KR102106210B1 - electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material - Google Patents

electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material Download PDF

Info

Publication number
KR102106210B1
KR102106210B1 KR1020180082236A KR20180082236A KR102106210B1 KR 102106210 B1 KR102106210 B1 KR 102106210B1 KR 1020180082236 A KR1020180082236 A KR 1020180082236A KR 20180082236 A KR20180082236 A KR 20180082236A KR 102106210 B1 KR102106210 B1 KR 102106210B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
copper nanowire
graphene
cnt
core copper
Prior art date
Application number
KR1020180082236A
Other languages
Korean (ko)
Other versions
KR20200008287A (en
Inventor
전민현
박민정
김주희
박성준
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to KR1020180082236A priority Critical patent/KR102106210B1/en
Publication of KR20200008287A publication Critical patent/KR20200008287A/en
Application granted granted Critical
Publication of KR102106210B1 publication Critical patent/KR102106210B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/009Thermal details, e.g. cooling means

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본발명 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기는, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)가 전기 활성 고분자 유연구동기의 고분자 층에 삽입된 것으로,
따라서 본발명은 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 재료를 전기 활성 고분자 유연구동기의 고분자 층에 삽입하여 기계적 특성 향상과 발생하는 열을 흡수 시킬 수 있을 뿐 아니라, 높은 전류 밀도를 가지고 있어 전자전달 특성이 우수하여 효과적인 전극으로도 사용하여 유연구동기의 큰 굽힘 변형을 얻는 동시에 큰 힘을 낼 수 있는 현저한 효과가 있다.
The carbon nanotube-graphene core copper nanowire material is used for electroactive polymer flow research. Carbon nanotube (CNT) -graphene core copper nanowire It is inserted into the polymer layer of the active polymer oil research motive,
Accordingly, the present invention inserts a carbon nanotube (CNT) -graphene core copper nanowire material into a polymer layer of an electroactive polymer oil-assisted synchronizer to improve mechanical properties and generate heat. Not only can it absorb, but also has a high current density, so it has excellent electron transfer characteristics, so it can also be used as an effective electrode to obtain a large bending deformation of a research reactor, and at the same time, it has a remarkable effect.

Description

탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기 { electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material }Electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material}

본 발명은 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기에 관한 것으로, 보다 상세하게는 본 발명에서 제시하는 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 재료를 전기 활성 고분자 유연구동기의 고분자 층에 삽입하여 기계적 특성 향상과 발생하는 열을 흡수 시킬 수 있을 뿐 아니라, 높은 전류 밀도를 가지고 있어 전자전달 특성이 우수하여 효과적인 전극으로도 사용하여 유연구동기의 큰 굽힘 변형을 얻는 동시에 큰 힘을 낼 수 있는 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기에 관한 것이다.The present invention relates to a carbon nanotube-graphene core copper nanowire material, an electroactive polymer oil research motivation, and more specifically, a carbon nanotube (CNT) -graphene core presented in the present invention. (core) By inserting copper nanowire material into the polymer layer of an electroactive polymer flow researcher, it not only improves mechanical properties and absorbs generated heat, but also has a high current density, so it has excellent electron transfer properties. The present invention relates to an electroactive polymer oil-based motivation using a carbon nanotube-graphene core copper nanowire material that can be used as an effective electrode to obtain a large bending deformation of the oil-phase motor while also generating a large force.

최근 몇 년 동안, 전기활성고분자(Electro-Active Polymer, EAP)는 경량성과 신축성 때문에 많은 공학 분야에서 연구되었다. 이온 폴리머 금속 복합체(Ionic Polymer-Metal Composite, IPMC)는 이온전달 특성이 우수한 이온성고분자 전해질 막의 상하 양면에 전자전달 특성이 우수한 금속전극이 입혀진 커패시터 구조로 이루어져 있으며, 낮은 전기 구동 포텐셜과, 큰 변형과 경량으로 가장 인기 있는 전기활성고분자 구동기 중 하나이다. 이러한 이온 폴리머 금속 복합물은 의료용 로봇 구동기, 생체모방 센서 및 인공근육에 적합한 구동기로 많은 연구가 이루어지고 있다. 유연 구동 변위특성을 가지는 IPMC는 낮은 구동전압에 비해 상대적으로 큰 변위를 가지며, 구동기 질량에 비해 큰 전달력을 갖는다. 또한, 변위에 비해 빠른 반응주파수가 출력되며, 공기 중이나 물에서도 구동이 가능하여, 제조공정에 따라 자유로운 형태로 구현할 수 있다. In recent years, electro-active polymers (EAP) have been studied in many engineering fields because of their light weight and elasticity. Ionic Polymer-Metal Composite (IPMC) consists of a capacitor structure coated with metal electrodes with excellent electron transfer properties on both sides of the top and bottom of the ionic polymer electrolyte membrane with excellent ion transfer properties, low electric drive potential, and large deformation. It is one of the most popular electroactive polymer actuators due to its light weight and light weight. Many researches have been conducted on these ionic polymer metal complexes as medical robot drivers, biomimetic sensors, and drivers suitable for artificial muscles. IPMC having flexible driving displacement characteristics has a relatively large displacement compared to a low driving voltage, and has a large transmission force compared to a driver mass. In addition, the reaction frequency is faster than the displacement, and it can be driven in air or water, so it can be implemented freely according to the manufacturing process.

종래기술로서 등록특허공보 등록번호 제10-1326235호의 고분자유전체 기반 고성능 구동기, 그 구동기를 이용한 촉감제공 액추에이터, 표면질감제공장치, 진동모터 및 촉각 피드백 제공장치에는, 고분자 유전체 기반 고성능 구동기에 있어서, 유연성을 갖는 하우징; 상기 하우징의 상부 또는 하부에 구비되며 인가되는 전압에 의해 평면방향으로 인장되고 수직방향으로 압축되는 고분자유전체와 상기 고분자유전체의 상부면과 하부면 각각에 설치되는 전극층을 갖는 압축력 생성부; 상기 압축력 생성부에서 생성된 압축력에 대응하여 복원력을 생성시키는 복원력생성부; 상기 압축력 생성부와 상기 복원력 생성부 사이에 구비되는 영구자석; 및 상기 하우징의 상부판과 하부판 각각에 구비되는 강자성체층을 포함하는 것을 특징으로 하는 고분자 유전체 기반 고성능 구동기라고 기재되어 있다.Polymer dielectric-based high-performance actuators of the registered patent publication no. Housing having a; A compression force generation unit provided on the upper or lower portion of the housing and having a polymer dielectric stretched in a plane direction and compressed in a vertical direction by an applied voltage and electrode layers installed on each of the upper and lower surfaces of the polymer dielectric; A restoring force generation unit generating a restoring force corresponding to the compressive force generated by the compressive force generating unit; A permanent magnet provided between the compressive force generating portion and the restoring force generating portion; And a ferromagnetic layer provided on each of the upper plate and the lower plate of the housing.

다른 종래기술로서 공개특허공보 공개번호 제10-2017-0117804호의 나노복합체 전극을 포함하는 전기활성 고분자 유연 구동기 및 나노복합체 전극의 제조방법에는, 단일 유연구동기; 복수의 은나노와이어층 및 적어도 하나의 그래핀층으로 이루어지는 나노복합체 전극을 포함하는 이온성고분자 구동기라고 기재되어 있다.As another conventional technique, a method of manufacturing an electroactive polymer flexible driver and a nanocomposite electrode including the nanocomposite electrode of Japanese Patent Publication No. 10-2017-0117804 includes a single flow research unit; It is described as an ionic polymer driver including a nanocomposite electrode composed of a plurality of silver nanowire layers and at least one graphene layer.

전기활성 고분자의 전극으로는 전기화학적 안정성이 우수한 백금이 주로 사용되는데, 백금 전극은 가격이 너무 고가이고 촉매 작용이 일어나는 표면적을 증가시키기 어렵다. Platinum having excellent electrochemical stability is mainly used as the electrode of the electroactive polymer, and the platinum electrode is too expensive and difficult to increase the surface area where catalysis occurs.

또한, 기존 IPMC에 재료와 공정 상의 문제로 표면에 크랙이 존재하게 되고, 인가된 접안에 의해 이온성 고분자 층 내의 이온 수화물들이 전기분해가 되며, 금속 전극의 크랙을 통해 증발한다. 또한 인가전압으로 발생되는 열에 의하여 더욱더 수분증발을 더 많이 일어나게 된다. 전극 표면에 결함과 고분자 내부 물 손실은 이온성고분자의 동작 제어를 어렵게 하고, 유연 구동기의 구동 특성을 저하시키며 또한 인가전압의 주파수 범위를 제한하기 때문에, 유연 구동기의 산업적 응용을 크게 방해하는 요소 중 하나이다. In addition, cracks are present on the surface due to material and process problems in the existing IPMC, and ion hydrates in the ionic polymer layer are electrolyzed by the applied eye, and evaporate through cracks in the metal electrode. In addition, more and more moisture evaporation occurs due to heat generated by the applied voltage. Defects on the electrode surface and water loss inside the polymer make it difficult to control the operation of the ionic polymer, degrade the driving characteristics of the flexible actuator, and also limit the frequency range of the applied voltage. It is one.

그렇기 때문에 값싼 전극을 사용하는 것과 표면의 크랙(crack)을 없애는 것이 필요하다.That is why it is necessary to use cheap electrodes and eliminate cracks on the surface.

따라서 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 본 발명은 귀금속 백금(Platinum, pt) 전극을 대체하여 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 물질을 사용하여, 값 싸고, 플렉시블하며 표면에 결함이 없고, 전극의 산화방지와 구조적으로 높은 전류 밀도를 가지고 있어 전자전달 특성을 우수하게 하여 구동기의 전극으로서 효과적인 구동 특성을 가진 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기를 제공하고자 한다.Therefore, the present invention has been devised to solve the above problems, and the present invention replaces a precious metal platinum (pt) electrode to form a carbon nanotube (CNT) -graphene core copper nano Using copper nanowire material, it is inexpensive, flexible, and has no defects on the surface, and has high current density as it prevents electrode oxidation and has a high current density, so it has excellent driving characteristics as an electrode of the driver. It is intended to provide an electroactive polymer flow researcher using carbon nanotube-graphene core copper nanowire materials.

본발명 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기는, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)가 전기 활성 고분자 유연구동기의 고분자 층에 삽입된 것을 특징으로 한다.The carbon nanotube-graphene core copper nanowire material is used for electroactive polymer flow research. Carbon nanotube (CNT) -graphene core copper nanowire It is characterized in that it is inserted into the polymer layer of the active polymer oil phase.

따라서 본발명은 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 재료를 전기 활성 고분자 유연구동기의 고분자 층에 삽입하여 기계적 특성 향상과 발생하는 열을 흡수 시킬 수 있을 뿐 아니라, 높은 전류 밀도를 가지고 있어 전자전달 특성이 우수하여 효과적인 전극으로도 사용하여 유연구동기의 큰 굽힘 변형을 얻는 동시에 큰 힘을 낼 수 있는 현저한 효과가 있다.Accordingly, the present invention inserts a carbon nanotube (CNT) -graphene core copper nanowire material into a polymer layer of an electroactive polymer flow reactor to improve mechanical properties and generate heat. Not only can it absorb, but also has a high current density, so it has excellent electron transfer characteristics, so it can also be used as an effective electrode to obtain a large bending deformation of a research reactor, and at the same time, has a remarkable effect.

도 1은 본발명의 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 구조도
도 2는 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 물질이 첨가된 전기활성 고분자 유연구동기 개념도
1 is a carbon nanotube (CNT) -graphene (graphene) core copper nanowire (copper nanowire) structure diagram of the present invention
Figure 2 is a carbon nanotube (carbon nanotube, CNT)-graphene (graphene) core (copper nanowire) copper nanowire (copper nanowire) material is added to the electrophoretic polymer synchronizing concept diagram

본발명 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기는, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)가 전기 활성 고분자 유연구동기의 고분자 층에 삽입된 것을 특징으로 한다.The carbon nanotube-graphene core copper nanowire material is used for electroactive polymer flow research. Carbon nanotube (CNT) -graphene core copper nanowire It is characterized in that it is inserted into the polymer layer of the active polymer oil phase.

또한, 상기 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기는 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)와 이온성고분자가 혼합된 필름(film)의 양쪽 면에 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 전극이 부착된 것을 특징으로 한다.In addition, the carbon nanotube-graphene core copper nanowire material using an electroactive polymer flow researcher is a carbon nanotube (CNT) -graphene (graphene) core copper nanowire (copper nanowire) and ions Characterized in that carbon nanotubes (CNT) -graphene core copper nanowire electrodes are attached to both sides of the film in which the sex polymer is mixed.

본발명을 첨부도면에 의해 상세히 설명하면 다음과 같다.The present invention will be described in detail with reference to the accompanying drawings.

도 1은 본발명의 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 구조도, 도 2는 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 물질이 첨가된 전기활성 고분자 유연구동기 개념도이다.1 is a carbon nanotube (CNT) -graphene (graphene) core copper nanowire (copper nanowire) structure diagram of the present invention, Figure 2 is a carbon nanotube (carbon nanotube, CNT) -graphene It is a conceptual diagram of an electroactive polymer oil research motivation in which a (graphene) core copper nanowire material is added.

본 발명은 귀금속 백금(Platinum, pt) 전극을 대체하여 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 물질을 사용하여, 값 싸고, 플렉시블하며 표면에 결함이 없고, 전극의 산화방지와 구조적으로 높은 전류 밀도를 가지고 있어 전자전달 특성을 우수하게 하여 구동기의 전극으로서 효과적인 구동 특성을 제공하고자 한다. 그리고 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 물질은 기존의 탄소나노튜브(carbon nanotube, CNT)가 가지는 뭉치는 현상을 완화시킬 수 있으며 고분자 내에서 분산이 잘 일어날 수 있다. 또한 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 물질을 이온성 고분자 층에 삽입을 하여 강성을 증가시켜 구동력을 효과적으로 향상시킬 수 있으며, 이에 따라 같은 전압과 주파수에서 더 빠른 응답특성과 구동력 특성을 보일 수 있다. The present invention uses a carbon nanotube (CNT) -graphene core copper nanowire material to replace a precious metal platinum (pt) electrode, and is inexpensive, flexible, and It is intended to provide effective driving characteristics as an electrode of a driver by having excellent defects in the surface, preventing oxidation of the electrodes, and having a high current density structurally, thereby improving electron transfer characteristics. And carbon nanotube (CNT) -graphene (graphene) core copper nanowire (copper nanowire) material can alleviate the agglomeration of the existing carbon nanotube (carbon nanotube, CNT), Dispersion can occur well within the polymer. In addition, carbon nanotube (CNT) -graphene (graphene) core copper nanowire (copper nanowire) material can be inserted into the ionic polymer layer to increase the stiffness to effectively improve the driving force. Therefore, it is possible to exhibit faster response characteristics and driving force characteristics at the same voltage and frequency.

본발명의 제조방법은 구리 나노와이어(copper nanowire, Cu NW)를 합성하는 단계; 화학기상증착법을 통해 구리 나노와이어(copper nanowire, Cu NW)의 표면에 그래핀(graphene)을 성장시키는 단계; 표면에 탄소나노튜브(carbon nanotube, CNT)를 추가 성장 시켜서 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)를 제조하는 단계; 상기 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)를 이온성고분자 용액 내에 첨가하여 주조(casting) 공정을 진행하여, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)와 이온성고분자가 혼합된 film이 제조되는 단계; 상기 film의 양쪽 면에 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 전극을 부착시키는 단계; 로 이루어진다.The method of the present invention comprises the steps of synthesizing copper nanowires (Cu NW); Growing graphene on the surface of copper nanowires (Cu NW) through chemical vapor deposition; Preparing a carbon nanotube (CNT) -graphene core copper nanowire by further growing carbon nanotubes (CNTs) on a surface; The carbon nanotube (CNT) -graphene core copper nanowire is added to the ionic polymer solution to perform a casting process, and carbon nanotube , CNT) -graphene (graphene) core (core) copper nanowires (copper nanowire) and an ionic polymer film is prepared; Attaching a carbon nanotube (CNT) -graphene core copper nanowire electrode to both sides of the film; Is made of

본 발명을 달성하기 위해 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 재료가 적용된 유연구동기 제조 방법은 가장 먼저 구리 나노와이어(copper nanowire, Cu NW)를 합성하고, 관용적인 화학기상증착법을 통해 온도는 화학기상증착법의 관용적 온도인 500 ~ 700℃온도에서, 관용적인 촉매인 가스 메탄 또는 아세틸렌을 촉매로 이용하여 구리 나노와이어(copper nanowire, Cu NW)의 표면에 그래핀(graphene)을 성장시키고 그 표면에 탄소나노튜브(carbon nan℃otube, CNT)를 추가 성장 시킨다. 그 다음 이를 이온성고분자 용액 내에 첨가하여 주조(casting) 공정을 진행하여, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)와 이온성고분자가 혼합된 멤브레인 필름(Membrane film)이 제조된다. 곧, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)가 포함된 멤브레인 필름(Membrane film) 제작 공정 조건은 먼저 5 % - 20 % 내피온(Nafion) 내에 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)를 넣고 교반 시켜 혼합액을 만든다.Carbon nanotube (CNT) -graphene (graphene) core copper nanowire (copper nanowire) material applied to achieve the present invention is the first method of manufacturing a researcher synchronous copper nanowire (copper nanowire, Cu) NW), and the temperature through the conventional chemical vapor deposition method is a copper nanowire (copper nanowire, Cu) using the conventional catalyst gas methane or acetylene as a catalyst at a temperature of 500 to 700 ° C, the conventional temperature of the chemical vapor deposition method. Graphene is grown on the surface of NW) and carbon nanotubes (CNT) are further grown on the surface. Then, it is added to the ionic polymer solution to perform a casting process, and carbon nanotube (CNT) -graphene core copper nanowire and ionic polymer are added. A mixed membrane film is prepared. Soon, carbon nanotube (CNT) -graphene (graphene) core copper nanowires (copper nanowire) containing membrane film (Membrane film) manufacturing process conditions are first 5%-20% Napion ( Carbon nanotube (CNT) -graphene core copper nanowire is added into Nafion and stirred to make a mixed solution.

이후 몰드에 혼합액을 넣고, 40℃에서 하룻밤 동안(Overnight) 건조시켜 멤브레인 필름(Membrane film) 형태로 제작한다.Subsequently, the mixture is put into a mold, and dried at 40 ° C. overnight (Overnight) to produce a membrane film.

또한, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 재료를 전극으로 형성하고 앞에서 제작된 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)와 이온성고분자가 혼합된 필름(film)의 양쪽 면에 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 전극을 부착시켜 최종적으로 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 물질이 첨가된 전기활성고분자 유연구동기를 제작한다.In addition, carbon nanotube (CNT) -graphene (graphene) core copper nanowire (copper nanowire) material is formed as an electrode, and the previously produced carbon nanotube (carbon nanotube, CNT) -graphene ( graphene) Carbon nanotubes (CNT) -graphene core copper nanowires on both sides of a film of a mixture of core copper nanowires and ionic polymers (copper nanowire) is attached to the electrode, and finally, an electroactive polymer flow research reactor in which a carbon nanotube (CNT) -graphene core copper nanowire material is added is prepared.

따라서 본발명은 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 재료를 전기 활성 고분자 유연구동기의 고분자 층에 삽입하여 기계적 특성 향상과 발생하는 열을 흡수 시킬 수 있을 뿐 아니라, 높은 전류 밀도를 가지고 있어 전자전달 특성이 우수하여 효과적인 전극으로도 사용하여 유연구동기의 큰 굽힘 변형을 얻는 동시에 큰 힘을 낼 수 있는 현저한 효과가 있다.Accordingly, the present invention inserts a carbon nanotube (CNT) -graphene core copper nanowire material into a polymer layer of an electroactive polymer flow reactor to improve mechanical properties and generate heat. Not only can it absorb, but also has a high current density, so it has excellent electron transfer characteristics, so it can also be used as an effective electrode to obtain a large bending deformation of a research reactor, and at the same time, has a remarkable effect.

Claims (2)

탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)가 전기 활성 고분자 유연구동기의 고분자 층에 삽입된 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기에 있어서,
상기 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기는 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire)와 이온성고분자가 혼합된 필름(film)의 양쪽 면에 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 전극이 부착된 것으로, 탄소나노튜브(carbon nanotube, CNT)-그래핀(graphene) 코어(core) 구리 나노와이어(copper nanowire) 재료를 전기 활성 고분자 유연구동기의 고분자 층에 삽입하여 기계적 특성 향상과 발생하는 열을 흡수 시킬 수 있을 뿐 아니라, 높은 전류 밀도를 가지고 있어 전자전달 특성이 우수하여 효과적인 전극으로도 사용하여 유연구동기의 큰 굽힘 변형을 얻는 동시에 큰 힘을 낼 수 있는 탄소나노튜브-그래핀 코어 구리 나노와이어 재료를 이용한 전기 활성 고분자 유연구동기
Carbon nanotubes (CNT) -graphene core copper nanowires are inserted into the polymer layer of the electroactive polymer nanomolecule to form a carbon nanotube-graphene core copper nanowire material. In the used electroactive polymer oil research motivation,
The carbon nanotube-graphene core copper nanowire material using an electroactive polymer flow researcher is a carbon nanotube (CNT) -graphene core graph copper nanowire and ionic polymer A carbon nanotube (CNT) -graphene core copper nanowire electrode is attached to both sides of a film mixed with carbon nanotubes. CNT) -graphene core copper nanowire material is inserted into the polymer layer of the electroactive polymer oil-assisted synchronous motor to improve mechanical properties and absorb generated heat, as well as high current density Carbon nanotube-graphene core copper nanowires that have excellent electron transfer properties and can also be used as effective electrodes to obtain large bending deformation of the researcher's motive and at the same time exert great power. The electroactive polymer actuator using a flexible fee
삭제delete
KR1020180082236A 2018-07-16 2018-07-16 electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material KR102106210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180082236A KR102106210B1 (en) 2018-07-16 2018-07-16 electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180082236A KR102106210B1 (en) 2018-07-16 2018-07-16 electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material

Publications (2)

Publication Number Publication Date
KR20200008287A KR20200008287A (en) 2020-01-28
KR102106210B1 true KR102106210B1 (en) 2020-05-04

Family

ID=69370245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180082236A KR102106210B1 (en) 2018-07-16 2018-07-16 electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material

Country Status (1)

Country Link
KR (1) KR102106210B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Copper NanowireGraphene CoreShell Nanostructure for Highly Stable Transparent Conducting Electrodes", Yumi Ahn, ACS NANO (2015.02.24. 공개)*
"Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles*

Also Published As

Publication number Publication date
KR20200008287A (en) 2020-01-28

Similar Documents

Publication Publication Date Title
Shi et al. Soft electrochemical actuators with a two-dimensional conductive metal–organic framework nanowire array
Jiang et al. Spontaneous, straightforward fabrication of partially reduced graphene oxide–polypyrrole composite films for versatile actuators
JP4873453B2 (en) Conductive thin film, actuator element and manufacturing method thereof
JP4038685B2 (en) Actuator element
Perera et al. Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications
Xie et al. Integrated nanostructural electrodes based on layered double hydroxides
Zhang et al. ZIF-Derived Cobalt-Containing N-Doped Carbon-Coated SiO x Nanoparticles for Superior Lithium Storage
JP5110574B2 (en) High-aspect-ratio carbon nanotubes and ionic liquids, conductive thin films and actuator elements
KR101484090B1 (en) Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same
JP6128508B2 (en) Carbon nanofiber actuator
JP5004078B2 (en) Actuator element with highly oriented electrodes using high aspect ratio carbon nanotubes
JP5332027B2 (en) Actuator element using carbon nanotube electrode with conductive additive
WO2010029992A1 (en) Polymer actuator
Gu et al. Recent development of carbonaceous materials for lithium–sulphur batteries
JP5675321B2 (en) Actuator
JP2006288040A (en) Actuator element and manufacturing method therefor
JP2012055147A (en) Actuator and manufacturing method thereof
Chang et al. Soft actuators based on carbon nanomaterials
Prabhakar Vattikuti et al. Recent advances and strategies in MXene-based electrodes for supercapacitors: applications, challenges and future prospects
Li et al. Carbon nanomaterials-PEDOT: PSS based electrochemical ionic soft actuators: Recent development in design and applications
Rasouli et al. Electrochemical and electromechanical study of carbon-electrode-based ionic soft actuators
KR102106210B1 (en) electroactive polymer flexible actuator using carbon nanotube-graphene core copper nanowire material
KR102106211B1 (en) electroactive polymer flexible actuator manufacturing method using carbon nanotube-graphene core copper nanowire material
Cho et al. Construction of an additional hierarchical porous framework in carbon fabric for applications in energy storage
KR101198073B1 (en) Ionic polymer composite and methode thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right