KR102105829B1 - Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof - Google Patents

Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof Download PDF

Info

Publication number
KR102105829B1
KR102105829B1 KR1020180057046A KR20180057046A KR102105829B1 KR 102105829 B1 KR102105829 B1 KR 102105829B1 KR 1020180057046 A KR1020180057046 A KR 1020180057046A KR 20180057046 A KR20180057046 A KR 20180057046A KR 102105829 B1 KR102105829 B1 KR 102105829B1
Authority
KR
South Korea
Prior art keywords
zinc oxide
zno
feed
hme
hot melt
Prior art date
Application number
KR1020180057046A
Other languages
Korean (ko)
Other versions
KR20190131964A (en
Inventor
조현종
구자성
강위수
채병조
김민주
김광열
박문수
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020180057046A priority Critical patent/KR102105829B1/en
Publication of KR20190131964A publication Critical patent/KR20190131964A/en
Application granted granted Critical
Publication of KR102105829B1 publication Critical patent/KR102105829B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/25Shaping or working-up of animal feeding-stuffs by extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N17/00Apparatus specially adapted for preparing animal feeding-stuffs
    • A23N17/005Apparatus specially adapted for preparing animal feeding-stuffs for shaping by moulding, extrusion, pressing, e.g. pellet-mills
    • B01F17/0007
    • B01F17/0021
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • B01F2101/18Mixing animal food ingredients
    • B01F2215/0024

Abstract

본 발명은 산화아연(ZnO)과 가용화제를 혼합한 혼합물을 열용융 압출기를 이용하여 열용융 압출하는 단계를 포함하는 산화아연 나노콜로이드 분산체를 제조하는 방법, 상기 방법에 의해 제조된 산화아연 나노콜로이드 분산체 및 상기 산화아연 나노콜로이드 분산체를 유효성분으로 함유하는 산화아연 흡수율 증진용 사료첨가제 조성물에 관한 것이다.The present invention is a method for producing a zinc oxide nanocolloidal dispersion comprising the step of heat-melting extruding a mixture of zinc oxide (ZnO) and a solubilizer using a hot melt extruder, zinc oxide nano produced by the above method The present invention relates to a feed additive composition for enhancing zinc oxide absorption, comprising a colloidal dispersion and the zinc oxide nanocolloidal dispersion as an active ingredient.

Description

열용융압출법을 이용하여 제조된 산화아연 나노콜로이드 분산체 및 이의 용도{Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof}Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof}

본 발명은 열용융압출법을 이용하여 제조된 산화아연 나노콜로이드 분산체 및 이의 용도에 관한 것이다.The present invention relates to a zinc oxide nanocolloidal dispersion prepared using a hot melt extrusion method and uses thereof.

미량영양소(micronutrient)는 생체 내에 존재하는 영양소 중 탄수화물, 지방, 단백질과 같이 다량으로 섭취하는 영양소에 비해 미량이지만 섭취가 필요하다고 여겨지는 비타민류와 무기질류를 총칭하는 것이다. 생리적으로 의미있는 영양소로 알려진 비타민류 및 비타민 유사물질로는 비타민 B1, B2, B6, B12, A, D, K, C, E, 니아신(niacin), 판토텐산(pantothenic acid), 비오틴(biotin), 엽산(folic acid), 콜린(choline), 이노시톨(inositol), 유비퀴논(ubiquinone), 카로텐(carotene) 등이 있으며, 무기질류로는 칼슘(Ca), 인(P), 마그네슘(Mg), 나트륨(Na), 칼륨(K), 염소(Cl), 철(Fe), 구리(Cu), 아연(Zn), 망간(Mn), 요오드(I), 코발트(Co), 몰리브덴(Mo), 셀레늄(Se), 크롬(Cr) 등이 있다. 미량영양소는 극미량으로 존재하는 경우가 많지만 동물의 생존, 성장, 건강 및 생식력 등을 향상시키는데 필수적이다.A micronutrient is a generic term for vitamins and minerals that are considered to be ingested in a small amount compared to nutrients ingested in large quantities, such as carbohydrate, fat, and protein, among nutrients present in the living body. Vitamins and vitamin analogs known as physiologically meaningful nutrients include vitamins B1, B2, B6, B12, A, D, K, C, E, niacin, pantothenic acid, biotin, Folic acid, choline, inositol, ubiquinone, carotene, etc., and inorganic substances include calcium (Ca), phosphorus (P), magnesium (Mg), and sodium (Na), potassium (K), chlorine (Cl), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), iodine (I), cobalt (Co), molybdenum (Mo), selenium (Se), chromium (Cr), and the like. Micronutrients are often present in trace amounts, but are essential for improving animal survival, growth, health and fertility.

아연은 체내 각종 효소의 필수 구성성분으로 작용하여 영양소의 대사를 촉진시키고, 번식 호르몬을 활성화시키며 신생동물의 성장에 필수 요소로 작용한다. 하지만, 가축 사료에 아연을 첨가하여 급이할 경우 아연의 흡수율이 낮아 대부분이 분뇨를 통해 체외로 배설되며, 분뇨 속에 포함된 아연이 분뇨를 분해(decomposition)하기 위한 미생물들의 성장을 억제하여 분뇨의 분해를 지연시킴으로써 토양환경의 오염을 증가시키기도 한다. 양돈농가에서는 동물의 아연결핍 현상을 막기 위해 흡수율이 높은 아연 첨가제를 선호하고 있으며, 이에 따라 가축에서의 아연 이용률이 높고 환경문제를 감소시킬 수 있는 아연 첨가제의 연구가 필요한 실정이다. Zinc acts as an essential component of various enzymes in the body, promotes metabolism of nutrients, activates reproduction hormones, and acts as an essential element for the growth of new animals. However, when feeding is made by adding zinc to livestock feed, the absorption rate of zinc is low, and most of it is excreted through the manure, and zinc contained in the manure suppresses the growth of microorganisms for decomposition of the manure, thereby suppressing the growth of manure. It also increases soil pollution by delaying decomposition. Pig farms prefer zinc additives with a high absorption rate to prevent sub-linking phenomena in animals, and accordingly, studies on zinc additives that have high zinc utilization in livestock and can reduce environmental problems are needed.

한편, 한국등록특허 제1753222호에는 '용융압출하여 제조된 당귀-고체분산체 및 그 제조방법'이 개시되어 있고, 한국등록특허 제1390946호에는 약제학적 활성 성분인 리마프로스트(Limaprost), 탐슐로신(Tamsulosin) 및 글리메피리드(Glimepiride)의 '고온용융 압출을 이용한 저함량 약제학적 조성물의 제조방법'이 개시되어 있으나, 본 발명의 열용융압출법을 이용하여 제조된 산화아연 나노콜로이드 분산체 및 이의 용도에 대해서는 기재된 바가 없다.On the other hand, Korean Registered Patent No.1753222 discloses 'Danggui-solid dispersion prepared by melt extrusion and its manufacturing method', and Korean Registered Patent No. 1390946 discloses limaprost, a pharmaceutically active ingredient, as tamsulo. Although the 'method for preparing a low-content pharmaceutical composition using high-temperature melt extrusion' of Shins (Tamsulosin) and Glimepiride has been disclosed, zinc oxide nanocolloid dispersions prepared using the heat-melt extrusion method of the present invention and uses thereof No description has been made.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 산화아연 무처리 기초사료(basal diet) 및 열용융압출법을 거치지 않은 산화아연(ZnO)을 고농도(2,500 ppm)로 처리한 사료를 급이한 이유자돈에 비해, 열용융압출법을 이용하여 제조된 산화아연 나노콜로이드 분산체를 저농도(500~1,000 ppm)로 처리한 사료를 급이한 이유자돈에서, 생산성(사료효율), 산화아연의 흡수율, 항균활성 및 장내유익균의 증진 효과가 우수한 것을 확인하였고, 산화아연 나노콜로이드 분산체를 섭취하여도 이유자돈의 소화율 및 혈청 내 면역글로불린 함량에는 영향을 미치지 않는 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived by the above-described demands, in the present invention, a feed treated with zinc oxide (ZnO), which has not been subjected to a zinc oxide-free basal diet and a heat-melting extrusion method, at a high concentration (2,500 ppm). Compared to the fed weaned pigs, the feed treated with zinc oxide nanocolloidal dispersion prepared using a hot melt extrusion method at a low concentration (500-1,000 ppm) was fed to the fed piglets, resulting in productivity (feed efficiency) and zinc oxide. It was confirmed that the absorption rate, the antibacterial activity, and the effect of promoting intestinal beneficial bacteria were excellent, and the present invention was completed by confirming that ingestion of the zinc oxide nanocolloid dispersion did not affect the digestibility of weaned pigs and the immunoglobulin content in serum.

상기 과제를 해결하기 위해, 본 발명은 산화아연(ZnO)과 가용화제를 혼합한 혼합물을 열용융 압출기를 이용하여 열용융 압출하는 단계를 포함하는 산화아연 나노콜로이드 분산체를 제조하는 방법을 제공한다.In order to solve the above problems, the present invention provides a method for producing a zinc oxide nanocolloidal dispersion comprising extruding a mixture of zinc oxide (ZnO) and a solubilizer using a hot melt extruder. .

또한, 본 발명은 상기 방법에 의해 제조된 산화아연 나노콜로이드 분산체를 제공한다.In addition, the present invention provides a zinc oxide nanocolloidal dispersion prepared by the above method.

또한, 본 발명은 상기 산화아연 나노콜로이드 분산체를 유효성분으로 함유하는 산화아연 흡수율 증진용 사료첨가제 조성물을 제공한다.In addition, the present invention provides a feed additive composition for improving the absorption rate of zinc oxide containing the zinc oxide nanocolloid dispersion as an active ingredient.

본 발명의 산화아연 나노콜로이드 분산체는 저농도로 사용하여도 사료첨가제로서의 효율성이 우수하여 동물의 생산성을 향상시킬 수 있고, 열용융압출법을 거치지 않은 산화아연에 비해 입자크기가 현저하게 감소되어 체내 흡수율이 증가되어 환경오염원의 배출을 억제함으로써 환경오염 방지 효과를 가져올 것으로 기대된다. The zinc oxide nanocolloidal dispersion of the present invention has excellent efficiency as a feed additive even when used at low concentrations, thereby improving the productivity of animals, and the particle size is significantly reduced compared to zinc oxide that has not been subjected to heat melt extrusion. It is expected that the absorption rate will be increased to suppress the emission of environmental pollutants, thereby bringing about the effect of preventing environmental pollution.

도 1은 본 발명의 열용융압출법(hot melt extrusion, HME)을 이용한 산화아연 나노콜로이드 분산체(HME-ZnO)의 제조 모식도이다.
도 2는 열용융압출법을 이용하여 제조된 산화아연 나노콜로이드 분산체의 입도분포를 나타낸 결과이다.
도 3은 E.coli K88 균주에 대한 HME-ZnO과 ZnO의 항균활성을 측정한 결과이다. A; 5 mg/㎖ HME-ZnO 처리, B; 2.5 mg/㎖ HME-ZnO 처리, C; 1 mg/㎖ HME-ZnO 처리, D; 5 mg/㎖ ZnO 처리, E; 2.5 mg/㎖ ZnO 처리, F; 1 mg/㎖ ZnO 처리.
1 is a schematic diagram of the production of zinc oxide nanocolloidal dispersion (HME-ZnO) using the hot melt extrusion (HME) of the present invention.
Figure 2 is a result showing the particle size distribution of the zinc oxide nano-colloidal dispersion prepared using a hot melt extrusion method.
3 is a result of measuring the antibacterial activity of HME-ZnO and ZnO against E.coli K88 strain. A; 5 mg / ml HME-ZnO treatment, B; 2.5 mg / ml HME-ZnO treatment, C; 1 mg / ml HME-ZnO treatment, D; 5 mg / ml ZnO treatment, E; 2.5 mg / ml ZnO treatment, F; 1 mg / ml ZnO treatment.

본 발명의 목적을 달성하기 위하여, 본 발명은 산화아연(ZnO)과 가용화제를 혼합한 혼합물을 열용융압출기를 이용하여 열용융압출(hot melt extrusion)하는 단계를 포함하는 산화아연 나노콜로이드 분산체(이하, HME-ZnO)를 제조하는 방법을 제공한다.In order to achieve the object of the present invention, the present invention is a zinc oxide nanocolloidal dispersion comprising the step of hot melt extrusion using a hot melt extruder of a mixture of zinc oxide (ZnO) and a solubilizer. Hereinafter, a method for manufacturing HME-ZnO is provided.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 가용화제는 PEG(polyethylene glycol) 6000, PEG 400, PEG 1000, PEG 8000, PEG 20000 또는 솔루플러스(Soluplus; polyvinyl capralactam-polyvinyl acetate-polyethylene glycol graft copolymer)일 수 있고, 바람직하게는 PEG 6000일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the solubilizing agent is PEG (polyethylene glycol) 6000, PEG 400, PEG 1000, PEG 8000, PEG 20000 or Soluplus (Soluplus; polyvinyl capralactam-polyvinyl acetate-polyethylene glycol graft copolymer) ), Preferably PEG 6000, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 산화아연과 가용화제는 2~4:6~8의 중량비로 혼합할 수 있고, 바람직하게는 3:7의 중량비로 혼합할 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the zinc oxide and the solubilizer may be mixed in a weight ratio of 2 to 4: 6 to 8, and preferably in a weight ratio of 3: 7, but limited thereto Does not work.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 혼합물은 계면활성제 및 이온화제를 추가로 포함할 수 있고, 상기 계면활성제는 바람직하게는 Span 80(sorbitan monooleate) 및 Tween 80(polyoxyethylene sorbitan monooleate)일 수 있으며, 상기 이온화제는 바람직하게는 아세트산 또는 오미자일 수 있으나, 이에 제한되지 않는다. 상기 오미자는 오미자 분말, 오미자 즙 또는 오미자 추출물을 의미하지만 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the mixture may further include a surfactant and an ionizing agent, and the surfactant is preferably Span 80 (sorbitan monooleate) and Tween 80 (polyoxyethylene sorbitan monooleate). May be, the ionizing agent is preferably acetic acid or Omija, but is not limited thereto. The Omija means, but is not limited to, Omija powder, Omija juice or Omija extract.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 열용융 압출은 배럴 및 다이의 온도가 각각 50~60℃ 및 40~50℃로 유지되고, 스크류의 속도가 110~190 rpm이며, 압출 속도는 40~50 g/min으로 수행하는 것일 수 있고, 바람직하게는 배럴 및 다이의 온도는 각각 55℃ 및 45℃이고, 스크류의 속도가 160 rpm이며, 압출 속도는 45 g/min으로 수행하는 것일 수 있으나, 이에 제한되지 않는다. In the method according to an embodiment of the present invention, in the heat-melting extrusion, the temperatures of the barrel and the die are maintained at 50-60 ° C and 40-50 ° C, respectively, and the screw speed is 110-190 rpm, and the extrusion speed is It may be carried out at 40 ~ 50 g / min, preferably the temperature of the barrel and the die is 55 ℃ and 45 ℃, respectively, the speed of the screw is 160 rpm, the extrusion speed may be performed at 45 g / min However, it is not limited thereto.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 열용융 압출기는 이중 스크류를 포함하며, 직경이 0.8~1.2 mm의 압출다이를 포함하는 것이 바람직하다. 단일 스크류 압출기에 비해 이중 스크류 압출기는 다음과 같은 이점을 제공한다: 높은 분산성, 쉬운 재료 공급, 낮은 과열 위험성, 높은 공정 생산성 및 공정 변수의 효과적인 조정. 상기와 같은 이중 스크류 시스템을 통해 생성되는 강한 힘은 산화아연을 PEG 6000 기제에 균일하게 분산시킬 수 있고, 동시에, 산화아연의 나노 크기의 입자는 유기 고분자(PEG 6000 등)로 뒤덮이게 되고, 산화아연 입자 위의 PEG 6000 코팅은 표면 에너지와 응집체 발생을 감소시킨다.In the method according to an embodiment of the present invention, the heat-melting extruder includes a double screw, and preferably includes an extrusion die having a diameter of 0.8 to 1.2 mm. Compared to single screw extruders, double screw extruders offer the following advantages: high dispersibility, easy material supply, low risk of overheating, high process productivity and effective adjustment of process parameters. The strong force generated through the double screw system as described above can uniformly disperse zinc oxide in a PEG 6000 base, and at the same time, the nano-sized particles of zinc oxide are covered with an organic polymer (PEG 6000, etc.) and oxidize. The PEG 6000 coating on zinc particles reduces surface energy and aggregate generation.

본 발명의 일 구현 예에 따른 HME-ZnO을 제조하는 방법은 구체적으로는, 산화아연과 PEG 6000을 2~4:6~8의 중량비로 혼합된 혼합물을 이중 스크류를 포함하고, 압출다이 직경이 0.8~1.2 mm인 열용융 압출기를 이용하여 배럴 및 다이의 온도가 각각 50~60℃ 및 40~50℃이고, 스크류의 속도가 110~190 rpm이며, 압출 속도는 40~50 g/min으로 열용융 압출하여 제조한 것일 수 있고, 더욱 구체적으로는 산화아연과 PEG 6000을 3:7의 중량비로 혼합된 혼합물을 이중 스크류를 포함하고, 압출다이 직경이 1 mm인 열용융 압출기를 이용하여 배럴 및 다이의 온도가 각각 55℃ 및 45℃이고, 스크류의 속도가 160 rpm이며, 압출 속도는 45 g/min으로 열용융 압출하여 제조한 것일 수 있으나, 이에 제한되지 않는다.The method for manufacturing HME-ZnO according to an embodiment of the present invention specifically includes a double screw in a mixture of zinc oxide and PEG 6000 in a weight ratio of 2 to 4: 6 to 8, and the extrusion die diameter Using a heat-melting extruder of 0.8 to 1.2 mm, the temperature of the barrel and die are 50 to 60 ° C and 40 to 50 ° C, respectively, the screw speed is 110 to 190 rpm, and the extrusion speed is 40 to 50 g / min. It may be prepared by melt extrusion, and more specifically, a mixture of zinc oxide and PEG 6000 in a weight ratio of 3: 7 includes a double screw, and a barrel and a hot melt extruder having an extrusion die diameter of 1 mm are used. The temperature of the die is 55 ° C and 45 ° C, the speed of the screw is 160 rpm, and the extrusion speed may be manufactured by thermal melting extrusion at 45 g / min, but is not limited thereto.

또한, 본 발명은 상기 방법에 의해 제조된 산화아연 나노콜로이드 분산체를 제공한다.In addition, the present invention provides a zinc oxide nanocolloidal dispersion prepared by the above method.

본 발명의 일 구현 예에 따른 산화아연 나노콜로이드 분산체에 있어서, 상기 산화아연 나노콜로이드 분산체의 크기는 50~500 ㎚일 수 있고, 바람직하게는 317 ㎚일 수 있으나, 이에 제한되지 않으며, 필요에 따라 얼마든지 분산체의 크기를 조절하는 것이 가능하다.In the zinc oxide nanocolloid dispersion according to an embodiment of the present invention, the size of the zinc oxide nanocolloid dispersion may be 50 to 500 nm, and preferably 317 nm, but is not limited thereto. It is possible to adjust the size of the dispersion as much as possible.

또한, 본 발명은 상기 산화아연 나노콜로이드 분산체를 유효성분으로 함유하는 산화아연 흡수율 증진용 사료첨가제 조성물을 제공한다. 본 발명의 사료 첨가제 조성물은 유효성분으로 산화아연(ZnO)과 가용화제를 혼합한 혼합물을 열용융 압출기를 이용하여 열용융 압출하여 제조된 산화아연 나노콜로이드 분산체를 유효성분으로 함유하고 있어, 사료에 첨가되어 급이될 경우 대상 가축의 산화아연 흡수율, 생산성 및 항균활성을 증진시킬 수 있는 것이다.In addition, the present invention provides a feed additive composition for improving the absorption rate of zinc oxide containing the zinc oxide nanocolloid dispersion as an active ingredient. The feed additive composition of the present invention contains a zinc oxide nanocolloid dispersion prepared by heat-melting extrusion of a mixture of zinc oxide (ZnO) and a solubilizer as an active ingredient using a hot melt extruder as an active ingredient, When added to feed, it is possible to improve the zinc oxide absorption rate, productivity and antibacterial activity of the target animal.

본 발명에 따른 상기 대상 가축은 돼지, 닭, 소, 양 등일 수 있고, 바람직하게는 돼지일 수 있으나, 이에 제한되지 않는다.The target livestock according to the present invention may be pigs, chickens, cows, sheep, and the like, preferably pigs, but is not limited thereto.

본 발명의 사료첨가제 조성물은 돼지, 소 등을 포함하는 가축에게 단독으로 투여되거나 식용 담체 중에서 다른 사료첨가제와 조합되어 투여될 수 있다. 또한, 상기 사료첨가제 조성물은 탑 드레싱으로서 또는 이들을 가축 사료에 직접 혼합하거나 또는 사료와 별도로, 별도의 경구 제형으로, 또는 다른 성분과 조합하여 쉽게 투여할 수 있다. 통상적으로, 당업계에 잘 알려진 바와 같이 단독 일일 섭취량 또는 분할 일일 섭취량을 사용할 수 있다.The feed additive composition of the present invention may be administered alone to livestock including pigs, cows, etc., or in combination with other feed additives in an edible carrier. In addition, the feed additive composition can be easily administered as a top dressing or by mixing them directly into livestock feed or separately from the feed, in a separate oral dosage form, or in combination with other ingredients. Typically, a single daily intake or a divided daily intake may be used, as is well known in the art.

본 발명의 사료첨가제 조성물은 사료관리법상의 보조사료에 해당한다.The feed additive composition of the present invention corresponds to the supplementary feed under the feed management method.

본 발명의 사료첨가제 조성물은 사료에 첨가될 수 있으며, "사료"는 동물이 먹고, 섭취하며, 소화시키기 위한 또는 이에 적당한 임의의 천연 또는 인공 규정식, 한끼식 등 또는 상기 한끼식의 성분을 의미할 수 있다. 상기 사료의 종류는 특별히 제한되지 아니하며, 당해 기술 분야에서 통상적으로 사용되는 사료를 사용할 수 있다. 상기 사료의 비제한적인 예로는, 곡물류, 근과류, 식품 가공 부산물류, 조류, 섬유질류, 제약 부산물류, 유지류, 전분류, 박류 또는 곡물 부산물류 등과 같은 식물성 사료; 단백질류, 무기물류, 유지류, 광물성류, 유지류, 단세포 단백질, 동물성 플랑크톤류 또는 음식물 등과 같은 동물성 사료를 들 수 있다.The feed additive composition of the present invention may be added to the feed, and "feed" means any natural or artificial diet, one meal or the like, or one component of the meal, for the animal to eat, eat, and digest. can do. The type of the feed is not particularly limited, and a feed commonly used in the art may be used. Non-limiting examples of the feed, vegetable feed, such as grains, muscles, food processing by-products, algae, fiber, pharmaceutical by-products, fats and oils, starches, peels or grain by-products; And animal feeds such as proteins, inorganics, fats and oils, minerals, fats and oils, single cell proteins, animal planktons and food.

본 발명의 일 구현 예에서, 상기 사료첨가제 조성물은 사료 조성물 기준으로 1.5~4.5 중량%, 바람직하게는 3 중량% 배합되는 것일 수 있으나, 이제 제한되지 않는다.In one embodiment of the present invention, the feed additive composition may be 1.5 to 4.5% by weight, preferably 3% by weight, based on the feed composition, but is not limited now.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, the content of the present invention is not limited to the following examples.

재료 및 방법Materials and methods

1. 산화아연 입자 특성 분석1. Characterization of zinc oxide particles

열용융압출법을 이용하여 제조된 산화아연 나노콜로이드 분산체(HME-ZnO)의 입자 특성은 열용융압출법을 거치지 않은 산화아연(ZnO) 기준 10 mg/㎖ 농도에서 분석하였다. 증류수에서 HME-ZnO 입자의 평균 직경, 다분산지수(polydispersity index) 및 제타전위를 동적광산란법(dynamic light scattering, DLS)과 레이저 도플러법(ELS-Z1000; Otsuka Electronics, 일본)을 이용하여 제조사의 지침에 따라 측정하였다.The particle properties of the zinc oxide nanocolloidal dispersion (HME-ZnO) prepared using the hot melt extrusion method were analyzed at a concentration of 10 mg / mL based on zinc oxide (ZnO) without the hot melt extrusion method. The average diameter, polydispersity index and zeta potential of HME-ZnO particles in distilled water are manufactured by the manufacturer using dynamic light scattering (DLS) and laser Doppler method (ELS-Z1000; Otsuka Electronics, Japan). Measured according to the instructions.

2. 항균활성 측정2. Antibacterial activity measurement

2-1. 흡광도 및 콜로니 수 측정2-1. Measure absorbance and colony count

항균활성 측정에 사용된 산화아연 입자(순도 99.7% 이상, 평균크기 30nm)는 Inframat Advanced Materials LLC(영국)에서 구입하였다. 산화아연 스톡(stock)에 2차 증류수를 첨가하고 볼텍싱(vortexing)하여 혼합하고 최종 농도가 100 mg/㎖이 되도록하였으며, 상기 현탁액의 분액(aliquot)을 Mueller-Hinton 배지(MH; Becton Dickinson Co., 미국)에 첨가한 후 실험에 사용하였다.The zinc oxide particles (purity of 99.7% or more, average size of 30 nm) used for the measurement of antibacterial activity were purchased from Inframat Advanced Materials LLC (UK). Secondary distilled water was added to the zinc oxide stock, mixed by vortexing to a final concentration of 100 mg / ml, and the aliquot of the suspension was added to Mueller-Hinton medium (MH; Becton Dickinson Co. ., USA).

멸균된 튜브에 LB 배양액(Luria-Bertani) 5 ㎖, 1.41×109 CFU/㎖의 대장균(E.coli) K88 균주를 혼합한 후 산화아연과 산화아연 나노콜로이드 분산체(HME-ZnO)를 1 mg/㎖, 2.5 mg/㎖ 및 5 mg/㎖ 농도로 각각 첨가하고 호기성 조건의 37℃에서 16시간 동안 배양한 후 600 nm에서 흡광도를 측정하여 균주 집단(bacterial population)을 확인하였다. 산화아연이 농도별로 처리된 각각의 튜브에서 1 ㎖씩 취하여 PBS(phosphate buffer solution) 용액으로 연속 희석한 후 LB 고체배지에 접종하고 배양하여 형성된 균주 집단을 계수하였다.After mixing LB culture medium (Luria-Bertani) 5 ml, 1.41 × 10 9 CFU / ml of E. coli K88 strain, zinc oxide and zinc oxide nanocolloid dispersion (HME-ZnO) 1 After adding the concentrations of mg / ml, 2.5 mg / ml and 5 mg / ml, respectively, and incubating for 16 hours at 37 ° C under aerobic conditions, absorbance was measured at 600 nm to confirm the bacterial population. The strains formed by inoculating and culturing LB solid medium after counting 1 ml of each of the tubes in which zinc oxide was treated by concentration and continuously diluting with PBS (phosphate buffer solution) solution were counted.

2-2. 통계분석2-2. Statistical analysis

모든 실험은 3번 반복하여 수행하였고 데이터는 평균±표준편차(standard deviation; SD)로 표시하였으며, 통계분석은 ANOVA와 Student's t-test로 처리하였다.All experiments were repeated 3 times, and data were expressed as mean ± standard deviation (SD), and statistical analysis was performed by ANOVA and Student's t-test.

3. 동물실험3. Animal Experiment

3-1. 동물, 사료 및 급이3-1. Animals, feed and feeding

동물실험은 강원대학교(Kangwon National University, 한국)의 실험농장에서 수행되었다. 총 360 마리의 이유자돈(Landrace×Yorkshire×Duroc)은 초기 평균 체중(6.82 ± 0.02 kg)과 성별(암컷, 수컷)에 기반하여 4개의 처리구로 나누었으며, 각 처리구는 다시 15마리씩 6개의 반복당으로 나누어 사육하였다. 상기 4개의 처리구는 각각 1) 아무것도 처리하지 않은 기초사료를 급이한 이유자돈, 2) 2,500 ppm 농도의 산화아연(이하, ZnO)을 처리한 사료를 급이한 이유자돈, 3) 500 ppm 농도의 HME-ZnO을 처리한 사료를 급이한 이유자돈 및 4) 1,000 ppm 농도의 HME-ZnO을 처리한 사료를 급이한 이유자돈으로 구분하였다. 실험 사료는 NRC(National Research Council, 2012)에 의해 제안된 영양소 요구량을 초과하였고, 각각 다른 배합비로 제조된 사료를 단계별(1 단계; 0~14일, 2 단계; 15~28일)로 나누어 급이하였다(표 1).Animal experiments were conducted at an experimental farm at Kangwon National University (Korea). A total of 360 weaned piglets (Landrace × Yorkshire × Duroc) were divided into 4 treatment groups based on the initial average weight (6.82 ± 0.02 kg) and sex (females, males). They were divided and reared. Each of the four treatment groups 1) weaned pigs fed a basic feed with no treatment, 2) weaned pigs fed a feed treated with zinc oxide (hereinafter, ZnO) at a concentration of 2,500 ppm, and 3) HME at a concentration of 500 ppm. -ZnO-treated feed was fed into weaned piglets and 4) 1,000 ppm concentration of HME-ZnO-treated feed was fed into weaned piglets. The experimental feed exceeded the nutrient requirements suggested by the National Research Council (NRC), and the feed prepared at different mixing ratios was divided into stages (1st stage; 0-14 days, 2nd stage; 15-28 days). (Table 1).

Figure 112018049091635-pat00001
Figure 112018049091635-pat00001

3-2. 사양성적 조사3-2. Specification Performance Survey

이유자돈의 체중은 실험을 개시할 때와 각 단계가 종료되는 시점에서 개별적으로 측정하였고, 사료 소비량은 각 단계가 종료되는 시점에 측정하였다. 측정된 체중과 사료 소비량을 기반으로 하여, 일당증체량(average daily gain, ADG), 일당사료섭취량(average daily feed intake, ADFI) 및 사료효율(gain to feed ratio, G:F)을 분석하였다. The weight of weaned piglets was measured individually at the start of the experiment and at the end of each step, and feed consumption was measured at the end of each step. Based on the measured body weight and feed consumption, the average daily gain (ADG), the average daily feed intake (ADFI), and the feed efficiency (gain to feed ratio, G: F) were analyzed.

3-3. 영양소 소화율 측정3-3. Measurement of nutrient digestibility

소화율을 측정하기 위해 불소화 표지(indigestible marker)인 크롬(chromium)을 사료에 2.5 g/kg 농도로 첨가하여 각 단계별로 7일이 지난 시점에 급이하였고, 각 단계의 마지막 3일 동안 각각의 반복당에서 무작위로 선별된 4마리의 배설물을 채취하여 60℃에서 72시간 동안 에어 오븐에서 건조하고 분쇄기(Thomas Model 4 Wiley Mill, Thomas Scientific,미국)로 분쇄한 후 건물(dry matter, DM), 총에너지(gross energy, GE) 및 조단백질(crude protein, CP)의 함량을 측정하였다.To measure digestibility, chromium, an indigestible marker, was added to the feed at a concentration of 2.5 g / kg, feeding at 7 days after each step, and repeating each for the last 3 days of each step. 4 feces randomly selected from sugar are collected, dried in an air oven at 60 ° C. for 72 hours, crushed with a grinder (Thomas Model 4 Wiley Mill, Thomas Scientific, USA), and then dried (dry matter, DM), total The content of energy (gross energy, GE) and crude protein (CP) was measured.

3-4. 혈청 내 면역글로불린 함량 측정3-4. Measurement of immunoglobulin content in serum

각 단계가 종료되는 시점에 각 반복당에서 무작위로 선별된 이유자돈 2마리의 목정맥(jugular vein)로부터 항응고제(anticoagulant)가 포함되지 않은 일회용 진공채혈관(vacutainer tube)을 이용하여 혈액을 채취하였다. 채취된 혈액 샘플은 3,000 xg, 4℃의 조건으로 15분 동안 원심분리하여 혈청을 분리한 후 radical immune-diffusion 키트(Tripple J Farms, 미국)를 사용하여 혈청 내 면역글로불린(IgG, IgA 및 IgM)의 함량을 측정하였다.At the end of each step, blood was collected from a jugular vein of randomly selected weaned pigs at each repetition using a disposable vacuum tube that does not contain an anticoagulant. The collected blood samples were centrifuged for 15 minutes under conditions of 3,000 x g and 4 ° C to separate the serum, and then using a radical immune-diffusion kit (Tripple J Farms, USA), immunoglobulins in serum (IgG, IgA and IgM) ) Was measured.

3-5. 소장의 형태학적 변화 및 장내 미생물 함량 측정3-5. Morphological changes in the small intestine and microbial content in the intestine

이유자돈의 장내 미생물 함량과 이유자돈 소장의 형태학적 변화를 분석하기 위해, 각 반복당에서 무작위로 선별된 이유자돈 2마리를 실험이 완전히 끝나는 28일 째에 희생시킨 후 분석하였다. To analyze the intestinal microbial content of weaned piglets and morphological changes in the small intestine piglets, two randomly selected weaned piglets at each repetition were analyzed after sacrifice on the 28th day of the end of the experiment.

우선, 장에 존재하는 균주를 분석하기 위해 멸균된 플라스틱 병에 맹장(cecum)의 내용물을 넣은 후 7℃에서 보관하여 사용하였다. 상기 내용물 1 g을 버터필드 인산염 완충액(Butterfield phosphate buffer) 9 ㎖로 희석하고, 버터필드 인산염 완충액 희석액(dilution solution)으로 연속 희석시킨 후 다양한 고체배지에 0.1 ㎖씩 접종하고 배양하였다(2반복). 장내 미생물 군은 총 혐기성 미생물(배지: plate count agar, Difco Laboratories, 미국), 락토바실러스 속(배지: MRS agar+0.2 g/L의 NaN3+0.5 g/L L-cystine hydrochloride monohydrate), 클로스트리듐 속(배지: Tryptose sulphite cycloserine agar, Oxoid, 영국)으로 분석되었으며, 총 혐기성 미생물과 클로스트리듐 속(Clostridium spp.)의 배양시에는 Gas-pak Anaerobic system(BBL, No. 260678, Difco, 미국)으로 혐기상태를 조성하였고, 미생물 집단은 통계 분석전에 로그 변환되었다.First, in order to analyze the strains present in the intestine, the contents of cecum were placed in a sterilized plastic bottle and then stored and used at 7 ° C. The contents of 1 g were diluted with 9 ml of Butterfield phosphate buffer, serially diluted with Butterfield phosphate buffer dilution solution, and inoculated and cultured in 0.1 ml of various solid media (2 replicates). The intestinal microbial group consists of total anaerobic microorganisms (medium: plate count agar, Difco Laboratories, USA), genus Lactobacillus (medium: MRS agar + 0.2 g / L NaN 3 +0.5 g / L L-cystine hydrochloride monohydrate), Closted It was analyzed as a genus of lithium (medium: Tryptose sulphite cycloserine agar, Oxoid, UK), and when culturing total anaerobes and Clostridium spp., Gas-pak Anaerobic system (BBL, No. 260678, Difco, USA) ), And the microbial population was log-transformed before statistical analysis.

또한, 소장의 형태학적 분석을 위해 십이지장(duodenum), 공장(jejunum) 및 회장(ileum)의 내용물을 제거하고 식염수로 세척하고 글루타르알데히드(glutaraldehyde) 30 g/L, 파라포름알데히드(paraformaldehyde) 20 g/L 및 아크롤레인(acrolein) 15 g/L이 포함된 고정액(fixative solution; 0.1 M collidine buffer, pH 7.3)에 담궈두었다. 각각의 샘플들은 파라핀 포매법(paraffin embedding)을 이용하여 박편을 제작하고, 아주르(azur) A 및 에오신(eosin) 염색을 수행한 후 각 샘플의 횡단면(cross section)에 존재하는 온전한 움-융모 단위(crypt-villus unit) 10개를 선별하였다. 융모 높이(villus height)는 융모의 끝부분에서 융모-크립트 접합부(villus crypt junction)까지 측정한 것이고, 융와 깊이(crypt depth)는 인접한 융모 사이의 함입 깊이를 측정한 것이다. 융모 높이와 융와 깊이의 비율(VH/CD)은 융모 높이를 융와 깊이로 나누어 산출하였다.In addition, for the morphological analysis of the small intestine, the contents of the duodenum, jejunum and ileum are removed, washed with saline, glutaraldehyde 30 g / L, paraformaldehyde 20 It was immersed in a fixed solution (0.1 M collidine buffer, pH 7.3) containing g / L and 15 g / L of acrolein. Each sample was fabricated using paraffin embedding, and azur A and eosin staining were performed, followed by intact um-villi units present in the cross section of each sample. (crypt-villus unit) 10 were selected. The villus height is measured from the tip of the villus to the villus-crypt junction, and the crypt depth is the depth of penetration between adjacent villi. The ratio of villi height and villi and depth (VH / CD) was calculated by dividing villi height by villi and depth.

3-6. 배변지수 측정3-6. Defecation Index Measurement

이유자돈의 배변지수는 매일 같은 시간에 이유자돈의 배설물 상태를 확인하고 점수화한 것이다. 배설물 상태에 따른 점수는 다음과 같다: 1) 단단한 변(hard feces), 2) 적당히 단단한 변(firm well formed), 3) 부드럽고 부분적으로 단단한 변(soft and partially formed feces), 4) 묽은 변(loose, semi-liquid feces), 5) 설사(watery feces).The defecation index of weaned pigs is a score that identifies and scores the feces of weaned pigs at the same time every day. The scores for fecal conditions are as follows: 1) hard feces, 2) firm well formed, 3) soft and partially formed feces, 4) weak feces ( loose, semi-liquid feces, 5) watery feces.

3-7. 산화아연 흡수율 측정3-7. Zinc oxide absorption rate measurement

고주파 유도 결합 플라스마(inductively coupled plasma, ICP) 발광 분석법(emission spectroscopy)을 이용하여 AOAC(Official Methods of Analysis of the Association of Official Analytical Chemists International. 18th ed. Gaithersburg, MD, USA)의 방법에 따라 사료, 배설물 및 혈장 내의 산화아연 함량을 측정하여 산화아연의 체내 흡수율을 분석하였다.Feed according to the method of AOAC (Official Methods of Analysis of the Association of Official Analytical Chemists International. 18th ed.Gaithersburg, MD, USA) using high-frequency inductively coupled plasma (ICP) emission spectroscopy The zinc oxide content in feces and plasma was measured to analyze the absorption rate of zinc oxide in the body.

우선, 사료 및 배설물 내 산화아연 함량은 사료와 배설물 1 g을 600℃의 머플가마(muffle furnace)에서 1시간 동안 두어 건조된 회분으로 만들고 냉각시킨 후 50% HCl(v/v) 10 ㎖을 첨가하여 용해시켰다. 상기 용해된 샘플은 뚜껑을 덮은 상태로 밤새 두었으며, 100 ㎖ 플라스크에서 와트만 필터로 2~3회 여과하고 탈이온수(deionized distilled water)로 희석한 후 측정하였다. First, the content of zinc oxide in the feed and feces is 1 g of feed and feces in a muffle furnace at 600 ° C for 1 hour to make dried ash, cool, and then add 10 ml of 50% HCl (v / v) And dissolved. The dissolved sample was left overnight with the lid closed, filtered 2-3 times with a Whatman filter in a 100 ml flask, diluted with deionized distilled water, and measured.

또한, 혈장 내 산화아연 함량은 혈액 샘플 1 ㎖을 자제 도가니(porcelain crucibles)에 넣고 105℃의 오븐에서 4시간 동안 건조시킨 후 600℃의 머플가마에서 1시간 동안 두어 회분으로 만들고 냉각시킨 후 상기와 동일한 방법으로 측정하였다.In addition, the content of zinc oxide in plasma is 1 ml of blood sample placed in a porcelain crucibles, dried in an oven at 105 ° C. for 4 hours, placed in a muffle furnace at 600 ° C. for 1 hour, cooled, and then It measured by the same method.

3-8. 통계분석3-8. Statistical analysis

실험에서 얻은 모든 자료들의 통계분석은 SAS(Statistical Analysis System) 프로그램의 GLM(General Linear Model) 과정을 통해 수행되었다. 처리 평균간의 유의적 차이는 Tukey 검정(Tukey’s Honestly Significant Difference test)으로 구분하였다. 이유자돈의 반복당은 모든 변수의 분석에 대한 실험단위로 사용되었으며, p값이 0.05 미만일 때 통계적으로 유의하다고 판단하였다.Statistical analysis of all data obtained in the experiment was performed through the General Linear Model (GLM) process of the SAS (Statistical Analysis System) program. Significant differences between treatment means were divided into Tukey's Honestly Significant Difference test. The repeat sugar per weaned pig was used as an experimental unit for the analysis of all variables, and was determined to be statistically significant when the p value was less than 0.05.

제조예 1. 산화아연 나노콜로이드 분산체 제조Preparation Example 1. Preparation of zinc oxide nanocolloid dispersion

산화아연(ZnO)과 폴리에틸렌 글리콜(polyethylene glycol, PEG) 6000을 3:7 비율로 압출 직전에 섞어 원형출구(1.0 mm 직경)를 가지는 이중 스크류 열용융 압출기(STS-25HS, Hankook E.M. Ltd., Pyoungtaek, Korea)에 넣고 45 g/min의 속도로 압출하여 산화아연 나노콜로이드 분산체(HME-ZnO)를 제조하였다. 배럴 및 다이의 온도는 각각 55℃ 및 45℃로, 스크류의 속도는 160 rpm으로 설정하였다.Zinc oxide (ZnO) and polyethylene glycol (polyethylene glycol, PEG) 6000 are mixed immediately before extrusion in a 3: 7 ratio, and a double screw heat-melting extruder (STS-25HS, Hankook EM Ltd., Pyoungtaek) having a circular outlet (1.0 mm diameter) , Korea) and extruded at a rate of 45 g / min to prepare zinc oxide nanocolloidal dispersion (HME-ZnO). The temperature of the barrel and die were set at 55 ° C and 45 ° C, respectively, and the screw speed was set at 160 rpm.

실시예 1. 산화아연 나노콜로이드 분산체의 입자 특성 분석Example 1. Particle characterization of zinc oxide nanocolloid dispersion

상기 제조예 1에서 제조한 HME-ZnO 입자와 ZnO 입자의 평균 직경은 각각 약 317 nm 및 수 마이크론(㎛)으로, 열용융압출 과정을 수행함으로써 산화아연의 입자크기가 현저하게 감소된 것을 알 수 있었다(표 2). 또한, 다분산지수를 고려할 때 HME-ZnO의 입도분포는 좁을 것으로 확인되었다(도 1).The average diameters of HME-ZnO particles and ZnO particles prepared in Preparation Example 1 are about 317 nm and several microns (µm), respectively, and it can be seen that the particle size of zinc oxide is significantly reduced by performing a hot melt extrusion process. There was (Table 2). In addition, considering the polydispersity index, it was confirmed that the particle size distribution of HME-ZnO is narrow (FIG. 1).

Figure 112018049091635-pat00002
Figure 112018049091635-pat00002

실시예 2. 항균활성 분석Example 2. Analysis of antibacterial activity

HME-ZnO의 항균활성을 분석하기 위해 E.coli K88 균주가 배양된 배지에 HME-ZnO 및 ZnO을 1 mg/㎖, 2.5 mg/㎖ 및 5 mg/㎖ 농도로 각각 처리하고 배양한 후 형성된 콜로니를 관찰하였다. To analyze the antimicrobial activity of HME-ZnO, colonies formed after treating and culturing HME-ZnO and ZnO at a concentration of 1 mg / ml, 2.5 mg / ml, and 5 mg / ml, respectively, in a medium in which the E.coli K88 strain was cultured Was observed.

그 결과, ZnO 처리구에 비해 HME-ZnO 처리구에서 형성된 콜로니의 수가 현저하게 감소되었고, 특히 HME-ZnO의 처리 농도 의존적으로 콜로니의 수가 감소되는 것이 관찰하였다(도 2). 이를 통해, 본 발명의 HME-ZnO은 대장균에 의해 발병된 질병을 치료하기 위한 항균제로 사용될 수 있을 것으로 사료되었다.As a result, it was observed that the number of colonies formed in the HME-ZnO treatment group was significantly reduced compared to the ZnO treatment group, and in particular, the number of colonies was decreased depending on the treatment concentration of HME-ZnO (FIG. 2). Through this, it was thought that HME-ZnO of the present invention could be used as an antibacterial agent for treating diseases caused by E. coli.

실시예 3. 동물실험 결과Example 3. Animal test results

3-1. 사양성적(Growth performance)3-1. Specification performance (Growth performance)

HME-ZnO(500 ppm 및 1,000 ppm)과 ZnO(2,500ppm)을 처리한 사료를 급이한 이유자돈의 사양성적을 조사하였다.HME-ZnO (500 ppm and 1,000 ppm) and ZnO (2,500 ppm) were tested for the performance characteristics of weaned pigs fed with feed.

그 결과, 아무것도 처리하지 않은 기초사료를 섭취한 대조구에 비해 HME-ZnO 및 ZnO 처리구에서, 일당증체량(ADG)과 일당증체량을 일당사료섭취량(ADFI)으로 나누어 산출한 사료효율(G:F)이 유의적으로 증가하는 것을 확인하였고(표 3), 이를 통해 사료에 HME-ZnO을 처리하여 이유자돈에 급이할 경우 이유자돈의 생산성을 증가시킬 수 있음을 알 수 있었다.As a result, the feed efficiency (G: F) calculated by dividing the daily gain (ADG) and the daily gain by the daily feed intake (ADFI) in the HME-ZnO and ZnO treatment groups compared to the control group that consumed nothing-treated basic feed It was confirmed that it was significantly increased (Table 3), and through this, it was found that treatment with HME-ZnO in the feed could increase the productivity of weaned pigs when feeding them.

특히, 저농도의 HME-ZnO 처리구와 고농도의 ZnO 처리구에서 일당증체량 및 사료효율의 증진 효과가 거의 유사한 것으로 보아, 저농도의 HME-ZnO을 섭취하여도 동물의 생산성 증진에 우수한 효과가 있음을 알 수 있었다.In particular, it was found that the effect of improving daily weight gain and feed efficiency in the low concentration HME-ZnO treatment group and the high concentration ZnO treatment region was almost the same, and it was found that ingesting the low concentration of HME-ZnO has an excellent effect in improving animal productivity. .

Figure 112018049091635-pat00003
Figure 112018049091635-pat00003

3-2. 영양소 소화율(nutrient digestibility)3-2. Nutrient digestibility

HME-ZnO(500 ppm 및 1,000 ppm)과 ZnO(2,500ppm)을 처리한 사료를 급이한 이유자돈의 건물(dry matter, DM) 소화율, 총에너지(gross energy, GE) 함량 및 조단백질(crude protein) 소화율을 분석하였다. HME-ZnO (500 ppm and 1,000 ppm) and ZnO (2,500 ppm) treated feedstock dry matter (DM) digestibility, gross energy (GE) content and crude protein (crude protein) Digestibility was analyzed.

그 결과, 건물 소화율의 경우 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 HME-ZnO 및 ZnO 처리구간의 유의적 차이가 없었으며, 총에너지 함량과 조단백질 소화율에서도 대조구와 HME-ZnO 간의 유의적 차이는 없었다(표 4). As a result, in the case of building digestibility, there was no significant difference between the control group that consumed the basic feed that did not process anything and the HME-ZnO and ZnO treatment groups, and the total energy content and crude protein digestibility were also significantly different between the control group and the HME-ZnO. There was no (Table 4).

이를 통해, HME-ZnO의 제조를 위해 가용화제(PEG 6000)가 첨가되어도 이유자돈의 소화율에는 영향을 미치지 않음을 알 수 있었다.Through this, it was found that even if a solubilizer (PEG 6000) was added for the preparation of HME-ZnO, the digestibility of weaned piglets was not affected.

Figure 112018049091635-pat00004
Figure 112018049091635-pat00004

3-3. 장내 미생물 함량 분석3-3. Intestinal microbial content analysis

HME-ZnO(500 ppm 및 1,000 ppm)과 ZnO(2,500ppm)을 처리한 사료를 급이한 이유자돈의 회장, 맹장 및 대장에 존재하는 유익균(락토바실러스 속; Lactobacillus spp.)과 유해균(클로스트리듐 속; clostridium spp. 및 대장균류; coliform bacteria)의 함량을 분석하였다. Beneficial bacteria ( Lactobacillus spp.) And harmful bacteria (Clostridium) present in the ileum, cecum and large intestine of weaned piglets fed with feeds treated with HME-ZnO (500 ppm and 1,000 ppm) and ZnO (2,500 ppm) Contents of the genus; clostridium spp. And coliform bacteria were analyzed.

그 결과, 장내 유익균은 아무것도 처리하지 않은 기초사료를 섭취한 대조구에 비해 HME-ZnO 또는 ZnO 처리구에서 유의적으로 증가하였고, 장내 유해균은 대조구에 비해 HME-ZnO 또는 ZnO 처리구에서 유의적으로 감소된 것을 확인하였다(표 5).As a result, the beneficial bacteria in the intestine increased significantly in the HME-ZnO or ZnO treatment group compared to the control group consuming the basic feed that was not treated with anything, and the intestinal harmful bacteria were significantly decreased in the HME-ZnO or ZnO treatment group compared to the control group. It was confirmed (Table 5).

Figure 112018049091635-pat00005
Figure 112018049091635-pat00005

특히, HME-ZnO 또는 ZnO을 처리하여도 장내에 존재하는 전체 혐기성 세균(total anaerobic bacteria)의 함량에는 변화가 없고, 저농도의 HME-ZnO 처리구와 고농도의 ZnO 처리구에서 장내 유익균 및 유해균의 함량 변화가 유사한 것을 통해, 저농도의 HME-ZnO을 섭취하여도 장내 유익한 미생물의 수치가 잘 유지될 수 있을 것으로 판단되었다.Particularly, even when HME-ZnO or ZnO is treated, the content of total anaerobic bacteria present in the intestine is not changed, and the content of beneficial and harmful bacteria in the intestine in the low concentration HME-ZnO treatment and the high concentration ZnO treatment is not changed. Through similar things, it was judged that the level of beneficial microorganisms in the intestine could be maintained well even if a low concentration of HME-ZnO was ingested.

3-4. 배변지수 분석3-4. Defecation Index Analysis

HME-ZnO(500 ppm 및 1,000 ppm)과 ZnO(2,500ppm)을 처리한 사료를 급이한 이유자돈의 배설물 상태를 확인하고 점수화하였다.Feeds treated with HME-ZnO (500 ppm and 1,000 ppm) and ZnO (2,500 ppm) were checked and scored for fecal conditions of weaned piglets.

그 결과, 아무것도 처리하지 않은 사료를 섭취한 대조구와 HME-ZnO 또는 ZnO 처리구간의 유의적 차이가 있었으며, ZnO 처리구에 비해 HME-ZnO 처리구에서 배변지수 점수가 다소 증가한 것으로 확인되었다(표 6). 이를 통해, 저농도의 HME-ZnO이 첨가된 사료를 급이할 경우 이유자돈의 배변 상태가 개선될 수 있음을 알 수 있었다.As a result, there was a significant difference between the control group consuming no-treated feed and the HME-ZnO or ZnO treatment group, and it was confirmed that the defecation index score was slightly increased in the HME-ZnO treatment group compared to the ZnO treatment group (Table 6). Through this, it was found that when feeding the feed supplemented with a low concentration of HME-ZnO, the defecation state of weaned pigs could be improved.

Figure 112018049091635-pat00006
Figure 112018049091635-pat00006

3-5. 산화아연 흡수율 분석3-5. Zinc oxide absorption rate analysis

HME-ZnO(500 ppm 및 1,000 ppm)과 ZnO(2,500ppm)을 처리한 사료를 급이한 이유자돈의 배설물(feces)과 혈장(plasma) 및 사료(feed)의 산화아연 흡수율을 분석하였다. 그 결과, 배설물 내 산화아연 함량은 ZnO 처리구에 비해 HME-ZnO 처리구에서 현저하게 감소하였으며, 이를 통해 사료를 통해 섭취된 HME-ZnO이 이유자돈의 체내로 잘 흡수되었음을 알 수 있었다.HME-ZnO (500 ppm and 1,000 ppm) and ZnO (2,500 ppm) were analyzed for zinc oxide absorption of feces, plasma, and feed of weaned pigs fed with feed. As a result, it was found that the zinc oxide content in the feces was significantly reduced in the HME-ZnO treatment group compared to the ZnO treatment group, and through this, it was found that the HME-ZnO ingested through the feed was well absorbed into the body of weaned piglets.

또한, 혈장 내 산화아연 함량은 아무것도 처리하지 않은 기초사료를 섭취한 대조구에 비해 1,000 ppm 농도의 HME-ZnO 및 2,500 ppm 농도의 ZnO 처리구에서 증가하였고, 이를 통해 저농도의 HME-ZnO을 섭취하여도 이유자돈의 산화아연 흡수율을 증진시킬 수 있음을 알 수 있었다(표 7).In addition, the content of zinc oxide in plasma increased in HME-ZnO at a concentration of 1,000 ppm and ZnO treatment at a concentration of 2,500 ppm, compared to the control group that consumed no-treated base feed, and through this, even when low concentrations of HME-ZnO were consumed, weaned piglets It can be seen that the zinc oxide absorption rate of can be improved (Table 7).

Figure 112018049091635-pat00007
Figure 112018049091635-pat00007

3-6. 소장의 형태학적 변화 분석3-6. Analysis of morphological changes in the small intestine

HME-ZnO(500 ppm 및 1,000 ppm)과 ZnO(2,500ppm)을 처리한 사료를 급이한 이유자돈의 십이지장, 공장 및 회장 내의 융모 길이(villus height, VH)와 융와 깊이(crypt depth, CD)를 측정하였으며, 융모 높이를 융와 깊이로 나눈 값(VH/CD)이 증가할수록 소화 흡수력이 증진된 것을 의미한다.HME-ZnO (500ppm and 1,000ppm) and ZnO (2,500ppm) were fed feed duodenum, villus height (VH) and crypt depth (CD) in the plant and ileum. It was measured, and as the value (VH / CD) divided by villi height divided by villi and depth increased, it means that the digestive absorption capacity was improved.

그 결과, 아무것도 처리하지 않은 기초사료를 섭취한 대조구에 비해 HME-ZnO 및 ZnO 처리구에서 VH/CD 값이 증가하였다(표 8).As a result, the VH / CD value increased in the HME-ZnO and ZnO treated groups compared to the control group consuming the untreated basic feed (Table 8).

Figure 112018049091635-pat00008
Figure 112018049091635-pat00008

3-7. 혈청 내 면역글로불린 함량 분석3-7. Analysis of immunoglobulin content in serum

혈청 내 면역글로불린 함량을 측정한 결과, 혈청 내 면역글로불린 G(immunoglobulin G, IgG), 면역글로불린 A(IgA) 및 면역글로불린 M(IgM) 함량은 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 HME-ZnO 또는 ZnO 처리구간에 유의적 차이가 없는 것으로 확인되었다(표 9). 이를 통해, 제형에 상관없이 산화아연을 섭취하여도 이유자돈의 면역반응에 영향을 미치지 않는 것으로 사료된다.As a result of measuring the immunoglobulin content in the serum, the immunoglobulin G (IgA) and immunoglobulin M (IgM) and immunoglobulin M (IgM) content in the serum were compared to the control and HME- It was confirmed that there was no significant difference in the ZnO or ZnO treatment section (Table 9). Through this, it is thought that zinc oxide, regardless of the formulation, does not affect the immune response of weaned piglets.

Figure 112018049091635-pat00009
Figure 112018049091635-pat00009

Claims (11)

산화아연(ZnO)과 PEG(polyethylene glycol) 6000을 2~4:6~8의 중량비로 혼합한 혼합물을, 이중 스크류를 포함하고 압출다이 직경이 0.8~1.2 mm인 열용융 압출기를 이용하여 배럴 및 다이의 온도가 각각 50~60℃ 및 40~50℃이고, 스크류의 속도가 110~190 rpm이며, 압출 속도는 40~50 g/min으로 열용융 압출하는 단계를 포함하는 산화아연 나노콜로이드 분산체를 제조하는 방법.A mixture of zinc oxide (ZnO) and PEG (polyethylene glycol) 6000 in a weight ratio of 2 to 4: 6 to 8 includes a double screw, and a barrel using a hot melt extruder having an extrusion die diameter of 0.8 to 1.2 mm. Zinc oxide nanocolloidal dispersions comprising the steps of heat-melting extrusion at a temperature of die of 50-60 ° C and 40-50 ° C respectively, a screw speed of 110-190 rpm, and an extrusion rate of 40-50 g / min. How to manufacture. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180057046A 2018-05-18 2018-05-18 Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof KR102105829B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180057046A KR102105829B1 (en) 2018-05-18 2018-05-18 Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180057046A KR102105829B1 (en) 2018-05-18 2018-05-18 Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof

Publications (2)

Publication Number Publication Date
KR20190131964A KR20190131964A (en) 2019-11-27
KR102105829B1 true KR102105829B1 (en) 2020-04-29

Family

ID=68729950

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180057046A KR102105829B1 (en) 2018-05-18 2018-05-18 Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof

Country Status (1)

Country Link
KR (1) KR102105829B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4183261A1 (en) * 2021-11-17 2023-05-24 Vepidan ApS A feed supplement formulation for use in a fodder for feeding a livestock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100609596B1 (en) 2005-02-18 2006-08-08 이정훈 Method for the preparation of inorganic or metallic nanoparticles-polymer composite
CN107260758A (en) * 2017-06-09 2017-10-20 浙江汇能生物股份有限公司 A kind of preparation method of the high nano zine oxide dry suspensoid agent of biological value
WO2018011343A1 (en) 2016-07-14 2018-01-18 Omya International Ag Dosage form

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775819B2 (en) * 2009-09-16 2017-10-03 R.P. Scherer Technologies, Llc Oral solid dosage form containing nanoparticles and process of formulating the same using fish gelatin
KR101634790B1 (en) * 2014-04-23 2016-06-30 금오공과대학교 산학협력단 Ultraviolet block particle, cosmetic composition for ultraviolet block contain the same and menufacturing method thereof
KR101722568B1 (en) * 2014-12-12 2017-04-03 강원대학교산학협력단 Solid dispersion comprising herb medicine and solubilizer, and method for preparing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100609596B1 (en) 2005-02-18 2006-08-08 이정훈 Method for the preparation of inorganic or metallic nanoparticles-polymer composite
WO2018011343A1 (en) 2016-07-14 2018-01-18 Omya International Ag Dosage form
CN107260758A (en) * 2017-06-09 2017-10-20 浙江汇能生物股份有限公司 A kind of preparation method of the high nano zine oxide dry suspensoid agent of biological value

Also Published As

Publication number Publication date
KR20190131964A (en) 2019-11-27

Similar Documents

Publication Publication Date Title
Pei et al. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs
KR101087019B1 (en) Functional feed additives of marine fisheries and feeds for marine fisheries using thereof
Meurer et al. Brown propolis extract in feed as a growth promoter of Nile tilapia (Oreochromis niloticus, Linnaeus 1758) fingerlings
Hosseini-Vardanjani et al. Effect of feeding nano-ZnO on performance, rumen fermentation, leukocytes, antioxidant capacity, blood serum enzymes and minerals of ewes
KR102105829B1 (en) Zinc oxide nanocolloid dispersion produced by hot melt extrusion method and uses thereof
Singh et al. Effect of nano zinc oxide on zinc bioavailability and blood biochemical changes in pre-ruminant lambs
CN104146185A (en) Lamb concentrate supplement feed capable of preventing urinary calculus and preparation method thereof
CN108142688B (en) Zinc oxide-free conservation material
JP2018509161A (en) Archaea in bioactive animal feed, method for producing the composition, and method using the composition
KR20080037457A (en) Compositions for addition to feed for fish comprising bacillus polyfermenticus, bacillus licheniformis and saccharomyces serevisiae
Peatman et al. From floor sweepings to fish flesh–phytase superdosing in the US catfish industry
CN103815143A (en) Livestock feed additive capable of improving nonspecific immunity of livestock
Kumar et al. Effect of live Saccharomyces cerevisiae feeding on serum biochemistry in early weaned cross bred piglets.
Asadi et al. Comparison of selenium and vitamin E recommended NRC and ARC by diet and injection methods on performance, digestibility, blood metabolites and skeletal growth indices of suckling Holstein calves
CN113768055A (en) Low-emission environment-friendly premix feed for reducing diarrhea rate of piglets, compound feed and preparation method thereof
WO2016108946A1 (en) Food composition and method of use
CN108850592A (en) A kind of three way cross fattening later period pig feed additive for promoting growth and preparation method thereof
Chakraborty et al. Evaluation of fungal single cell protein as aqua feed on carcass analysis and growth performance of Cirrhinus reba fingerlings
CN113133429B (en) Method for improving immunity and oxidation resistance of dairy cows
KR20170062962A (en) Composition of feed additive with probiotics
Otero et al. Rumen microbial diversity under influence of a polyclonal antibody preparation against lactate-producing and proteolytic bacteria in cows fed different energy sources
KR102084489B1 (en) Iron nano colloidal dispersion produced by hot-melting extrusion method and uses thereof
Budak Effects of Nano Selenium on Some Metabolic and Rumen Parameters in Dorper Sheep
Ramadan et al. Examining The impact of Chitosan and Nano-Chitosan Addition on The expression Levels of SOD and CAT Genes in Two Lines of Japanese Quail
CN111888466A (en) Composition for improving piglet diarrhea and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant