KR102101988B1 - A preparation method for for enzyme treated-spirulina hydrolysate with improved heat stability and increased phycocyanin - Google Patents

A preparation method for for enzyme treated-spirulina hydrolysate with improved heat stability and increased phycocyanin Download PDF

Info

Publication number
KR102101988B1
KR102101988B1 KR1020190090016A KR20190090016A KR102101988B1 KR 102101988 B1 KR102101988 B1 KR 102101988B1 KR 1020190090016 A KR1020190090016 A KR 1020190090016A KR 20190090016 A KR20190090016 A KR 20190090016A KR 102101988 B1 KR102101988 B1 KR 102101988B1
Authority
KR
South Korea
Prior art keywords
spirulina
phycocyanin
enzyme
content
stability
Prior art date
Application number
KR1020190090016A
Other languages
Korean (ko)
Inventor
서형주
홍기배
배기연
이헌
Original Assignee
주식회사 네이처코아젠팜스
이헌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 네이처코아젠팜스, 이헌 filed Critical 주식회사 네이처코아젠팜스
Priority to KR1020190090016A priority Critical patent/KR102101988B1/en
Priority to PCT/KR2020/095065 priority patent/WO2021015600A1/en
Application granted granted Critical
Publication of KR102101988B1 publication Critical patent/KR102101988B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a production method of spirulina hydrolysate with a high phycocyanin content, which comprises the steps of: hydrolyzing spirulina with proteolytic enzyme; and obtaining the spirulina hydrolysate.

Description

효소를 이용하여 제조된 열안정성이 개선되고 피코시아닌 함량이 증가된 스피루리나 가수분해물의 제조 방법{A PREPARATION METHOD FOR FOR ENZYME TREATED-SPIRULINA HYDROLYSATE WITH IMPROVED HEAT STABILITY AND INCREASED PHYCOCYANIN}Method for manufacturing spirulina hydrolyzate with improved thermal stability and increased phycocyanin content manufactured using enzymes {A PREPARATION METHOD FOR FOR ENZYME TREATED-SPIRULINA HYDROLYSATE WITH IMPROVED HEAT STABILITY AND INCREASED PHYCOCYANIN}

본 발명은 피코시아닌 함량이 증가된 스피루리나 가수분해물의 제조 방법에 대한 것이다.The present invention relates to a method for producing a spirulina hydrolyzate having an increased phycocyanin content.

스피루리나는 지구상에서 가장 오래된 조류의 하나로서 약 30-40억 년 전 지구 표면에 처음 나타난 청록색의 남조류이며, 현미경으로 보면 나선형(spiral)으로 꼬여 있어 스피루리나로 명명되었다(Yang HN, Lee EH, Kim HM. 1997. Spirulina platensis inhibits anaphylactic reaction. Lif Sci 61: 1237-1244). 스피루리나는 무독성 시아노박테리아(cyanobacteria)로 다당류, 비타민, 미네랄, 불포화 지방산, 카로티노이드, phycobiliproteins을 함유하고 있어 식품 보충제로 이용되고있다. 스피루리나의 바이오 매스는 섬유와 안료 외에도 55 내지 70%의 단백질, 3 내지 9%의 지방, 15 내지 30%의 탄수화물로 구성되어 있다.Spirulina is one of the oldest birds on the planet. It is a turquoise blue-green algae that first appeared on the Earth's surface about 3 to 4 billion years ago. It is called Spirulina because it is spirally twisted under a microscope (Yang HN, Lee EH, Kim HM) 1997. Spirulina platensis inhibits anaphylactic reaction.Lif Sci 61: 1237-1244). Spirulina is a non-toxic cyanobacteria that contains polysaccharides, vitamins, minerals, unsaturated fatty acids, carotenoids and phycobiliproteins, which are used as food supplements. Spirulina's biomass consists of 55 to 70% protein, 3 to 9% fat, and 15 to 30% carbohydrates in addition to fiber and pigments.

Phycobiliproteins은 엽록체의 틸라코이드 막에 부착된 phycobilisomes로서 세포 내에서 생성되는 광합성 색소이다. 시아노박테리아의 phycobiliproteins은 세 가지 주요 성분인 Phycoerythrin(bright pink, red), 피코시아닌(phycocyanin)(dark blue) 및 알로피코시아닌(brighter blue)로 나눌 수 있다. 이러한 phycobiliproteins은 의약품, 식품, 화장품 및 형광 물질에 널리 사용된다.Phycobiliproteins are phycobilisomes attached to the chloroplast thylakoid membrane and are photosynthetic pigments produced in cells. Cyanobacteria's phycobiliproteins can be divided into three main components: Phycoerythrin (bright pink, red), phycocyanin (dark blue) and allopicocyanin (brighter blue). These phycobiliproteins are widely used in pharmaceuticals, food, cosmetics and fluorescent materials.

피코시아닌은 수용성 색소로 식품(츄잉껌, 유제품, 젤리 등), 화장품 (립스틱 및 아이 라이너), 형광 시약 및 임상 진단 장비의 probe 널리 사용되고 있다. 피코시아닌은 여러가지 생리활성을 지닌 것으로 보고되고 있으며, 특히 항산화, 항염증, 간보호 및 라디칼 소거 특성을 가지고 있는 것으로 알려져 있다. 그러나 피코시아닌의 다양한 생리활성을 보유함에도 불구하고 열안정성이 약한 문제점으로 인해 피코시아닌의 음식 및 기타 응용 분야에서의 사용은 제한적이다.Phycocyanin is a water-soluble pigment that is widely used in food (chewing gum, dairy, jelly, etc.), cosmetics (lipstick and eyeliner), fluorescent reagents, and probes for clinical diagnostic equipment. Phycocyanin has been reported to have various physiological activities, and is known to have antioxidant, anti-inflammatory, hepatoprotective and radical scavenging properties. However, despite having various physiological activities of phycocyanin, the use of phycocyanin in food and other applications is limited due to the problem of poor thermal stability.

한편, 스피루리나 추출방법은 열수 혹은 유기용매를 사용하는 단순한 추출법과 CO2를 사용하는 초임계추출법이 알려져 있다. 온수나 유기용매를 사용하는 방법은 단순하나 추출물의 수율이 20 %이하로 스피루리나 함유되어 있는 성분의 손실이 큰 단점이 있으며, 유기용매에 의한 추출은 유기용매가 잔류하는 문제가 발생할 수 있다. 또한 초임계추출법은 고가의 설비가 필요한 단점이 있다.Meanwhile, the spirulina extraction method is known as a simple extraction method using hot water or an organic solvent and a supercritical extraction method using CO2. The method using hot water or an organic solvent is simple, but the yield of the extract is less than 20%, and there is a big disadvantage of loss of components containing spirulina, and extraction with an organic solvent may cause a problem that the organic solvent remains. In addition, the supercritical extraction method has the disadvantage of requiring expensive equipment.

본 발명자들은 스피루리나의 추출 효율을 향상시키고 피코시아닌의 안정성이 증가된 추출 공정을 제공한다.The present inventors provide an extraction process that improves the extraction efficiency of spirulina and increases the stability of phycocyanin.

본 발명의 목적은 피코시아닌 함량이 증가된 스피루리나 가수분해물의 제조 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a spirulina hydrolyzate having an increased phycocyanin content.

본 발명은,The present invention,

스피루리나를 단백질 가수분해효소로 처리하여 가수분해하는 단계;및Hydrolyzing spirulina with a proteolytic enzyme; and

스피루리나 가수분해물을 수득하는 단계를 포함하는,Comprising the step of obtaining a spirulina hydrolysate,

피코시아닌을 포함하는 스피루리나 가수분해물의 제조 방법을 제공한다.Provided is a method for producing a spirulina hydrolyzate comprising phycocyanin.

본 발명의 제조 방법으로 제조된 스피루리나 가수분해물은 피코시아닌 함량이 높은 특징을 갖는다.Spirulina hydrolyzate produced by the production method of the present invention has a high phycocyanin content.

도 1은 상업적인 프로테아제 효소들이 스피루리나에서 (A) C-피코시아닌, (B) 알로피코시아닌, 및 (C) 스피루리나 추출물(SE) index에 미치는 영향을 보여준다. 값들은 평균 ± 표준편차로 나타내었다. 다른 문자들은 Duncan’s multiple range test에 의하여 P < 0.05의 상당한 차이를 나타낸다.
도 2는 스피루리나에서 상업적인 헤미셀룰라제 효소들이 (A) C-피코시아닌, (B) 알로피코시아닌, 및 (C) 스피루리나 추출물(SE) index에 미치는 영향을 보여준다. 값들은 평균 ± 표준편차로 나타내었다. 다른 문자들은 Duncan’s multiple range test에 의하여 P < 0.05의 상당한 차이를 나타낸다.
도 3은 스피루리나에서 혼합된 프로테아제 효소들이 (A) C-피코시아닌, (B) 알로피코시아닌, 및 (C) 고형분 회수율에 미치는 영향을 보여준다. 값들은 평균 ± 표준편차로 나타내었다. 다른 문자들은 Duncan’s multiple range test에 의하여 P < 0.05의 상당한 차이를 나타낸다.
도 4는 스피루리나에서 프로테아제 농도들이 (A) C-피코시아닌, (B) 알로피코시아닌, 및 (C) 고형분 회수율에 미치는 영향을 보여준다. 값들은 평균 ± 표준편차로 나타내었다. 다른 문자들은 Duncan’s multiple range test에 의하여 P < 0.05의 상당한 차이를 나타낸다.

도 5는 스피루리나에서 효소 반응 온도들이 농도들이 (A) C-피코시아닌, (B) 알로피코시아닌, 및 (C) 고형분 회수율에 미치는 영향을 보여준다. 값들은 평균 ± 표준편차로 나타내었다. 다른 문자들은 Duncan’s multiple range test에 의하여 P < 0.05의 상당한 차이를 나타낸다.
도 6은 스피루리나에서 효소 반응 시간들이 농도들이 (A) C-피코시아닌, (B) 알로피코시아닌, 및 (C) 고형분 회수율에 미치는 영향을 보여준다. 값들은 평균 ± 표준편차로 나타내었다. 다른 문자들은 Duncan’s multiple range test에 의하여 P < 0.05의 상당한 차이를 나타낸다.
도 7은 30분 동안 여러가지 온도 및 pHdptj duf 처리 후 CR값의 변화를 나타낸다.
도 8은 사이클로덱스트린(CD) 및/또는 탄닌산의 첨가에 의하여 10분 동안 95 ℃에서 열 처리 후 CR 값의 변화들을 나타낸다.
도 9는 시스테인의 첨가에 의하여 10분 동안 95 ℃에서 열 처리 후 CR 값의 변화들을 나타낸다.
도 10은 콜루풀린 추출 시 시스테인 첨가에 의하여 10분 동안 95 ℃에서 열 처리 후 CR 값의 변화들을 나타낸다.
도 11은 콜루풀린 추출 시 시스테인 첨가에 의하여 열처리 전후의 스캐닝 결과들이다.
도 12는 30분 동안 여러가지 온도 및 pH에서 열처리 후 CR 값의 변화들을 나타낸다.
Figure 1 shows the effect of commercial protease enzymes on (A) C-phycocyanin, (B) allopicocyanine, and (C) Spirulina extract (SE) index in Spirulina. Values are expressed as mean ± standard deviation. Other characters show a significant difference of P <0.05 by Duncan's multiple range test.
FIG. 2 shows the effect of commercial hemicellulase enzymes on (A) C-phycocyanin, (B) allopicocyanine, and (C) Spirulina extract (SE) index in Spirulina. Values are expressed as mean ± standard deviation. Other characters show a significant difference of P <0.05 by Duncan's multiple range test.
FIG. 3 shows the effect of protease enzymes mixed in Spirulina on (A) C-phycocyanin, (B) allopicocyanine, and (C) solids recovery. Values are expressed as mean ± standard deviation. Other characters show a significant difference of P <0.05 by Duncan's multiple range test.
FIG. 4 shows the effect of protease concentrations on (A) C-phycocyanin, (B) allopicocyanine, and (C) solids recovery in Spirulina. Values are expressed as mean ± standard deviation. Other characters show a significant difference of P <0.05 by Duncan's multiple range test.

5 shows the effect of enzyme reaction temperatures in Spirulina on concentrations (A) C-phycocyanin, (B) allopicocyanin, and (C) solids recovery. Values are expressed as mean ± standard deviation. Other characters show a significant difference of P <0.05 by Duncan's multiple range test.
6 shows the effect of enzyme reaction times in Spirulina on concentrations (A) C-phycocyanin, (B) allopicocyanin, and (C) solids recovery. Values are expressed as mean ± standard deviation. Other characters show a significant difference of P <0.05 by Duncan's multiple range test.
Figure 7 shows the change in CR values after various temperatures and pHdptj duf treatment for 30 minutes.
8 shows changes in CR values after heat treatment at 95 ° C. for 10 minutes by addition of cyclodextrin (CD) and / or tannic acid.
9 shows changes in CR values after heat treatment at 95 ° C. for 10 minutes by addition of cysteine.
10 shows changes in CR values after heat treatment at 95 ° C. for 10 minutes by adding cysteine during extraction of copulaline.
11 is scanning results before and after heat treatment by adding cysteine when extracting copulaline.
12 shows changes in CR values after heat treatment at various temperatures and pH for 30 minutes.

본 발명은,The present invention,

스피루리나를 단백질 가수분해효소로 처리하여 가수분해하는 단계;및Hydrolyzing spirulina with a proteolytic enzyme; and

스피루리나 가수분해물을 수득하는 단계를 포함하는,Comprising the step of obtaining a spirulina hydrolysate,

피코시아닌을 포함하는 스피루리나 가수분해물의 제조 방법에 대한 것이다.It relates to a method for producing a spirulina hydrolyzate containing phycocyanin.

이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.

스피루리나의 가수분해 단계Spirulina hydrolysis steps

본 발명의 제조 방법은 스피루리나를 단백질 가수분해효소로 처리하여 가수분해하는 단계를 포함한다. 상기 단백질 가수분해효소는 콜루풀린 및 프로타멕스로 구성되는 군으로부터 선택되는 하나 이상이며, 바람직하게는 콜루풀린일 수 있다. 상기 가수분해 단계는 스피루리나 100 중량부에 대하여 단백질 가수분해효소를 4 내지 10 중량부 처리하여 수행할 수 있으며, 1.5 시간 내지 6시간 동안 가수분해하여 수행할 수 있다. 상기 가수분해 단계는 pH 4.5 내지 pH 8의 조건 하에서 수행할 수 있으며, 바람직하게는 pH 4.5 내지 pH 6.5의 조건 하 수행할 수 있다.The manufacturing method of the present invention includes the step of hydrolyzing spirulina with a proteolytic enzyme. The proteolytic enzyme is at least one selected from the group consisting of copulaline and protamax, and may preferably be copulaline. The hydrolysis step may be performed by treating 4 to 10 parts by weight of protease with respect to 100 parts by weight of spirulina, and may be performed by hydrolysis for 1.5 to 6 hours. The hydrolysis step may be performed under the conditions of pH 4.5 to pH 8, preferably under the conditions of pH 4.5 to pH 6.5.

이때 상기 가수분해 단계는 스피루리나를 단백질 가수분해효소 및 시스테인으로 처리하여 수행할 수 있다. 스피루리나 가수분해 시 시스테인을 함께 처리함으로써 스피루리나 가수분해물 내 피코시아닌의 안정성이 증가된다. 즉, 스피루리나를 효소만으로 가수분해한 가수분해물에 비하여 스피루리나를 효소 및 시스테인을 이용하여 가수분해한 가수분해물 내 피코시아닌의 안정성이 더 높다.In this case, the hydrolysis step may be performed by treating spirulina with proteolytic enzyme and cysteine. When spirulina is hydrolyzed, the stability of phycocyanin in spirulina hydrolyzate is increased by treating cysteine together. That is, the stability of phycocyanin in the hydrolyzate hydrolyzed spirulina using an enzyme and cysteine is higher than that of a hydrolyzate hydrolyzed spirulina only with an enzyme.

이때 스피루리나 100 중량부에 대하여 시스테인을 0.5 내지 3 중량부 처리하여 가수분해 단계를 수행할 수 있다. 바람직하게는 스피루리나 100 중량부에 대하여 단백질 가수분해효소를 4 내지 10 중량부, 시스테인을 0.5 내지 3 중량부 처리하여 가수분해 단계를 수행할 수 있다.At this time, the hydrolysis step may be performed by treating cysteine with 0.5 to 3 parts by weight based on 100 parts by weight of spirulina. Preferably, the hydrolysis step may be performed by treating 4 to 10 parts by weight of protease and 0.5 to 3 parts by weight of cysteine with respect to 100 parts by weight of spirulina.

스피루리나 가수분해물 수득 단계Spirulina hydrolyzate obtaining step

본 발명의 제조 방법은 스피루리나 가수분해물을 수득하는 단계를 포함한다. 이때 스피루리나 가수분해물의 수득 방법은 당업계에서 일반적으로 사용되거나 사용 가능하다고 알려진 방법을 이용하면 되고, 특별히 제한되지 않는다.The production method of the present invention includes the step of obtaining a spirulina hydrolyzate. At this time, the method of obtaining the spirulina hydrolyzate may be a method commonly used in the art or known to be usable, and is not particularly limited.

본 발명의 스피루리나 가수분해물Spirulina hydrolyzate of the present invention

본 발명의 제조 방법으로 제조된 스피루리나 가수분해물은 피코시아닌 함량이 높은 특징이 있다. 바람직하게는 본 발명의 제조 방법으로 제조된 스피루리나 가수분해물은 스피루리나 열수 추출물 또는 스피루리나를 다른 효소로 가수분해한 가수분해물 보다 피코시아닌 함량이 높은 특징이 있다. 바람직하게는 본 발명의 제조 방법으로 제조된 스피루리나 가수분해물은 스피루리나를 플라보자임으로 가수분해한 가수분해물보다 피코시아닌 함량이 높으며, 특히 C-피코시아닌 함량, 알로피코시아닌 함량이 높고 SE 인덱스(index) 또한 높다. Spirulina hydrolyzate produced by the production method of the present invention is characterized by high phycocyanin content. Preferably, the spirulina hydrolyzate produced by the production method of the present invention has a higher phycocyanin content than the hydrolyzate hydrolyzed spirulina or spirulina with other enzymes. Preferably, the spirulina hydrolyzate produced by the production method of the present invention has a higher phycocyanin content than the hydrolyzate hydrolyzed spirulina with a flavozyme, particularly a high C-phycocyanin content, an allopicocyanin content and a SE index (index) is also high.

또한 본 발명의 스피루리나 가수분해물은 피코시아닌 함량이 높을 뿐 아니라, 스피루리나 가수분해물 내 피코시아닌의 안정성이 증가되는 특징을 갖는다.In addition, the spirulina hydrolyzate of the present invention not only has a high phycocyanin content, but also has the feature of increasing the stability of phycocyanin in the spirulina hydrolyzate.

본 발명의 스피루리나 가수분해물은 c-피코시아닌 함량이 1 mg/g 내지 10 mg/g이며, 바람직하게는 1 mg/g 내지 5 mg/g이다. 본 발명의 스피루리나 가수분해물은 알로피코시아닌 함량이 1 mg/g 내지 10 mg/g이며, 바람직하게는 1 mg/g 내지 5 mg/g이다.The spirulina hydrolyzate of the present invention has a c-phycocyanin content of 1 mg / g to 10 mg / g, preferably 1 mg / g to 5 mg / g. Spirulina hydrolyzate of the present invention has an allopicocyanine content of 1 mg / g to 10 mg / g, preferably 1 mg / g to 5 mg / g.

본 발명의 스피루리나 가수분해물은 식품, 화장품, 시약, 임상 장비, 의약 등의 제조에 사용될 수 있으며, 그 외 용도로도 사용 가능하다. 본 발명의 스피루리나 가수분해물의 용도는 특별히 제한되지 않는다.Spirulina hydrolyzate of the present invention can be used in the manufacture of food, cosmetics, reagents, clinical equipment, medicine, etc., and can also be used for other purposes. The use of the spirulina hydrolyzate of the present invention is not particularly limited.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention, and methods for achieving them will be clarified with reference to embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the present embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains. It is provided to completely inform the person having the scope of the invention, and the present invention is only defined by the scope of the claims.

<재료 및 방법><Materials and methods>

재료material

실험에 사용된 스피루리나는 100% Earthrise® Natural Spirulina(Arthrospira platensis) powder로 EARTHRISE NUTRITIONALS, LLC (USA)의 제품이었다. 세포벽 분해 효소로는 ㈜비전바이오켐사 Cytolase PLC5, Rapidase TF, Novozymes®사 Ultraflo® L, Ultraflo® Max, Viscozyme® L을, 단백질 분해 효소로 Novozymes®사 Flavourzyme®, Protamex, DSM Food specialtie사 Collupulin MG를 사용하였다.Spirulina used in the experiment was 100% Earthrise® Natural Spirulina (Arthrospira platensis) powder and was a product of EARTHRISE NUTRITIONALS, LLC (USA). Examples of cell wall degrading enzymes include Cytolase PLC5, Rapidase TF, Novozymes®, Ultraflo® L, Ultraflo® Max, and Viscozyme® L from Vision Biochem, and Flavozyme®, Protamex, DSM Food specialtie, Collupulin MG from Novozymes® as proteolytic enzymes. Used.

스피루리나의 효소 처리Spirulina Enzyme Treatment

스피루리나 분말을 30 ml 구연산 완충액(0.05M citrate buffer, pH 5.0)에 5%(w/v)농도로 현탁하였다. 효소는 기질의 3%에 해당되는 양을 첨가하여 표 1의 반응조건에서 12시간 각각 분해를 진행하였다. 효소 처리가 끝난 반응액은 15 분간 끓여서 효소 반응을 정지시킨 다음 5000 rpm으로 20분간 원심분리하여 상등액을 얻었으며, 이를 동결건조하였다.Spirulina powder was suspended in 30 ml citric acid buffer (0.05M citrate buffer, pH 5.0) at a concentration of 5% (w / v). The enzyme was decomposed for 12 hours under the reaction conditions of Table 1 by adding an amount corresponding to 3% of the substrate. The reaction solution after the enzyme treatment was boiled for 15 minutes to stop the enzyme reaction, and then centrifuged at 5000 rpm for 20 minutes to obtain a supernatant, which was lyophilized.

Figure 112019076354560-pat00001
Figure 112019076354560-pat00001

스피루리나 가수분해를 위한 효소들의 반응 조건들Reaction conditions of enzymes for spirulina hydrolysis

분석 방법Method of analysis

추출 수율은 고형분 회수율(solid recovery)로 나타내었으며 사용한 원료 스피루라나 분말과 동결 건조하여 얻은 추출물의 중량비로 계산하였다. 수득된 피코시아닌(phycocyanin)과 알로피코시아닌(allophycocyanin)은 효소 가수분해 후 얻은 상징액의 흡광도를 620 nm와 652 nm에서 각각 측정하여 하기 식 1 및 2에 의하여 계산하였다.The extraction yield was expressed as solid recovery, and was calculated based on the weight ratio of the used raw spirulana powder and the freeze-dried extract. The obtained phycocyanin (allophycocyanin) and allophycocyanin (allophycocyanin) was calculated by the following equations 1 and 2 by measuring the absorbance of the supernatant obtained after enzymatic hydrolysis at 620 nm and 652 nm, respectively.

<식 1><Equation 1>

Figure 112019076354560-pat00002
Figure 112019076354560-pat00002

<식 2><Equation 2>

Figure 112019076354560-pat00003
Figure 112019076354560-pat00003

A620: 620 nm에서의 흡광도 A620: absorbance at 620 nm

A652: 652 nm에서의 흡광도A652: absorbance at 652 nm

피코시아닌 색소의 안정성Stability of phycocyanin pigment

피코시아닌 수용액 색소의 pH와 온도 변화에 따른 안정성 평가를 수행하였다. 구체적으로 citrate phosphate buffer를 사용하여 pH 5.0, 6.0, 7.0에서 피코시아닌 추출물이 1 %(v/v) 되는 용액을 각각 50, 60, 70 ℃에서 30분간 열처리하고, 열처리 전후에 620 nm에서의 흡광도를 측정하여 색소의 안정성을 평가하였다. 이때 색소의 안정성은 식 3에 따라 열처리 전과 후의 피코시아닌의 상대적인 잔존양(CR, %)으로 표시하였다.The stability evaluation according to the change of pH and temperature of the phycocyanin aqueous solution pigment was performed. Specifically, a solution of 1% (v / v) of phycocyanin extract at pH 5.0, 6.0, 7.0 using citrate phosphate buffer was heat treated at 50, 60, and 70 ° C for 30 minutes, respectively, before and after heat treatment at 620 nm. The absorbance was measured to evaluate the stability of the pigment. At this time, the stability of the pigment was expressed by the relative residual amount of phycocyanin (CR,%) before and after heat treatment according to Equation 3.

<식 3><Equation 3>

Figure 112019076354560-pat00004
Figure 112019076354560-pat00004

피코시아닌의 안정성 개선능 평가Evaluation of stability improvement ability of phycocyanin

Citrate 완충액(pH 5.0)에 1 %(v/v)가 되도록 피코시아닌 추출물을 첨가하여 용액을 제조하였다. 그리고 제조한 용액에 guagum, cysteine, cystine 등을 첨가하여 피코시아닌 색소 안정성에 미치는 영향을 측정하였다. 이때 90 ℃ 온도에서 가열 처리 전후의 620 nm 에서의 흡광도를 측정하여 색소 안정성을 평가하였다.A solution was prepared by adding phycocyanin extract to 1% (v / v) in Citrate buffer (pH 5.0). Then, the effects of phycocyanin pigment stability were measured by adding guagum, cysteine, and cystine to the prepared solution. At this time, dye stability was evaluated by measuring absorbance at 620 nm before and after the heat treatment at a temperature of 90 ° C.

<결과><Result>

<실험예 1> 단백질 가수분해 효소에 따른 피코시아닌 추출물의 함량<Experiment 1> Content of phycocyanin extract according to proteolytic enzyme

분말형태의 가수분해 효소인 콜루풀린(protease), 플라보자임(protease), 및 프로타멕스(protease)의 첨가에 따른 스피루리나의 피코시아닌 함량을 분석하였다. The phycocyanin content of spirulina according to the addition of protease, flavozyme, and protease, which are powdery hydrolytic enzymes, was analyzed.

기질 스피루리나가 5 %(v/v) 함유된 용액에 효소 100 mg을 첨가하여 45 ℃에서 9시간 반응시켰다. 효소 콜루풀린(collupulin)을 첨가하였을 때 플라보자임과 프로타멕스와 비교하여 C-피코시아닌 및 알로 피코시아닌의 함량이 반응 전 후 모두 유의적으로 높게 추출되었다. 하기 식 4에 따라 스피루리나 추출물 중 핵산의 함량을 나타내는 방법인 스피루리나 추출물(spirulina extraction)(SE) index에서는 효소 콜루풀린과 프로타멕스를 첨가하여 9시간 반응하였을 때 유의적으로 높게 나타났다. 이를 통해 protease인 콜루풀린과 프로타멕스가 aminopeptidase인 플라보자임보다 피코시아닌 추출에 적합한 가수분해 효소로 판단되었다(도 1).100 mg of enzyme was added to a solution containing 5% (v / v) of substrate spirulina and reacted at 45 ° C for 9 hours. When the enzyme collupulin was added, the contents of C-phycocyanin and allopicocyanin were significantly higher than before and after the reaction compared to flavozyme and protamax. In the spirulina extraction (SE) index, which is a method of indicating the content of nucleic acids in the spirulina extract according to the following formula 4, the enzyme corupulin and protamax were added for 9 hours, which was significantly higher. Through this, it was determined that protease, copulaline and protamax, are hydrolytic enzymes suitable for phycocyanin extraction rather than aminopeptidase, flavozyme (FIG. 1).

<식 4><Equation 4>

Figure 112019076354560-pat00005
Figure 112019076354560-pat00005

D: 희석(dilution) 배수,D: dilution multiple,

W1: 스피루리나 추출물의 건조 중량(mg/mL),W1: dry weight of Spirulina extract (mg / mL),

W2: 추출 전 스피루리나 원물 중량(mg/mL)W2: Spirulina raw weight before extraction (mg / mL)

<실험예 2> 수용성 섬유소 가수분해 효소에 따른 피코시아닌 추출물의 함량<Experimental Example 2> Content of phycocyanin extract according to water-soluble fibrinolytic enzyme

기질 스피루리나가 5 %(v/v)함유된 용액에 액상 형태의 가수분해 효소인 cytolase(pectinase), rapidase(pectinase), ultraflo L(beta-glucanase, arabinase, hemicellulase, cellulase, xylnase) 및 viscozyme L(beta-glucanase, hemicellulase, cellulase, xylnase) 1 mL을 첨가하여 45 ℃에서 9시간 반응시켰으며, 흡광도 분석을 통해 C-피코시아닌과 알로피코시아닌의 함량 및 SE index를 구하였다. In the solution containing 5% (v / v) of the substrate spirulina, liquid forms of the hydrolase enzymes cytolase (pectinase), rapidase (pectinase), ultraflo L (beta-glucanase, arabinase, hemicellulase, cellulase, xylnase) and viscozyme L ( 1 mL of beta-glucanase, hemicellulase, cellulase, xylnase) was added and reacted at 45 ° C. for 9 hours, and the content and SE index of C-phycocyanin and allopicocyanine were determined by absorbance analysis.

그 결과, 효소 ultraflo L를 사용하여 반응시킨 후의 C-피코시아닌 및 알로피코시아닌 함량이 반응 전과 비교하였을 때 유의적으로 높게 추출되었으며, cytolase, rapidase 및 viscozyme L은 9시간 반응 후 유의적인 피코시아닌 함량의 증가가 나타나지 않았다. 또한 SE index에서도 효소 ultraflo L을 사용하여 반응하였을 때 유의적으로 가장 높은 수준의 값을 나타냈다(도 2).As a result, the contents of C-phycocyanin and allopicocyanin after the reaction using the enzyme ultraflo L were significantly higher compared to before the reaction, and cytolase, rapidase and viscozyme L were significant pico after 9 hours reaction There was no increase in cyanine content. In addition, the SE index also showed a significantly higher value when reacted with the enzyme ultraflo L (FIG. 2).

<실험예 3> 단백질 가수분해 효소 혼합에 따른 피코시아닌 추출물의 함량<Experiment 3> Content of phycocyanin extract according to proteolytic enzyme mixing

기질 스피루리나가 5 %(v/v) 함유된 용액을 이용하여 단백질 가수분해 효소 혼합에 따른 피코시아닌 추출물의 함량을 평가하였다. 이하의 실험들에서는 따로 기재가 없는 한, 스피루리나가 5 %(v/v) 함유된 용액 (용액 100 중량%)을 이용하여 효소 가수분해를 수행하였다. 본 실험에서는 수용성 섬유소 가수분해 효소와 비교하였을 때 높은 함량의 피코시아닌 추출을 나타냈던 단백질 가수분해 효소 protamex와 콜루풀린의 혼합 비율에 따른 효과를 분석하였다. 이때 기질 스피루리나가 5 %(v/v) 함유된 용액에 액상 형태의 가수분해 효소를 1 mL씩 첨가하였으며, 고형분 회수율(yield)은 하기 식 5에 따라 계산하였다.The content of phycocyanin extract according to proteolytic enzyme mixing was evaluated using a solution containing 5% (v / v) of substrate spirulina. In the following experiments, unless otherwise indicated, enzymatic hydrolysis was performed using a solution containing spirulina 5% (v / v) (100% by weight solution). In this experiment, the effect according to the mixing ratio of the proteomic enzyme protamex and copululin, which showed a high content of phycocyanin extraction when compared to the water-soluble fibrinolytic enzyme, was analyzed. At this time, 1 mL of the hydrolase in the liquid form was added to the solution containing 5% (v / v) of the substrate spirulina, and the solid recovery rate (yield) was calculated according to Equation 5 below.

<식 5><Equation 5>

Figure 112019076354560-pat00006
Figure 112019076354560-pat00006

DW: 스피루리나 추출물의 건조 중량 (mg/mL), DW: dry weight of Spirulina extract (mg / mL),

V: 용매의 부피(volume of solvent), V: volume of solvent,

SW: 스피루리나 추출물의 건조 중량(mg/mL)SW: dry weight of Spirulina extract (mg / mL)

그 결과, C-피코시아닌의 함량은 콜루풀린 효소를 단독으로 사용하였을 때 유의적으로 높게 추출되었으며 알로피코시아닌의 함량은 프로타멕스와 콜루풀린을 3:2의 중량비로 혼합하였을 때 유의적으로 높게 추출되었다. 또한 고형분 회수율에서는 유의적인 차이가 나타나지 않았으며 이를 통해 단백질 가수분해 효소인 프로타멕스와 콜루풀린의 혼합 사용보다 콜루풀린 단독 사용이 피코시아닌 추출에 용이한 것으로 판단되었다(도 3).As a result, the content of C-phycocyanin was significantly higher when the enzyme was used alone, and the content of allopicocyanin was significant when the protamex and colupulin were mixed in a weight ratio of 3: 2. Was highly extracted. In addition, there was no significant difference in the solids recovery rate, and it was judged that the use of copululin alone was more convenient for phycocyanin extraction than the mixture of protamax and copululin, which are proteolytic enzymes (FIG. 3).

<실험예 4> 스피루리나 효소 추출시 농도에 따른 피코시아닌 추출물의 함량<Experimental Example 4> Content of phycocyanin extract according to concentration when extracting spirulina enzyme

스피루리나 추출에 적합한 것으로 판단된 단백질 분해 효소 콜루풀린의 사용량을 선별하기 위하여 하기와 같이 평가하였다. 스피루리나 현탁액 (스피루리나 5 %(v/v) 함유) 100 %(v/v)에 효소 0.5, 1.0, 2.0 및 3.0 %(v/v)까지 첨가하여 45 ℃에서 12시간 반응시킨 후 효소를 첨가하지 않은 대조군과 C-피코시아닌 및 알로피코시아닌 함량과 고형분 회수율을 비교 분석하였다. In order to select the amount of proteolytic enzyme cholupulin that was determined to be suitable for spirulina extraction, it was evaluated as follows. Spirulina suspension (containing Spirulina 5% (v / v)) is added to 100% (v / v) of enzymes up to 0.5, 1.0, 2.0 and 3.0% (v / v), reacted at 45 ° C for 12 hours, and then no enzyme is added. The control group and C-phycocyanin and allopicocyanin content and solid recovery were compared and analyzed.

그 결과, 대조군과 비교하였을 때 단백질 분해 효소 콜루풀린을 넣은 실험군에서 효소의 농도 의존적으로 C-피코시아닌 및 알로피코시아닌의 함량과 고형분 회수율이 증가되었으며, 3.0 %(v/v)의 효소 사용이 스피루리나 추출에 적합한 것으로 판단되었다(도 4).As a result, the content of C-phycocyanin and allopicocyanin and the recovery of solid content were increased in the experimental group containing proteolytic enzyme colupulin compared to the control group, and the enzyme was 3.0% (v / v). It was judged that the use was suitable for Spirulina extraction (Fig. 4).

<실험예 5> 스피루리나 효소 추출시 온도에 따른 피코시아닌 추출물의 함량 평가<Experimental Example 5> Evaluation of the content of phycocyanin extract according to temperature when extracting spirulina enzyme

스피루리나 추출에 적합한 효소 콜루풀린의 반응 온도를 선별하기 위해 스피루리나 혼탁액 (스피루리나 5 %(v/v) 함유) 100 %(v/v)에 효소 3.0 %(v/v)와 4.0 %(v/v)를 첨가한 후 30 ℃, 40 ℃ 및 50 ℃에서 12시간 반응시켰다. Enzymes 3.0% (v / v) and 4.0% (v / v) to 100% (v / v) spirulina turbidity (containing 5% (v / v) spirulina) spirulina to screen the reaction temperature of the enzyme cholupulin suitable for spirulina extraction After adding v), the mixture was reacted at 30 ° C, 40 ° C and 50 ° C for 12 hours.

그 결과, 효소반응 온도 30 ℃ 및 50 ℃에서는 4 %(v/v)%의 콜루풀린 사용이 3 %(v/v) 효소와 비교하였을 때 유의적으로 높은 함량의 C-피코시아닌과 알로피코시아닌이 추출되는 것으로 확인되었다. 반응 온도 40 ℃에서는 3 %(v/v) 효소 사용이 4 %(v/v) 효소보다 효율적인 것으로 나타났으나 총 C-피코시아닌과 알로피코시아닌 함량을 고려하였을 때 4 %(v/v) 효소를 첨가하여 50 ℃에서 12시간 반응시키는 것이 유의적으로 높은 추출율을 기대할 수 있었다(도 5).As a result, the use of 4% (v / v)% of cholupoline at the enzyme reaction temperature of 30 ° C and 50 ° C compared to 3% (v / v) enzyme significantly increased the content of C-phycocyanin and aloe. It was confirmed that phycocyanin was extracted. At 40 ° C, 3% (v / v) enzyme was found to be more efficient than 4% (v / v) enzyme, but 4% (v / v / v / v), considering total C-phycocyanin and allopicocyanin content. v) The reaction was performed at 50 ° C. for 12 hours by adding an enzyme, and a significantly higher extraction rate could be expected (FIG. 5).

<실험예 6> 스피루리나 효소 추출시 시간에 따른 피코시아닌 추출물의 함량<Experiment 6> Content of phycocyanin extract over time when extracting spirulina enzyme

효소를 이용한 스피루리나 추출에서 최적의 반응 시간을 선별하기 위해 3 %(v/v)% 또는 4 %(v/v) 효소를 첨가 후 40 ℃에서 시간별로 추출되는 C-피코시아닌과 알로피코시아닌 함량과 고형분 회수율을 분석하였다. C-phycocyanin and allopicos extracted hourly at 40 ° C after adding 3% (v / v)% or 4% (v / v) enzyme to select the optimal reaction time in spirulina extraction using enzyme Non-content and solids recovery were analyzed.

그 결과, 모든 반응시간에서 4 %(v/v) 효소를 사용이 높은 C-피코시아닌과 알로피코시아닌 함량을 나타냈으며, C-피코시아닌의 경우 효소 첨가 후 2시간 및 4시간 반응 시간에서 유의적으로 높은 함량이 측정되었다. 또한 스피루리나 안의 알로피코시아닌은 4시간 효소 반응에서 가장 높은 함량으로 추출되었다. 고형분 회수율은 두 농도의 효소 사용과 4시간 반응 이후는 유의적인 차이점이 나타나지 않았다(도 6).As a result, C-phycocyanin and allopicocyanin content with high use of 4% (v / v) enzyme were shown in all reaction times, and in the case of C-phycocyanin, 2 and 4 hours after enzyme addition Significantly high content in time was measured. In addition, allopicocyanin in Spirulina was extracted with the highest content in a 4 hour enzyme reaction. The solid content recovery did not show a significant difference after using the enzyme at two concentrations and the 4-hour reaction (FIG. 6).

<실험예 7> 피코시아닌 색소의 pH와 온도에 따른 안정성<Experimental Example 7> Stability according to the pH and temperature of the phycocyanin pigment

pH와 온도 변화에 따른 색소 안정성을 평가하였다.Pigment stability according to pH and temperature changes was evaluated.

그 결과, 효소 처리 온도가 증가할수록 효소 처리 전후의 피코시아닌의 상대적인 잔존양 값인 CR값이 감소하는, 즉 안정성이 급격히 감소하는 경향을 보였다. 또한 pH의 변화에 따른 영향을 보았을 때 pH 6.0이 pH 5.0이나 pH 7.0에 비해 안정성이 다소 높았다. pH 5.0과 pH 7.0을 비교하였을 때 pH 5.0에서의 안정성이 높았다(도 7).As a result, as the enzyme treatment temperature increased, the CR value, which is a relative residual amount of phycocyanin before and after the enzyme treatment, decreased, that is, the stability decreased rapidly. In addition, when looking at the effect of the change in pH, pH 6.0 was slightly higher than pH 5.0 or pH 7.0. When pH 5.0 and pH 7.0 were compared, stability at pH 5.0 was high (Fig. 7).

<실험예 8> Cyclodextin과 tannic acid 첨가물에 따른 피코시아닌 색소 안정성<Experiment 8> phycocyanin pigment stability according to Cyclodextin and tannic acid additives

피코시아닌의 색소 안정성 증대를 위하여 CD(사이클로덱스트린(cyclodextrin)), 탄닌산(tannic acid)를 각각 첨가하여 pH 5.0, 95 ℃에서 열처리 후의 620 nm의 흡광도의 변화량을 측정하였다. 이때, 포집 효과에 의한 피코시아닌의 보호효과를 측정하고자 알파-CD, 베타-CD, 감마-CD와 탄닌산 0.2 %(v/v)를 각각 첨가하여 피코시아닌의 안정성을 측정하였다. To increase the pigment stability of phycocyanin, CD (cyclodextrin) and tannic acid were added, respectively, and the change in absorbance at 620 nm after heat treatment at pH 5.0 and 95 ° C. was measured. At this time, in order to measure the protective effect of phycocyanin by the capture effect, stability of phycocyanin was measured by adding alpha-CD, beta-CD, gamma-CD and tannic acid 0.2% (v / v), respectively.

그 결과, CD를 첨가하지 않고 열처리전, 열처리후 및 tannic acid 첨가한 대조군의 경우 열처리 전 CR 값이 100%를 보였으나 열처리 후 12%정도로 감소하였고, tannic acid를 첨가시는 오히려 더 낮은 수치를 보였다. 또한 포집 효과가 있을 것으로 기대하였던 CD 첨가시 CR 값이 감소하는 경향을 보임에 따라 CD첨가와 tannic acid 첨가는 피코시아닌 안정성과 무관한 것으로 확인되었다(도 8).As a result, in the case of the control group without the addition of CD, before the heat treatment, after the heat treatment, and with the addition of tannic acid, the CR value was 100% before the heat treatment, but decreased to about 12% after the heat treatment. Looked. In addition, it was confirmed that CD addition and tannic acid addition were independent of phycocyanin stability as the CR value tended to decrease when CD was expected to have a trapping effect (FIG. 8).

<실험예 9> 시스테인의 첨가에 따른 피코시아닌의 색소 안정성 평가<Experimental Example 9> Evaluation of pigment stability of phycocyanin according to the addition of cysteine

SH-기를 보유하는 것으로 알려진 시스테인(cysteine) 첨가에 따른 피코시아닌의 안정성을 평가하였다.The stability of phycocyanin according to the addition of cysteine known to possess SH-group was evaluated.

피코시아닌 추출물을 citrate buffer (pH 5.0)에 1 %(v/v)가 되도록 첨가하여 제조한 용액에 시스테인을 0.1, 0.2, 0.5 %(v/v)를 각각 첨가하였다. 그 후 95 ℃에서 10분간 열처리한 후 CR 값을 측정하여 시스테인의 첨가에 따른 피코시아닌의 안정성을 측정하였다. To the solution prepared by adding phycocyanin extract to 1% (v / v) in citrate buffer (pH 5.0), cysteine was added to 0.1, 0.2, and 0.5% (v / v), respectively. Then, after heat treatment at 95 ° C for 10 minutes, the CR value was measured to measure the stability of phycocyanin according to the addition of cysteine.

그 결과, CR값은 열처리 후에 10% 전후의 낮은 수치를 보였으며, cysteine은 첨가는 CR값에 큰 영향을 미치지 않은 것으로 피코시아닌의 색소 안정성 증가에 효과가 없었다(도 9).As a result, the CR value showed a low value around 10% after heat treatment, and the addition of cysteine did not significantly affect the CR value, and was not effective in increasing the pigment stability of phycocyanin (FIG. 9).

<실험예 10> 스피루리나 효소 추출시 시스테인 및 시스틴의 첨가에 따른 색소 안정성 평가<Experimental Example 10> Evaluation of pigment stability according to the addition of cysteine and cystine when extracting spirulina enzyme

상기 실험예 9에서 평가한 결과, 스피루리나에 함유되어 있는 피코시아닌의 색소 안정성 증가를 위한 첨가물의 효과는 없는 것으로 나타났다. 이는 스피루리나 추출과정중의 단백분해효소인 콜루풀린에 의해 피코시아닌을 함유하는 Phycobiliproteins의 구조 변화에 기인한 듯하여 콜루풀린에 의한 효소 분해시 SH 기를 함유하는 S-S 결합을 하는 시스테인(cysteine)과 시스틴(cystine)을 각각 첨가하여 제조한 피코시아닌의 색소안정성을 평가하였다.As a result of evaluating in Experimental Example 9, it was found that there is no effect of an additive for increasing pigment stability of phycocyanin contained in spirulina. This seems to be due to the structural changes of phycocyanin-containing phycobiliproteins by copululin, a protease during the extraction of spirulina, and cysteine and cystine having an SS bond containing a SH group during enzyme decomposition by copululin. Pigment stability of phycocyanin prepared by adding (cystine) was evaluated.

그 결과, 스피루리나를 Citrate buffer(pH 5.0)을 이용하여 추출한 추출물(대조군, Con)에 비하여 콜루풀린에 의한 추출물(Enzyme)의 CR값은 33.6%로 높은 수치를 보였다. 반면 시스테인을 효소(collupulin)에 의한 추출 시 0.1, 0.2, 0.5 %(v/v)를 각각 첨가하여 얻은 피코시아닌 색소의 CR값은 33.8, 43.4와 58.4%로 citrate buffer나 효소만을 이용하여 추출한 피코시아닌 색소에 비해 높은 CR값을 보였다. 그러므로 콜루풀린을 이용한 효소 추출 시 시스테인을 첨가함에 따라 색소 안정도의 증가에 효과적인 것을 확인하였다(도 10).As a result, the CR value of the extract (Enzyme) by copulaline (Enzyme) was higher than that of the extract (control, Con) of Spirulina extracted using Citrate buffer (pH 5.0). On the other hand, when extracting cysteine by an enzyme (collupulin), CR values of phycocyanin pigment obtained by adding 0.1, 0.2, and 0.5% (v / v) respectively are 33.8, 43.4, and 58.4%, which are extracted using only citrate buffer or enzyme. It showed higher CR value than phycocyanin pigment. Therefore, it was confirmed that it was effective to increase the pigment stability by adding cysteine when extracting the enzyme using copulaline (FIG. 10).

도 11는 열처리 후의 파장변화에 따른 흡광도의 변화와 색소변화에 대한 사진이다. 콜루풀린에 의한 추출시 시스테인을 첨가하여 얻은 피코시아닌의 색소 안정성이 citrate buffer 추출한 피코시아닌이나 콜루풀린으로 추출한 피코시아닌에 비해 높은 안정성을 보이고 있다는 것을 확인할 수 있다(도 11의 그래프의 x축: wavelength(nm), y축: optical density (OD)).11 is a photograph of a change in absorbance and a change in pigment according to a change in wavelength after heat treatment. It can be confirmed that the pigment stability of phycocyanin obtained by adding cysteine during extraction with copululin is higher than that of phycocyanin extracted with citrate buffer or phycocyanin extracted with copulaline (x in the graph of FIG. 11). Axis: wavelength (nm), y axis: optical density (OD)).

<실험예 11> 시스테인 첨가에 의한 콜루풀린 추출물에 함유된 피코시아닌 색소의 안정성 평가<Experimental Example 11> Evaluation of the stability of the phycocyanin pigment contained in the cholupullin extract by adding cysteine

상기 실험예 10의 결과에 의하여, 콜루풀린에 의한 스피루리나로부터 피코시아닌 색소 추출시 시스테인의 첨가는 색소 안정성 증대 효과가 있는 것이 확인되었다. 그러므로 콜루풀린 추출시 시스테인의 첨가에 의해서 얻은 피코시아닌의 pH와 온도 변화에 따른 색소 안정성을 평가하였다. From the results of Experimental Example 10, it was confirmed that the addition of cysteine when extracting phycocyanin pigment from spirulina by copulaline has an effect of increasing pigment stability. Therefore, the color stability of phycocyanin obtained by the addition of cysteine during extraction of copululin was evaluated according to the change in temperature.

pH 5.0, 6.0, 7.0의 피코시아닌 용액을 50, 60, 70 ℃에서 각각 30분 열처리후의 CR 값을 측정한 결과, 온도 변화에 따른 CR값의 변화는 서서히 감소하는 특성을 보였으며, 각 온도에서의 pH에 대한 영향은 30 ℃ 및 40 ℃에서는 pH에 의한 색소 안정성에 미치는 영향은 적었으나, 60 ℃ 및 70 ℃의 온도에서는 pH 7.0의 CR값은 pH 5.0이나 6.0에 비하여 다소 감소하였다. 고온에서는 pH 5.0가 다소 높은 CR 값을 보였으나 pH 6.0과는 유의적인 차이가 없었다(도 12).As a result of measuring the CR values after 30 minutes of heat treatment of phycocyanin solutions of pH 5.0, 6.0, and 7.0 at 50, 60, and 70 ° C, the change in CR value according to the temperature change gradually decreased. The effect on the pH at was less than 30 ° C and 40 ° C on the dye stability by pH, but at 60 ° C and 70 ° C, the CR value of pH 7.0 was slightly decreased compared to pH 5.0 or 6.0. At high temperature, pH 5.0 showed a slightly higher CR value, but there was no significant difference from pH 6.0 (FIG. 12).

그러므로 상기 실험 결과들로부터 스피루리나로부터 피코시아닌 추출시 콜루풀린이 효과적이며, 콜루풀린을 이용하여 스피루리나로부터 피코시아닌을 추출할 때 시스테인을 0.2 %(v/v) 또는 0.5 %(v/v) 첨가할 경우 피코시아닌 색소 안정성이 증가하는 것이 확인되었다.Therefore, when extracting phycocyanin from spirulina from the above experimental results, copululin is effective, and when extracting phycocyanin from spirulina using copululin, cysteine is 0.2% (v / v) or 0.5% (v / v). When added, it was confirmed that the phycocyanin pigment stability increased.

Claims (9)

스피루리나를 콜루풀린 및 시스테인으로 처리하여 가수분해하는 단계;및
스피루리나 가수분해물을 수득하는 단계를 포함하며,
이때 스피루리나 100 중량부에 대하여 콜루풀린을 4 내지 10 중량부, 시스테인을 0.5 내지 3 중량부 처리하는,
c-피코시아닌 함량이 1 mg/g 내지 10 mg/g인 스피루리나 가수분해물의 제조 방법.
Hydrolyzing spirulina with copulaline and cysteine; and
Obtaining a spirulina hydrolyzate,
At this time, 4 to 10 parts by weight of copulaline and 0.5 to 3 parts by weight of cysteine are treated with respect to 100 parts by weight of spirulina.
Method for producing a spirulina hydrolyzate having a c-phycocyanin content of 1 mg / g to 10 mg / g.
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 가수분해 단계는 1.5 시간 내지 6시간 동안 가수분해하여 수행하는 것을 특징으로 하는 제조 방법.
According to claim 1,
The hydrolysis step is a manufacturing method characterized in that it is carried out by hydrolysis for 1.5 hours to 6 hours.
제 1항에 있어서,
상기 가수분해 단계는 pH 4.5 내지 pH 8의 조건 하 수행하는 것을 특징으로 하는 제조 방법.
According to claim 1,
The hydrolysis step is a production method characterized in that it is carried out under the conditions of pH 4.5 to pH 8.
삭제delete 삭제delete 제 1항에 있어서,
상기 스피루리나 가수분해물은 알로피코시아닌 함량이 1 mg/g 내지 10 mg/g인 것을 특징으로 하는 제조 방법.
According to claim 1,
The spirulina hydrolyzate is a production method characterized in that the allopicocyanin content is 1 mg / g to 10 mg / g.
KR1020190090016A 2019-07-25 2019-07-25 A preparation method for for enzyme treated-spirulina hydrolysate with improved heat stability and increased phycocyanin KR102101988B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190090016A KR102101988B1 (en) 2019-07-25 2019-07-25 A preparation method for for enzyme treated-spirulina hydrolysate with improved heat stability and increased phycocyanin
PCT/KR2020/095065 WO2021015600A1 (en) 2019-07-25 2020-04-10 Preparation method for spirulina hydrolysates prepared using enzyme and having improved thermostability and increased phycocyanin content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190090016A KR102101988B1 (en) 2019-07-25 2019-07-25 A preparation method for for enzyme treated-spirulina hydrolysate with improved heat stability and increased phycocyanin

Publications (1)

Publication Number Publication Date
KR102101988B1 true KR102101988B1 (en) 2020-05-12

Family

ID=70679370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190090016A KR102101988B1 (en) 2019-07-25 2019-07-25 A preparation method for for enzyme treated-spirulina hydrolysate with improved heat stability and increased phycocyanin

Country Status (2)

Country Link
KR (1) KR102101988B1 (en)
WO (1) WO2021015600A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158504A1 (en) * 2021-01-25 2022-07-28 Dic株式会社 Composition for suppressing deterioration of or enhancing memory learning function and/or cognitive function
KR102681818B1 (en) 2021-12-28 2024-07-03 어업회사법인 월드푸드서비시즈 주식회사 Method for preparing spirulina extract with increased branched chain amino acid content

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896765B (en) * 2021-09-27 2023-06-20 青岛科技大学 Antioxidant peptide and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342489A (en) * 2002-05-28 2003-12-03 Dainippon Ink & Chem Inc Method of extracting phycocyanin from blue-green algae
JP2004204034A (en) * 2002-12-25 2004-07-22 Dainippon Ink & Chem Inc Method for manufacturing water-extracted liquid from blue-green algae
JP2006230272A (en) * 2005-02-24 2006-09-07 Dainippon Ink & Chem Inc Method for extracting phycocyanin from blue-green algae
JP2007045747A (en) * 2005-08-10 2007-02-22 Pias Arise Kk Agent for regulating production of skin aging-associated component, and external agent for preventing skin aging formulated with the agent for regulating production of skin aging-associated component
JP2011079792A (en) * 2009-10-09 2011-04-21 Japan Algae Co Ltd Cyanobacterium spirulina composition
KR20120130024A (en) * 2011-05-20 2012-11-28 강릉원주대학교산학협력단 Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342489A (en) * 2002-05-28 2003-12-03 Dainippon Ink & Chem Inc Method of extracting phycocyanin from blue-green algae
JP2004204034A (en) * 2002-12-25 2004-07-22 Dainippon Ink & Chem Inc Method for manufacturing water-extracted liquid from blue-green algae
JP2006230272A (en) * 2005-02-24 2006-09-07 Dainippon Ink & Chem Inc Method for extracting phycocyanin from blue-green algae
JP2007045747A (en) * 2005-08-10 2007-02-22 Pias Arise Kk Agent for regulating production of skin aging-associated component, and external agent for preventing skin aging formulated with the agent for regulating production of skin aging-associated component
JP2011079792A (en) * 2009-10-09 2011-04-21 Japan Algae Co Ltd Cyanobacterium spirulina composition
KR20120130024A (en) * 2011-05-20 2012-11-28 강릉원주대학교산학협력단 Nature seasoning using micro algae protein hydrolysate and the manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Korean Soc. Appl. Biol. Chem., 2007, Vol. 50, No. 4, pp. 304-307* *
Microalgal Biotechnology, 1st ed. London, UK: IntechOpen. 2018.06.27., pp. 129-149* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158504A1 (en) * 2021-01-25 2022-07-28 Dic株式会社 Composition for suppressing deterioration of or enhancing memory learning function and/or cognitive function
JPWO2022158504A1 (en) * 2021-01-25 2022-07-28
JP7315115B2 (en) 2021-01-25 2023-07-26 Dic株式会社 Composition for improving/suppressing deterioration of memory learning function and/or cognitive function
KR102681818B1 (en) 2021-12-28 2024-07-03 어업회사법인 월드푸드서비시즈 주식회사 Method for preparing spirulina extract with increased branched chain amino acid content

Also Published As

Publication number Publication date
WO2021015600A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP6976933B2 (en) Acid composition containing phycocyanin
Graziani et al. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria
KR102101988B1 (en) A preparation method for for enzyme treated-spirulina hydrolysate with improved heat stability and increased phycocyanin
Moon et al. Isolation and characterization of thermostable phycocyanin from Galdieria sulphuraria
WO2019053387A1 (en) Pea proteins with improved flavour, production method, and industrial uses
JPWO2006082922A1 (en) Gardenia blue pigment with improved color tone and method for producing the same
US20080044501A1 (en) Fermented soybean products and methods of producing them
EP3134478B1 (en) Improvements in the synthesis of phycocyanins
KR101535985B1 (en) Methods for Preparing Seasoning Sauce Base Using Hericium erinaceus and Natural Seasoning Sauce Containing the Same
EP3886599A1 (en) Soluble legume protein
CN106701875A (en) Preparation method of freshwater fish antioxidant bioactive peptide
CN109198156B (en) Yeast protein and preparation method and application thereof
JPH11299450A (en) Algal pigment material and its production
Braspaiboon et al. Ultrasound‐assisted alkaline extraction of proteins in several algae and their nutritional characteristics
CN114213512A (en) Composition for enhancing phycobiliprotein photo-thermal stability and preparation method and application thereof
CN112063481A (en) Preparation method of giant salamander wine rich in amino acids
KR101904096B1 (en) Seasoning composition with enhancing taste from lipid extracted microalgae
JP2673684B2 (en) Method for producing colored seaweed extract
CN108929563A (en) Water-solubility fluorescent carbon quantum dot is as the application of colorant stabilizer, colorant stabilizer and the method for improving dragon fruit haematochrome stability
JPH083468A (en) Production of colorant, production of colored seaweed extract, and production of seaweed food material
JPH01123865A (en) Production of phycocyanin-containing blue pigment from blue-green alga and cosmetic containing said pigment
CN114015738B (en) Cyperus esculentus dreg antioxidant peptide and preparation method thereof
KR940003983B1 (en) Natural condiments from fishes
Haizhao et al. The antioxidant ability and cytotoxicity of extracted and purified R-phycoerythrin from commercial porphyra haitanensis
Li et al. Angiotensin I-converting enzyme inhibitory activities of extracts from commercial chinese style fermented soypaste

Legal Events

Date Code Title Description
GRNT Written decision to grant