장치의 개요>
고체 촬상 장치의 개요에 관해 설명한다. 도 20에 도시하는 고체 촬상 장치의 화소 구조는, 반사판(44)이 다마신 프로세스(damascene process)에 의해 형성된 경우를 나타내고 있다. 반사판(44)은, 금속막(48)과, 그 측면 및 저면을 덮는 배리어 메탈(47)에 의해 구성되어 있다. 도 21은, 도 20에 도시하는 화소 구조에서, 광전 변환부에서의 반사판의 평면 구조를 도시하는 것이다. 도 21에 도시하는 바와 같이, 반사판(44)은, 기판을 투과한 광을 보다 효율적으로 반사시키기 위해서는 광전 변환부와 거의 동등한 크기의 사각형상으로 형성하는 것이 생각된다.
비교예의 고체 촬상 장치의 문제점을 이하에 설명한다. 도 22는, 도 20에 도시하는 이면 조사형의 고체 촬상 장치의 제조 방법을 도시하는 공정순 단면도이다. 우선, 도 22A에 도시하는 바와 같이, 지지 기판(51)상에 접합된 반도체 기체(41)에 광전 변환부(42)를 형성한다. 다음에, 도 22B에 도시하는 바와 같이, 반도체 기체(41)상에 절연층(43)을 형성한다. 다음에, 도 22C에 도시하는 바와 같이, 절연층(43)에, 반사판용 홈(58)를 형성한다. 이 때, 도시하지 않지만, 금속 배선을 형성하기 위한 배선용 홈이 동시에 형성된다. 또한, 도 22D에 도시하는 바와 같이, 배리어 메탈(47)을 형성한 후에, 금속막을 도금 피착하기 위한 시드층(53)을 적층 형성한다. 이 때, 배리어 메탈(47)로서는, 탄탈, 질화탄탈, 또는, 이들의 적층막을 이용한다.
또한, 시드층(53)은, 구리배선을 이용하는 경우에는, 구리를 스퍼터링법에 의해 피착한다. 다음에, 도 22E에 도시하는 바와 같이, 금속막(48)을 도금법에 의해 피착한다. 금속막(48)으로서는, 구리, 또는, 구리에 Ti, Zr, Hf, Cr, Co, Al, Sn, Ni, Mg, Ag 등을 첨가한 구리합금막을 이용한다. 금속막(48)은, 시드층(53)과 맞섞여, 도금에 의해 금속막을 피착한 후에는 양자는 일체화한다. 다음에, 도 22F에 도시하는 바와 같이, 금속막(48)을 CMP(Chemical Mechanical Polishing)법에 의해 반사판용 홈(58) 내에만 남기고, 반사판(44)을 형성한다. 이 때, 금속막(48)을 CMP하면 일단 배리어 메탈의 표면에서 연마는 스톱하지만, 더욱 CMP를 행함으로써, 홈 내부 이외의 영역에 피착한 배리어 메탈(47)을 제거한다. 다음에, 도 22G에 도시하는 바와 같이, 반사판(44)상에, 반사판(44)의 금속막의 확산 방지용의 캡 막(52)을 형성한다. 캡 막(52)으로서는, 예를 들면, 실리콘질화막(SiN), 탄화실리콘(SiC), 탄질화실리콘(SiCN) 등을 이용한다. 여기까지의 공정에 의해, 반사판의 형성이 완료된다.
또한, 도시하지 않지만, 필요에 응하여 새로운 배선층의 형성, 지지 기판(51)의 제거, 광입사면측의 반도체 기체(41)상에의 컬러 필터의 형성, 온 칩 렌즈의 형성 등을 행함으로써, 도 20에 도시한 이면 조사형의 고체 촬상 장치가 완성된다.
회로가 고집적화된 반도체 소자에서는, 미세 배선 형성의 요구에 수반하여, 저저항으로, 일렉트로마이그레이션 등의 신뢰성에 우수한 구리를 배선 재료로서 이용하는 것이 일반적이다. 고체 촬상 장치에서도, 화소의 미세화나 신호 판독 회로의 고집적화에 수반하여, 구리배선이 사용되어 오고 있다. 구리를 배선에 이용하는 경우에는, 다마신법에 의한 배선 형성이 일반적으로 행하여진다. 그 경우, 반사판을 배선과 동시에 형성하는 것을 생각하면, 반사판의 형성에도 상술한 다마신법이 적용된다.
다음에, 다마신법에 의해 반사판을 형성하는 경우의 문제점을 도 23에 의해 설명한다. 도 23은, 도 22F에 도시하는 금속막(48)을 CMP에 의해 반사판용 홈 내에 매입하여 형성한 직후와, 동일 공정에서의 단면도를 도시한다. 다마신법에 의해, 홈 내에 금속막(48)을 남기도록 CMP를 행하는 경우는, 특히 홈 패턴의 폭이 넓은 경우에, 홈의 중앙 부분에서 동이 과연마되고 크게 움푹 패이는, 이른바, 디싱이 생긴다. 고체 촬상 장치에서의 반사판의 폭은, 화소의 사이즈와 거의 동일하고, 수미크론 정도의 폭을 갖는다. 이 경우, 디싱이 생기기 쉽다. 디싱에 의해 금속막(48)의 중앙부에서 막두께가 크게 감소하는 경우에는, 막두께가 얇은 부분에서 광이 투과하여, 반사판으로서의 기능이 저하된다. 또한, 막두께가 어느 값보다 얇아진 경우에는, 구리가 응집하여 소실하여 버린다는 문제가 있다. 본 실시의 형태에서는, 이 문제점을 해소하고, 다마신법에 의한 배선 형성과 동시에 반사판을 형성할 수 있다.
<2. 제1 실시 형태(고체 촬상 장치)>
[고체 촬상 장치의 개략 구성]
도 1에, 본 기술의 한 실시의 형태에 관한 고체 촬상 장치의 한 예로서, CMOS형의 고체 촬상 장치에 관해 설명한다. 도 1의 구성은, 하기에 설명하는 각 실시 형태에 관한 고체 촬상 장치에 공통의 구성이다. 또한, 본 실시의 형태에서는, 반도체 기체의 회로 형성면(표면)측과는 반대측에 광의 입사면을 갖는, 이른바, 이면 조사형의 CMOS형 고체 촬상 장치에 관해 설명한다.
본 실시의 형태의 고체 촬상 장치(1)는, 도 1에 도시하는 바와 같이, 반도체 기체(11) 예를 들면 실리콘 기판에, 광전 변환부를 포함하는 복수의 화소(2)가 규칙적으로 2차원 어레이현상으로 배열된 화소부(이른바 촬상 영역)(3)와, 주변 회로부를 갖고 있다. 화소(2)로서는, 하나의 광전 변환부와 복수의 화소 트랜지스터로 이루어지는 단위 화소가 이용된다. 또한, 화소(2)로서는, 복수의 광전 변환부에 전송 트랜지스터 제외한 다른 하나의 화소 트랜지스터를 공유시킨, 이른바 화소 공유의 구조를 적용할 수 있다. 복수의 화소 트랜지스터로서는, 후술하는 바와 같이, 예를 들면 전송 트랜지스터, 리셋 트랜지스터, 증폭 트랜지스터의 3개의 트랜지스터, 또는 선택 트랜지스터를 추가한 4개의 트랜지스터를 들 수 있다.
주변 회로부는, 수직 구동 회로(4)와, 칼럼 신호 처리 회로(5)와, 수평 구동 회로(6)와, 출력 회로(7)와, 제어 회로(8) 등을 갖고서 구성된다.
제어 회로(8)는, 입력 클록과, 동작 모드 등을 지령하는 데이터를 수취하고, 또한 고체 촬상 장치의 내부 정보 등의 데이터를 출력한다. 즉, 제어 회로(8)에서는, 수직 동기 신호, 수평 동기 신호 및 마스터 클록에 의거하여, 수직 구동 회로(4), 칼럼 신호 처리 회로(5) 및 수평 구동 회로(6) 등의 동작의 기준이 되는 클록 신호나 제어 신호를 생성한다. 그리고, 이들의 신호를 수직 구동 회로(4), 칼럼 신호 처리 회로(5) 및 수평 구동 회로(6) 등에 입력한다.
수직 구동 회로(4)는, 예를 들면 시프트 레지스터에 의해 구성되고, 화소 구동 배선을 선택하고, 선택된 화소 구동 배선에 화소를 구동하기 위한 펄스를 공급하고, 행 단위로 화소를 구동한다. 즉, 수직 구동 회로(4)는, 화소부(3)의 각 화소(2)를 행 단위로 순차적으로 수직 방향으로 선택 주사한다. 그리고, 수직 신호선(9)를 통하여 각 화소(2)의 광전 변환 소자가 되는 예를 들면 포토 다이오드에서 수광량에 응하여 생성한 신호 전하에 의거한 화소 신호를 칼럼 신호 처리 회로(5)에 공급한다.
칼럼 신호 처리 회로(5)는, 화소(2)의 예를 들면 열마다 배치되어 있고, 1행분의 화소(2)로부터 출력되는 신호에 대해, 화소열마다 노이즈 제거 등의 신호 처리를 행한다. 즉, 칼럼 신호 처리 회로(5)는, 화소(2) 고유의 고정 패턴 노이즈를 제거하기 위한 CDS나, 신호 증폭, AD 변환 등의 신호 처리를 행한다. 칼럼 신호 처리 회로(5)의 출력단에는 수평 선택 스위치(도시 생략)가 수평 신호선(10)과의 사이에 접속되어 마련된다.
수평 구동 회로(6)는, 예를 들면 시프트 레지스터에 의해 구성되고, 수평 주사 펄스를 순차적으로 출력함에 의해, 칼럼 신호 처리 회로(5)의 각각을 순번대로 선택하고, 칼럼 신호 처리 회로(5)의 각각으로 부터 화소 신호를 수평 신호선(10)에 출력시킨다.
출력 회로(7)는, 칼럼 신호 처리 회로(5)의 각각으로 부터 수평 신호선(10)을 통하여 순차적으로 공급되는 신호에 대해, 신호 처리를 행하여 출력한다. 예를 들면, 버퍼링만을 하는 경우도 있고, 흑레벨 조정, 열(列) 편차 보정, 각종 디지털 신호 처리 등이 행하여지는 경우도 있다. 입출력 단자(12)는, 외부와 신호의 교환을 한다.
[고체 촬상 장치의 화소 구성]
다음에, 본 실시의 형태의 고체 촬상 장치의 화소부의 단면 구성에 관해 설명한다. 도 2에, 본 실시 형태의 이면 조사형의 고체 촬상 장치의 화소부의 단면도를 도시한다. 또한, 도 3에, 고체 촬상 장치의 반사층의 평면 레이아웃을 도시한다. 도 3은, 도 2의 고체 촬상 장치의 화소의 구조를 도시하는 단면도에서의 반사부의 평면 구조를 도시하고, 도 3에서 A-A'에 따른 단면도가 도 2에서의 반사층의 단면도에 상당한다. 또한, 도시하지 않지만, 도 2에 도시하는 단위 화소가 행렬 방향으로 임의의 개수로 매트릭스형상으로 배치되어, 고체 촬상 장치가 구성된다.
도 2에 도시하는 바와 같이, 본 예의 이면 조사형의 고체 촬상 장치에서는, 반도체 기체(21) 내에 광전 변환부(22)가 형성되어 있다. 그리고, 반도체 기체(21)의 광입사면과 반대측의 회로 형성면측에 반사층(24)이 형성되어 있다. 반사층(24)은, 주된 구성이 되는 반사부(28)와, 반사부(28)의 사이에 형성된 절연부(23)로 이루어진다. 또한, 도 3에 도시하는 바와 같이, 반사층(24)의 평면 구조는, 반사부(28) 내에 슬롯형상으로 공극이 형성되고, 이 공극에 절연부(23)가 배치된 구성으로 된다.
반사부(28)는, 예를 들면, 구리, 또는, 구리에 Ti, Zr, Hf, Cr, Co, Al, Sn, Ni, Mg, Ag 등을 첨가한 구리합금, 알루미늄, 산화알루미늄, 및, 은 등으로 이루어진다. 특히, 반사부(28)는, 고체 촬상 장치에 형성하는 배선과 같은 재료에 의해 형성하는 것이 바람직하기 때문에, 구리 또는 구리합금을 이용하는 것이 바람직하다. 반사부(28)의 두께는, 광을 투과하지 않는 두께로 한다. 구체적으로는, 반사부(28)에 구리를 이용하는 경우에는, 30㎚ 이상으로 하는 것이 바람직하다. 반사부(28)가 구리 또는 구리합금으로 이루어지는 경우에는, 절연부(23)에의 동의 확산을 막기 위해, 반사부(28)의 표면에 배리어 메탈(27)이 형성된다. 배리어 메탈(27)로서는, 탄탈, 질화탄탈, 또는, 이들의 적층막을 이용한다.
반사층(24) 내에 배치하는 절연부(23)의 폭이 넓은 경우에는, 입사광이 절연부(23)를 투과하여 반사율이 저하된다. 이 때문에, 반사층(24) 내에 배치하는 절연부(23)의 폭은, 반사시키는 광의 파장이 긴 경우에는 폭을 넓게, 반사시키는 광의 파장이 짧은 경우에는 폭을 좁게 형성하는 것이 바람직하다. 예를 들면, 가시광역 중 적색광에 상당하는 파장 650㎚의 광에 대한 투과율을 5% 이하로 하기 위해서는, 절연부(23)의 폭을 0.25미크론 이하로 한다. 또한, 반사부의 폭, 즉, 절연부(23) 사이의 간격은, 절연부(23)의 폭의 3배 이하의 폭으로 형성하는 것이, 반사층(24) 형성시의 다마신 프로세스로의 디싱 억제의 관점에서 바람직하다.
상술한 고체 촬상 장치에서는, 반사층(24)을 구비함에 의해, 반도체 기체(21)를 투과한 광을 반사층(24)에서 반사하여, 재차 광전 변환부(22)에 입사시킬 수 있다. 이 때문에, 고체 촬상 장치의 감도의 향상이 가능해진다. 또한, 고체 촬상 장치에서, 반사층(24)을 다마신법에 의해 형성하는 경우에, CMP 공정에서 절연부(23)에 의해 반사부(28)의 디싱이 억제된다. 이 때문에, 금속막의 막 감소의 발생을 억제하면서, 신뢰성이 높은 반사층(24)의 형성이 가능해진다. 또한, 도 3에서는, 반사층(24) 내의 절연부(23)는, 슬롯형상으로 배치되어 있지만, 반사층(24)의 단부까지 절연부(23)가 연재되도록, 이른바, 슬릿형상으로 배치되어 있어도 좋다. 또한, 도 3에서는 단일 화소의 반사층(24)을 나타내고 있지만, 이 반사층(24)이 복수의 화소에 걸쳐서 형성되어 있어도 좋다. 마찬가지로, 슬릿형상으로 배치되는 절연부가, 복수의 화소 사이에서 연속하여 형성되어 있어도 좋다.
[반사층의 제1 변형예 : 절연부의 간격]
도 4는, 상술한 실시 형태의 고체 촬상 장치의 반사층의 제1 변형예의 평면 구조를 도시하는 것이다. 도 4에 도시하는 평면 구조를 갖는 반사층은, 도 2에 도시한 이면 조사형의 고체 촬상 장치에 적용할 수 있다. 반사층(24)은, 반사부(28) 중에 절연부(23)가 슬롯형상으로 배치된 것이다. 그리고, 도 4에 도시하는 제1 변형예에서는, 반사부(28) 내에 배치된 슬롯형상의 절연부(23) 사이의 거리가, 반사층(24)의 중앙부에서 좁고, 주변부를 향하여 점차 넓어지도록 배치되어 있다.
이와 같이, 반사부(28)와 절연부(23)는, 각각 다른 재료로 형성되어 있다. 굴절율이 다른 절연부(23)를, 반사부(28) 내에 슬롯형상으로 복수 병행하여 형성함에 의해, 입사광에 대한 반사 각도를 제어할 수 있다. 구체적으로는, 반사부(28)보다도 굴절율이 작은 절연부(23)로 반사층(24)이 구성되는 경우, 반사광은, 굴절율이 작은 절연부(23)의 간격이 넓은 쪽부터 좁은 쪽으로 반사 각도가 변화한다. 또한, 반사부(28)보다도 굴절율이 큰 절연부(23)로 반사층(24)이 구성되는 경우, 굴절율이 큰 절연부(23)의 간격이 좁은 쪽부터 넓은 쪽으로 반사 각도가 변화한다.
도 4에 도시하는 구성에서는, 반사부(28)보다도 굴절율이 작은 절연부(23)로 반사층(24)이 구성되어 있는 경우를 나타내고, 절연부(23) 사이의 간격이 넓은 쪽부터 좁은 쪽으로 반사 각도가 변화한다. 즉, 절연부(23)의 밀도가 높은 방향으로 반사광이 집중한다. 이 때문에, 도 4에 도시하는 바와 같이, 반사층(24)의 중앙에서 절연부(23)의 간격을 좁게 함에 의해, 반사층(24)으로 부터 반사광을, 광전 변환부(화소)의 중앙 방향으로 모을 수 있다.
본 변형예에서의 절연부 슬롯의 배치 방법에 의하면, 반사층(24)을 다마신법에 의해 형성하는 경우에, CMP 공정에서 절연부(23)에 의해 반사부(28)의 디싱이 억제된다. 이 때문에, 금속막의 막 감소가 생기는 일 없이, 신뢰성이 높은 반사층(24)의 형성이 가능해진다. 또한, 반사층(24)으로 부터의 반사광이, 광전 변환부의 중앙 방향으로 반사된다. 이 때문에, 반도체 기체 내에 형성된 광전 변환부에 보다 반사광이 집광되기 쉬워지고, 고체 촬상 장치의 감도의 향상이 가능해진다.
[반사층의 제2 변형예 : 절연부 패턴]
도 5는, 상술한 실시 형태의 고체 촬상 장치의 반사층의 제2 변형예의 평면 구조를 도시하는 것이다. 도 5에 도시하는 평면 구조를 갖는 반사층은, 도 2에 단면도를 도시한 이면 조사형의 고체 촬상 장치에 적용할 수 있다. 반사층(24)은, 반사부(28) 중에 절연부(23)가 슬롯형상으로 배치됨으로써 구성된다. 도 5에 도시하는 제2 변형예에서는, 반사부(28) 내에 배치하는 슬롯형상의 절연부(23)에 의해, 사각형상의 절연부(23)의 패턴을 갖는다. 그리고, 이 사각형상의 절연부(23)는, 큰 사각형상 패턴이 작은 사각형상 패턴을 내포하고, 동일 간격으로 복수개 배치되어 있다.
평행한 직선형상의 절연부(23)를 슬릿형상으로 형성하는 이외에도, 도 5에 도시하는 바와 같이, 절연부(23)를 사각형상으로 형성하여도 좋다. 사각형상의 절연부(23)를 동일 간격으로 배치함에 의해, 패턴의 대칭성이 높기 때문에, 입사광의 각도 변동에 대해서도, 반사층(24)의 반사 특성을 일정하게 유지할 수 있다.
본 변형예에서의 반사층(24)의 구성 패턴에서도, 반사층(24)을 다마신법으로 형성하는 경우에, 반사부(28)를 형성하는 CMP 공정에서, 절연부(23)에 의해 디싱의 발생이 억제된다. 이 때문에, 반사부(28)의 막 감소의 발생을 억제하면서 반사층(24)의 형성이 가능해진다.
또한, 절연부(23)의 패턴의 레이아웃의 대칭성이 높기 때문에, 반사층에의 광 입사각 변동에 의한 반사 특성의 변화를 억제할 수 있고, 고체 촬상 장치에의 광 입사각 변동시의 감도 변화를 작게 할 수 있다.
[반사층의 제3 변형예 : 절연부 패턴]
도 6은, 상술한 실시 형태의 고체 촬상 장치의 반사층의 제3 변형예의 평면 구조를 도시하는 것이다. 도 6에 도시하는 평면 구조를 갖는 반사층은, 도 2에 도시한 이면 조사형의 고체 촬상 장치에 적용할 수 있다. 도 6에 도시하는 제3 변형예에서는, 반사부(28) 내에 배치된 슬롯형상의 절연부(23)에 의해, 사각형상의 절연부(23)가 복수 형성되어 있다. 이 사각형상의 절연부(23)는, 큰 사각형상 패턴이 작은 사각형상 패턴을 내포하고, 인접하는 패턴끼리의 거리가, 반사층(24)의 중앙부에서 좁고, 주변부를 향하여 점차 넓어지도록 배치되어 있다.
상술한 제1 변형예와 마찬가지로, 반사광의 각도는, 반사층(24)의 반사부(28)와 절연부(23)와의 간격에 의해 변화한다. 도 6에 도시하는 바와 같이, 절연부(23)의 간격을, 중앙부에서 좁고, 주변부에서 넓게 함에 의해, 광이 반사층(24)의 중앙측으로 반사된다.
본 변형예에서의 반사층(24)의 구성 패턴에서도, 반사층(24)을 다마신법으로 형성하는 경우에, 반사부(28)를 형성하는 CMP 공정에서, 절연부(23)에 의해 디싱의 발생이 억제된다. 이 때문에, 반사부(28)의 막 감소의 발생을 억제하면서 반사층(24)의 형성이 가능해진다. 또한, 절연부(23)를 상술한 배치로 함으로써, 반사층(24)에 입사한 광이, 반사층(24)의 중앙 방향을 향하도록 반사된다. 이 때문에, 반도체 기체 내에 형성되는 광전 변환부에 반사광을 집광시키기 쉬워지고, 고체 촬상 장치의 감도의 향상이 가능해진다.
[반사층의 제4 변형예 : 절연부 패턴]
도 7은, 상술한 실시 형태의 고체 촬상 장치의 반사층의 제4 변형예의 평면 구조를 도시하는 것이다. 도 7에 도시하는 평면 구조를 갖는 반사층은, 도 2에 도시한 이면 조사형의 고체 촬상 장치에 적용할 수 있다.
도 7에 도시하는 제4 변형예에서는, 반사부(28) 내에 배치하는 슬롯형상의 절연부(23)에 의해, 동심원형상의 절연부(23)가 복수 형성되어 있다. 동심원형상의 절연부(23)는, 큰 원형상 패턴이 작은 원형상 패턴을 내포하고, 동일 간격으로 배치되어 있다. 평행한 직선형상의 절연부(23)를 슬릿형상으로 형성하는 이외에도, 도 7에 도시하는 바와 같이, 절연부(23)를 동심원형상으로 형성하여도 좋다. 동심원형상의 절연부(23)를 동일 간격으로 배치함에 의해, 상술한 제2 변형예와 마찬가지로, 패턴의 대칭성이 높기 때문에, 입사광의 각도 변동에 대해서도, 반사층(24)의 반사 특성을 일정하게 유지할 수 있다.
본 예에서의 반사층(24)의 구성 패턴에서도, 반사층(24)을 다마신법으로 형성하는 경우에, 반사부(28)를 형성하는 CMP 공정에서, 절연부(23)에 의해 디싱의 발생이 억제된다. 이 때문에, 반사부(28)의 막 감소의 발생을 억제하면서 반사층(24)의 형성이 가능해진다. 또한, 절연부(23)의 패턴의 레이아웃의 대칭성이 높기 때문에, 반사층에의 광 입사각 변동에 의한 반사 특성의 변화를 억제할 수 있고, 고체 촬상 장치에의 광 입사각 변동시의 감도 변화를 작게 할 수 있다.
[반사층의 제5 변형예 : 절연부 패턴]
도 8은, 상술한 실시 형태의 고체 촬상 장치의 반사층의 제5 변형예의 평면 구조를 도시하는 것이다. 도 8에 도시하는 평면 구조를 갖는 반사층은, 도 2에 단면도를 도시한 이면 조사형의 고체 촬상 장치에 적용할 수 있다.
도 8에 도시하는 제5 변형예에서는, 반사부(28) 내에 배치하는 슬롯형상의 절연부(23)에 의해, 동심원형상의 절연부(23)가 복수 형성되어 있다. 동심원형상의 절연부(23)는, 큰 원형상 패턴이 작은 원형상 패턴을 내포하고, 인접하는 절연부(23)의 거리가 반사층의 중앙부에서 좁고, 주변부를 향하여 점차 넓어지도록 배치되어 있다. 상술한 제1 변형예와 마찬가지로, 반사광의 각도는, 반사층(24)의 반사부(28)와 절연부(23)와의 간격에 의해 변화한다. 도 8에 도시하는 바와 같이, 절연부(23)의 간격을, 중앙부에서 좁고, 주변부에서 넓게 함에 의해, 광이 반사층(24)의 중앙측으로 반사된다.
본 변형예에서의 반사층(24)의 구성 패턴에서도, 반사층(24)을 다마신법으로 형성하는 경우에, 반사부(28)를 형성하는 CMP 공정에서, 절연부(23)에 의해 디싱의 발생이 억제된다. 이 때문에, 반사부(28)의 막 감소의 발생을 억제하면서 반사층(24)의 형성이 가능해진다. 또한, 절연부(23)를 상술한 배치로 함으로써, 반사층(24)에 입사한 광이, 반사층(24)의 중앙 방향을 향하도록 반사된다. 이 때문에, 반도체 기체 내에 형성되는 광전 변환부에 반사광을 집광시키기 쉬워지고, 고체 촬상 장치의 감도의 향상이 가능해진다. 또한, 제5 변형예에서는, 반사층(24)의 중심에서 본 때의 절연부(23)의 배치가 완전 대칭성을 갖는다. 이 때문에, 광의 입사 방향이 변화한 경우에도 반사율이 일정으로 되고, 고체 촬상 장치의 감도가 광 입사각에 의존하지 않고, 광 입사각 변동시의 감도 변화를 억제할 수 있다.
[반사층의 제6 변형예 : 절연부 패턴]
도 9는, 상술한 실시 형태의 고체 촬상 장치의 반사층의 제6 변형예의 평면 구조를 도시하는 것이다. 도 9에 도시하는 평면 구조를 갖는 반사층은, 도 2에 도시한 이면 조사형의 고체 촬상 장치에 적용할 수 있다.
도 9에 도시하는 제6 변형예에서는, 반사층(24)을 구성하는 반사부(28)가, 금속 배선의 집합체로 구성되어 있다. 그리고, 반사부(28) 내에 배치된 절연부(23)가, 금속 배선 사이에 형성되는 절연층으로 구성되어 있다. 반사부(28)는, 예를 들면 도 9에 도시하는 바와 같이, 제1 금속 배선(31), 제2 금속 배선(32), 제3 금속 배선(33), 제4 금속 배선(34), 제5 금속 배선(35), 제6 금속 배선(36), 제7 금속 배선(37), 및, 제8 금속 배선(38)의 복수의 금속 배선의 집합체로서 구성된다.
본 변형예에서의 반사층(24)은, 금속 배선의 집합체에 의해 구성되어 있기 때문에, 인접하는 금속 배선 사이에는, 절연부(23)가 형성된다. 반사층(24)을 구성하는 영역에서는, 인접하는 금속 배선의 거리, 즉, 절연층의 폭을, 광이 투과하지 않도록 0.25미크론 이하로 하는 것이 바람직하다. 본 변형예에서의 고체 촬상 장치에서는, 금속 배선을 이용하여 반사층을 구성하기 때문에, 배선 형성 공정에서, 다마신법에 의해 용이하게 반사층(24)을 형성한 것이 가능해진다.
[반사층의 제7 변형예 : 화소부]
고체 촬상 장치에 적용되는 반사층의 제7 변형예에 관해 설명한다. 도 10은, 상술한 실시 형태의 고체 촬상 장치의 구성을 설명하기 위한 평면도이다. 이 도 10에서는, 도 2에 도시한 이면 조사형의 고체 촬상 장치의 화소부의 평면 구성을 도시하고 있다. 도 10에 도시하는 바와 같이, 고체 촬상 장치(1)는, 화소가 행렬 방향으로 매트릭스 배치된 화소부(3)를 갖고 있고, 여기서는 화소부(3)를, 영역(a)부터 영역(i)까지의 9개의 영역으로 구분한 경우에 관해 설명한다.
도 11에 도시하는 반사층(24a)부터 반사층(24i)은, 도 10에서의 화소부(3)의 영역(a)부터 영역(i)까지의 9개의 영역에 대응하는, 반사부(28)와 절연부(23)의 평면 구조를 나타내고 있다. 도 11에 도시하는 바와 같이, 반사층(24a 내지 i)은, 반사부(28) 내에 절연부(23)가 배치된 구성이다. 그리고, 영역(a 내지 i)에서, 반사층(24a 내지 i)을 구성하는 반사부(28)와 절연부(23)의 배치 패턴이 다르다.
화소부(3)의 중앙에 상당하는 영역(e)에 형성되는 화소는, 절연부(23)가, 인접하는 절연부(23)와의 거리를 동등하게 한 슬롯형상의 패턴으로 배치되어 있는 반사층(24e)을 갖는다. 즉, 영역(e)에 형성되는 각 화소는, 상술한 제1 실시 형태에 나타내는 화소 구성과 같은 구성으로 되고, 제1 실시 형태의 반사층과 같은 구성의 반사층(24e)을 갖는다.
화소부(3)의 영역(e)에 대해 상하 좌우의 영역(b, d, f, h)에 형성되는 화소는, 슬롯형상의 절연부(23)의 간격이, 화소부(3)의 중앙에 가까운 방향에서는 좁고, 화소부(3)의 주변부를 향하여 점차 넓어지도록 배치되어 있는 반사층(24b, d, f, h)을 갖는다. 즉, 영역(b, d, f, h)에 형성되는 각 화소는, 상술한 제1 변형예의 반사층과 같은 구성의 반사층(24b, d, f, h)을 갖는다.
또한, 화소부(3)의 모서리부에 위치하는 영역(a, c, g, i)에 형성되는 화소는, 슬롯형상의 절연부(23)의 배치가, 화소부(3)의 중심부를 향하여 오목부를 향한 열쇠형으로 배치되어 있는 반사층(24a, c, g, i)을 갖는다. 절연부(23)는, 2개의 슬롯형상의 절연부(23)가, 영역(a, c, g, i)의 외측의 변에 따르고 연속한 패턴으로 형성되어 있다. 그리고, 이 절연부(23)의 간격이, 화소부(3)의 중앙에 가까운 방향에서는 좁고, 화소부(3)의 주변부를 향하여 점차 넓어지도록 배치되어 있다.
고체 촬상 장치에서 입사광은, 화소부(3)의 중앙부에서는 수직으로 입사하고, 화소부(3)의 단부로 감에 따라, 화소부(3)의 중심으로 부터 단부 방향을 향하여 경사 방향으로 입사한다. 이 때문에, 화소부(3)를 복수의 영역으로 나누고, 각각의 영역에서, 절연부(23)의 배치를 다르게 한 반사층(24)을 마련함에 의해, 각 영역의 화소에서 반사층(24)에서의 광의 반사 방향을 광전 변환부의 중앙부로 향하게 할 수 있다.
본 예에서의 반사층(24)의 구성에서는, 고체 촬상 장치의 화소부(3)를 복수의 영역으로 나누고, 각각의 영역에서 각 화소에 마련되는 반사층(24)의 절연부(23)의 패턴을 다르게 하고 있다. 이 구성에 의해, 각 영역에서, 반사층(24)의 반사광의 방향을 제어하여, 화소부(3) 내에서의 광의 입사각에 의존한 감도 분포를 균일화하는 것이 가능해진다.
[반사층의 제8 변형예 : 화소부]
고체 촬상 장치에 적용되는 반사층의 제8 변형예에 관해 설명한다. 도 12에 도시하는 반사층(24a)부터 반사층(24i)은, 도 10에서의 화소부(3)의 영역(a)부터 영역(i)까지의 9개의 영역에 대응하는, 반사부(28)와 절연부(23)의 평면 구조를 나타내고 있다.
도 12에 도시하는 바와 같이, 반사층(24a 내지 i)은 반사부(28) 내에 사각형상의 절연부(23)가 배치된 구성이다. 사각형상의 절연부(23)는, 큰 사각형상 패턴이 작은 사각형상 패턴을 내포하고, 복수의 사각형상 패턴으로 배치되어 있다. 그리고, 이 영역(a 내지 i)에서 반사층(24a 내지 i)을 구성하는 절연부(23)의 사각형상 패턴의 배치가 다르다.
화소부(3)의 중앙에 상당하는 영역(e)에 형성되는 화소는, 절연부(23)가, 중심 위치를 같게 하는 사각형상의 절연부 패턴이 동일한 간격으로 복수개 배치되어 있다. 즉, 영역(e)에 형성되는 각 화소는, 상술한 제2 변형예와 같은 구성의 반사층(24e)을 갖는다.
화소부(3)의 영역(e)에 대해 상하 좌우의 영역(b, d, f, h)에 형성되는 화소는, 사각형상 패턴의 절연부(23)가, 내측에 배치되는 패턴일수록 화소부(3)의 중앙부에 패턴의 중심 위치가 가까워지도록 배치된 반사층(24b, d, f, h)을 갖는다. 마찬가지로, 화소부(3)의 모서리부에 위치하는 영역(a, c, g, i)에 형성되는 화소는, 사각형상 패턴의 절연부(23)가, 내측에 배치되는 패턴일수록 화소부(3)의 중앙부에 패턴의 중심 위치가 가까워지도록 배치된 반사층(24a, c, g, i)을 갖는다.
고체 촬상 장치에서 입사광은, 화소부(3)의 중앙부에서는 수직으로 입사하고, 화소부(3)의 단부로 감에 따라, 화소부(3)의 중심으로부터 단부 방향을 향하여 경사 방향으로 입사한다. 이 때문에, 화소부(3)를 복수의 영역으로 나누고, 각각의 영역에서, 절연부(23)의 배치를 다르게 한 반사층(24)을 마련함에 의해, 각 영역의 화소에서 반사층(24)에서의 광의 반사 방향을 광전 변환부의 중앙부에 향하게 할 수 있다.
본 예에서의 반사층(24)의 구성에서는, 고체 촬상 장치의 화소부(3)를 복수의 영역으로 나누고, 각각의 영역에서 각 화소에 마련되는 반사층(24)의 절연부(23)의 패턴을 다르게 하고 있다. 이 구성에 의해, 각 영역에서, 반사층(24)의 반사광의 방향을 제어하고, 화소부(3) 내에서의 광의 입사각에 의존한 감도 분포를 균일화하는 것이 가능해진다.
[반사층의 제9 변형예 : 화소부]
고체 촬상 장치에 적용되는 반사층의 제9 변형예에 관해 설명한다. 도 13에 도시하는 반사층(24a)부터 반사층(24i)은, 도 10에서의 화소부(3)의 영역(a)부터 영역(i)까지의 9개의 영역에 대응하는, 반사부(28)와 절연부(23)의 평면 구조를 나타내고 있다.
도 13에 도시하는 바와 같이, 반사층(24a 내지 i)은 반사부(28) 내에 원형상의 절연부(23)가 배치된 구성이다. 원형상의 절연부(23)는, 큰 원형상 패턴이 작은 원형상 패턴을 내포하고, 복수의 원형상 패턴으로 배치되어 있다. 그리고, 이 영역(a 내지 i)에서 반사층(24a 내지 i)을 구성하는 절연부(23)의 원형상 패턴의 배치가 다르다.
화소부(3)의 중앙에 상당하는 영역(e)에 형성되는 화소는, 절연부(23)가, 동심원형상으로 동일 간격으로 복수개 배치되어 있다. 즉, 영역(e)에 형성되는 각 화소는, 상술한 제4 변형예와 같은 구성의 반사층(24e)을 갖는다.
화소부(3)의 영역(e)에 대해 상하 좌우의 영역(b, d, f, h)에 형성되는 화소는, 원형상 패턴의 절연부(23)가, 내측에 배치된 패턴일수록 화소부(3)의 중앙부에 패턴의 중심 위치가 가까워지도록 배치된 반사층(24b, d, f, h)을 갖는다. 마찬가지로, 화소부(3)의 모서리부에 위치하는 영역(a, c, g, i)에 형성되는 화소는, 원형상 패턴의 절연부(23)가, 내측에 배치된 패턴일수록 화소부(3)의 중앙부에 패턴의 중심 위치가 가까워지도록 배치된 반사층(24a, c, g, i)을 갖는다.
고체 촬상 장치에서 입사광은, 화소부(3)의 중앙부에서는 수직으로 입사하고, 화소부(3)의 단부로 감에 따라, 화소부(3)의 중심으로부터 단부 방향을 향하여 경사 방향으로 입사한다. 이 때문에, 화소부(3)를 복수의 영역으로 나누고, 각각의 영역에서, 절연부(23)의 배치를 다르게 한 반사층(24)을 마련함에 의해, 각 영역의 화소에서 반사층(24)에서의 광의 반사 방향을 광전 변환부의 중앙부에 향하게 할 수 있다.
본 예에서의 반사층(24)의 구성에서는, 고체 촬상 장치의 화소부(3)를 복수의 영역으로 나누고, 각각의 영역에서 각 화소에 마련되는 반사층(24)의 절연부(23)의 패턴을 다르게 하고 있다. 이 구성에 의해, 각 영역에서, 반사층(24)의 반사광의 방향을 제어하고, 화소부(3) 내에서의 광의 입사각에 의존한 감도 분포를 균일화하는 것이 가능해진다.
또한, 상술한 제7 내지 9 변형예에서는, 화소부를 9개의 영역으로 나누어 패턴이 다른 반사층을 구성하고 있지만, 분할하는 영역은 9개로 한하지 않고, 필요에 응하여 이미지 영역의 분할수를 정할 수 있다. 또한, 각 영역의 넓이도 임의로 정할 수 있고, 모든 영역을 같은 면적으로 형성하지 않아도 좋다. 또한, 화소부를 복수의 영역으로 분할하는 구성으로 바꾸고, 화소부에서 화소마다 패턴이 다른 반사층을 갖는 구성으로 하여도 좋다. 화소부의 중심에 가까운 화소에서는 절연부를 등간격으로 배치하고, 주변부의 화소일수록 화소부의 중심 방향으로 절연부의 밀도가 높아지는 구성의 반사층을 형성한다.
[절연부 패턴]
반사층에 집광 특성을 부여하는 경우에, 반사층(24)에 형성하는 절연부(23)의 배치에 관해 도 14를 이용하여 설명한다. 여기서는, 반사층(24)에 동심원형상의 절연부를 배치하는 구성, 즉, 상술한 제5 변형예의 구성에 관해 설명한다.
반사층(24)에 동심원형상으로 절연부(23)를 배치하고, 반사광을 화소의 중앙에 집중시키기 위해서는, 반사층(24)의 외주를 향함에 따라, 절연부(23)의 간격이 서서히 넓어지도록 형성한다. 반사층(24)의 중앙부터 n개(n=1, 2, 3, 4…)의 절연부(23)가 배치되는 경우, n번째의 절연부(23)와 n+1번째의 절연부(23)의 거리를, (n+1)1/2×a(a는 정수)가 되도록, 절연부(23)를 배치한다. 즉, 중심부터 1번째의 절연부(23)의 반사판 중심부터의 거리를 a로 한 경우, 2번째의 절연부(23)의 1번째의 절연부(23)부터의 거리를 (2)1/2×a=1.41×a로 한다. 그리고, 3번째의 절연부(23)의 2번째의 절연부(23)부터의 거리를 (3)1/2×a=1.73×a로 한다. 4번째의 절연부(23)의 3번째의 절연부(23)부터의 거리를 (4)1/2×a=2×a로 한다. 이와 같이, 절연부(23)의 간격을 제어함에 의해, 반사층(24)의 반사 특성을 제어할 수 있다. 상기한 설계는 존 플레이트의 설계 방법을 기초로 절연부(23)의 배치를 구하고 있지만, 상기한 방법으로 한하지 않고 반사층의 집광 특성을 얻을 수 있으면, 설계 수법은 묻지 않는다.
또한, 상술한 설명에서는, 절연부를 동심원형상으로 배치하는 경우에 관해 나타내고 있지만, 예를 들면, 상술한 제2 변형예나 제4 변형예의 슬롯형상, 사각형상의 배치의 절연부에 대해서도, 적용할 수 있다. 반사층의 중심부터 외주를 향함에 따라, 마찬가지로 간격을 확대하여 감으로써, 반사광을 반사층의 중앙 방향으로 집광시킬 수 있다. 또한, 제7 내지 9 변형예에서도, 화소부의 중심의 영역을 제외한, 주변 영역의 화소에 마련하는 반사층에 대해서도 적용할 수 있다. 주변 영역의 화소에서, 화소의 중심 방향부터 외주를 향함에 따라, 절연부의 간격을 조정함에 의해, 반사광의 제어가 가능해진다.
<3. 제2 실시 형태(고체 촬상 장치)>
고체 촬상 장치의 제2 실시 형태에 관해 설명한다. 제2 실시 형태는, 상술한 제1 실시 형태의 고체 촬상 장치와, 반사층 이외의 구성은 같다. 이 때문에, 이하의 제2 실시 형태의 설명에서는, 상술한 제1 실시 형태와 다른 구성만을 설명하고, 제1 실시 형태와 같은 구성의 설명을 생략한다.
도 15는, 본 기술의 제2 실시 형태에 의한 고체 촬상 장치의 화소의 구조를 도시하는 단면도이다. 도 15에 도시하는 이면 조사형의 고체 촬상 장치에서는, 반도체 기체(21) 내에 광전 변환부(22)가 형성되어 있다. 그리고, 반도체 기체(21)의 광입사면과 반대측의 회로 형성면측에 제1 반사층(24A) 및 제2 반사층(24B)이 형성되어 있다. 즉, 이면 조사형의 고체 촬상 장치에서, 회로 형성면에 복수의 반사층이 적층 형성되어 있다.
제1 반사층(24A) 및 제2 반사층(24B)은, 각각 주된 구성이 되는 반사부(28)와, 반사부(28)의 사이에 형성되는 절연부(23)로 이루어진다. 또한, 반사부(28)의 표면에 배리어 메탈(27)을 구비한다.
또한, 고체 촬상 장치의 제1 반사층(24A) 및 제2 반사층(24B)의 평면 구조를 도 16에 도시한다. 제1 반사층(24A) 및 제2 반사층(24B)의 평면 구조는, 반사부(28) 내에 슬롯형상으로 공극이 형성되고, 이 공극에 절연부(23)가 배치된 구성으로 된다. 이 때, 제1 반사층(24A)과 제2 반사층(24B)에 형성되는 절연부(23)의 위치는, 공간 방향으로 겹쳐지지 않도록 형성되다. 또한, 제1 반사층(24A), 제2 반사층(24B)은, 각각 고체 촬상 장치에서 같은 배선층에 형성되는 배선과 동시에 다마신법으로 형성함에 의해, 공정수의 증가 없이 용이하게 형성할 수 있다.
본 예의 고체 촬상 장치에서는, 제1 반사층(24A)과 제2 반사층(24B)의 절연부(23)의 배치 위치가, 공간의 종방향으로 겹쳐지지 않도록 형성되어 있다. 이 때문에, 제1 반사층(24A)의 절연부(23)를 통과한 광이, 제2 반사층(24B)에서 반사되어, 광전 변환부(22)에 입사시키는 것이 가능해진다. 따라서, 보다 감도가 높은 고체 촬상 장치를 실현할 수 있다. 또한, 본 실시 형태에서는, 반사층을 2층으로 형성하는 경우를 나타내고 있지만, 3층 이상의 반사층을 형성하여도 좋고, 반사층의 절연부가 공간의 종방향으로 겹쳐지지 않도록 배치하면 좋다.
<4. 제3 실시 형태(고체 촬상 장치)>
고체 촬상 장치의 제3 실시 형태에 관해 설명한다. 제3 실시 형태는, 상술한 제1 실시 형태의 고체 촬상 장치와, 광전 변환부 이외의 구성은 같다. 이 때문에, 이하의 제3 실시 형태의 설명에서는, 상술한 제1 실시 형태와 다른 구성만을 설명하고, 제1 실시 형태와 같은 구성의 설명을 생략한다.
도 17은, 본 기술의 제3 실시 형태에 의한 고체 촬상 장치의 화소의 구조를 도시하는 단면도이다. 도 17에 도시하는 이면 조사형의 고체 촬상 장치에서는, 반도체 기체(21) 내에 광전 변환부(22)가 적층 형성되어 있다. 그리고, 반도체 기체(21)의 광입사면과 반대측의 회로 형성면측에 반사층(24)이 형성되어 있다.
광전 변환부(22)는, 반도체 기체(21)의 입사면에 가까운 방향부터, 가시광 영역에서, 청색광의 파장에 대응하는 광전 변환부(22B), 녹색광의 파장에 대응하는 광전 변환부(22G), 적색광의 파장에 대응하는 광전 변환부(22R)가 형성되어 있다. 각각의 광전 변환부(22B, G, R)에서는, 청, 녹, 적의 파장역에 대응한 광이 광전 변환되어, 단일 화소에서, 청, 녹, 적의 삼색의 광에 대응한 휘도 신호를 취득할 수 있다.
또한, 도 17에 도시하는 고체 촬상 장치에서는, 반도체 기체(21)의 회로 형성면측에 마련되는 반사층(24)은, 적색광의 반사 특성에 우수한 구성이다. 예를 들면, 반사부(28)를, 적색광에 대해 반사 특성이 양호한 구리 및 구리합금으로 형성된다. 적색광 등의 장파장광은, 반도체 기체(21)에서의 흡수률이 낮다. 특히, 본 실시의 형태와 같은 이면 조사형의 고체 촬상 장치에서는, 광전 변환부가 형성되는 반도체 기체(21)를 비교적 얇은 두께로 형성하기 때문에, 장파장광이 반도체 기체(21)를 투과하여, 회로 형성면측까지 도달한다. 이 때문에, 반사층(24)을 마련함에 의해, 반도체 기체(21)를 투과한 장파장광을, 재차 반도체 기체(21)의 광전 변환부(22R)에 되돌릴 수 있다. 즉, 반사층(24)에서 반사시킴에 의해, 광이 광전 변환부(22R)를 통과하는 거리를 실질적으로 2배로 할 수 있다.
반사층(24)에서, 절연부(23)의 폭은, 반사층(24)에 가장 가까운 위치에 형성한 광전 변환부(22R)에서 광전 변환하는 적색의 파장역의 광의 중심 파장인 650㎚ 이하의 폭으로 하는 것이 바람직하다. 또한, 반사광률을 올리기 위해, 0.25㎛ 이하로 하는 것이 바람직하다. 절연부(23)의 폭을 0.25㎛ 이하로 함으로써, 적색광에 상당하는 파장 650㎚의 광의 투과율을 5% 이하로 할 수 있다.
도 18에, 도 17에 도시하는 반사층(24)의 평면 구조를 도시한다. 도 18에서의 B-B'에 따른 단면도가 도 17의 단면도에 상당한다. 도 18에 도시하는 바와 같이, 반사층(24)의 평면 구조는, 상술한 제1 실시 형태와 마찬가지로, 반사부(28) 내에 슬롯형상으로 공극이 형성되고, 이 공극에 절연부(23)가 배치된 구성으로 된다.
본 실시의 형태의 고체 촬상 장치와 같이, 반도체 기체(21) 내에 복수의 광전 변환부(22)가 형성되어 있는 경우에도, 절연부(23)가 배치된 반사층(24)을 적용할 수 있다. 반사부(28)를 CMP법으로 형성할 때에, 디싱의 발생이 억제되고, 반사부(28)의 막 감소의 발생을 억제하면서 반사층(24)의 형성이 가능해진다. 또한, 반사층(24)으로부터의 반사광이, 광전 변환부의 중앙 방향으로 반사된다. 이 때문에, 반도체 기체 내에 형성된 광전 변환부에 의해 반사광이 집광되기 쉬워지고, 감도의 향상이 가능해진다.
또한, 제3 실시 형태에서는, 3층의 광전 변환부를 반도체 기체 내에 형성하고 있지만, 이 중의 임의의 광전 변환부를, 광입사면측의 반도체 기체상에 광전 변환막을 이용하여 적층하는 구조로 하여도 좋다. 이 경우에도, 반사층은, 가장 반사층에 가까운 위치에 형성한 광전 변환부에서 광전 변환하는 파장역의 광을 효율적으로 반사시키기 위한 절연부폭을 설정하면 좋다. 광전 변환막을 적층한 이면 조사형의 고체 촬상 장치에서, 가장 반사층에 가까운 위치에 형성한 광전 변환부에서 광전 변환하는 파장역의 광이 효율 좋게 반사되어, 광전 변환부에서의 감도의 향상을 도모할 수 있다.
또한, 지금까지 설명한 모든 반사층의 평면 레이아웃은, 이면 조사형의 고체 촬상 장치, 및, 적층형의 광전 변환부를 갖는 이면 조사형의 고체 촬상 장치의 반사층구조에 적용할 수 있고, 영역마다 최적의 레이아웃을 적용하면 좋다. 또한, 복수층의 배선층으로 반사층을 형성하는 경우에, 각각의 층에서 형성하는 반사층에 최적의 절연부 배치 레이아웃을 이용할 수 있다. 제2 실시 형태 및 제3 실시 형태에서도, 상술한 제1 실시 형태의 각 변형예의 반사층의 구성을 적용하여도 좋다.
<5. 전자 기기>
다음에, 상술한 고체 촬상 장치를 구비하는 전자 기기의 실시 형태에 관해 설명한다. 상술한 고체 촬상 장치는, 예를 들면, 디지털 카메라나 비디오 카메라 등의 카메라 시스템, 촬상 기능을 갖는 휴대 전화, 또는, 촬상 기능을 구비한 다른 기기 등의 전자 기기에 적용할 수 있다. 도 19에, 전자 기기의 한 예로서, 고체 촬상 장치를 정지화상 또는 동화를 촬영 가능한 카메라(카메라(100))에 적용하는 경우의 개략 구성을 도시한다.
카메라(100)는, 고체 촬상 장치(101)와, 고체 촬상 장치(101)의 수광 센서부에 입사광을 유도하는 광학계(102)와, 고체 촬상 장치(101) 및 광학계(102) 사이에 마련된 셔터 장치(103)와, 고체 촬상 장치(101)를 구동하는 구동 회로(104)를 구비한다. 또한, 카메라(100)는, 고체 촬상 장치(101)의 출력 신호를 처리하는 신호 처리 회로(105)를 구비한다.
고체 촬상 장치(101)에는, 상술한 각 실시 형태 및 변형예에 나타내는 고체 촬상 장치를 적용할 수 있다. 광학계(광학 렌즈)(102)는, 피사체로부터의 상광(입사광)를 고체 촬상 장치(101)의 촬상면(부도시)상에 결상시킨다. 이에 의해, 고체 촬상 장치(101) 내에, 일정 기간, 신호 전하가 축적된다. 또한, 광학계(102)는, 복수의 광학 렌즈를 포함하는 광학 렌즈군으로 구성하여도 좋다. 또한, 셔터 장치(103)는, 입사광의 고체 촬상 장치(101)에의 광조사 기간 및 차광 기간을 제어한다.
구동 회로(104)는, 고체 촬상 장치(101) 및 셔터 장치(103)에 구동 신호를 공급한다. 그리고, 구동 회로(104)는, 공급한 구동 신호에 의해, 고체 촬상 장치(101)의 신호 처리 회로(105)에의 신호 출력 동작, 및, 셔터 장치(103)의 셔터 동작을 제어한다. 즉, 이 예에서는, 구동 회로(104)로부터 공급되는 구동 신호(타이밍 신호)에 의해, 고체 촬상 장치(101)로부터 신호 처리 회로(105)에의 신호 전송 동작을 행한다.
신호 처리 회로(105)는, 고체 촬상 장치(101)로부터 전송된 신호에 대해, 각종의 신호 처리를 시행한다. 그리고, 각종 신호 처리가 시행된 신호(영상 신호)는, 메모리 등의 기억 매체(부도시)에 기억되고, 또는, 모니터(부도시)에 출력된다.
상술한 카메라(100) 등의 전자 기기에 의하면, 고감도화가 가능한 고체 촬상 장치(101)를 이용함에 의해, 화질 특성이 향상한 전자 기기를 제공할 수 있다.
또한, 본 개시는 이하와 같은 구성도 취할 수 있다.
(1) 일방의 면을 회로 형성면으로 하고, 타방의 면을 수광면으로 하는 반도체 기체와, 상기 반도체 기체에 마련된 광전 변환부와, 상기 광전 변환부 상에서 상기 회로 형성면에 마련된 반사층과, 상기 반사층에 배치된 절연부를 구비하는 고체 촬상 장치.
(2) 상기 반사층은, 금속막으로 이루어지는 반사부 내에, 슬롯형상의 상기 절연부가 배치되어 있는, 상기 (1)에 기재된 고체 촬상 장치.
(3) 상기 반사부 내에 배치되는 상기 절연부는, 광전 변환부가 검출하는 광의 파장역보다도 작은 폭을 갖는, 상기 (2)에 기재된 고체 촬상 장치.
(4) 상기 반사층은 상기 반사부와 상기 절연부가 교대로 배치된 구성을 가지며, 상기 반사부 및 상기 절연부 중, 굴절율이 작은 쪽의 배치 간격이 상기 반사층의 중심을 향하여 서서히 작아지도록 배치되어 있는, 상기 (2) 또는 (3)에 기재된 고체 촬상 장치.
(5) 상기 반사층은 상기 반사부와 상기 절연부가 교대로 배치된 구성을 가지며, 상기 반사부와 상기 절연부 중 굴절율이 큰 쪽의 재료로 이루어지는 패턴의 중심(重心) 위치가, 화소부의 단(端)이 될수록 상기 반사층의 중심으로부터 상기 화소부의 중심 방향으로 빗나간 위치에 배치되어 있는, 상기 (2) 또는 (3)의 어느 하나에 기재된 고체 촬상 장치.
(6) 상기 반사층이, 복수의 배선층에 형성된 상기 반사부와 상기 절연부로 이루어지는, 상기 (2) 내지 (5)의 어느 하나에 기재된 고체 촬상 장치.
(7) 상기 반사부가, 동일한 배선층에 형성된 복수의 배선의 집합체로 이루어지는다, 상기 (2) 내지 (5)의 어느 하나에 기재된 고체 촬상 장치.
(8) 상기 반사부는, 다마신법에 의해 형성되는 금속막으로 이루어지는, 상기 (2) 내지 (7)의 어느 하나에 기재된 고체 촬상 장치.
(9) 단일한 화소 내에 복수의 광전 변환부가 적층되어 있는, 상기 (1) 내지 (8)의 어느 하나에 기재된 고체 촬상 장치.
(10) 상기 절연부는, 적층된 상기 광전 변환부 중, 가장 상기 반사층에 가까운 상기 광전 변환부가 검출하는 광의 파장역보다도 작은 폭을 갖는, 상기 (9)에 기재된 고체 촬상 장치.
(11) (1) 내지 (10)의 어느 하나에 기재된 고체 촬상 장치와, 상기 고체 촬상 장치의 출력 신호를 처리하는 신호 처리 회로를 구비하는 전자 기기.
본 출원은, 일본 특허청에서 2012년 5월 16일에 출원된 일본 특허출원 번호 제2012-112608호를 기초로 하여 우선권을 주장하는 것이고, 이 출원의 모든 내용을 참조에 의해 본 출원에 원용한다.
당업자라면, 설계상의 요건이나 다른 요인에 응하여, 여러 가지의 수정, 콤비네이션, 서브 콤비네이션, 및 변경을 상도할 수 있는데, 그것들은 첨부한 청구의 범위나 그 균등물의 범위에 포함되는 것으로 이해된다.

Claims (11)

  1. 일방의 면을 회로 형성면으로 하고, 타방의 면을 수광면으로 하는 반도체 기체와,
    상기 반도체 기체에 마련된 광전 변환부와,
    상기 광전 변환부 상에서 상기 회로 형성면에 마련된 반사층과,
    상기 반사층에 배치된 절연부를 구비하고,
    상기 반사층은,
    금속막으로 이루어지는 반사부 내에, 슬롯형상의 상기 절연부가 배치되어 있고,
    상기 반사부와 상기 절연부가 교대로 배치된 구성을 가지며, 상기 반사부 및 상기 절연부 중, 굴절율이 작은 쪽의 배치 간격이 상기 반사층의 중심을 향하여 서서히 작아지도록 배치되어 있는 것을 특징으로 하는 고체 촬상 장치.
  2. 제1항에 있어서,
    상기 반사부 내에 배치되는 상기 절연부는, 광전 변환부가 검출하는 광의 파장역보다도 작은 폭을 갖는 것을 특징으로 하는 고체 촬상 장치.
  3. 제1항에 있어서,
    상기 반사층은 상기 반사부와 상기 절연부가 교대로 배치된 구성을 가지며, 상기 반사부와 상기 절연부 중 굴절율이 큰 쪽의 재료로 이루어지는 패턴의 중심 위치가, 화소부의 단이 될수록 상기 반사층의 중심으로부터 상기 화소부의 중심 방향으로 빗나간 위치에 배치되어 있는 것을 특징으로 하는 고체 촬상 장치.
  4. 제1항에 있어서,
    상기 반사층이, 복수의 배선층에 형성된 상기 반사부와 상기 절연부로 이루어지는 것을 특징으로 하는 고체 촬상 장치.
  5. 제1항에 있어서,
    상기 반사부가, 동일한 배선층에 형성된 복수의 배선의 집합체로 이루어지는 것을 특징으로 하는 고체 촬상 장치.
  6. 제1항에 있어서,
    상기 반사부는, 다마신법에 의해 형성되는 금속막으로 이루어지는 것을 특징으로 하는 고체 촬상 장치.
  7. 제1항에 있어서,
    단일한 화소 내에 복수의 광전 변환부가 적층되어 있는 것을 특징으로 하는 고체 촬상 장치.
  8. 제7항에 있어서,
    상기 절연부는, 적층된 상기 광전 변환부 중, 가장 상기 반사층에 가까운 상기 광전 변환부가 검출하는 광의 파장역보다도 작은 폭을 갖는 것을 특징으로 하는 고체 촬상 장치.
  9. 일방의 면을 회로 형성면으로 하고, 타방의 면을 수광면으로 하는 반도체 기체와,
    상기 반도체 기체에 마련된 광전 변환부와,
    상기 광전 변환부 상에서 상기 회로 형성면에 마련된 반사층과,
    상기 반사층에 배치된 절연부를 갖는 고체 촬상 장치와,
    상기 고체 촬상 장치의 출력 신호를 처리하는 신호 처리 회로를 구비하고,
    상기 반사층은,
    금속막으로 이루어지는 반사부 내에, 슬롯형상의 상기 절연부가 배치되어 있고,
    상기 반사부와 상기 절연부가 교대로 배치된 구성을 가지며, 상기 반사부 및 상기 절연부 중, 굴절율이 작은 쪽의 배치 간격이 상기 반사층의 중심을 향하여 서서히 작아지도록 배치되어 있는 것을 특징으로 하는 전자 기기.
  10. 삭제
  11. 삭제
KR1020147028648A 2012-05-16 2013-05-08 고체 촬상 장치 및 전자 기기 KR102109221B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012112608 2012-05-16
JPJP-P-2012-112608 2012-05-16
PCT/JP2013/062924 WO2013172232A1 (ja) 2012-05-16 2013-05-08 固体撮像装置、及び、電子機器

Publications (2)

Publication Number Publication Date
KR20150018775A KR20150018775A (ko) 2015-02-24
KR102109221B1 true KR102109221B1 (ko) 2020-05-11

Family

ID=49583639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147028648A KR102109221B1 (ko) 2012-05-16 2013-05-08 고체 촬상 장치 및 전자 기기

Country Status (5)

Country Link
US (1) US9786706B2 (ko)
JP (1) JP6101254B2 (ko)
KR (1) KR102109221B1 (ko)
CN (1) CN104541371B (ko)
WO (1) WO2013172232A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082133A (ja) * 2014-10-20 2016-05-16 ソニー株式会社 固体撮像素子及び電子機器
JP2017152511A (ja) * 2016-02-24 2017-08-31 ソニー株式会社 撮像装置
US20210288098A1 (en) * 2016-08-18 2021-09-16 Sony Semiconductor Solutions Corporation Solid-state imaging element, method for producing solid-state imaging element, and electronic device
JP7084913B2 (ja) * 2017-03-21 2022-06-15 ソニーセミコンダクタソリューションズ株式会社 発光素子、表示装置、および電子機器
WO2018181590A1 (ja) * 2017-03-28 2018-10-04 株式会社ニコン 撮像素子および撮像装置
JP2020085666A (ja) * 2018-11-26 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム
JP7346071B2 (ja) * 2019-04-26 2023-09-19 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
JPWO2021215337A1 (ko) * 2020-04-20 2021-10-28
TW202310378A (zh) * 2021-08-06 2023-03-01 日商索尼半導體解決方案公司 光檢測器、光檢測器之製造方法及電子機器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060476A (ja) * 2006-09-01 2008-03-13 Sharp Corp 固体撮像装置および電子情報機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757624B2 (ja) * 1991-10-21 1998-05-25 日本電気株式会社 赤外線固体撮像素子及びその製造方法
JP4826111B2 (ja) 2005-03-17 2011-11-30 ソニー株式会社 固体撮像素子および固体撮像素子の製造方法および画像撮影装置
US20070001100A1 (en) * 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Light reflection for backside illuminated sensor
TW200913238A (en) * 2007-06-04 2009-03-16 Sony Corp Optical member, solid state imaging apparatus, and manufacturing method
US7755123B2 (en) * 2007-08-24 2010-07-13 Aptina Imaging Corporation Apparatus, system, and method providing backside illuminated imaging device
KR101436504B1 (ko) * 2008-01-25 2014-09-02 삼성전자주식회사 이미지 센서
KR101545638B1 (ko) * 2008-12-17 2015-08-19 삼성전자 주식회사 이미지 센서 및 그 제조 방법, 이미지 센서를 포함하는 장치 및 그 제조 방법
KR101550866B1 (ko) * 2009-02-09 2015-09-08 삼성전자주식회사 광학적 크로스토크를 개선하기 위하여, 절연막의 트렌치 상부만을 갭필하여 에어 갭을 형성하는 이미지 센서의 제조방법
WO2011106553A2 (en) * 2010-02-24 2011-09-01 The Regents Of The University Of California Planar, low loss transmitting or reflecting lenses using sub-wavelength high contrast grating
US8866947B2 (en) * 2011-05-02 2014-10-21 Aptina Imaging Corporation Double pass back side image sensor systems and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060476A (ja) * 2006-09-01 2008-03-13 Sharp Corp 固体撮像装置および電子情報機器

Also Published As

Publication number Publication date
US20150123228A1 (en) 2015-05-07
JP6101254B2 (ja) 2017-03-22
KR20150018775A (ko) 2015-02-24
US9786706B2 (en) 2017-10-10
CN104541371B (zh) 2018-02-16
CN104541371A (zh) 2015-04-22
JPWO2013172232A1 (ja) 2016-01-12
WO2013172232A1 (ja) 2013-11-21

Similar Documents

Publication Publication Date Title
KR102109221B1 (ko) 고체 촬상 장치 및 전자 기기
US12087787B2 (en) Solid-state image-capturing device and production method thereof, and electronic appliance
JP7171652B2 (ja) 固体撮像素子および電子機器
KR102139007B1 (ko) 이면 조사형 촬상 소자, 그 제조 방법 및 촬상 장치
US8477223B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US9064767B2 (en) Solid state imaging device and method of manufacturing the same
US9647026B2 (en) Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
US11817471B2 (en) Imaging device and electronic device configured by bonding a plurality of semiconductor substrates
US20120038814A1 (en) Solid-state image sensing device, method of manufacturing the same, and electronic apparatus
CN102983142A (zh) 固体拍摄元件
US9337364B2 (en) Solid-state imaging element and electronic apparatus
JP2012064824A (ja) 固体撮像素子、その製造方法、カメラ
JP2012009539A (ja) 固体撮像装置、電子機器、固体撮像装置の製造方法
TW201444068A (zh) 固態影像感測裝置及固態影像感測裝置之製造方法
JP2017126678A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2023128745A (ja) 光検出装置、その製造方法、及び電子機器
TW202244480A (zh) 光檢測裝置及電子機器

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant