KR102104257B1 - Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof - Google Patents

Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof Download PDF

Info

Publication number
KR102104257B1
KR102104257B1 KR1020180057047A KR20180057047A KR102104257B1 KR 102104257 B1 KR102104257 B1 KR 102104257B1 KR 1020180057047 A KR1020180057047 A KR 1020180057047A KR 20180057047 A KR20180057047 A KR 20180057047A KR 102104257 B1 KR102104257 B1 KR 102104257B1
Authority
KR
South Korea
Prior art keywords
manganese
feed
hme
ppm
delete delete
Prior art date
Application number
KR1020180057047A
Other languages
Korean (ko)
Other versions
KR20190131965A (en
Inventor
조현종
이송이
구자성
강위수
채병조
김민주
박성혁
박문수
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020180057047A priority Critical patent/KR102104257B1/en
Publication of KR20190131965A publication Critical patent/KR20190131965A/en
Application granted granted Critical
Publication of KR102104257B1 publication Critical patent/KR102104257B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/25Shaping or working-up of animal feeding-stuffs by extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N17/00Apparatus specially adapted for preparing animal feeding-stuffs
    • A23N17/005Apparatus specially adapted for preparing animal feeding-stuffs for shaping by moulding, extrusion, pressing, e.g. pellet-mills
    • B01F17/0007
    • B01F17/0021
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • B01F2101/18Mixing animal food ingredients
    • B01F2215/0024

Abstract

본 발명은 망간, 계면활성제 및 가용화제를 혼합한 혼합물을 열용융 압출기를 이용하여 열용융 압출하는 단계를 포함하는 망간 나노콜로이드 분산체를 제조하는 방법, 상기 방법에 의해 제조된 망간 나노콜로이드 분산체 및 상기 망간 나노콜로이드 분산체를 유효성분으로 함유하는 망간 흡수율 및 항산화 활성 증진용 사료첨가제 조성물에 관한 것이다.The present invention is a method for producing a manganese nanocolloidal dispersion comprising the step of heat-melting extrusion of a mixture of manganese, surfactants and solubilizers using a hot melt extruder, the manganese nanocolloidal dispersion prepared by the above method And a feed additive composition for enhancing manganese absorption and antioxidant activity containing the manganese nanocolloidal dispersion as an active ingredient.

Description

열용융압출법을 이용하여 제조된 망간 나노콜로이드 분산체 및 이의 용도{Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof}Manganese nanocolloid dispersion produced by hot melt extrusion method and use thereof {Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof}

본 발명은 열용융압출법을 이용하여 제조된 망간 나노콜로이드 분산체 및 이의 용도에 관한 것이다.The present invention relates to a manganese nanocolloidal dispersion prepared using a hot melt extrusion method and uses thereof.

미량영양소(micronutrient)는 생체 내에 존재하는 영양소 중 탄수화물, 지방, 단백질과 같이 다량으로 섭취하는 영양소에 비해 미량이지만 섭취가 필요하다고 여겨지는 비타민류와 무기질류를 총칭하는 것이다. 생리적으로 의미있는 영양소로 알려진 비타민류 및 비타민 유사물질로는 비타민 B1, B2, B6, B12, A, D, K, C, E, 니아신(niacin), 판토텐산(pantothenic acid), 비오틴(biotin), 엽산(folic acid), 콜린(choline), 이노시톨(inositol), 유비퀴논(ubiquinone), 카로텐(carotene) 등이 있으며, 무기질류로는 칼슘(Ca), 인(P), 마그네슘(Mg), 나트륨(Na), 칼륨(K), 염소(Cl), 철(Fe), 구리(Cu), 아연(Zn), 망간(Mn), 요오드(I), 코발트(Co), 몰리브덴(Mo), 셀레늄(Se), 크롬(Cr) 등이 있다. 미량영양소는 극미량으로 존재하는 경우가 많지만 동물의 생존, 성장, 건강 및 생식력 등을 향상시키는데 필수적이다.A micronutrient is a generic term for vitamins and minerals that are considered to be ingested in a small amount compared to nutrients ingested in large quantities, such as carbohydrate, fat, and protein, among nutrients present in the living body. Vitamins and vitamin analogs known as physiologically meaningful nutrients include vitamins B1, B2, B6, B12, A, D, K, C, E, niacin, pantothenic acid, biotin, Folic acid, choline, inositol, ubiquinone, carotene, etc., and inorganic substances include calcium (Ca), phosphorus (P), magnesium (Mg), and sodium (Na), potassium (K), chlorine (Cl), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), iodine (I), cobalt (Co), molybdenum (Mo), selenium (Se), chromium (Cr), and the like. Micronutrients are often present in trace amounts, but are essential for improving animal survival, growth, health and fertility.

망간은 탄수화물, 지방 및 단백질 대사, 생식기능, 연골 발달에 필수적인 성분이며, 뼈, 간, 근육, 피부 등에 다량으로 함유되어 있다. 가축 사료에 망간을 첨가하여 급이할 경우 망간의 흡수율이 낮아 대부분이 분뇨를 통해 체외로 배설되며, 분뇨 속에 포함된 망간이 분뇨를 분해(decomposition)하기 위한 미생물들의 성장을 억제하여 분뇨의 분해를 지연시킴으로써 토양환경의 오염을 증가시키기도 한다. 양돈농가에서는 동물의 망간결핍 현상을 막기 위해 흡수율이 높은 망간 첨가제를 선호하고 있으며, 이에 따라 가축에서의 망간 이용률이 높고 환경문제를 감소시킬 수 있는 망간 첨가제의 연구가 필요한 실정이다.Manganese is an essential component for carbohydrate, fat and protein metabolism, reproductive function, and cartilage development, and is abundant in bone, liver, muscle, and skin. In the case of feeding by adding manganese to livestock feed, the absorption rate of manganese is low, so most of it is excreted through the manure, and manganese contained in the manure inhibits the growth of microorganisms to decompose the manure and decompose the manure. Delays can also increase soil pollution. Pig farms prefer manganese additives with high absorption to prevent animal manganese deficiency, and accordingly, studies on manganese additives that have high manganese utilization in livestock and can reduce environmental problems are needed.

한편, 한국등록특허 제1753222호에는 '용융압출하여 제조된 당귀-고체분산체 및 그 제조방법'이 개시되어 있고, 한국등록특허 제1390946호에는 약제학적 활성 성분인 리마프로스트(Limaprost), 탐슐로신(Tamsulosin) 및 글리메피리드(Glimepiride)의 '고온용융 압출을 이용한 저함량 약제학적 조성물의 제조방법'이 개시되어 있으나, 본 발명의 열용융압출법을 이용하여 제조된 망간 나노콜로이드 분산체 및 이의 용도에 대해서는 기재된 바가 없다.On the other hand, Korean Registered Patent No.1753222 discloses 'Danggui-solid dispersion prepared by melt extrusion and its manufacturing method', and Korean Registered Patent No. 1390946 discloses limaprost, a pharmaceutically active ingredient, as tamsulo. The 'manufacturing method for low-content pharmaceutical compositions using high-temperature melt extrusion' of Shins (Tamsulosin) and Glimepiride has been disclosed, but the manganese nanocolloidal dispersions prepared using the hot-melt extrusion method of the present invention and its use No description has been made.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 망간 무처리 기초사료(basal diet) 및 열용융압출법을 거치지 않은 망간(무기망간 또는 유기망간)을 처리한 사료를 급이한 육계 또는 이유자돈에 비해, 열용융압출법을 이용하여 제조된 망간 나노콜로이드 분산체를 처리한 사료를 급이한 육계 또는 이유자돈에서, 망간의 흡수율 및 항산화 활성의 증진 효과가 우수한 것을 확인함으로써, 본 발명을 완성하였다.The present invention has been derived by the above-mentioned demands, in the present invention broiler feed fed with manganese-free basal diet and manganese-free manganese (organic manganese or organic manganese) treated Alternatively, compared to weaned pigs, the present invention is confirmed by improving the absorption effect of manganese in the broiler or weaned pigs fed with a feed treated with a manganese nanocolloidal dispersion prepared using a heat-melting extrusion method, and promoting the antioxidant activity. Completed.

상기 과제를 해결하기 위해, 본 발명은 망간, 계면활성제 및 가용화제를 혼합한 혼합물을 열용융 압출기를 이용하여 열용융 압출하는 단계를 포함하는 망간 나노콜로이드 분산체를 제조하는 방법을 제공한다.In order to solve the above problems, the present invention provides a method of manufacturing a manganese nanocolloidal dispersion comprising extruding a mixture of manganese, a surfactant, and a solubilizer using a hot melt extruder.

또한, 본 발명은 상기 방법에 의해 제조된 망간 나노콜로이드 분산체를 제공한다.In addition, the present invention provides a manganese nanocolloidal dispersion prepared by the above method.

또한, 본 발명은 상기 망간 나노콜로이드 분산체를 유효성분으로 함유하는 망간 흡수율 및 항산화 활성 증진용 사료첨가제 조성물을 제공한다.In addition, the present invention provides a feed additive composition for enhancing manganese absorption and antioxidant activity containing the manganese nanocolloidal dispersion as an active ingredient.

본 발명의 망간 나노콜로이드 분산체는 사료첨가제로서의 효율성이 우수하여 동물의 생산성을 향상시킬 수 있고, 열용융압출법을 거치지 않은 망간에 비해 입자크기가 현저하게 감소되어 체내 흡수율이 증가되어 환경오염원의 배출을 억제함으로써 환경오염 방지 효과를 가져올 것으로 기대된다.The manganese nanocolloidal dispersion of the present invention has excellent efficiency as a feed additive and can improve the productivity of animals, and the particle size is significantly reduced compared to manganese that has not undergone thermal melt extrusion, thereby increasing the absorption rate in the body and causing environmental pollution. It is expected to bring about the effect of preventing environmental pollution by suppressing emissions.

도 1은 증류수에 분산된 열용융압출법을 이용하여 제조된 망간 나노콜로이드 분산체(HME-Mn) 입자의 입도분포(A) 및 투과전자현미경 사진(B)이다.
도 2는 X선 광전자 분광법(X-ray photoelectron spectroscopy)을 통해 HME-Mn 입자(B)와 MnSO4 입자(A)의 입자표면에 존재하는 구성원소를 분석한 결과이다.
도 3은 X선 회절분석(x-ray diffractometry)을 통해 HME-Mn 입자와 MnSO4 입자의 결정 구조 변화를 분석한 결과이다.
도 4는 푸에리변환 적외분광 분석(Fourier-transform infrared spectrometry)법을 통해 계면활성제 및 가용화제의 화학적 관능기와 MnSO4간의 상호작용을 분석한 결과이다.
1 is a particle size distribution (A) and transmission electron micrograph (B) of manganese nanocolloidal dispersion (HME-Mn) particles prepared using a hot melt extrusion method dispersed in distilled water.
2 is a result of analyzing the constituent elements present on the particle surfaces of HME-Mn particles (B) and MnSO 4 particles (A) through X-ray photoelectron spectroscopy.
3 is a result of analyzing crystal structure changes of HME-Mn particles and MnSO 4 particles through X-ray diffractometry.
4 is a result of analyzing the interaction between the chemical functional groups of the surfactant and the solubilizing agent and MnSO 4 through a Fourier-transform infrared spectrometry method.

본 발명의 목적을 달성하기 위하여, 본 발명은 망간, 계면활성제 및 가용화제를 혼합한 혼합물을 열용융 압출기를 이용하여 열용융 압출(hot melt extrusion)하는 단계를 포함하는 망간 나노콜로이드 분산체(이하, HME-Mn)를 제조하는 방법을 제공한다.In order to achieve the object of the present invention, the present invention is a manganese nanocolloidal dispersion comprising the step of hot melt extrusion using a hot melt extruder of a mixture of manganese, surfactants and solubilizers (hereinafter , HME-Mn).

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 계면활성제는 Span 80(sorbitan monooleate) 및 Tween 80(polyoxyethylene sorbitan monooleate)일 수 있고, 상기 가용화제는 PEG(polyethylene glycol) 6000, PEG 400, PEG 1000, PEG 8000, PEG 20000 또는 솔루플러스(Soluplus; polyvinyl capralactam-polyvinyl acetate-polyethylene glycol graft copolymer)일 수 있고, 바람직하게는 PEG 6000일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the surfactant may be Span 80 (sorbitan monooleate) and Tween 80 (polyoxyethylene sorbitan monooleate), and the solubilizing agent is PEG (polyethylene glycol) 6000, PEG 400, PEG 1000 , PEG 8000, PEG 20000 or Soluplus (polyvinyl capralactam-polyvinyl acetate-polyethylene glycol graft copolymer), preferably PEG 6000, but is not limited thereto.

본 발명에 따른 Span 80과 Tween 80은 O/W형의 유화제로, 음이온성 및 양이온성의 유화제와 공존할 수 있고 그 작용을 증가시키는 작용을 하는 비이온성 계면활성제로 사용되었다.Span 80 and Tween 80 according to the present invention are O / W type emulsifiers, which can coexist with anionic and cationic emulsifiers, and were used as nonionic surfactants that increase the action.

본 발명에 따른 PEG 6000은 친수성 성분으로 만들어진 제형에 친유성 성분을 골고루 분산시키는 역할을 하는 가용화제로 사용되었다.PEG 6000 according to the present invention was used as a solubilizer that serves to distribute the lipophilic component evenly in a formulation made of a hydrophilic component.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 망간, 계면활성제 및 가용화제는 18~22:15~17:62~66의 중량비로 혼합할 수 있고, 바람직하게는 전체 중량 기준으로 20:16:64의 중량비로 혼합할 수 있으나, 이에 제한되지 않는다.In the method according to one embodiment of the present invention, the manganese, surfactant and solubilizer may be mixed in a weight ratio of 18 to 22:15 to 17:62 to 66, preferably 20:16 based on the total weight It can be mixed in a weight ratio of: 64, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 혼합물은 황산망간(MnSO4), Span 80, Tween 80 및 PEG 6000을 18~22:10~14:3~5:62~66의 중량비로 혼합된 것일 수 있고, 바람직하게는 황산망간, Span 80, Tween 80 및 PEG 6000을 20:12:4:64의 중량비로 혼합된 것일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the mixture is mixed with manganese sulfate (MnSO 4 ), Span 80, Tween 80 and PEG 6000 in a weight ratio of 18 to 22:10 to 14: 3 to 5:62 to 66 It may be, preferably, manganese sulfate, Span 80, Tween 80 and PEG 6000 may be mixed in a weight ratio of 20: 12: 4: 64, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 혼합물은 이온화제를 추가로 포함할 수 있고, 상기 이온화제는 바람직하게는 아세트산 또는 오미자일 수 있으나, 이에 제한되지 않는다. 상기 오미자는 오미자 분말, 오미자 즙 또는 오미자 추출물을 의미하지만 이에 제한되지 않는다.In the method according to the embodiment of the present invention, the mixture may further include an ionizing agent, and the ionizing agent may be acetic acid or omija, but is not limited thereto. The Omija means, but is not limited to, Omija powder, Omija juice or Omija extract.

본 발명에 일 구현 예에 따른 방법에 있어서, 상기 열용융 압출은 배럴 및 다이의 온도가 각각 50~60℃ 및 40~50℃로 유지되고, 스크류의 속도가 130~180 rpm이며, 압출 속도는 40~50 g/min으로 수행하는 것일 수 있고, 바람직하게는 배럴 및 다이의 온도가 각각 55℃ 및 45℃로 유지되고, 스크류의 속도가 150 rpm이며, 압출 속도는 45 g/min으로 수행하는 것일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, in the heat-melting extrusion, the temperatures of the barrel and the die are maintained at 50-60 ° C and 40-50 ° C, respectively, and the screw speed is 130-180 rpm, and the extrusion speed is It may be performed at 40-50 g / min, preferably, the temperatures of the barrel and the die are maintained at 55 ° C and 45 ° C, respectively, the speed of the screw is 150 rpm, and the extrusion speed is performed at 45 g / min. It may be, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 열용융 압출기는 이중 스크류를 포함하며, 직경이 0.8~1.2 mm의 압출다이를 포함하는 것이 바람직하다. 단일 스크류 압출기에 비해 이중 스크류 압출기는 다음과 같은 이점을 제공한다: 높은 분산성, 쉬운 재료 공급, 낮은 과열 위험성, 높은 공정 생산성 및 공정 변수의 효과적인 조정. 상기와 같은 이중 스크류 시스템을 통해 생성되는 강한 힘은 망간을 PEG 6000 기제에 균일하게 분산시킬 수 있고, 동시에, 망간의 나노 크기의 입자는 유기 고분자(PEG 6000 등)로 뒤덮이게 되고, 망간 입자 위의 PEG 6000 코팅은 표면 에너지와 응집체 발생을 감소시킨다.In the method according to an embodiment of the present invention, the heat-melting extruder includes a double screw, and preferably includes an extrusion die having a diameter of 0.8 to 1.2 mm. Compared to single screw extruders, double screw extruders offer the following advantages: high dispersibility, easy material supply, low risk of overheating, high process productivity and effective adjustment of process parameters. The strong force generated through the double screw system as described above can uniformly disperse manganese in a PEG 6000 base, and at the same time, the nano-sized particles of manganese are covered with organic polymers (eg, PEG 6000), and on the manganese particles. The PEG 6000 coating reduces surface energy and aggregate generation.

본 발명의 일 구현 예에 따른 HME-Mn을 제조하는 방법은 구체적으로는, 황산망간, Span 80, Tween 80 및 PEG 6000을 18~22:10~14:3~5:62~66의 중량비로 혼합된 혼합물을, 이중 스크류를 포함하고 압출다이 직경이 0.8~1.2 mm인 열용융 압출기를 이용하여 배럴 및 다이의 온도가 각각 50~60℃ 및 40~50℃이고, 스크류의 속도가 130~180 rpm이며, 압출 속도는 40~50 g/min으로 열용융 압출하여 제조한 것일 수 있고, 더욱 구체적으로는 황산망간, Span 80, Tween 80 및 PEG 6000을 20:12:4:64의 중량비로 혼합된 혼합물을, 이중 스크류를 포함하고 압출다이 직경이 1 mm인 열용융 압출기를 이용하여 배럴 및 다이의 온도가 각각 55℃ 및 45℃이고, 스크류의 속도가 150 rpm이며, 압출 속도는 45 g/min으로 열용융 압출하여 제조한 것일 수 있으나, 이에 제한되지 않는다.The method for manufacturing HME-Mn according to an embodiment of the present invention is specifically, manganese sulfate, Span 80, Tween 80 and PEG 6000 in a weight ratio of 18 to 22:10 to 14: 3 to 5:62 to 66 The mixed mixture, using a hot melt extruder comprising a double screw and an extrusion die diameter of 0.8 to 1.2 mm, the temperatures of the barrel and die are 50 to 60 ° C and 40 to 50 ° C, respectively, and the screw speed is 130 to 180 rpm, and the extrusion speed may be produced by heat-melting extrusion at 40-50 g / min, and more specifically, manganese sulfate, Span 80, Tween 80 and PEG 6000 are mixed in a weight ratio of 20: 12: 4: 64. Mixture, the temperature of the barrel and die is 55 ° C. and 45 ° C., the screw speed is 150 rpm, and the extrusion speed is 45 g / min. It may be manufactured by heat-melting extrusion in min, but is not limited thereto.

또한, 본 발명은 상기 방법에 의해 제조된 망간 나노콜로이드 분산체를 제공한다.In addition, the present invention provides a manganese nanocolloidal dispersion prepared by the above method.

본 발명의 일 구현 예에 따른 망간 나노콜로이드 분산체에 있어서, 상기 망간 나노콜로이드 분산체의 크기는 50~500 ㎚일 수 있고, 바람직하게는 169 ㎚일 수 있으나, 이에 제한되지 않으며, 필요에 따라 얼마든지 분산체의 크기를 조절하는 것이 가능하다.In the manganese nanocolloidal dispersion according to an embodiment of the present invention, the size of the manganese nanocolloidal dispersion may be 50 to 500 nm, preferably 169 nm, but is not limited thereto. It is possible to control the size of the dispersion as much as possible.

또한, 본 발명은 상기 망간 나노콜로이드 분산체를 유효성분으로 함유하는 망간 흡수율 및 항산화 활성 증진용 사료첨가제 조성물을 제공한다. 본 발명의 사료 첨가제 조성물은 유효성분으로 망간, 계면활성제 및 가용화제를 혼합한 혼합물을 열용융 압출기를 이용하여 열용융 압출하여 제조된 망간 나노콜로이드 분산체를 함유하고 있어, 사료에 첨가되어 급이될 경우 대상 가축의 망간 흡수율 및 항산화 활성을 증진시킬 수 있는 것이다.In addition, the present invention provides a feed additive composition for enhancing manganese absorption and antioxidant activity containing the manganese nanocolloidal dispersion as an active ingredient. The feed additive composition of the present invention contains a manganese nanocolloidal dispersion prepared by heat-melting extrusion of a mixture of manganese, surfactant, and solubilizer as an active ingredient using a hot-melt extruder, and is added to feed to feed If possible, it is possible to improve the manganese absorption rate and antioxidant activity of the target animal.

본 발명에 따른 상기 대상 가축은 돼지, 닭, 소, 양 등일 수 있고, 바람직하게는 돼지 또는 닭일 수 있으나, 이에 제한되지 않는다.The target livestock according to the present invention may be pig, chicken, cow, sheep, etc., preferably pig or chicken, but is not limited thereto.

본 발명의 사료첨가제 조성물은 돼지, 닭, 소 등을 포함하는 가축에게 단독으로 투여되거나 식용 담체 중에서 다른 사료첨가제와 조합되어 투여될 수 있다. 또한, 상기 사료첨가제 조성물은 탑 드레싱으로서 또는 이들을 가축 사료에 직접 혼합하거나 또는 사료와 별도로, 별도의 경구 제형으로, 또는 다른 성분과 조합하여 쉽게 투여할 수 있다. 통상적으로, 당업계에 잘 알려진 바와 같이 단독 일일 섭취량 또는 분할 일일 섭취량을 사용할 수 있다.The feed additive composition of the present invention may be administered alone to livestock, including pigs, chickens, cattle, etc., or in combination with other feed additives in an edible carrier. In addition, the feed additive composition can be easily administered as a top dressing or by mixing them directly into livestock feed or separately from the feed, in a separate oral dosage form, or in combination with other ingredients. Typically, a single daily intake or a divided daily intake may be used, as is well known in the art.

본 발명의 사료첨가제 조성물은 사료관리법상의 보조사료에 해당한다.The feed additive composition of the present invention corresponds to the supplementary feed under the feed management method.

본 발명의 사료첨가제 조성물은 사료에 첨가될 수 있으며, "사료"는 동물이 먹고, 섭취하며, 소화시키기 위한 또는 이에 적당한 임의의 천연 또는 인공 규정식, 한끼식 등 또는 상기 한끼식의 성분을 의미할 수 있다. 상기 사료의 종류는 특별히 제한되지 아니하며, 당해 기술 분야에서 통상적으로 사용되는 사료를 사용할 수 있다. 상기 사료의 비제한적인 예로는, 곡물류, 근과류, 식품 가공 부산물류, 조류, 섬유질류, 제약 부산물류, 유지류, 전분류, 박류 또는 곡물 부산물류 등과 같은 식물성 사료; 단백질류, 무기물류, 유지류, 광물성류, 유지류, 단세포 단백질, 동물성 플랑크톤류 또는 음식물 등과 같은 동물성 사료를 들 수 있다.The feed additive composition of the present invention may be added to the feed, and "feed" means any natural or artificial diet, one meal or the like, or one component of the meal, for the animal to eat, eat, and digest. can do. The type of the feed is not particularly limited, and a feed commonly used in the art may be used. Non-limiting examples of the feed, vegetable feed, such as grains, muscles, food processing by-products, algae, fiber, pharmaceutical by-products, fats and oils, starches, peels or grain by-products; And animal feeds such as proteins, inorganics, fats and oils, minerals, fats and oils, single cell proteins, animal planktons and food.

본 발명의 일 구현 예에서, 상기 사료첨가제 조성물은 사료 조성물 기준으로 1.5~4.5 중량%, 바람직하게는 3 중량% 배합되는 것일 수 있으나, 이제 제한되지 않는다.In one embodiment of the present invention, the feed additive composition may be 1.5 to 4.5% by weight, preferably 3% by weight, based on the feed composition, but is not limited now.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, the content of the present invention is not limited to the following examples.

재료 및 방법Materials and methods

1. 시약1. Reagent

황산망간(MnSO4)은 티엠씨(TMC Co., Ltd., 한국), PEG 6000은 삼전순약공업(Samchun Pure Chemical Co., Ltd., 한국), Span 80 및 Tween 80은 대정화금(Daejung Chemical & Metals Co., Ltd., 한국)에서 구입하여 사용하였다.Manganese sulfate (MnSO 4 ) is TMC (TMC Co., Ltd., Korea), PEG 6000 is Samchun Pure Chemical Co., Ltd. (Korea), Span 80 and Tween 80 are Daejung Chemicals (Daejung Chemical) & Metals Co., Ltd., Korea).

2. 망간 나노콜로이드 분산체의 입자 특성 분석2. Analysis of particle properties of manganese nanocolloidal dispersion

망간 나노콜로이드 분산체(이하, HME-Mn)의 입자 특성은 유체 역학적 크기(hydrodynamic size), 다분산지수(polydispersity index) 및 제타전위(zeta potential)를 동적광산란법(dynamic light scattering, DLS)과 레이저 도플러법(ELS-Z1000; Otsuka Electronics, 일본)을 이용하여 제조사의 지침에 따라 분석하였다. 또한, HME-Mn 입자의 모양을 분석하기 위해 필름이 포함된 구리 격자판에 HME-Mn을 올려두고 10분 동안 건조시킨 후 투과전자현미경(transmission electron microscopy, TEM; JEM 1010, 일본)으로 관찰하였다. 상기 실험에 사용된 HME-Mn은 증류수에 분산시켜 20 mg/㎖ 농도가 되도록 희석하여 사용하였다.Particle properties of the manganese nanocolloidal dispersion (hereinafter HME-Mn) include hydrodynamic size, polydispersity index and zeta potential, and dynamic light scattering (DLS). It was analyzed according to the manufacturer's instructions using a laser Doppler method (ELS-Z1000; Otsuka Electronics, Japan). Further, in order to analyze the shape of the HME-Mn particles, HME-Mn was placed on a copper grid containing a film, dried for 10 minutes, and then observed with a transmission electron microscopy (TEM; JEM 1010, Japan). The HME-Mn used in the experiment was dispersed in distilled water and diluted to a concentration of 20 mg / ml.

3. 고체 상태 분석3. Solid state analysis

HME-Mn와 열용융압출법을 거치지 않은 황산망간(이하, MnSO4)의 입자표면의 얇은 층에 존재하는 원소를 분석하기 위해 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS; K-AlphaTM+, Thermo Fisher Scientific, 영국)을 수행하였다. 또한, HME-Mn과 MnSO4 결정형 구조 변화 양상은 X선 회절분석(x-ray diffractometry, XRD; Philips X' Pert PRO MPD diffractometer, PANalytical Corp., 네덜란드)으로 분석하였다. 발전기의 전압과 관전류(tube current)는 각각 40 kV 및 30 mA로, 단계별 스캔 시간과 단계 크기는 각각 8.67초 및 0.013˚로 설정하였다. HME-Mn과 MnSO4의 화학적 기능의 변화는 푸에리변환 적외분광 분석(Fourier-transform infrared spectrometry, FT-IR)법을 이용하여 분석되었다. 투과율(%) 값에 의존적인 파수(wave number)는 FT-IR 분광기(PerkinElmer Inc., 영국)의 ATR(Attenuated total reflectance) 모드로 측정하였고, 투과율(%) 값은 400~4,000 cm-1 파수 범위에서 모니터링하였다.X-ray photoelectron spectroscopy (XPS); K-AlphaTM +, to analyze elements present in the thin layer of the particle surface of HME-Mn and manganese sulfate (hereinafter referred to as MnSO 4 ) that have not undergone thermal melt extrusion Thermo Fisher Scientific, UK). In addition, HME-Mn and MnSO 4 Crystalline structure changes were analyzed by X-ray diffractometry (XRD; Philips X 'Pert PRO MPD diffractometer, PANalytical Corp., The Netherlands). The generator voltage and tube current were set to 40 kV and 30 mA, respectively, and the step scan time and step size were set to 8.67 seconds and 0.013 degrees, respectively. Changes in the chemical functions of HME-Mn and MnSO 4 were analyzed using Fourier-transform infrared spectrometry (FT-IR). The wave number dependent on the transmittance (%) value was measured by the ATR (Attenuated total reflectance) mode of a FT-IR spectrometer (PerkinElmer Inc., UK), and the transmittance (%) value was 400 to 4,000 cm -1 wave number Monitored in scope.

4. 동물실험 - 육계(broiler)4. Animal Experiment-Broiler

4-1. 동물, 사료 및 급이4-1. Animals, feed and feeding

총 800마리의 육계(Ross 308)는 체중에 따라 8개의 처리구로 나누었으며, 각 처리구는 다시 20마리씩 5개의 반복당으로 나누어 사육하였다. 상기 8개의 처리구는 각각 1) 아무것도 처리하지 않은 기초사료를 급이한 육계, 2) 60 ppm 농도의 무기망간(inorganic-Mn)을 처리한 사료를 급이한 육계, 3) 120 ppm 농도의 무기망간을 처리한 사료를 급이한 육계, 4) 200 ppm 농도의 무기망간을 처리한 사료를 급이한 육계, 5) 60 ppm 농도의 HME-Mn을 처리한 사료를 급이한 육계, 6) 120 ppm 농도의 HME-Mn을 처리한 사료를 급이한 육계, 7) 200 ppm 농도의 HME-Mn을 처리한 사료를 급이한 육계 및 8) 120 ppm 농도의 유기망간(organic-Mn)을 처리한 사료를 급이한 육계로 구분하였다. 실험 사료는 각각 다른 배합비로 제조된 사료를 단계별(1 단계; 1~14일, 2단계; 15~35일)로 나누어 급이하였다(표 1).A total of 800 broilers (Ross 308) were divided into 8 treatment groups according to their weight, and each treatment was divided into 5 repetitions of 20 treatments. Each of the eight treatments is 1) broiler fed a basic feed that has not been treated with anything, 2) broiler fed a feed treated with 60 ppm inorganic manganese (Morgan), 3) inorganic with a concentration of 120 ppm Broilers fed with manganese-treated feed, 4) Broilers fed with 200 ppm inorganic manganese-fed, 5) Broilers fed with 60 ppm HME-Mn-treated feed, 6) Broilers fed feed treated with HME-Mn at a concentration of 120 ppm, 7) Broilers fed feed treated with HME-Mn at a concentration of 200 ppm, and 8) Organic manganese at 120 ppm concentration (organic-Mn) The treated feed was divided into broiler broilers. Experimental feed was fed by dividing feed prepared at different mixing ratios into stages (1 stage; 1-14 days, 2 stages; 15-35 days) (Table 1).

Figure 112018049093266-pat00001
Figure 112018049093266-pat00001

4-2. 사양성적 조사4-2. Specification Performance Survey

육계의 체중은 실험을 개시할 때와 각 단계가 종료되는 시점(14 및 35일째)에서 개별적으로 측정하였다. 소비되지 않은 사료의 무게는 실험이 종료되는 시점에 측정하였고, 사료 섭취량은 각 단계가 종료되는 시점에 측정하였다. 측정된 체중(weight gain)과 사료 섭취량(feed intake)을 기반으로 하여 사료 요구율(feed conversion ratio, FCR)을 분석하였다.Broiler weights were measured individually at the start of the experiment and at the end of each step (Days 14 and 35). The weight of unconsumed feed was measured at the end of the experiment, and the feed intake was measured at the end of each step. Based on the measured weight gain and feed intake, feed conversion ratio (FCR) was analyzed.

4-3. 망간 흡수율 측정4-3. Manganese absorption rate measurement

고주파 유도 결합 플라스마(inductively coupled plasma, ICP) 발광 분석법(emission spectroscopy)을 이용하여 AOAC(Official Methods of Analysis of the Association of Official Analytical Chemists International. 18th ed. Gaithersburg, MD, USA)의 방법에 따라 사료, 배설물, 혈청, 정강뼈 및 간 내의 망간 함량을 측정하여 망간의 체내 흡수율을 분석하였다.Feed according to the method of AOAC (Official Methods of Analysis of the Association of Official Analytical Chemists International. 18th ed.Gaithersburg, MD, USA) using high-frequency inductively coupled plasma (ICP) emission spectroscopy The absorption rate of manganese was analyzed by measuring the amount of manganese in feces, serum, shin bone and liver.

우선, 사료 및 배설물 내 망간 함량을 사료와 배설물 1 g을 600℃의 머플가마(muffle furnace)에서 4시간 동안 두어 건조된 회분으로 만들고 냉각시킨 후 50% HCl(v/v) 10 ㎖을 첨가하여 용해시켰다. 상기 용해된 샘플은 뚜껑을 덮은 상태로 밤새 두었으며, 100 ㎖ 플라스크에서 와트만 필터로 2~3회 여과하고 탈염이온수(deionized distilled water)로 희석한 후 측정하였다. First, the manganese content in the feed and feces was placed in a muffle furnace at 600 ° C. for 4 hours in a muffle furnace and cooled to dry ash, cooled, and then added to 10 ml of 50% HCl (v / v). Dissolved. The dissolved sample was left overnight with the lid closed, filtered 2-3 times with a Whatman filter in a 100 ml flask, diluted with deionized distilled water, and measured.

또한, 혈장 내 망간 함량은 혈액 샘플 1 ㎖을 자제 도가니(porcelain crucibles)에 넣고 105℃의 오븐에서 4시간 동안 건조시킨 후 600℃의 머플가마에서 1시간 동안 두어 회분으로 만들고 냉각시킨 후 상기와 동일한 방법으로 측정하였다. 또한, 간 내 망간 함량을 분석하기 위해, 간 샘플을 105℃에서 24시간 동안 건조시키고 분쇄하였다. 상기 간 샘플 분말 1 g을 600℃의 머플가마에서 1시간 동안 두어 건조된 회분으로 만들고 냉각시킨 후 상기와 동일한 방법으로 측정하였다. In addition, the content of manganese in plasma is 1 ml of blood sample placed in a porcelain crucibles, dried in an oven at 105 ° C. for 4 hours, placed in a muffle furnace at 600 ° C. for 1 hour, cooled, and the same as above. It was measured by the method. In addition, in order to analyze the manganese content in the liver, the liver sample was dried and ground at 105 ° C. for 24 hours. 1 g of the liver sample powder was placed in a muffle furnace at 600 ° C. for 1 hour to make dried ash, cooled, and then measured in the same manner as above.

또한, 정강뼈 내 망간 함량은 정강뼈에 붙어있는 지방 및 조직을 제거한 후 정강뼈를 105℃에서 24시간 건조시키고 분쇄하였다. 상기 정강뼈 샘플 분말 0.5 g을 600℃의 머플가마에서 1시간 동안 두어 건조된 회분으로 만들고 냉각시킨 후 상기와 동일한 방법으로 측정하였다.In addition, the manganese content in the shin bone was removed from the fat and tissue attached to the shin bone, and then dried and crushed the shin bone at 105 ° C for 24 hours. 0.5 g of the shin bone sample powder was placed in a muffle furnace at 600 ° C. for 1 hour to make dried ash, cooled, and then measured in the same manner as above.

4-4. 혈액조성 변화 분석4-4. Analysis of blood composition changes

육계의 각 처리구에서 10마리를 선별하여 각 단계가 종료되는 시점에 혈액을 채취한 후 적혈구(red blood cell, RBC)와 백혈구(white blood cell, WBC)는 Natt-Herrick 용액을 이용하여 혈구계(hemocytometer)로 측정하였고, 적혈구 용적(haematocrit, HCT)과 헤모글로빈(haemoglobin)은 각각 마이크로헤마토크리트(microhematocrit)와 시안메트헤모글로빈(cyanmethemoglobin) 방법을 이용하여 측정하였다.After selecting 10 animals from each treatment broiler, blood is collected at the end of each stage, and red blood cells (RBC) and white blood cells (WBC) are analyzed using a Natt-Herrick solution for hemocytometer ( Hemocytometer was measured, and haematocrit (HCT) and hemoglobin were measured using microhematocrit and cyanmethemoglobin, respectively.

4-5. 가슴 근육 분석4-5. Chest muscle analysis

가슴 근육의 pH는 균질기(homogenizer; PH91, SMT Co., Ltd., 일본)를 이용하여 10,000 rpm 조건에서 1분 동안 가슴 근육을 균질화한 후 pH 미터기(Seven Easy pH; Mettler-Toledo GmbH, 스위스)로 측정하였다. 가슴 근육의 육색은 색도계(chroma meter; CR-400, Konica Minolta Sensing Inc., 일본)를 이용하여 CIE(Commission International de l'Eclairage) 컬러 값에 따라 분석하였으며, 오른쪽 유방의 배쪽 부분의 근육을 사용하여 평균 3가지 색도(lightness, redness, yellowness)를 측정하였다. 가슴 근육의 육즙 손실률은 가슴 근육을 절제하고 무게를 측정한 후 폴리에틸렌 봉투(polyethylene bag)에 넣어 4℃에서 24시간 동안 보관한 다음 가슴 근육을 꺼내 물기를 닦고 무게를 측정하여 최초 근육 무게에 대한 백분율로 나타내었다. 가슴 근육내 지방 함량은 가슴 근육 1 g으로 AOAC(Association of Official Analytical Chemists, 1990) 960.39 방법에 따라 수행하였다. The pH of the chest muscle was homogenized (homogenizer; PH91, SMT Co., Ltd., Japan) by homogenizing the chest muscle for 1 minute at 10,000 rpm, followed by a pH meter (Seven Easy pH; Mettler-Toledo GmbH, Switzerland) ). The muscle color of the chest muscle was analyzed according to the CIE (Commission International de l'Eclairage) color value using a color meter (CR-400, Konica Minolta Sensing Inc., Japan), and the muscle of the ventral part of the right breast was used. To measure the average of three colors (lightness, redness, yellowness). The rate of loss of gravy in the chest muscle is the percentage of the initial muscle weight by excising the chest muscle, measuring the weight, placing it in a polyethylene bag, storing it at 4 ° C for 24 hours, then removing the chest muscle, wiping it and weighing it. It is represented by. The fat content in the chest muscle was 1 g of the chest muscle, and was performed according to AOAC (Association of Official Analytical Chemists, 1990) 960.39 method.

4-6. 항산화 활성 측정4-6. Antioxidant activity measurement

분쇄된 닭다리 샘플 0.5 g에 항산화 용액(3% BHA, 54% propylene glycol, 3% BHT, 40% Tween 20) 3방울을 떨어뜨리고, 티오바르비탈산(thiobarbituric acid, 1% 4,6-Dihydroxy-2-mercaptopyrimidine) 용액 3 ㎖ 및 25% 트라이클로로아세트산(trichloroacetic acid) 17 ㎖을 혼합한 후 100℃로 설정된 항온수조기에서 30분 동안 반응시키고 다시 30분 동안 냉각시켰다. 상기 냉각된 혼합물을 2,400 xg 조건으로 30분 동안 원심분리하여 상층액을 수득하였고, 흡광도 측정기(UV-mini-1240, 일본)로 532 nm에서 흡광도를 측정하였다.Three drops of antioxidant solution (3% BHA, 54% propylene glycol, 3% BHT, 40% Tween 20) was added to 0.5 g of crushed chicken leg sample, and thiobarbituric acid (1% 4,6-Dihydroxy-2) 3 ml of -mercaptopyrimidine) solution and 17 ml of 25% trichloroacetic acid were mixed and then reacted for 30 minutes in a constant temperature water bath set at 100 ° C and cooled for another 30 minutes. The cooled mixture was centrifuged at 2,400 x g for 30 minutes to obtain a supernatant, and absorbance was measured at 532 nm with an absorbance meter (UV-mini-1240, Japan).

4-7. 통계분석4-7. Statistical analysis

실험에서 얻은 모든 자료들의 통계분석은 SAS(Statistical Analysis System) 프로그램의 GLM(General Linear Model) 과정을 통해 수행되었다. 처리 평균간의 유의적 차이는 Tukey 검정(Tukey’s Honestly Significant Difference test)으로 구분하였다. 육계의 반복당은 사양성적 분석에 대한 실험단위로 사용되었으며, p값이 0.05 미만일 때 통계적으로 유의하다고 판단하였다.Statistical analysis of all data obtained in the experiment was performed through the General Linear Model (GLM) process of the SAS (Statistical Analysis System) program. Significant differences between treatment means were divided into Tukey's Honestly Significant Difference test. The repeat sugar of broiler was used as an experimental unit for specification analysis, and was judged to be statistically significant when the p value was less than 0.05.

5. 동물실험 - 이유자돈(weanling pig)5. Animal Experiment-Weaning pig

5-1. 동물, 사료 및 급이5-1. Animals, feed and feeding

총 150 마리의 이유자돈(Yorkshire×Landrace×Duroc)은 초기 평균 체중(6.61 ± 0.26 kg)에 따라 6개의 처리구로 나누었으며, 각 처리구는 다시 5마리씩 6개의 반복당으로 나누어 사육하였다. 상기 6개의 처리구는 각각 1) 아무것도 처리하지 않은 기초사료를 급이한 이유자돈, 2) 20 ppm 농도의 무기망간(inorganic)을 처리한 사료를 급이한 이유자돈, 3) 40 ppm 농도의 무기망간을 처리한 사료를 급이한 이유자돈, 4) 20 ppm 농도의 망간 나노콜로이드 분산체(HME-Mn)을 처리한 사료를 급이한 이유자돈, 5) 40 ppm 농도의 망간 나노콜로이드 분산체(HME-Mn)을 처리한 사료를 급이한 이유자돈 및 6) 40 ppm 농도의 유기망간(organic)을 처리한 사료를 급이한 이유자돈으로 구분하였다. 실험 사료는 각각 다른 배합비로 제조된 사료를 단계별(1 단계; 0~14일, 2단계; 15~28일)로 나누어 급이하였다(표 2).A total of 150 weaned piglets (Yorkshire × Landrace × Duroc) were divided into 6 treatment groups according to the initial average weight (6.61 ± 0.26 kg), and each treatment was further divided into 6 replicates per 6 replicates. Each of the six treatment groups was 1) weaned pigs fed a basic feed with no treatment, 2) weaned pigs fed a 20 ppm concentration of inorganic feed, and 3) 40 ppm inorganic manganese. Weaned piglets fed the treated diet, 4) Manganese nanocolloidal dispersion fed with a concentration of 20 ppm (HME-Mn), Weaned piglets fed with treated feedstock, 5) Manganese nanocolloidal dispersion with a concentration of 40 ppm (HME-Mn) ) Treated feeds were divided into weaned piglets and 6) 40 ppm concentration of organic manganese fed feeds were fed into weaned piglets. Experimental feeds were fed by dividing feeds prepared at different mixing ratios into stages (1 stage; 0-14 days, 2 stages; 15-28 days) (Table 2).

Figure 112018049093266-pat00002
Figure 112018049093266-pat00002

5-2. 사양성적 조사5-2. Specification Performance Survey

이유자돈의 체중은 실험을 개시할 때와 각 단계가 종료되는 시점(14 및 28일째)에서 개별적으로 측정하였고, 사료 소비량은 각 단계가 종료되는 시점에 측정하였다. 측정된 체중과 사료 소비량을 기반으로 하여, 일당증체량(average daily gain, ADG), 일당사료섭취량(average daily feed intake, ADFI) 및 사료효율(gain to feed ratio, G:F)을 분석하였다. The weight of weaned piglets was measured individually at the start of the experiment and at the end of each stage (Days 14 and 28), and feed consumption was measured at the end of each stage. Based on the measured body weight and feed consumption, the average daily gain (ADG), the average daily feed intake (ADFI), and the feed efficiency (gain to feed ratio, G: F) were analyzed.

5-3. 혈액조성 변화 분석5-3. Analysis of blood composition changes

각 처리구별 반복당에서 1마리씩 무작위로 선별하여 희생시킨 후 항응고제(anticoagulant)가 포함되지 않은 일회용 진공채혈관(vacutainer tube)을 이용하여 목정맥(jugular vein)에서 혈액 10 ㎖을 채취하였다. 채취된 혈액 샘플은 3,000 xg의 4℃ 조건에서 15분 동안 원심분리하여 혈청을 분리한 후 4℃에서 보관하였다.After randomly selecting and sacrificed one animal per repeat per treatment group, 10 ml of blood was collected from jugular vein using a disposable vacuum tube that does not contain an anticoagulant. The collected blood samples were centrifuged for 15 minutes at 3,000 xg at 4 ° C, and serum was separated and stored at 4 ° C.

5-4. 망간 흡수율 측정5-4. Manganese absorption rate measurement

이유자돈의 사료, 배설물, 간 및 혈장 내의 망간 함량은 상기 4-3에 기재된 육계의 망간 흡수율 측정 방법과 동일하게 측정하여 분석하였다.The content of manganese in feed, feces, liver and plasma of weaned piglets was measured and analyzed in the same manner as the method for measuring the absorption rate of manganese in broilers described in 4-3 above.

5-5. 혈액조성 변화 분석5-5. Analysis of blood composition changes

각 단계가 종료되는 시점에서 이유자돈의 혈액을 채취하고 바로 자동화 혈액정밀분석(automated hematologic analysis)을 통해, 적혈구, 백혈구 및 헤모글로빈 함량과 적혈구 용적(haematocrit)을 측정하였다.The blood of weaned piglets was collected at the end of each step and the red blood cell, white blood cell and hemoglobin content and red blood cell volume (haematocrit) were measured through an automated hematologic analysis.

5-6. 통계분석5-6. Statistical analysis

실험에서 얻은 모든 자료들의 통계분석은 상기 4-7에 기재된 방법과 동일하게 수행하였으며, 이유자돈의 반복당은 사양성적에 대한 실험 단위로 사용되었고, 이유자돈 개체들은 망간 흡수율 분석에 대한 실험 단위로 사용되었으며 p값이 0.05 미만일 때 통계적으로 유의하다고 판단하였다.Statistical analysis of all the data obtained in the experiment was performed in the same manner as described in 4-7 above, the repeat sugar of weaned piglets was used as an experimental unit for specification performance, and weaned piglets were used as an experimental unit for manganese absorption analysis. When the p value was less than 0.05, it was judged to be statistically significant.

제조예 1. 망간 나노콜로이드 분산체의 제조Preparation Example 1 Preparation of manganese nanocolloidal dispersion

황산망간(MnSO4), Span 80, Tween 80 및 PEG 6000은 20:12:4:64의 중량비로 압출 직전에 혼합하여 원형 사출구(1.0 mm 직경)를 가지는 이중 스크류 열용융 압출기(STS-25HS, Hankook E.M. Ltd., Pyoungtaek, Korea)에 넣고 45 g/min의 속도로 압출하여 망간 나노콜로이드 분산체(HME-Mn)를 제조하였으며, 배럴 및 다이의 온도는 각각 55℃ 및 45℃로, 스크류의 속도는 150 rpm으로 설정하였다. 상기 혼합물은 배럴 내에서 이송(conveying)과 혼연(kneading) 과정을 거친 후 다이에서 압출되었고, 압출물을 실온에서 식힌 뒤 분쇄기(HBL-3500S, Samyang Electronics Co., 한국)로 분쇄하였다.Manganese sulfate (MnSO 4 ), Span 80, Tween 80 and PEG 6000 are mixed immediately before extrusion in a weight ratio of 20: 12: 4: 64, and a double screw hot melt extruder having a circular injection port (1.0 mm diameter) (STS-25HS) , Hankook EM Ltd., Pyoungtaek, Korea) and extruded at a rate of 45 g / min to prepare a manganese nanocolloidal dispersion (HME-Mn), the temperature of the barrel and the die being 55 ° C and 45 ° C, respectively. The speed of was set at 150 rpm. The mixture was extruded in a die after passing through a conveying and kneading process in a barrel, and the extrudate was cooled at room temperature and then pulverized with a grinder (HBL-3500S, Samyang Electronics Co., Korea).

실시예 1. 망간 나노콜로이드 분산체의 입자 특성 분석Example 1. Particle characterization of manganese nanocolloidal dispersion

황산망간 분말 자체는 마이크론(micron, ㎛) 단위이고 물에 잘 용해되지 않기 때문에 경구 투여할 경우 위장관 점막 상피에서의 흡수가 어렵다. 따라서, 열용융압출법을 이용하여 황산망간을 수용액에서 콜로이드 입자 형태로 분산시킴으로써 입자 직경을 나노 단위로 감소시켜 위장관에서의 흡수율을 증가시키고자 하였다. 열용융압출 과정에서 황산망간은 계면활성제 및 가용화제에 분산되고 표면이 코팅되어 표면장력이 감소하였다.The manganese sulfate powder itself is in microns (micron, μm) and does not dissolve well in water, making it difficult to absorb from the gastrointestinal mucosal epithelium when administered orally. Therefore, by dispersing the manganese sulfate in the form of colloidal particles in an aqueous solution using a hot melt extrusion method, the particle diameter was reduced in nano units to increase the absorption rate in the gastrointestinal tract. During the hot melt extrusion process, manganese sulfate was dispersed in a surfactant and a solubilizer and the surface was coated to reduce the surface tension.

상기 제조예 1에서 제조한 HME-Mn 입자를 분석한 결과, 평균 직경은 169 nm이었고 입도 분포는 단일 피크 모양으로 관찰되었으며 제타전위의 평균값은 -11 mV이었다(도 1A). 또한, 투과전자현미경으로 HME-Mn 입자를 관찰한 결과, HME-Mn의 크기에 해당하는 구형 나노입자가 생성된 것을 확인하였다(도 1B). 이를 통해, HME-Mn을 수용성 환경에 분산시켰을 경우 입자의 응집없이 비교적 균일한 입도분포는 갖는다는 것을 알 수 있었다.As a result of analyzing the HME-Mn particles prepared in Preparation Example 1, the average diameter was 169 nm, the particle size distribution was observed in a single peak shape, and the average value of the zeta potential was -11 mV (FIG. 1A). In addition, as a result of observing HME-Mn particles with a transmission electron microscope, it was confirmed that spherical nanoparticles corresponding to the size of HME-Mn were generated (FIG. 1B). Through this , it was found that when HME-Mn was dispersed in an aqueous environment, it had a relatively uniform particle size distribution without aggregation of particles.

실시예 2. 고체 상태 분석Example 2. Solid state analysis

X선 광전자 분광법을 통해 HME-Mn과 MnSO4의 입자표면에 존재하는 구성원소를 분석한 결과, Mn, S 및 O의 함량은 MnSO4 입자(각 8.48%, 13.28%, 57.63%)에 비해 HME-Mn 입자(각 0.61%, 0.53%, 19.56%)에서 감소하였고, C의 함량은 MnSO4(19.09%) 보다 HME-Mn(79.29%)에서 현저하게 증가되었다(도 2). 이를 통해 유기물질인 계면활성제(Span 80, Tween 80)와 가용화제(PEG 6000)가 MnSO4 분말입자의 표면을 둘러싸면서 표면 근처의 원소 함량이 변화된 것으로 사료된다.As a result of analyzing the elements present on the particle surface of HME-Mn and MnSO 4 through X-ray photoelectron spectroscopy, the content of Mn, S and O is HME compared to MnSO 4 particles (8.48%, 13.28%, 57.63% respectively). -Mn particles (0.61%, 0.53%, 19.56% respectively) decreased, the content of C was significantly increased in HME-Mn (79.29%) than MnSO 4 (19.09%) (Fig. 2). Through this, it is considered that the organic substances surfactant (Span 80, Tween 80) and solubilizer (PEG 6000) surround the surface of the MnSO 4 powder particles and the element content near the surface is changed.

또한, X선 회절분석을 통해 HME-Mn과 MnSO4 입자의 결정 구조 변화 양상을 분석한 결과, MnSO4 입자는 결정형 구조임을 확인하였고, HME-Mn 입자는 MnSO4 입자에서 나타난 특징적인 강도 피크들이 관찰되었으며, 다른 각도에서도 계면활성제 및 가용화제와 관련된 피크들이 확인되었다(도 3). 이를 통해, HME-Mn 입자는 MnSO4의 결정형 구조를 잘 유지함과 동시에 계면활성제와 가용화제의 결정형 구조도 유지하고 있음을 알 수 있었다. In addition, as a result of analyzing the crystal structure change pattern of the HME-Mn and MnSO 4 particles through X-ray diffraction analysis, it was confirmed that the MnSO 4 particles have a crystalline structure, and the HME-Mn particles have characteristic intensity peaks exhibited by the MnSO 4 particles. It was observed, and peaks related to surfactant and solubilizer were also observed at different angles (FIG. 3). Through this, it was found that the HME-Mn particles maintain the crystalline structure of MnSO 4 well and also maintain the crystalline structure of the surfactant and solubilizer.

또한, 푸에리변환 적외분광 분석법을 통해 계면활성제 및 가용화제의 화학적 관능기와 MnSO4간의 상호작용을 분석한 결과, MnSO4 입자는 501 cm-1, 605 cm-1, 813 cm-1 및 1090 cm-1에서 퍼센트 투과율 감소 현상이 나타났고, HME-Mn 입자는 509 cm-1, 603 cm-1, 841 cm-1 및 1096 cm-1 뿐만 아니라 1341 cm-1, 1740 cm-1, 1966 cm-1에서도 퍼센트 투과율이 감소된 것을 확인하였다(도 4). 상기 결과들을 통해, 열용융 압출과정에서 MnSO4이 계면활성제 및 가용화제에 효율적으로 분산되어 HME-Mn으로 제조된 것을 알 수 있었다.In addition, as a result of analyzing the interaction between the chemical functional groups of the surfactant and the solubilizer and MnSO 4 through a Fourier transform infrared spectroscopy method, MnSO 4 particles are 501 cm -1 , 605 cm -1 , 813 cm -1 and 1090 cm It woke the percent transmittance decreases symptoms appear at -1, HME-Mn particles is 509 cm -1, 603 cm -1, 841 cm -1 and 1096 cm -1 as well as the 1341 cm -1, 1740 cm -1, 1966 cm - It was also confirmed that the percent transmittance was decreased in 1 (FIG. 4). Through the above results, it was found that MnSO 4 was efficiently dispersed in a surfactant and a solubilizing agent in a heat-melting extrusion process to be prepared as HME-Mn.

실시예 3. 육계 실험 결과Example 3. Broiler experiment results

3-1. 사양성적3-1. Specification

HME-Mn(60, 120 및 200 ppm), 무기망간(60, 120 및 200 ppm) 또는 유기망간(120 ppm)을 처리한 사료를 급이한 육계의 사양성적을 조사하였다. The specifications of broilers fed with feed treated with HME-Mn (60, 120 and 200 ppm), inorganic manganese (60, 120 and 200 ppm) or organic manganese (120 ppm) were investigated.

그 결과, 아무것도 처리하지 않은 기초사료를 섭취한 대조구에 비해서, 무기망간, 유기망간 및 HME-Mn 처리구에서 일당증체량(weight gain)과 일당사료섭취량(feed intake)을 일당증체량으로 나누어 산출한 사료요구율(FCR)이 감소하였다(표 3).As a result, the feed demand rate calculated by dividing the weight gain and the feed intake in the daily weight increase in the inorganic manganese, organic manganese, and HME-Mn treatment groups, compared to the control that ate the basic feed that did not process anything, (FCR) decreased (Table 3).

Figure 112018049093266-pat00003
Figure 112018049093266-pat00003

3-2. 혈액조성 변화 분석3-2. Analysis of blood composition changes

HME-Mn(60, 120 및 200 ppm), 무기망간(60, 120 및 200 ppm) 또는 유기망간(120 ppm)을 처리한 사료를 급이한 육계의 혈액을 분석하였다.Blood from broilers fed with feed treated with HME-Mn (60, 120 and 200 ppm), inorganic manganese (60, 120 and 200 ppm) or organic manganese (120 ppm) was analyzed.

그 결과, 백혈구(WBC), 적혈구(RBC) 및 헤모글로빈(Hb)의 함량과 적혈구 용적(HCT)은 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 망간 처리구간에 유의적 차이가 없는 것으로 확인되었다(표 4). 이를 통해, 제형에 상관없이 망간을 섭취하여도 육계의 혈액 조성과 면역 반응에 영향을 미치지 않을 것으로 사료된다.As a result, it was confirmed that the content of white blood cells (WBC), red blood cells (RBC), and hemoglobin (Hb) and red blood cell volume (HCT) were not significantly different between the control and manganese treatment groups that consumed the basic feed treated with nothing (( Table 4). Through this, it is thought that ingesting manganese regardless of the formulation will not affect the blood composition and immune response of broilers.

Figure 112018049093266-pat00004
Figure 112018049093266-pat00004

3-3. 항산화 활성 분석3-3. Antioxidant activity assay

HME-Mn(120 ppm), 무기망간(120 ppm) 또는 유기망간(120 ppm)을 처리한 사료를 급이한 육계의 TBARS(thiobarbituric acid reactive substance) 농도에 대한 흡광도 값을 측정하였다. TBARS는 각종 생체막의 과산화반응에 의해 생성되는 말론알데하이드(malonaldehyde)가 TBA(thiobarbituric acid)와 반응하여 생성되는 것으로, TBARS 생성의 저해율을 통해 항산화 활성의 효과를 분석하였다. Absorbance values were measured for concentrations of thiobarbituric acid reactive substance (TBARS) in broilers fed with HME-Mn (120 ppm), inorganic manganese (120 ppm) or organic manganese (120 ppm) treated feed. TBARS is produced by reacting malonaldehyde (thiobarbituric acid) with TBA (thiobarbituric acid), which is produced by peroxidation of various biofilms, and analyzed the effect of antioxidant activity through the inhibition rate of TBARS production.

그 결과, 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 무기망간 또는 유기망간 처리구에 비해 HME-Mn 처리구에서 흡광도 값이 감소하였으며, 특히 섭취 9일째에 유의적으로 흡광도 값이 감소되었다(표 5). As a result, the absorbance value was decreased in the HME-Mn treatment group compared to the control group that consumed the basic feed that was not treated with anything and the inorganic or organic manganese treatment group, and the absorbance value was significantly decreased on the 9th day of ingestion (Table 5). .

Figure 112018049093266-pat00005
Figure 112018049093266-pat00005

3-4. 망간 흡수율 분석3-4. Manganese absorption rate analysis

HME-Mn(60, 120 및 200 ppm), 무기망간(60, 120 및 200 ppm) 또는 유기망간(120 ppm)을 처리한 사료를 급이한 육계의 배설물(feces), 정강뼈(tibia), 간(liver), 혈장(plasma) 및 사료(feed)의 망간 흡수율을 분석하였다.HME-Mn (60, 120 and 200 ppm), inorganic manganese (60, 120 and 200 ppm) or organic manganese (120 ppm) treated feeder broiler feces, tibia, The absorption rate of manganese in liver, plasma and feed was analyzed.

그 결과, 배설물 내 망간 함량은 무기망간 또는 유기망간 처리구에 비해 HME-Mn 처리구에서 유의하게 감소하였으며, 이는 사료를 통해 섭취된 HME-Mn이 육계의 체내로 잘 흡수되었음을 의미하였다. 혈장, 간 및 정강뼈 내 망간 함량은 무기망간 또는 유기망간 처리구에 비해 HME-Mn 처리구에서 증가하였으며, 이를 통해 열용융압출법을 이용하여 제조된 HME-Mn은 동물의 체내 흡수율을 증진시킬 수 있음을 알 수 있었다(표 6).As a result, the manganese content in the feces was significantly reduced in the HME-Mn treatment group compared to the inorganic manganese or organic manganese treatment group, which means that the HME-Mn ingested through the feed was well absorbed into the broiler's body. The content of manganese in plasma, liver and shin bone increased in HME-Mn treatment compared to inorganic manganese or organic manganese treatment, and through this, HME-Mn prepared using heat-melting extrusion method can improve the absorption rate in animals. Was found (Table 6).

Figure 112018049093266-pat00006
Figure 112018049093266-pat00006

3-5. 가슴 근육 분석3-5. Chest muscle analysis

HME-Mn(60, 120 및 200 ppm), 무기망간(60, 120 및 200 ppm) 또는 유기망간(120 ppm)을 처리한 사료를 급이한 육계의 가슴 근육에 대한 pH, 수분함량(moisture), 육즙 손실률(drip loss), 근간지방 함량(intramuscular fat) 및 육색(ligntness, redness, yellowness)을 측정하였다.HME-Mn (60, 120 and 200 ppm), inorganic manganese (60, 120 and 200 ppm), or organic manganese (120 ppm) treated with feed, pH, water content (moisture) for the chest muscles of broilers , Drip loss, intramuscular fat and meat color (ligntness, redness, yellowness) were measured.

그 결과, 가슴근육의 pH, 수분함량, 육즙 손실률 및 육색은 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 망간 처리구간에 유의적 차이가 없는 것으로 확인되었고, 근간지방 함량은 아무것도 처리하지 않은 기초사료를 섭취한 대조구에 비해 무기망간, 유기망간 및 HME-Mn 처리구에서 유의적으로 감소하였다(표 7). As a result, it was confirmed that there was no significant difference between the control group and the manganese treatment group, which consumed the basic feed that did not process anything, such as the pH, moisture content, meat loss rate, and color of the chest muscle, and the basis fat content was not treated with the basic feed. Compared to the control intake of, it was significantly decreased in inorganic manganese, organic manganese and HME-Mn treatment (Table 7).

Figure 112018049093266-pat00007
Figure 112018049093266-pat00007

또한, 지육 수율(dressing percentage)과 가슴 근육(breast muscle), 넓적다리 근육(thigh muscle) 및 복부지방(abdominal fat)의 함량을 분석한 결과, 지육수율과 가슴 근육 및 넓적다리의 함량은 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 망간 처리구간에 유의적 차이가 없었고, 복부지방 함량은 기초사료를 섭취한 대조구에 비해 망간 처리구에서 감소된 것이 확인되었으며, 특히 무기망간 처리구에 비해 HME-Mn과 유기망간 처리구에서 보다 더 감소된 것이 관찰되었다(표 8). 이를 통해, HME-Mn이 첨가된 사료를 급이할 경우 육계의 육질이 개선될 수 있음을 알 수 있었다.In addition, as a result of analyzing the content of dressing percentage and breast muscle, thigh muscle and abdominal fat, the results of the cognitive yield and the content of the chest muscle and thigh were processed. There was no significant difference between the control group and the manganese treatment group that did not consume the basic feed, and it was confirmed that the abdominal fat content was decreased in the manganese treatment group compared to the control group that consumed the basic feed, especially HME-Mn compared to the inorganic manganese treatment group. A further decrease was observed in the organo-manganese treatment (Table 8). Through this, it was found that when feeding the feed supplemented with HME-Mn, the meat quality of broilers could be improved.

Figure 112018049093266-pat00008
Figure 112018049093266-pat00008

실시예 4. 이유자돈 실험 결과Example 4. Results of weaning piglets

4-1. 사양성적4-1. Specification

HME-Mn(20 및 40 ppm), 무기망간(20 및 40 ppm) 또는 유기망간(40 ppm)을 처리한 사료를 급이한 이유자돈의 사양성적을 조사하였다.The specifications of weaned piglets fed with diets treated with HME-Mn (20 and 40 ppm), inorganic manganese (20 and 40 ppm) or organic manganese (40 ppm) were investigated.

그 결과, 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 무기 망간 또는 유기망간 처리구에 비해 HME-Mn 처리구에서 일당증체량(ADG)은 유의적으로 증가하였고, 일당증체량(weight gain)을 일당사료섭취량(feed intake)으로 나누어 산출한 사료효율(G:F)은 대조구에 비해 HME-Mn 처리구에서 증가하였으나 유의적 차이는 없었다(표 9). 이를 통해, HME-Mn이 처리된 사료를 동물에게 급이할 경우 동물의 생산성을 증진시킬 수 있을 것으로 사료되었다.As a result, the daily gain (ADG) was significantly increased in the HME-Mn treatment group compared to the control and inorganic manganese or organic manganese treatment groups that ate the basic feed that was not treated with anything, and the daily weight gain was increased ( Feed intake) was calculated by dividing feed efficiency (G: F) in the HME-Mn treated group compared to the control group, but there was no significant difference (Table 9). Through this, HME-Mn was thought to be able to improve the productivity of animals when feeding to animals treated.

Figure 112018049093266-pat00009
Figure 112018049093266-pat00009

4-2. 혈액조성 변화 분석4-2. Analysis of blood composition changes

HME-Mn(20 및 40 ppm), 무기망간(20 및 40 ppm) 또는 유기망간(40 ppm)을 처리한 사료를 급이한 이유자돈의 혈액을 분석하였다.The blood of weaned piglets fed a diet treated with HME-Mn (20 and 40 ppm), inorganic manganese (20 and 40 ppm) or organic manganese (40 ppm) was analyzed.

그 결과, 백혈구(WBC), 적혈구(RBC) 및 헤모글로빈(Hb)의 함량과 적혈구 용적(HCT)은 아무것도 처리하지 않은 기초사료를 섭취한 대조구와 망간 처리구간에 유의적 차이가 없는 것으로 확인되었다(표 10). 이를 통해, 제형에 상관없이 망간을 섭취하여도 이유자돈의 혈액 조성과 면역 반응에 영향을 미치지 않는 것으로 판단되었다.As a result, the content of white blood cells (WBC), red blood cells (RBC), and hemoglobin (Hb) and red blood cell volume (HCT) were found to have no significant difference between the control and manganese treatment groups that consumed the basic feed treated with nothing (( Table 10). Through this, it was judged that ingesting manganese regardless of the formulation did not affect the blood composition and immune response of weaned piglets.

Figure 112018049093266-pat00010
Figure 112018049093266-pat00010

4-3.망간 흡수율 분석4-3. Manganese absorption rate analysis

HME-Mn(20 및 40 ppm), 무기망간(20 및 40 ppm) 또는 유기망간(40 ppm)을 처리한 사료를 급이한 이유자돈의 배설물(feces)과 혈장(plasma) 및 사료(feed)의 망간 흡수율을 분석하였다.Feces and plasma and feed of weaned piglets fed feed treated with HME-Mn (20 and 40 ppm), inorganic manganese (20 and 40 ppm) or organic manganese (40 ppm). Manganese absorption was analyzed.

그 결과, 배설물 내 망간 함량은 무기망간 또는 유기망간 처리구에 비해 HME-Mn 처리구에서 유의하게 감소하였으며, 이는 사료를 통해 섭취된 HME-Mn이 육계의 체내로 잘 흡수되었음을 의미하였다. 또한, 혈장 및 간내 망간 함량은 무기망간 또는 유기망간 처리구에 비해 HME-Mn 처리구에서 증가하였으며, 이를 통해 열용융압출법을 이용하여 제조된 HME-Mn은 동물의 체내 흡수율을 증진시킬 수 있음을 알 수 있었다(표 11).As a result, the manganese content in the feces was significantly reduced in the HME-Mn treatment group compared to the inorganic manganese or organic manganese treatment group, which means that the HME-Mn ingested through the feed was well absorbed into the broiler's body. In addition, the plasma and liver manganese content was increased in the HME-Mn treatment group compared to the inorganic manganese or organic manganese treatment group. Through this, it was found that the HME-Mn prepared using the hot melt extrusion method can improve the absorption rate in the body of the animal. (Table 11).

Figure 112018049093266-pat00011
Figure 112018049093266-pat00011

Claims (13)

황산망간(MnSO4), Span 80, Tween 80 및 PEG 6000이 18~22:10~14:3~5:62~66의 중량비로 혼합된 혼합물을, 이중 스크류를 포함하고 압출다이 직경이 0.8~1.2 mm인 열용융 압출기를 이용하여 배럴 및 다이의 온도는 각각 50~60℃ 및 40~50℃이고, 스크류의 속도가 130~180 rpm이며, 압출 속도는 40~50 g/min으로 열용융 압출하는 단계를 포함하는 망간 나노콜로이드 분산체를 제조하는 방법.A mixture of manganese sulfate (MnSO 4 ), Span 80, Tween 80 and PEG 6000 in a weight ratio of 18 to 22:10 to 14: 3 to 5:62 to 66, including a double screw, and an extrusion die diameter of 0.8 to The temperature of the barrel and die is 50-60 ° C and 40-50 ° C, respectively, using a 1.2 mm heat-melting extruder, the screw speed is 130-180 rpm, and the extrusion speed is 40-50 g / min. Method for producing a manganese nanocolloidal dispersion comprising the step of. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항의 방법에 의해 제조된 50~500 nm 크기의 망간 나노콜로이드 분산체.A manganese nanocolloidal dispersion having a size of 50-500 nm prepared by the method of claim 1. 삭제delete 제11항의 망간 나노콜로이드 분산체를 유효성분으로 함유하는 망간 흡수율 및 항산화 활성 증진용 사료첨가제 조성물.A feed additive composition for enhancing manganese absorption and antioxidant activity, comprising the manganese nanocolloidal dispersion of claim 11 as an active ingredient.
KR1020180057047A 2018-05-18 2018-05-18 Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof KR102104257B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180057047A KR102104257B1 (en) 2018-05-18 2018-05-18 Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180057047A KR102104257B1 (en) 2018-05-18 2018-05-18 Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof

Publications (2)

Publication Number Publication Date
KR20190131965A KR20190131965A (en) 2019-11-27
KR102104257B1 true KR102104257B1 (en) 2020-04-24

Family

ID=68729886

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180057047A KR102104257B1 (en) 2018-05-18 2018-05-18 Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof

Country Status (1)

Country Link
KR (1) KR102104257B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832281A1 (en) * 2006-03-10 2007-09-12 Abbott GmbH & Co. KG Process for producing a solid dispersion of an active ingredient
US9775819B2 (en) * 2009-09-16 2017-10-03 R.P. Scherer Technologies, Llc Oral solid dosage form containing nanoparticles and process of formulating the same using fish gelatin
KR101043066B1 (en) * 2009-11-25 2011-06-21 아주대학교산학협력단 A method of preparing metal ferrite nanoparticles useful for contrast agents
CN104644557B (en) * 2013-11-22 2017-10-31 上海宣泰医药科技有限公司 PORPHYRIN IRON solid dispersions and preparation method thereof
KR101753222B1 (en) * 2014-12-12 2017-07-04 강원대학교산학협력단 Solid dispersion of Angelica gigas Nakai prepared by hot-melting extrusion and preparing method thereof
KR101722568B1 (en) * 2014-12-12 2017-04-03 강원대학교산학협력단 Solid dispersion comprising herb medicine and solubilizer, and method for preparing thereof
KR101729497B1 (en) * 2015-01-08 2017-04-24 강원대학교산학협력단 Method for producing soybean granule with enhanced solubility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Velikov와 Pelan, "Colloidal delivery sysem for micronutrients and nutraceuticals", Soft Matter, Vol 4, pp 1964-1980 (2008)

Also Published As

Publication number Publication date
KR20190131965A (en) 2019-11-27

Similar Documents

Publication Publication Date Title
Etiosa et al. Mineral and proximate composition of soya bean
Thangapandiyan et al. Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita
Shahpar et al. Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss larvae
Paulpandian et al. Impact of Camellia sinensis iron oxide nanoparticle on growth, hemato-biochemical and antioxidant capacity of blue gourami (Trichogaster trichopterus) fingerlings
Kumar et al. Nano-sized zinc in broiler chickens: effects on growth performance, zinc concentration in organs, and intestinal morphology
KR102105827B1 (en) Selenium nanocolloid dispersion produced by hot melt extrusion method and uses thereof
Singh et al. Effect of nano zinc oxide on zinc bioavailability and blood biochemical changes in pre-ruminant lambs
Nwanna et al. Effect of protein deficient diets on the growth and carcass protein ash ratio of African catfish Clarias gariepinus (Burchell 1822)
KR102104257B1 (en) Manganese nanocolloid dispersion produced by hot melt extrusion method and uses thereof
EP1656034B1 (en) Rumen bypass calcium salts of trans and polyunsaturated fatty acids
CN109221631A (en) A kind of carp feed for Yield Fish Culture Ponds
Ahmad et al. Effect of nano-se particles supplemented sunflower meal based diets on mineral absorption and carcass composition of Cirrhinus mrigala fingerlings.
WO2009157112A1 (en) Feed
CN106212903A (en) Fattening Sheep forage grass type full-valence pellet feed and preparation method thereof
Rajan et al. Impact of different quantity of green synthesized iron oxide nanoparticles on growth, enzymatic, biochemical changes and hematology of zebrafish Danio rerio
Moustafa et al. Effect of nano-selenium and vitamin E on growth performance and blood constituents of broiler chickens
CN106819644A (en) A kind of Colossoma brachypomum fry feed and its compound method
CN108065132A (en) A kind of mandarin fish starter diet and preparation method thereof
CN106213044A (en) Hyperchromic mixed feed of rainbow trout and preparation method thereof
Singh et al. Supplementary effect of different levels of nano zinc oxide on zinc bioavailability and blood metabolites in lambs
Aminullah et al. Nano copper in poultry nutrition: potential effects and future prospects-a review
Edrees et al. Effect of natural antioxidants supplementation as feed ingredients in laying hen diet
KR102105872B1 (en) Copper nano colloidal dispersion produced by hot-melting extrusion method and uses thereof
JP6085319B2 (en) Enriched chicken egg and method for producing the same
Mozhiarasi et al. Effects of Zinc Oxide Nanoparticles on Growth, Carcass Characteristics and Intestinal Tight Junction Protein Gene Expression in 35-day old Broiler Chickens

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant