KR102093197B1 - Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol - Google Patents

Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol Download PDF

Info

Publication number
KR102093197B1
KR102093197B1 KR1020180055745A KR20180055745A KR102093197B1 KR 102093197 B1 KR102093197 B1 KR 102093197B1 KR 1020180055745 A KR1020180055745 A KR 1020180055745A KR 20180055745 A KR20180055745 A KR 20180055745A KR 102093197 B1 KR102093197 B1 KR 102093197B1
Authority
KR
South Korea
Prior art keywords
butanediol
pathogenicity
pathogenic
pathogens
pathogen
Prior art date
Application number
KR1020180055745A
Other languages
Korean (ko)
Other versions
KR20180131397A (en
Inventor
류충민
이수현
이혜란
이지현
Original Assignee
지에스칼텍스 주식회사
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사, 한국생명공학연구원 filed Critical 지에스칼텍스 주식회사
Publication of KR20180131397A publication Critical patent/KR20180131397A/en
Application granted granted Critical
Publication of KR102093197B1 publication Critical patent/KR102093197B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 2S,3S-부탄디올 처리에 의한 병원성 세균의 병원성 조절 방법에 관한 것으로, 본 발명을 통해 2S,3S-부탄디올은 효과적인 항균용 미생물제제로 사용될 수 있는 점을 확인함으로써, 관련 산업에 매우 유용하다.The present invention relates to a method for controlling pathogenicity of pathogenic bacteria by treatment with 2S, 3S-butanediol, and through the present invention, 2S, 3S-butanediol is very useful in related industries by confirming that it can be used as an effective antimicrobial microbial agent. .

Description

2S,3S-부탄디올 처리에 의한 병원성 세균의 병원성 조절 방법{Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol}Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol}

본 발명은 2S,3S-부탄디올 처리에 의한 병원성 세균의 병원성 조절 방법에 관한 것이다.The present invention relates to a method for controlling pathogenicity of pathogenic bacteria by treatment with 2S,3S-butanediol.

농업 분야에서 식물 병원균을 제어하기 위해서 화학 살충제가 널리 사용되고 있다. 그러나, 최근 화학 농약의 사용은 환경적 유독성 및 항생제 저항 미생물을 초래하는 가능성을 포함하여 많은 이슈들이 제기되고 있다. 따라서, 미생물 또는 식물로부터의 2차 대사산물로 만든 생물농약이 더욱 선호되고 있으며, 2,3-부탄디올은 그 중 한가지에 해당될 수 있다.Chemical pesticides are widely used in agriculture to control plant pathogens. However, in recent years, the use of chemical pesticides has raised many issues, including the possibility of causing environmental toxicity and antibiotic-resistant microorganisms. Accordingly, biological pesticides made from secondary metabolites from microorganisms or plants are more preferred, and 2,3-butanediol may be one of them.

2,3-부탄디올은 프린터 잉크, 향수, 보습제, 연화제, 가소제, 식의약소재 등으로 다양하게 이용되는 화학원료로서, 특히 부타디엔으로 화학전환하여 합성고무의 원료로 이용될 수 있기 때문에 석유화학원료를 대체할 수 있는 대표적인 바이오화학원료로 최근 주목을 받고 있다. 또한 작물생장 촉진 등의 생리활성 기능으로 인해 농업분야에서도 2,3-부탄디올의 활용도는 증대할 것으로 예상된다.2,3-butanediol is a chemical raw material that is widely used as a printer ink, perfume, moisturizer, softener, plasticizer, food and medicine material, etc., especially because it can be used as a raw material for synthetic rubber by chemical conversion to butadiene. As a representative biochemical raw material that can be replaced, it has recently attracted attention. In addition, the utilization of 2,3-butanediol is expected to increase in the agricultural field due to its physiologically active functions such as promoting crop growth.

기존에 식물 면역 증진 물질로 알려진 2,3-부탄디올이 식물의 면역을 증진시켜 식물병 발생을 줄이는 효과는 기존에 보고된 바가 있으나, 2,3-부탄디올이 직접적으로 병원성 세균의 병원성을 억제시키는 점에 대해서는 본 발명에서 최초로 확인하였고, 이에 대해 보고하고자 한다.2,3-butanediol, previously known as a plant immunity enhancing substance, has been reported to reduce the occurrence of plant diseases by enhancing plant immunity, but 2,3-butanediol directly inhibits pathogenicity of pathogenic bacteria. For the first time in the present invention, it was confirmed, and will be reported on this.

한편, 한국특허등록 제1482323호에는 방선균 추출물을 포함하는 펙토박테리움속 병원균에 대한 억제용 조성물이 개시되어 있으며, 한국특허등록 제1589139호에는 식물병 방제용 조성물 및 이의 제조방법이 개시되어 있으나, 본 발명의 2S,3S-부탄디올 처리에 의한 병원성 세균의 병원성 조절 방법은 개시되어 있지 않다.On the other hand, Korean Patent Registration No. 148242323 discloses a composition for inhibiting pathogens of the genus Fectobacterium including actinomycetes extract, and Korean Patent Registration No. 1589139 discloses a composition for controlling plant diseases and a method for manufacturing the same. , The method for controlling the pathogenicity of pathogenic bacteria by treatment with 2S,3S-butanediol of the present invention is not disclosed.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 기존에 식물 면역 증진 물질로 알려진 2,3-부탄디올이 식물의 면역을 증진시켜 진균, 세균 및 바이러스 병원균에 의한 식물병 발생을 줄이는 효과는 기존에 보고된 바가 있으나, 2,3-부탄디올이 직접적으로 병원성 세균의 병원성을 억제시키는 점에 대해서는 본 발명에서 최초로 확인하였다.The present invention is derived from the above requirements, and the effect of reducing the occurrence of plant diseases caused by fungi, bacteria and viral pathogens by enhancing the immunity of plants by 2,3-butanediol, which is known as a plant immunity enhancing substance, has been Although reported, it was first confirmed in the present invention that 2,3-butanediol directly inhibits the pathogenicity of pathogenic bacteria.

본 발명에서는 식물 병원균인 펙토박테리움 카로토보룸(Pectobacterium carotovorum)에 2R,3R-부탄디올을 처리한 결과, 병원성을 감소시키는 조절인자인 rsmC rsmA 유전자의 발현은 증가하였고, 병원성을 증가시키는 조절인자인 gacArsmB, 운동성 조절인자 flhC flhD, 그리고 식물 세포벽분해효소 pelA , pehA , pnl, prtW celS의 발현은 감소하여 결과적으로 펙토박테리움 카로토보룸의 병원성이 감소되는 점을 확인하였고, 또다른 식물 병원균인 세균성 풋마름병균(Ralstonia solanacearum)에 2S,3S-부탄디올을 처리한 결과, 세균성 풋마름병균의 병원성이 감소되는 점을 확인하였다.In the present invention, as a result of treatment with 2R,3R-butanediol in the plant pathogen Pectobacterium carotovorum , rsmC , a modulator for reducing pathogenicity, and rsmA expression of the gene was increased, the control factor that increases the virulence and gacA rsmB, motility regulators and flhC flhD , and plant cell wall degrading enzymes pelA , pehA , pnl, prtW And It was confirmed that the expression of celS decreased, resulting in a decrease in the pathogenicity of Fectobacterium carotoborum.As a result of treatment with 2S,3S-butanediol in another plant pathogen, Ralstonia solanacearum, bacterial It was confirmed that the pathogenicity of green blight bacteria was reduced.

또한, 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus) 및 아시네토박터 바우마니(Acinetobacter baumannii)인 동물 병원균에 2R,3R-부탄디올 또는 2S,3S-부탄디올을 처리한 결과, 동물 병원균의 병원성이 감소되는 점을 확인하였다.Also, Pseudomonas aeruginosa ), bacterial pneumoniae ( Klebsiella pneumoniae ), Staphylococcus aureus , and Acinetobacter baumannii by treatment with 2R,3R-butanediol or 2S,3S-butanediol It was confirmed that the pathogenicity was reduced.

따라서, 본 발명을 통해 2R,3R-부탄디올 또는 2S,3S-부탄디올이 기존 항생제와 차별적인 효과로 세균의 밀도변화없이 항균용 미생물제제로 사용될 수 있는 점을 확인함으로써, 본 발명을 완성하였다.Accordingly, the present invention was completed by confirming that 2R,3R-butanediol or 2S,3S-butanediol can be used as an antibacterial microbial agent without changing the density of bacteria with a differential effect from existing antibiotics through the present invention.

상기 과제를 해결하기 위해, 본 발명은 2S,3S-부탄디올(2S,3S-butanediol)을 유효성분으로 함유하는 식물 병원균의 병원성 감소용 조성물을 제공한다.In order to solve the above problems, the present invention provides a composition for reducing pathogenicity of plant pathogens containing 2S,3S-butanediol as an active ingredient.

본 발명은 직접 또는 기체상태로 2,3-부탄디올(2,3-butanediol)에 노출시킨 식물 무름병 원인균인 펙토박테리움 카로토보룸(Pectobacterium carotovorum subsp. carotovorum, Pcc21) 균주를 감자 또는 애기장대에 접종한 결과, 특히 2R,3R-부탄디올(R-형)에 노출시킨 Pcc21 처리의 경우, 무름병의 징후가 감소되는 점을 확인하였다. 또한, 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus) 및 아시네토박터 바우마니(Acinetobacter baumannii)인 동물 병원균에 2R,3R-부탄디올 또는 2S,3S-부탄디올을 처리한 결과, 동물 병원균의 병원성이 감소되고, 세균성 풋마름병균(Ralstonia solanacearum)에 2S,3S-부탄디올을 처리한 결과, 세균성 풋마름병균의 병원성이 감소되는 점을 확인하였다. 따라서, 2R,3R-부탄디올 또는 2S,3S-부탄디올은 효과적인 항균용 미생물제제로 사용될 수 있어, 관련 산업에 매우 유용하다. The present invention relates to Pectobacterium carotoborum (Pectobacterium), which is the causative agent of plant soft rot exposed to 2,3-butanediol either directly or in a gaseous state. carotovorum subsp. carotovorum , As a result of inoculating Pcc21) strain into potatoes or Arabidopsis, in particular, in the case of Pcc21 treatment exposed to 2R,3R-butanediol (R-type), it was confirmed that the signs of soft rot were reduced. Also, Pseudomonas aeruginosa ), bacterial pneumonia ( Klebsiella pneumoniae ), Staphylococcus aureus , and Acinetobacter Baumani ( Acinetobacter) baumannii ) as a result of treatment with 2R,3R-butanediol or 2S,3S-butanediol in animal pathogens, the pathogenicity of animal pathogens is reduced, and as a result of treatment with 2S,3S-butanediol in bacterial green blight ( Ralstonia solanacearum ), bacterial It was confirmed that the pathogenicity of green blight bacteria was reduced. Therefore, 2R,3R-butanediol or 2S,3S-butanediol can be used as an effective antimicrobial microbial agent, which is very useful in related industries.

또한, 2R,3R-부탄디올(R-형)에 노출된 병원성 세균 펙토박테리움 카로토보룸(Pcc21)에서 2S,3S-부탄디올(S-형) 합성에 관여하는 budAbudC 유전자의 발현이 감소되어 S-형 부탄디올(S-형) 합성이 저해되고, 병원성의 결정적 인자인 식물세포벽 분해효소인 펙티나제의 생산을 줄여 결국 병원성이 억제되는 결과를 통해, 본 발명은 식물 병원성을 나타내는 세균들의 2,3-부탄디올 분비 조절 기작에 대한 정보를 제공할 수 있다.In addition, expression of budA and budC genes involved in the synthesis of 2S,3S-butanediol (S-type) in pathogenic bacteria Fectobacterium carotoborum (Pcc21) exposed to 2R,3R-butanediol (R-type) decreased. As a result, the S-type butanediol (S-type) synthesis is inhibited, and the production of pectinase, a plant cell wall degrading enzyme, which is a decisive factor of pathogenicity, is reduced. It is possible to provide information on the mechanism of regulation of 2,3-butanediol secretion.

도 1은 2,3-부탄디올을 채소무름병원균에 노출 및 접종하는 방법에 대한 실험 모식도를 나타낸다.
도 2는 2R,3R-부탄디올에 의한 감자와 애기장대에서 병징 조사 결과를 나타낸다. (가) 감자 슬라이스 병원성 검정, (나) 애기장대 병원성 검정
도 3은 2R,3R-부탄디올에 의한 채소무름병원균(PCC21)의 병원성억제를 확인한 결과이다. (가) 병원성 조절 기작, (나) 운동성인자, 병원성인자 및 병원성 조절인자 유전자 발현 조사, (다) 운동성 측정, (라) 펙틴 분해 효소 활성 측정.
도 4는 애기장대에서 2R,3R-부탄디올에 노출된 채소무름병 병원균(PCC21)의 개체수와 유전자 발현 조사 결과이다. (A) 애기장대 잎 절편당 채소무름병원균(PCC21) 개체수, (B) 애기장대 액틴 유전자 발현양 대비 채소무름병원균의 리보좀 발현양. (C) 애기장대 잎에서 2,3-부탄디올에 노출된 채소무름병원균(PCC21)과 대조구의 아세토인 디카복실레이즈(budA) 발현양, (D) 펙틴가수분해효소(pelA)의 발현양.
도 5는 2,3-부탄디올의 이성질체형인 2R,3R-부탄디올, 2S,3S-부탄디올, meso-부탄디올에 의한 채소무름병원균(PCC21)의 병징 조사 결과이다. RR; 2R,3R-부탄디올, SS;2S,3S-부탄디올, meso; 2S,3R 부탄디올과 2R,3S-부탄디올의 혼합물, BVCs, 2R,3R-부탄디올 합성하는 바실러스 휘발성 물질, Control; 무처리 대조구
도 6은 2R,3R-부탄디올과 2S,3S-부탄디올 처리에 의한 채소무름병원균(PCC21) 생장 조사 및 병원성 인자 유전자 발현 조사 결과이다.
도 7은 채소무름병원균(PCC21)의 2S,3S-부탄디올 합성 대사 경로(A) 및 2S,3S-부탄디올 합성 대사 경로의 효소인 알파-아세토락테이트 디카복실레이즈를 코드하는 유전자 budA 및 2,3-부타네디올 디하이드로게네이즈를 코드하는 유전자 budC의 유전자 발현 조사(B) 결과이다.
도 8은 채소무름병원균의 2R,3R-부탄디올과 2S,3S-부탄디올의 농도에 따른 병원성 억제정도를 나타낸다. S; 2S,3S-부탄디올, R; 2R,3R-부탄디올, 1= 1μM, 0.1=0.1 μM, 0.01=0.01 μM 2,3-부탄디올 농도, BTH는 식물 면역을 증진시켜 병을 억제하는 물질, Con; 2,3-부탄디올 처리하지 않은 대조구
도 9는 2R,3R-부탄디올의 농도에 따른 병원성 억제 정도를 나타낸다. 상단 도면은 2R,3R-부탄디올을 농도별로 처리하였을 때 병원균의 생존율(%), 하단 도면은 2R,3R-부탄디올을 농도별로 처리하였을 때 시간에 따른 병원균의 생존율(%)
도 10은 곤충모델인 꿀벌 부채명나방을 이용한 2R,3R-부탄디올에 의한 동물병원세균 병원성억제를 확인한 결과이다.
도 11은 2S,3S-부탄디올에 의한 세균성 풋마름병균의 병원성 억제를 나타낸다.
도 12는 꿀벌 부채명나방을 이용한 2S,3S-부탄디올에 의한 동물병원세균 병원성 억제를 나타낸다.
도 13은 2S,3S-부탄디올 농도에 따른 녹농균의 병원성 억제 정도를 나타낸다.
1 shows a schematic diagram of an experiment for a method of inoculating and exposing 2,3-butanediol to vegetable rot pathogens.
Fig. 2 shows the results of symptom investigation in potato and Arabidopsis thaliana by 2R,3R-butanediol. (A) Potato slice pathogenicity test, (B) Arabidopsis pathogenicity test
3 is a result of confirming the inhibition of pathogenicity of vegetable soft pathogens (PCC21) by 2R,3R-butanediol. (A) Pathogenic control mechanism, (b) motility factor, pathogenic factor and pathogenic regulator gene expression survey, (c) motility measurement, (d) pectin-degrading enzyme activity measurement.
4 is a result of the investigation of the number and gene expression of the vegetable soft rot pathogen (PCC21) exposed to 2R,3R-butanediol in Arabidopsis thaliana. (A) The number of vegetable soft rot pathogens (PCC21) per leaf slice of Arabidopsis thaliana, (B) The amount of ribosome expression of vegetative soft rot pathogens compared to the amount of actin gene expression of Arabidopsis thaliana. (C) a vegetable soft rot Arabidopsis leaves impressions on the 2,3-butanediol Won Kyun (PCC21) and acetonitrile is raised dicarboxylate (budA) expression level of the control, (D) expression of pectin hydrolase (pelA).
FIG. 5 is a result of investigation of symptoms of vegetable soft pathogens (PCC21) by 2R,3R-butanediol, 2S,3S-butanediol, and meso-butanediol, which are isomeric forms of 2,3-butanediol. RR; 2R,3R-butanediol, SS; 2S,3S-butanediol, meso; A mixture of 2S,3R butanediol and 2R,3S-butanediol, BVCs, Bacillus volatile substances synthesizing 2R,3R-butanediol, Control; Untreated control
6 is a result of investigation of growth of vegetable soft pathogen (PCC21) and expression of pathogenic factor genes by treatment with 2R,3R-butanediol and 2S,3S-butanediol.
Figure 7 shows the genes budA and 2,3 encoding alpha-acetolactate dicarboxylase, an enzyme of the 2S,3S-butanediol synthesis metabolic pathway (A) and 2S,3S-butanediol synthesis metabolic pathway of vegetable soft pathogen (PCC21). -This is the result of gene expression investigation (B) of the gene budC encoding butanediol dehydrogenase.
8 shows the degree of pathogenicity inhibition according to the concentrations of 2R,3R-butanediol and 2S,3S-butanediol in vegetable soft rot pathogens. S; 2S,3S-butanediol, R; 2R,3R-butanediol, 1= 1 μM, 0.1=0.1 μM, 0.01=0.01 μM 2,3-butanediol concentration, BTH is a substance that suppresses disease by enhancing plant immunity, Con; Control without 2,3-butanediol treatment
9 shows the degree of inhibition of pathogenicity according to the concentration of 2R,3R-butanediol. The upper drawing shows the survival rate (%) of pathogens when 2R,3R-butanediol is treated by concentration, and the lower drawing shows the survival rate of pathogens over time when 2R,3R-butanediol is treated by concentration (%).
FIG. 10 is an insect model by 2R,3R-butanediol using a honeybee fantail moth. This is the result of confirming the inhibition of pathogenic bacteria of veterinary pathogens.
11 shows the inhibition of pathogenicity of bacterial green blight bacteria by 2S,3S-butanediol.
Figure 12 is by 2S,3S-butanediol using the honey bee sprout moth Veterinary pathogen pathogenic inhibition is shown.
13 shows the degree of inhibition of pathogenicity of Pseudomonas aeruginosa according to the concentration of 2S,3S-butanediol.

본 발명의 목적을 달성하기 위하여, 본 발명은 식물 병원균에 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 처리하여 식물 병원균의 병원성 조절인자, 운동성 조절인자 또는 식물 세포벽 분해효소 단백질을 코딩하는 유전자의 발현을 조절하는 단계를 포함하는 식물 병원균의 병원성을 감소시키는 방법을 제공한다.In order to achieve the object of the present invention, the present invention is a plant pathogen by treating 2R,3R-butanediol (2R,3R-butanediol) or 2S,3S-butanediol (2S,3S-butanediol) to a plant pathogen pathogenic regulator, It provides a method for reducing the pathogenicity of plant pathogens comprising the step of regulating the expression of a gene encoding a motility regulator or a plant cell wall degrading enzyme protein.

일반적으로 식물 병원균의 병원성 조절은 병원성 조절인자, 운동성 조절인자 또는 식물 세포벽 분해효소 등이 다양한 조절인자(regulator)에 의해 이들을 코딩하는 유전자의 발현을 조절함으로써 병원성을 감소시키거나 강화시킨다. 이전 논문에서 알려진 채소무름병원균(PCC21)의 병원성 인자 조절은 조절인자 RsmA이 많아지면 식물 세포벽 분해효소를 억제하여 병원성이 감소하는데 RsmA의 양은 다른 조절인자인 rsmB에 의해 억제된다. 따라서 rsmB의 양이 증가하면 RsmA의 양이 감소하고 식물 세포벽 분해 효소의 활성을 억제하지 못해 병원성이 강하게 나타난다. 또한, 병원성 조절은 채소무름병원균의 운동성과 관련이 있는데, 운동성 조절인자인 FlhCD가 증가하면 운동성이 활발해지고 병원성에 영향을 준다. 또한 운동성 조절인자인 FlhCD는 또 다른 조절인자인 GacA를 통해 병원성 조절인자 rsmB를 활성화시켜 병원성에 영향을 미친다. 이 운동성 조절인자 FlhCD 복합체는 조절인자 RsmC에 의해 억제된다. RsmC는 또한 직접적으로 RsmA의 발현을 증가시켜 병원성을 감소시킬 수 있다.In general, pathogenic regulation of plant pathogens reduces or enhances pathogenicity by regulating the expression of genes encoding them by various regulators such as pathogenic regulators, motility regulators, or plant cell wall degrading enzymes. The regulation of the pathogenic factor of the vegetable soft pathogen (PCC21) known in the previous paper is reduced by inhibiting the plant cell wall degrading enzyme when the regulator RsmA increases, and the amount of RsmA is suppressed by the other regulator, rsmB. Therefore, as the amount of rsmB increases, the amount of RsmA decreases and the activity of plant cell wall degrading enzymes cannot be suppressed, resulting in strong pathogenicity. In addition, pathogenic control is related to the motility of vegetable soft pathogens. When FlhCD, a motility regulator, increases, motility becomes active and affects pathogenicity. In addition, FlhCD, a motility modulator, influences pathogenicity by activating the pathogenic modulator rsmB through another modulator, GacA. This motility modulator FlhCD complex is inhibited by the modulator RsmC. RsmC can also reduce pathogenicity by directly increasing the expression of RsmA.

본 발명의 일 구현 예에 따른 방법에서, 상기 병원성 조절인자 코딩 유전자는 gacA , rsmA , rsmB , rsmC , pelA , pehA , pnl , prtW 또는 celS이며, 운동성 조절인자 코딩 유전자는 flhC 또는 flhD이며, 식물 세포벽 분해효소 코딩 유전자는 pelA , pehA, pnl, prtW 또는 celS이나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the pathogenic regulator coding gene is gacA , rsmA , rsmB , rsmC , pelA , pehA , pnl , prtW or celS , and the motility regulator coding gene is flhC or flhD , and the plant cell wall The degrading enzyme coding gene is pelA , pehA, pnl, prtW, or celS , but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 rsmC rsmA 유전자의 발현은 증가하고, gacA , rsmB , flhC , flhD , pelA , pehA , pnl , prtW celS 유전자의 발현은 감소하여 식물 병원균의 병원성을 감소시키는 것이나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the rsmC And The expression of the rsmA gene is increased, gacA , rsmB , flhC , flhD , pelA , pehA , pnl , prtW And celS The expression of the gene is reduced to reduce the pathogenicity of plant pathogens, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 식물 병원균은 펙토박테리움 카로토보룸(Pectobacterium carotovorum), 디케야 다단티(Dikeya dadantii) 또는 랄스토니아 솔라나세아룸(Ralstonia solanacearum)일 수 있으나, 이에 제한되지 않는다. 특히, 디케야 다단티(Dikeya dadantii)에서는 2R,3R-부탄디올 처리에 의해 2S,3S-부탄디올의 합성 대사 경로의 효소인 알파-아세토락테이트 디카복실레이즈를 코드하는 유전자 budA 및 2,3-부타네디올 디하이드로게네이즈를 코드하는 유전자 budC의 발현이 억제되어 병원성이 감소하는 점을 확인하였다(도 7).In the method according to an embodiment of the present invention, the plant pathogen may be Pectobacterium carotovorum , Dikeya dadantii , or Ralstonia solanacearum . , Is not limited thereto. In particular, in Dikeya dadantii , the genes budA and 2,3-parts encoding alpha-acetolactate dicarboxylase, an enzyme in the synthetic metabolic pathway of 2S,3S-butanediol by treatment with 2R,3R-butanediol. It was confirmed that the expression of budC, the gene encoding tanediol dehydrogenase, was suppressed, thereby reducing pathogenicity (FIG. 7).

또한, 본 발명은 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 유효성분으로 함유하는 식물 병원균의 병원성 감소용 조성물을 제공한다.In addition, the present invention provides a composition for reducing pathogenicity of plant pathogens containing 2R,3R-butanediol (2R,3R-butanediol) or 2S,3S-butanediol (2S,3S-butanediol) as an active ingredient.

상기 조성물은 유효성분으로 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 포함하며, 상기 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 식물 병원균에 처리함으로써 식물 병원균의 병원성을 감소시킬 수 있는 것이다.The composition includes 2R,3R-butanediol (2R,3R-butanediol) or 2S,3S-butanediol (2S,3S-butanediol) as an active ingredient, and the 2R,3R-butanediol (2R,3R-butanediol) or 2S ,3S-butanediol (2S,3S-butanediol) can reduce the pathogenicity of plant pathogens by treating plant pathogens.

본 발명의 일 구현 예에 따른 방법에서, 상기 식물 병원균은 펙토박테리움 카로토보룸(Pectobacterium carotovorum), 디케야 다단티(Dikeya dadantii) 또는 랄스토니아 솔라나세아룸(Ralstonia solanacearum)일 수 있으나, 이에 제한되지 않는다. In the method according to an embodiment of the present invention, the plant pathogen is Pectobacterium carotovorum , Dikeya Dadanti (Dikeya dadantii ) or Ralstonia solanacea room (Ralstonia solanacearum ), but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 펙토박테리움 카로토보룸(Pectobacterium carotovorum) 및 디케야 다단티(Dikeya dadantii)는 2R,3R-부탄디올(2R,3R-butanediol) 처리에 의해 병원성이 감소되고, 랄스토니아 솔라나세아룸(Ralstonia solanacearum)은 2S,3S-부탄디올(2S,3S-butanediol) 처리에 의해 병원성이 감소되나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the Pectobacterium carotovorum and Dikeya dadantii are pathogenic by 2R,3R-butanediol (2R,3R-butanediol) treatment. It is reduced, Ralstonia solanacearum (Ralstonia solanacearum) is reduced pathogenicity by 2S,3S-butanediol (2S,3S-butanediol) treatment, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 2S,3S-부탄디올(2S,3S-butanediol)은 식물 병원균의 병원성 조절인자 단백질을 코딩하는 유전자의 발현을 조절하여 병원성을 감소시킬 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the 2S,3S-butanediol (2S,3S-butanediol) may reduce pathogenicity by regulating the expression of a gene encoding a pathogenic regulator protein of a plant pathogen, but is limited thereto. It doesn't work.

본 발명의 일 구현 예에 따른 방법에서, 상기 병원성 조절인자 유전자는 rsmB (regulator of secondary metabolites B) 또는 pehA (polygalacturonase A)일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the pathogenic regulator gene may be rsmB ( regulator of secondary metabolites B ) or pehA ( polygalacturonase A ), but is not limited thereto.

또한, 본 발명은 동물 병원균에 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 처리하여 동물 병원균의 병원성을 감소시키는 방법을 제공한다.In addition, the present invention provides a method of reducing the pathogenicity of animal pathogens by treating animal pathogens with 2R,3R-butanediol (2R,3R-butanediol) or 2S,3S-butanediol (2S,3S-butanediol).

본 발명의 일 구현 예에 따른 방법에서, 상기 동물 병원균은 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus) 또는 아시네토박터 바우마니(Acinetobacter baumannii)일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the animal pathogen is Pseudomonas aeruginosa , bacterial pneumonia ( Klebsiella pneumoniae ), Staphylococcus aureus , or Acinetobacter baumannii , but is not limited thereto.

또한, 본 발명은 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 유효성분으로 함유하는 동물 병원균의 병원성 감소용 조성물을 제공한다. 상기 조성물은 유효성분으로 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 포함하며, 상기 2R,3R-부탄디올(2R,3R-butanediol) 또는 2S,3S-부탄디올(2S,3S-butanediol)을 동물 병원균에 처리함으로써 동물 병원균의 병원성을 감소시킬 수 있는 것이다.In addition, the present invention provides a composition for reducing pathogenicity of animal pathogens containing 2R,3R-butanediol (2R,3R-butanediol) or 2S,3S-butanediol (2S,3S-butanediol) as an active ingredient. The composition includes 2R,3R-butanediol (2R,3R-butanediol) or 2S,3S-butanediol (2S,3S-butanediol) as an active ingredient, and the 2R,3R-butanediol (2R,3R-butanediol) or 2S ,3S-butanediol (2S,3S-butanediol) can reduce the pathogenicity of animal pathogens by treating animal pathogens.

이하, 본 발명을 실시 예에 의해 상세히 설명한다. 단, 하기 실시 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시 예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.

A. 2R,3R-부탄디올 처리에 의한 병원 세균의 병 발생인자 발현 조절 방법A. 2R,3R-butanediol treatment of pathogenic bacteria expression control method

목적 purpose

부탄디올 이성질체인 2R,3R-부탄디올과 2S,3S-부탄디올 이성질체 처리에 의한 동/식물 병원성 세균의 병원성을 조절하여 병원성 세균 제어Control of pathogenic bacteria by controlling the pathogenicity of animal/plant pathogenic bacteria by treatment with butanediol isomers 2R,3R-butanediol and 2S,3S-butanediol isomers

재료 및 방법Materials and methods

1. 2R,3R-부탄디올 처리에 의한 식물 병원세균의 병원성 조절1. Control of pathogenicity of plant pathogens by treatment with 2R,3R-butanediol

(1) 식물 병원균인 채소무름병원균(Pectobacterium carotovorum strain PCC21, 이하 PCC21) 세균에 2,3-부탄디올을 노출시키는 방법 및 접종방법(1) Vegetable soft pathogen, a plant pathogen ( Pectobacterium carotovorum strain PCC21, hereinafter PCC21) Method of exposing 2,3-butanediol to bacteria and inoculation method

(가) 식물 병원균 배양 방법(A) Plant pathogen culture method

채소무름병원균 PCC21은 Luria-Bertani(LB; 1% 트립톤, 0.5% 효모 추출물, 1% NaCl) 고체 배지에서 자란 단일 콜로니를 LB 액체 배지에 접종하여 30℃에서 250rpm으로 16시간 동안하였다.The vegetable soft pathogen PCC21 was a single colony grown in Luria-Bertani (LB; 1% tryptone, 0.5% yeast extract, 1% NaCl) solid medium was inoculated into the LB liquid medium, followed by inoculation at 30° C. at 250 rpm for 16 hours.

(나) 2,3-부탄디올 노출 방법 (B) 2,3-butanediol exposure method

채소무름병원균의 2R,3R-부탄디올을 세균에 노출하는 방법은 직접 세균 배양액에 넣는 방법과 I-플레이트를 이용한 기체상태로 처리하는 두 가지 방법을 사용하였다. 직접 처리하는 방법은 50ml 튜브에 (가)에서 준비한 세균 배양액을 5ml 넣고 2R,3R-부탄디올을 1uM의 농도로 넣어 30℃에서 5시간 배양 후 원심 분리하여 상등액을 버리고 침전된 세균 배양체를 모아 사용하였다. 또한, I-플레이트를 이용한 기체 상태로 처리하는 방법은 LB 아가 배지를 부은 작은 페트리디시(60mm dish)에 채소무름병원균을 (가)의 방법으로 배양한 세균 배양액 2ml을 도말하였다. 도 1과 같이 채소무름병원균이 접종된 작은 페트리디시를 I-플레이트의 한 면만 넣고 다른 면에는 1uM 농도의 2,3-부탄디올 100μl를 떨어뜨렸다. 15시간 동안 30℃에서 채소 무름 병원균에 2R,3R-부탄디올이 노출되도록 하였다. 2R,3R-부탄디올(Cat no. 237639-1G, Sigma)을 실험에 사용하였다.Two methods of exposing the 2R,3R-butanediol of vegetable soft pathogens to bacteria were directly put into the bacterial culture medium and treated in a gaseous state using an I-plate. The direct treatment method was to put 5ml of the bacterial culture solution prepared in (A) into a 50ml tube, add 2R,3R-butanediol at a concentration of 1uM, incubate at 30°C for 5 hours, then centrifuge to discard the supernatant, and collect and use the precipitated bacterial culture. . In addition, the method of treating in a gaseous state using an I-plate was plated with 2 ml of a bacterial culture solution cultured by the method of (A) on a small Petri dish (60 mm dish) in which LB agar medium was poured. As shown in Fig. 1, a small Petri dish inoculated with a vegetable softening pathogen was put on only one side of the I-plate, and 100 μl of 2,3-butanediol at a concentration of 1 uM was dropped on the other side. 2R,3R-butanediol was exposed to vegetable soft pathogens at 30° C. for 15 hours. 2R,3R-butanediol (Cat no. 237639-1G, Sigma) was used in the experiment.

(다) 식물에 채소무름병원균(PCC21) 접종방법(C) Inoculation method of vegetable soft pathogen (PCC21) in plants

감자 슬라이스 병원균 처리 방법: 감자는 0.5mm 두께로 썰어 30% NaOCl에 10분간 담근 후 살균수로 5번 씻었다. 마르지 않도록 적신 3M 페이퍼를 덮어 준비하였다. 125mm 사각 플레이트에 3M 페이퍼를 깔고 준비한 감자를 올려 놓고 감자 중간에 2,3-부탄디올에 노출한 채소무름병원균(PCC21)을 105으로 희석하여 10μL를 떨어뜨려 접종하였다. 습도를 유지하기 위하여 뚜껑을 덮고 비닐랩으로 테두리만 막았다. 30℃에서 24시간동안 병징을 관찰하였다. Potato slice pathogen treatment method: Potatoes were cut into 0.5mm thick, immersed in 30% NaOCl for 10 minutes, and washed 5 times with sterilized water. It was prepared by covering it with 3M paper moistened so as not to dry out. The prepared potatoes were placed on a 125mm square plate with 3M paper, and the vegetable soft pathogen (PCC21) exposed to 2,3-butanediol was diluted to 10 5 in the middle of the potato, and 10 μL was dropped and inoculated. To maintain humidity, the lid was covered and only the edges were covered with plastic wrap. Symptoms were observed at 30° C. for 24 hours.

애기장대에 병원균 처리 방법: 애기장대는 토양에서 3주간 배양하여 준비하였고 2R,3R-부탄디올에 노출시킨 PCC21을 108cfu/ml로 준비하여 스프레이 방법으로 접종하였다. 습도 100%가 잘 유지되도록 한 후 24-48시간 동안 병징을 관찰하였다. Method for treating pathogens in Arabidopsis thaliana: Arabidopsis thaliana was prepared by culturing in soil for 3 weeks, and PCC21 exposed to 2R,3R-butanediol was prepared at 10 8 cfu/ml and inoculated by spray method. After ensuring that 100% humidity was well maintained, symptoms were observed for 24-48 hours.

(2) 유전자 발현 조사(2) gene expression investigation

유전자 발현은 2R,3R-부탄디올에 노출된 채소무름병원균(PCC21)의 RNA를 추출하여 qRT-PCR 방법으로 조사하였다. RNA는 RNeasy Plus mini Kit(Cat. No 74134, Qiagen)의 방식으로 추출하였고, qRT-PCR을 Superscript III First strand cDNA synthesis kit(Cat. No 18080051, Invitrogen)과 iQ SYBR GREEn Supermix(Cat. No 170-8880, BioRad)를 이용하였다.Gene expression was investigated by qRT-PCR method by extracting RNA of vegetable soft pathogen (PCC21) exposed to 2R,3R-butanediol. RNA was extracted by the method of RNeasy Plus mini Kit (Cat. No 74134, Qiagen), and qRT-PCR was performed using Superscript III First strand cDNA synthesis kit (Cat. No 18080051, Invitrogen) and iQ SYBR GREEn Supermix (Cat. No 170- 8880, BioRad) was used.

채소무름병원균(PCC21)의 병원성 유전자인 식물 세포벽 가수 분해효소(Plant cell wall degrading enzyme, PCWDE)인 펙틴 분해 효소(pelA , pehA , 그리고 pnl), 단백질 분해효소 (prtW), 그리고 섬유소 분해 효소(celS)와 병원성 인자의 발현을 조절하는 조절인자(regulator) gacA , rsmA , rsmC 그리고 rsmB 또한 병원성과 관련 있는 운동(motility) 관련 유전자 flhCD의 발현도 조사하였다(도 2). 그리고, 2S,3S-부탄디올을 합성 대사 경로 유전자인 budA(알파-아세토락테이트 디카복실레이즈)와 budC(2,3-부타네디올 디하이드로게네이즈) 유전자의 발현도 조사하였다. 유전자 발현 조사에 사용한 프라이머는 표 1에 나타냈다.Plant cell wall degrading enzyme (PCWDE), a pathogenic gene of vegetable soft pathogens (PCC21), pectin degrading enzymes ( pelA , pehA , and pnl ), protease ( prtW ), and fibrinolytic enzyme ( celS ) and regulators that regulate the expression of pathogenic factors gacA , rsmA , rsmC And rsmB In addition, the expression of flhCD , a motility-related gene related to pathogenicity, was also investigated (Fig. 2). In addition, the expressions of the 2S,3S-butanediol synthetic metabolic pathway genes budA (alpha-acetolactate dicarboxylase) and budC (2,3-butanediol dehydrogenase) genes were also investigated. The primers used for gene expression investigation are shown in Table 1.

(3) 식물 세포벽 펙틴 가수 분해 효소 활성 조사(3) Investigation of plant cell wall pectin hydrolase activity

펙틴 가수 분해 효소 활성도를 측정하기 위하여 0.1M Tris-HCl(pH8.5), 2.2mM CaCl2 그리고 5.75mg/ml의 PGA(polyglacturonic acid)를 넣은 Pel(pectate lyase) 반응 용액을 준비하였다. Pel 반응용액 990μl 및 채소무름병원균체 배양액 10ul를 잘 섞어 상온에서 반응 후 분광광도계(Spectrophotometer)를 이용하여 235nm의 파장에서 10분간 흡광도 변화를 측정하였다(Activity= A235h-1*OD600nm-1로 변환하였다). 반응에 사용한 채소무름 병원균체는 LB 액체 배지에서 16시간 배양한 채소무름병원균(PCC21)을 100μl를 새로운 LB 액체 배지 5ml에 넣고 2R,3R-부탄디올에 9시간 노출시킨 채소무름병원균체와 2R,3R-부탄디올에 노출시키지 않은 대조구를 준비하여 활성도를 비교하였다.In order to measure the pectin hydrolase activity, a Pel (pectate lyase) reaction solution containing 0.1M Tris-HCl (pH8.5), 2.2mM CaCl 2 and 5.75mg/ml of PGA (polyglacturonic acid) was prepared. 990 μl of Pel reaction solution and 10 μl of vegetable soft pathogen culture solution were mixed well and reacted at room temperature, and the change in absorbance was measured for 10 minutes at a wavelength of 235 nm using a spectrophotometer (Activity = A 235 h -1 *OD600nm -1) . Converted). Vegetable soft pathogens used in the reaction include vegetable soft pathogens (PCC21) cultured for 16 hours in LB liquid medium (PCC21), added to 5 ml of new LB liquid medium, and exposed to 2R,3R-butanediol for 9 hours, and 2R,3R -A control that was not exposed to butanediol was prepared and the activity was compared.

(4) 채소무름병원균 운동성 조사(4) Investigation of motility of vegetable soft pathogen

채소무름병원균의 운동성을 확인하기 위하여 I-플레이트의 한쪽 면에 LB 배지에 0.3% 아가를 넣어 운동성 조사배지를 준비하였다. 또한 다른 면에는 2R,3R-부탄디올을 떨어뜨려 2R,3R-부탄디올이 운동성에 영향을 미치는지 확인하였다. 대조구로는 2R,3R-부탄디올 대신 물을 떨어뜨렸다. 운동성 조사배지 중앙에 채소무름병원균을 배양액 1ul를 뜨리고 30℃에서 24시간동안 배양하며 움직인 정도를 측정하였다.In order to confirm the motility of vegetable soft pathogens, a motility irradiation medium was prepared by putting 0.3% agar in LB medium on one side of the I-plate. In addition, 2R,3R-butanediol was dropped on the other side to confirm whether 2R,3R-butanediol had an effect on motility. As a control, water was added instead of 2R,3R-butanediol. In the center of the motility irradiation medium, 1 ul of the vegetative soft pathogen was added to the culture medium and incubated at 30° C. for 24 hours, and the degree of movement was measured.

2. 2R,3R-부탄디올 처리에 의한 동물 병원성 세균의 병원성 조절2. Control of pathogenicity of animal pathogenic bacteria by treatment with 2R,3R-butanediol

(1) 동물 병원성 세균 배양 방법 및 2R,3R-부탄디올 노출 방법(1) Animal pathogenic bacteria culture method and 2R,3R-butanediol exposure method

(가) 동물 병원성균 배양 방법(A) Animal pathogenic bacteria culture method

동물 병원균으로 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumonia), 황색 포도상 구균(Staphylococcus arueus), 아시네토박터 바우마니(Acinetobacter baumannii)의 배양은 Luria-Bertani(LB) 고체 배지에서 자란 단일 콜로니를 LB 액체 배지에 접종하여 37℃에서 250rpm으로 16시간 배양하여 사용하였다. Pseudomonas (Pseudomonas) as an animal pathogen aeruginosa ), bacterial pneumonia ( Klebsiella pneumonia ), Staphylococcus arueus , Acinetobacter Baumani (Acinetobacter) baumannii ) culture was used by inoculating a single colony grown in Luria-Bertani (LB) solid medium into LB liquid medium and culturing it at 37°C at 250 rpm for 16 hours.

(나) 2R,3R-부탄디올 노출 방법(B) 2R,3R-butanediol exposure method

LB 액체 배지 150ml에 LB 액체 배지에서 전배양한 동물 병원성균 1.5ml을 넣고 37℃에서 250rpm으로 OD600=0.3까지 배양 후 2R,3R-부탄디올을 첨가한 후 6시간 동안 반응시켜 사용하였다.1.5ml of animal pathogenic bacteria pre-cultured in LB liquid medium was added to 150ml of LB liquid medium, and after incubation at OD600=0.3 at 250 rpm at 37°C, 2R,3R-butanediol was added and reacted for 6 hours to be used.

(2) 꿀벌 부채명나방을 이용한 킬링 어세이(2) Killing assay using honeybee fantail moth

3-4령의 꿀벌 부채명나방을 이용하여 동물 병원균의 병원성을 조사하였다. 1처리구마다 5마리를 사용하였으며 한 처리구당 3개의 반복을 수행하였다. 2R,3R-부탄디올에 노출된 동물 병원균은 106 cfu/2ul가 되도록 준비하여 주사기로 꿀벌 부채명나방의 표피 안쪽으로 감염시켰다. 30℃에서 배양하여 6시간 단위로 생존율을 관찰하였다. The pathogenicity of animal pathogens was investigated using 3-4 year old bee fantail moth. Five animals were used for each treatment group, and three repetitions were performed for each treatment group. Animal pathogens exposed to 2R,3R-butanediol were prepared to be 10 6 cfu/2 ul, and infected with a syringe into the inside of the epidermis of the honey bee moth. Incubation at 30° C. was observed to observe the survival rate every 6 hours.

유전자 발현에 사용된 프라이머 서열 Primer sequence used for gene expression GeneGene Primer (5 -> 3')(서열번호)Primer (5 -> 3') (SEQ ID NO) pehApehA ForwardForward CCA GCA TAG TTT GCC AGT TTA TC (1)CCA GCA TAG TTT GCC AGT TTA TC (1) ReverseReverse GGT CAA TGG CGT TCG GTA TAG (2)GGT CAA TGG CGT TCG GTA TAG (2) pelApelA ForwardForward CTG GAA GAG CAC CGG TAA AT (3)CTG GAA GAG CAC CGG TAA AT (3) ReverseReverse CCA GCA TAG TTT GCC AGT TTA TC (4) CCA GCA TAG TTT GCC AGT TTA TC (4) pnlpnl ForwardForward TAC CTG GGA GCT GCG TAA TA (5)TAC CTG GGA GCT GCG TAA TA (5) ReverseReverse ACG TAG GGC TTG GAA TCT TTA TC (6) ACG TAG GGC TTG GAA TCT TTA TC (6) prtWprtW ForwardForward CAT CAC GGC GAT CCA ATA TCT (7)CAT CAC GGC GAT CCA ATA TCT (7) ReverseReverse GGC TAT TGC TGG TAG TGG TAT AG (8)GGC TAT TGC TGG TAG TGG TAT AG (8) celScelS ForwardForward GTG CCG GTA GAT TTG ATG GA (9)GTG CCG GTA GAT TTG ATG GA (9) ReverseReverse CAC TGG ACG GCA GGT TAT AC (10)CAC TGG ACG GCA GGT TAT AC (10) gacAgacA ForwardForward CAC TGG ACG GCA GGT TAT AC (11)CAC TGG ACG GCA GGT TAT AC (11) ReverseReverse ATG TCC ATC AGG ACA ACA TCT AC (12)ATG TCC ATC AGG ACA ACA TCT AC (12) rsmArsmA ForwardForward CAT GAT CGG CGA TGA GGT AA (13)CAT GAT CGG CGA TGA GGT AA (13) ReverseReverse TCT TCA CGG TGG ACA GAA AC (14)TCT TCA CGG TGG ACA GAA AC (14) rsmBrsmB ForwardForward CCG AGA TAG AGA CAT CGA AGA ATT AG (15)CCG AGA TAG AGA CAT CGA AGA ATT AG (15) ReverseReverse GCA GAA TAG AGC AGG TAG CAT AG (16)GCA GAA TAG AGC AGG TAG CAT AG (16) rsmCrsmC ForwardForward CAT GAT CGG CGA TGA GGT AA (17)CAT GAT CGG CGA TGA GGT AA (17) ReverseReverse TCT TCA CGG TGG ACA GAA AC (18)TCT TCA CGG TGG ACA GAA AC (18) flhCflhC ForwardForward ACT CAC GCT CAT CAA CCT AAA (19)ACT CAC GCT CAT CAA CCT AAA (19) ReverseReverse TTC ATC CAG CAG TTG AGG TAT T (20)TTC ATC CAG CAG TTG AGG TAT T (20) flhDflhD ForwardForward TAC TGG CGC AAC GCT TAA T (21)TAC TGG CGC AAC GCT TAA T (21) ReverseReverse CAA TTT CAC CAT CTG CGG TAA AG (22) CAA TTT CAC CAT CTG CGG TAA AG (22) budAbudA ForwardForward CCA GCT TAC ACT CAG GGA ATT A (23)CCA GCT TAC ACT CAG GGA ATT A (23) ReverseReverse GCA ATC ACA CCA AAC GTC AG (24)GCA ATC ACA CCA AAC GTC AG (24) budCbudC ForwardForward GCG AAC AGG CAT TGA TGA TTT (25)GCG AAC AGG CAT TGA TGA TTT (25) ReverseReverse ACG TTG TCG ATC GCG TTT A (26)ACG TTG TCG ATC GCG TTT A (26)

B. B. 2S,3S2S,3S -- 부탄디올Butanediol 처리에 의한 병원 세균의 병 억제 방법 Method of inhibiting pathogenic bacteria by treatment

목적 purpose

2S,3S-부탄디올 이성질체 처리에 의한 동/식물 병원성 세균의 병원성을 조절하여 병원성 세균 제어Control of pathogenic bacteria by controlling the pathogenicity of animal/plant pathogenic bacteria by treatment with 2S,3S-butanediol isomers

재료 및 방법Materials and methods

1. 2S,3S-부탄디올 처리에 의한 식물 병원세균의 병원성 조절1. Control of pathogenicity of plant pathogens by treatment with 2S,3S-butanediol

(1) 식물 병원균 세균성 풋마름병균(Ralstonia solanacearum)에 2S,3S-부탄디올을 노출시키는 방법 및 접종방법(1) Plant pathogen Bacterial green blight ( Ralstonia solanacearum ) exposure to 2S,3S-butanediol and inoculation method

(가) 식물 병원균 배양 방법(A) Plant pathogen culture method

세균성 풋마름병균은 CPG(0.1% casamino acid, 1% Peptone, 0.5% Glucose, 2% agar) 고체 배지에서 30℃에서 16시간 동안 배양하였다. Bacterial green blight bacteria were cultured at 30° C. for 16 hours in CPG (0.1% casamino acid, 1% Peptone, 0.5% Glucose, 2% agar) solid medium.

(나) 2S,3S-부탄디올 노출 방법(B) 2S,3S-butanediol exposure method

세균성 풋마름병균은 CPG 고체 배지에서 배양한 균을 CPG 액체 배지에 잘 풀어 준비하였다. 2S,3S-부탄디올이 든 CPG 배지에 넣어 굳힌 배지 위에 세균성 풋마름 병원균 배양 혼탁액 2S,3S-부탄디올을 섞어서 도말해 준다. 30℃에서 12시간 배양 후 배양 균체를 고체 배지에서 회수한다. 회수한 배양 균체를 2S,3S-부탄디올을 넣은 1mM MgCl2 용액에 희석한 후 3시간 동안 반응 후 식물 접종에 사용하였다. 실험에 2S,3S-부탄디올(Cat. No. B1343, TCI)을 사용하였다.Bacterial green blight was prepared by dissolving bacteria cultured in CPG solid medium in CPG liquid medium well. Put 2S,3S-butanediol in CPG medium and spread on the solidified medium with 2S,3S-butanediol mixed with bacterial green and dry pathogen culture turbid solution. After incubation at 30° C. for 12 hours, the cultured cells are recovered in a solid medium. The collected cultured cells were diluted in a 1mM MgCl 2 solution containing 2S,3S-butanediol, reacted for 3 hours, and then used for plant inoculation. In the experiment, 2S,3S-butanediol (Cat. No. B1343, TCI) was used.

(다) 식물에 세균성 풋마름병균 접종방법(C) Inoculation method of bacterial green blight bacteria in plants

2S,3S-부탄디올을 처리한 세균성 픗마름병균을 108cfu/ml의 농도를 7주 배양한 담배 식물 뿌리에 관주하였다. 병 접종 후 3주 동안 병징을 관찰하였다. 2S,3S-butanediol-treated bacterial blight bacteria were drenched in the roots of tobacco plants cultured for 7 weeks at a concentration of 10 8 cfu/ml. Symptoms were observed for 3 weeks after inoculation with the bottle.

2. 2S,3S-부탄디올 처리에 의한 동물 병원성 세균의 병원성 조절2. Control of pathogenicity of animal pathogenic bacteria by treatment with 2S,3S-butanediol

(1) 동물 병원성 세균 배양 방법 및 2S,3S-부탄디올 노출 방법(1) Animal pathogenic bacteria culture method and 2S,3S-butanediol exposure method

(가) 동물 병원성균 배양 방법(A) Animal pathogenic bacteria culture method

동물 병원균으로 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumonia), 황색 포도상 구균(Staphylococcus arueus), 아시네토박터 바우마니(Acinetobacter baumannii)의 배양은 Luria-Bertani(LB) 고체 배지에서 자란 단일 콜로니를 LB 액체 배지에 접종하여 37℃에서 250rpm으로 16시간 배양하여 사용하였다. Pseudomonas (Pseudomonas) as an animal pathogen aeruginosa ), bacterial pneumonia ( Klebsiella pneumonia ), Staphylococcus arueus , Acinetobacter Baumani (Acinetobacter) baumannii ) culture was used by inoculating a single colony grown in Luria-Bertani (LB) solid medium into LB liquid medium and culturing it at 37°C at 250 rpm for 16 hours.

(나) 2S,3S-부탄디올 노출 방법(B) 2S,3S-butanediol exposure method

LB 액체 배지 150ml에 LB 액체 배지에서 전배양한 동물 병원성균 1.5ml을 넣고 37℃에서 250rpm으로 OD600=0.3까지 배양 후 2S,3S-부탄디올을 첨가한 후 6시간 동안 반응시켜 사용하였다. 1.5ml of animal pathogenic bacteria pre-cultured in LB liquid medium was added to 150ml of LB liquid medium, and after incubation at OD600=0.3 at 250 rpm at 37°C, 2S,3S-butanediol was added and reacted for 6 hours to be used.

(2) 꿀벌 부채명나방을 이용한 킬링 어세이(2) Killing assay using honeybee fantail moth

꿀벌 부채명나방은 곤충병원성 선충, 병원성 진균 및 세균에 대한 병원성과, 병원성 인자에 대한 연구에 널리 사용한다. 쥐와 같은 척추동물을 모델동물로 사용하는 것에 비해 실험에 필요한 개체수를 획득하기 용이하며, 비용이 저렴하며 번식주기가 짧아 빠르게 결과를 얻을 수 있어 모델동물의 대안으로 주목받고 있는 모델 시스템으로 병원균의 병원성 검사를 위해 사용하였다. The honey bee moth is widely used in the study of pathogenicity and pathogenic factors for insect pathogenic nematodes, pathogenic fungi and bacteria. Compared to using vertebrate animals such as mice as model animals, it is easier to obtain the number of individuals required for the experiment, and the cost is low and the breeding cycle is short, so results can be obtained quickly. Used for pathogenicity test.

3-4령의 꿀벌 부채명나방을 이용하여 동물 병원균의 병원성을 조사하였다. 1처리구마다 5마리를 사용하였으며 한 처리구당 3개의 반복을 수행하였다. 2R,3R-부탄디올에 노출된 동물 병원균은 106 cfu/2ul가 되도록 준비하여 주사기로 꿀벌 부채명나방의 표피 안쪽으로 감염시켰다. 30℃에서 배양하여 6시간 단위로 생존율을 관찰하였다. The pathogenicity of animal pathogens was investigated using 3-4 year old bee fantail moth. Five animals were used for each treatment group, and three repetitions were performed for each treatment group. Animal pathogens exposed to 2R,3R-butanediol were prepared to be 10 6 cfu/2 ul, and infected with a syringe into the inside of the epidermis of the honey bee moth. Incubation at 30° C. was observed to observe the survival rate every 6 hours.

실시예Example 1. One. 2R,3R2R,3R -- 부탄디올에Butanediol 노출된 Exposed 채소무름병원균Vegetable softness pathogen (( PectobacteriumPectobacterium carotovorum carotovorum PCC21, 이하 PCC21) 세균은 감자와 애기장대에서 병징이 감소된다. PCC21, hereinafter PCC21) Bacteria are reduced in symptoms in potatoes and Arabidopsis.

채소무름병원균(Pectobacterium carotovorum PCC21)을 2R,3R-부탄디올에 노출시킨 것과 노출시키지 않은 것을 감자와 애기장대에 접종하여 병징을 관찰하였다. 감자는 0.5mm 두께로 잘라 NaOCl로 살균 후 살균수로 5번 씻어 준비하였다. PCC21을 105 cfu/ml로 희석한 세균 배양액 10ul를 감자 위에 떨어뜨려 접종하였다. 접종한 감자는 100% 습도가 잘 유지되도록 밀폐 용기에 넣어 30℃에서 24시간 동안 병징을 관찰하였다. 병징이 나타나는 부위의 면적을 측정하고 병징의 상태를 관찰하여 병징의 정도로 나타내었다.Vegetable soft pathogen (Pectobacterium carotovorum PCC21) exposed to 2R,3R-butanediol and not exposed to potato and Arabidopsis thaliana were inoculated to observe symptoms. Potatoes were cut into 0.5mm thick, sterilized with NaOCl, and washed 5 times with sterilized water. 10 ul of the bacterial culture solution diluted to 10 5 cfu/ml of PCC21 was dropped onto the potato and inoculated. The inoculated potatoes were placed in an airtight container to maintain 100% humidity and observed for 24 hours at 30°C. The area of the area where the symptom appears was measured, and the state of the symptom was observed, and the degree of the symptom was indicated.

2R,3R-부탄디올을 처리한 채소무름병원균(PCC21)을 접종한 부위는 병징 면적이 작지만, 2R,3R-부탄디올을 처리하지 않은 대조구(Control)는 병징 면적이 넓은 것을 확인할 수 있었다(도 2). 애기장대에는 2R,3R-부탄디올에 노출한 PCC21을 108 cfu/ml 농도로 준비하여 골고루 스프레이 하는 방식으로 접종하였다. 100% 습도가 유지되도록 하였으며 48시간 동안 병징을 관찰하였다. 2R,3R-부탄디올을 처리한 애기장대는 병징이 거의 나타나지 않았지만 대조구에서는 입자루가 녹아 줄기에서 떨어지는 병징을 나타내었다. 감자와 애기장대 모두에서 2R,3R-부탄디올을 처리한 PCC21에서 병징이 감소된 것을 알 수 있었다.2R,3R-butanediol-treated vegetable soft pathogen (PCC21) was inoculated with a small symptom area, but 2R,3R-butanediol-treated control (Control) was found to have a large disease area (Fig. 2). . PCC21 exposed to 2R,3R-butanediol was prepared in Arabidopsis thaliana at a concentration of 10 8 cfu/ml and inoculated by spraying evenly. 100% humidity was maintained and symptoms were observed for 48 hours. Arabidopsis thaliana treated with 2R,3R-butanediol showed almost no symptoms, but in the control group, the granules melted and fell off the stem. It was found that the symptoms were reduced in PCC21 treated with 2R,3R-butanediol in both potato and Arabidopsis thaliana.

실시예Example 2. 2. 2R,3R2R,3R -- 부탄디올은Butanediol is 채소무름병(PCC21)의Vegetable soft rot (PCC21) 병원성 유전자의 발현과 세균의 병원성인자인 펙틴 가수분해 효소 활성을 억제시킨다. It inhibits the expression of pathogenic genes and the activity of pectin hydrolase, a pathogenic factor of bacteria.

PCC21의 병원성은 식물 세포벽 가수분해효소(Plant cell wall degradingenzyme) 분비에 의한 것으로 알려져 있다. 식물 세포벽의 가수분해효소는 섬유소 분해효소(celS), 펙틴분해효소(pelA, pehA, pnl) 그리고 단백질 분해 효소(prtW) 등이 알려져 있다. 이들 유전자의 발현은 다양한 조절인자(regulator)에 의해 영향을 받는다. 이전 논문에서 알려진 채소무름병원균의 병원성 인자 조절은 조절인자 RsmA이 많아지면 식물 세포벽 분해효소를 억제하여 병원성이 감소하는데 RsmA의 양은 다른 조절인자인 rsmB에 의해 억제된다. 따라서 rsmB의 양이 증가하면 RsmA의 양이 감소하고 식물 세포벽 분해 효소의 활성을 억제하지 못해 병원성이 강하게 나타난다. The pathogenicity of PCC21 is known to be due to the secretion of plant cell wall degrading enzymes. As for the hydrolase of plant cell wall, fibrinase (celS), pectinase ( pelA , pehA , pnl ), and proteolytic enzyme ( prtW ) are known. The expression of these genes is influenced by various regulators. The regulation of pathogenic factors of vegetable soft pathogens known in the previous paper is that when the regulator RsmA increases, the pathogenicity decreases by inhibiting the plant cell wall degrading enzyme. The amount of RsmA is suppressed by the other regulator, rsmB. Therefore, as the amount of rsmB increases, the amount of RsmA decreases and the activity of plant cell wall degrading enzymes cannot be suppressed, resulting in strong pathogenicity.

또한, 병원성 조절은 채소무름병원균의 운동성과 관련이 있는데, 운동성 조절인자인 FlhCD가 증가하면 운동성이 활발해지고 병원성에 영향을 준다. 또한 운동성 조절인자인 FlhCD는 또 다른 조절인자인 GacA를 통해 병원성 조절인자 rsmB의 활성화시켜 병원성에 영향을 미친다. 이 운동성 조절인자 FlhCD 복합체는 조절인자 RsmC에 의해 억제된다. RsmC는 또한 직접적으로 RsmA의 발현을 증가시켜 병원성을 감소시킬 수 있다. 이러한 조절 기작은 도 3의 (가)에 나타내었다. In addition, pathogenic control is related to the motility of vegetable soft pathogens. When FlhCD, a motility regulator, increases, motility becomes active and affects pathogenicity. In addition, FlhCD, a motility modulator, affects pathogenicity by activating the pathogenic modulator rsmB through another modulator, GacA. This motility modulator FlhCD complex is inhibited by the modulator RsmC. RsmC can also reduce pathogenicity by directly increasing the expression of RsmA. This control mechanism is shown in Figure 3 (a).

따라서 2R,3R-부탄디올에 노출된 채소무름병원균(PCC21)에서 병원성 감소가 도 3의 (가)의 병원성 조절 기작에 영향을 미치는지 확인하기 위하여 병원성 조절인자(gacA, rsmA , rsmB , rsmC), 운동성인자(flhC , flhD), 병원성인자(pelA , pehA , pnl, prtW , celS)의 발현을 조사하였고, 또한 채소무름병원균의 운동성과 식물 세포벽분해효소 활성을 측정하였다. 그 결과 병원성을 감소시키는 조절인자인 rsmC , rsmA 유전자의 발현은 증가하였고, 병원성을 증가시키는 조절인자인 gacA , 운동성 조절인자 flhC , flhD 그리고 식물 세포벽분해효소 pelA , pehA , pnl , prtW , celS의 발현은 감소한 것을 확인하였으며(도 3의 (나)), 병원성을 증가시키는 조절인자인 rsmB은 2R,3R-부탄디올에 노출되지 않은 것에 대비하여 2R,3R-부탄디올에 노출된 것에서의 발현율은 1.1 정도로 매우 유사하게 나타나는 것을 확인하였는데, 도 6을 통해 이 시간 이후에 그 발현량이 대조구에 비해 감소할 것으로 분석되었다.Therefore, in order to check whether the reduction in pathogenicity in the vegetable soft pathogen (PCC21) exposed to 2R,3R-butanediol affects the pathogenic control mechanism of Fig.3 (a), pathogenic modulators ( gacA, rsmA , rsmB , rsmC ), motility The expression of factors ( flhC, flhD ) and pathogenic factors ( pelA , pehA , pnl, prtW , celS ) was investigated, and the motility and plant cell wall degrading enzyme activity of vegetable soft pathogens were also measured. As a result, expression of rsmC and rsmA genes, which are regulators that reduce pathogenicity, increased, and gacA , which is a regulator of pathogenicity , and flhC , flhD, and plant cell wall degrading enzymes pelA , pehA , pnl , prtW , and celS . Was confirmed to have decreased (Fig. 3(b)), and rsmB, a modulator for increasing pathogenicity, was found to be as high as 1.1 when exposed to 2R,3R-butanediol compared to that of not exposed to 2R,3R-butanediol. It was confirmed that it appeared similarly, and through FIG. 6, it was analyzed that the expression level would decrease compared to the control after this time.

운동성 조절인자 flhCflhD의 발현 감소가 운동성도 감소시켰는지 확인하기 위하여 I-플레이트의 한쪽 면에 운동성 조사 배지인 0.3% 아가를 넣은 LB 배지를 준비하고 채소무름병원균(PCC21)을 접종하였다. 다른 면에는 2R,3R-부탄디올을 떨어뜨린 후 운동성을 조사하였다. 대조구로는 2R,3R-부탄디올 대신 물을 떨어 뜨려 조사하였다. 그 결과 도 3의 (다)와 같이 2R,3R-부탄디올에 노출된 채소무름병원균의 운동성이 대조구에 비해 감소한 것을 확인할 수 있었다. 식물 세포벽 분해 효소인 PelA(pectate lyase)의 활성도 대조구에 비해 2R,3R-부탄디올에 노출된 채소무름병원균에서 감소한 것을 확인하였다(도 3의 라).In order to confirm whether the decrease in the expression of the motility regulators flhC and flhD decreased the motility, an LB medium containing 0.3% agar, a motility investigation medium, was prepared on one side of the I-plate and was inoculated with a vegetable soft pathogen (PCC21). On the other side, 2R,3R-butanediol was dropped and then motility was investigated. As a control, water was dropped instead of 2R,3R-butanediol to investigate. As a result, it was confirmed that the motility of the vegetable soft pathogen exposed to 2R,3R-butanediol was reduced compared to the control as shown in (c) of FIG. 3. It was confirmed that the activity of the plant cell wall degrading enzyme PelA (pectate lyase) was also decreased in the vegetable soft pathogens exposed to 2R,3R-butanediol compared to the control (Fig. 3D).

또한, 채소무름병원균을 애기장대에 접종 후 0일, 1일, 2일에 채소무름병원균의 개체수와 병원성 관련인자 아세토인 디카복실레이즈(budA)와 펙틴가수분해효소(pelA)의 발현양을 조사한 결과 2R,3R-부탄디올에 노출된 채소무름병원균(PCC21)을 처리한 곳에서 2R,3R-부탄디올에 노출되지 않은 채소 무름 병원균(PCC21)을 처리한 곳보다 2일째 채소무름병원균(PCC21)의 개체수와 병원성 관련 인자의 발현양이 감소됨을 확인하였다(도 4).In addition, on the 0th, 1st, and 2nd days after inoculation of the vegetable soft pathogen into Arabidopsis, the number of vegetable soft pathogens and the expression levels of the pathogenic factors aceto, dicarboxylase (budA) and pectin hydrolase (pelA) were investigated. Results The number of vegetable soft pathogens (PCC21) exposed to 2R,3R-butanediol was treated on the second day compared to that treated with vegetable soft pathogens (PCC21) not exposed to 2R,3R-butanediol (PCC21). It was confirmed that the amount of expression of and pathogenic factors was reduced (FIG. 4).

또한, 2R,3R-부탄디올, 2S,3S-부탄디올, meso-부탄디올, 그리고 2R,3R-부탄디올 합성 바실러스 휘발성 물질 처리에 의해 채소무름병원균(PCC21)의 병원성 억제를 통한 병징 감소 효과를 확인한 결과, 2R,3R-부탄디올을 처리한 경우, 채소무름병원균(PCC21)의 병원성 억제 효과가 현저하게 높은 점을 확인하였다(도 5).In addition, 2R,3R-butanediol, 2S,3S-butanediol, meso-butanediol, and 2R,3R-butanediol synthesized Bacillus volatile substances were treated to inhibit the pathogenicity of vegetable soft pathogens (PCC21). When treated with 3R-butanediol, it was confirmed that the inhibitory effect on pathogenicity of vegetable soft pathogens (PCC21) was remarkably high (FIG. 5).

또한, 2R,3R-부탄디올과 2S,3S-부탄디올에 의해 채소무름병원균(PCC21)의 생장에는 영향이 없었으며(상단 도면), 유전자 발현은 2S,3S-부탄디올에 의해 병원성 관련 유전자 rsmB, pehA와 2S,3S-부탄디올 합성 유전자 budA의 유전자 발현이 대조구보다 증가하였지만, 2R,3R-부탄디올 처리에 의해 처리 초기에는 유전자 발현이 증가하지 않았으며 3시간째에 2R,3R-부탄디올 처리시 병원성 조절인자 rsmB의 발현이 대조구보다 감소하였는데, 이는 3시간 이후 병원성인자의 발현 감소를 유도할 것으로 분석되었다(도 6).In addition, 2R,3R-butanediol and 2S,3S-butanediol did not affect the growth of vegetable soft pathogen (PCC21) (top view), and gene expression was induced by 2S,3S-butanediol and pathogenic genes rsmB and pehA. Although the gene expression of the 2S,3S-butanediol synthesis gene budA was higher than that of the control, the gene expression did not increase at the beginning of treatment by 2R,3R-butanediol treatment, and the pathogenic regulator rsmB was treated at 3 hours after treatment with 2R,3R-butanediol. The expression of was decreased compared to the control, which was analyzed to induce a decrease in the expression of pathogenic factors after 3 hours (Fig. 6).

또한, 다른 무름병원균인 디케야 다단티(Dikeya dadantii)에서 2S,3S-부탄디올 합성 대사 돌연변이체는 병원성이 낮아졌다는 보고가 있다. 따라서 2R,3R-부탄디올에 의해 2S,3S-부탄디올의 합성 저해를 통한 병원성 억제 효과가 있는지 조사한 결과 2R,3R-부탄디올이 2S,3S-부탄디올의 합성 대사 경로의 효소인 알파-아세토락테이트 디카복실레이즈를 코드하는 유전자 budA 및 2,3-부타네디올 디하이드로게네이즈를 코드하는 유전자 budC의 발현을 억제하는 점을 확인하였다(도 7).In addition, it has been reported that the 2S, 3S-butanediol synthesis metabolic mutant in Dikeya dadantii, another soft pathogen, has decreased pathogenicity. Therefore, as a result of investigating whether 2R,3R-butanediol has a pathogenic inhibitory effect by inhibiting the synthesis of 2S,3S-butanediol, 2R,3R-butanediol is an enzyme in the synthesis metabolic pathway of 2S,3S-butanediol, alpha-acetolactate dicarboxyl. and verified that the gene encoding the inhibitory raised budA and 2,3-diol di-section Taneja expression of the gene encoding the recombinase to budC to hydro (Fig. 7).

또한, 2S,3S-부탄디올은 낮은 농도(0.01 μM)에서 병원성 억제 기능이 있으며, 또한, 2R,3R-부탄디올은 다양한 농도(1 μM 및 0.01 μM)에서 병원성 억제 기능이 있음을 확인하였다(도 8).In addition, it was confirmed that 2S,3S-butanediol has a pathogenic inhibitory function at a low concentration (0.01 μM), and 2R,3R-butanediol has a pathogenic inhibitory function at various concentrations (1 μM and 0.01 μM) (FIG. 8 ).

슈도모나스 애루기로사(Pseudomonas aeruginosa)에 2R,3R-BDO를 10μM-100pM의 농도에서 배양하여 102CFU/2㎕를 꿀벌 부채명나방 유충에 주입하였다. 24시간 후 비처리구에 비하여 꿀벌 부채명나방 유충의 생존율이 7~14배 증가하였다. 24시간 후, 2R,3R-BDO 100nM 처리구의 꿀벌 부채명나방 유충 생존율은 86%로 가장 높았다. 슈도모나스 애루기로사에 2R,3R-BDO를 처리하였을 때 병원성이 감소함을 확인하였다(도 9). Pseudomonas aeruginosa ) in 2R,3R-BDO was cultured at a concentration of 10 μM-100pM, and 10 2 CFU/2 μl was injected into the larvae of honey bees. After 24 hours, the survival rate of the honey bee fantail moth larvae increased by 7-14 times compared to the untreated group. After 24 hours, the survival rate of bee larvae in the 2R,3R-BDO 100nM treatment group was the highest at 86%. It was confirmed that pathogenicity was reduced when 2R, 3R-BDO was treated with Pseudomonas aerugosa (FIG. 9).

실시예 3. 2R,3R-부탄디올에 의한 동물 병원균들의 병원성 억제Example 3. Inhibition of pathogenicity of animal pathogens by 2R,3R-butanediol

동물 병원균의 병원성을 2R,3R-부탄디올에 의해 억제되는지 확인하였다. 실험에 사용한 동물 병원균은 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus), 아시네토박터 바우마니(Acinetobacter baumannii)를 사용하였다. 각 동물 병원성 균에 2R,3R-부탄디올에 노출시킨 후 꿀벌 부채명나방 애벌레에 감염시켜 생존률을 통해 병원성을 조사하였다.It was confirmed that the pathogenicity of animal pathogens was inhibited by 2R,3R-butanediol. The animal pathogen used in the experiment was Pseudomonas aeruginosa ), bacterial pneumonia ( Klebsiella pneumoniae ), Staphylococcus aureus , Acinetobacter Baumani ( Acinetobacter) baumannii ) was used. Each animal pathogenic bacteria was exposed to 2R,3R-butanediol, and then infected with the honeybee fantail moth larvae, and the pathogenicity was investigated through the survival rate.

꿀벌 부채명나방은 곤충병원성 선충, 병원성 진균 및 세균에 대한 병원성과 병원성 인자에 대한 연구에 널리 사용한다. 쥐와 같은 척추동물을 모델동물로 사용하는 것에 비해 실험에 필요한 개체수를 획득하기 용이하며, 비용이 저렴하며 번식주기가 짧아 빠르게 결과를 얻을 수 있어 모델동물의 대안으로 주목받고 있는 모델 시스템으로 병원균의 병원성 검사를 위해 사용하였다. 그 결과, 동물 병원세균인 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus) 그리고 아시네토박터바우마니(Acinetobacter baumannii)은 2R,3R-부탄디올에 의해 병원성이 억제되는 점을 확인할 수 있었다(도 10).The honey bee moth is widely used in the study of pathogenicity and pathogenic factors to insect pathogenic nematodes, pathogenic fungi and bacteria. Compared to using vertebrate animals such as mice as model animals, it is easier to obtain the number of individuals required for the experiment, and the cost is low, and the breeding cycle is short, so results can be obtained quickly. This is a model system that is attracting attention as an alternative to model animals. Used for pathogenicity test. As a result, animal pathogens Pseudomonas aeruginosa , bacterial pneumonia ( Klebsiella pneumoniae ), Staphylococcus aureus and Acinetobacter baumannii were confirmed that pathogenicity was inhibited by 2R,3R-butanediol (FIG. 10).

실시예Example 4. 4. 2S,3S2S,3S -- 부탄디올에Butanediol 의한 세균성 Caused by bacterial 풋마름병균Green blight (( RalstoniaRalstonia solanacearum solanacearum )의 병원성 억제) Pathogenicity inhibition

2S,3S-부탄디올에 노출된 세균성 풋마름병균을 7주된 담배 식물 뿌리 관주 방식으로 접종하였다. 3주 후 2S,3S-부탄디올에 노출된 세균성 풋마름병균의 대조구에 비해 시들음 증상이 감소한 것을 확인하였다(도 11).Bacterial green blight bacteria exposed to 2S,3S-butanediol were inoculated with a 7-week-old tobacco plant root drench. After 3 weeks, it was confirmed that the withering symptoms were reduced compared to the control of bacterial green blight bacteria exposed to 2S,3S-butanediol (FIG. 11).

실시예 5. 2S,3S-부탄디올에 의한 동물 병원균들의 병원성 억제Example 5. Inhibition of pathogenicity of animal pathogens by 2S,3S-butanediol

2S,3S-부탄디올이 동물 병원균에도 영향을 미치는지 조사하였다. 사용한 동물 병원균은 녹농균(Pseudomonas aeruginosa), 세균성 폐렴균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus), 아시네토박터 바우마니(Acinetobacter baumannii)를 사용하였다. 각 동물 병원성 균에 2S,3S-부탄디올에 노출시킨 후 꿀벌 부채명나방 애벌레에 감염시켜 생존률을 통해 병원성을 조사하였다. 녹농균, 세균성 폐렴균, 황색포도상 구균 그리고 아시네토박터 바우마니에서 2S,3S-부탄디올에 노출되었을 때 대조구에 비해 꿀벌 부채명나방의 생존률이 증가한 것을 확인할 수 있었다(도 12).It was investigated whether 2S,3S-butanediol also affects animal pathogens. The animal pathogen used was Pseudomonas aeruginosa ), bacterial pneumonia ( Klebsiella pneumoniae ), Staphylococcus aureus , and Acinetobacter baumannii were used. Each animal pathogenic bacteria was exposed to 2S,3S-butanediol, and then infected with the honeybee fantail moth larvae, and the pathogenicity was investigated through the survival rate. When exposed to 2S, 3S-butanediol in Pseudomonas aeruginosa, bacterial pneumonia, Staphylococcus aureus, and Acinetobacter Baumani, it was confirmed that the survival rate of the honeybee fantail moth was increased compared to the control (FIG. 12 ).

또한, 2S,3S-부탄디올 농도에 따른 녹농균(Pseudomonas aeruginosa)의 병원성 억제 정도를 살펴본 결과, 녹농균(Pseudomonas aeruginosa)에 2S,3S-BDO를 10μM-100pM의 농도에서 배양하여 102CFU/2㎕를 꿀벌부채명나방 유충에 주입하였다. 24시간 후 비처리구에 비하여 꿀벌부채명나방 유충의 생존율이 7~12배 증가하였다. 24시간 후, 2S,3S-BDO 100pM 처리구의 꿀벌부채명나방 유충 생존율은 73%로 가장 높았다. 녹농균에 2S,3S-BDO를 처리하였을 때 병원성이 감소하였다(도 13). In addition, Pseudomonas aeruginosa according to the concentration of 2S,3S-butanediol aeruginosa ), as a result of examining the degree of inhibition of pathogenicity, Pseudomonas aeruginosa ) in 2S,3S-BDO was incubated at a concentration of 10 μM-100pM, and 10 2 CFU/2 μl was injected into the larvae of bee moth. After 24 hours, the survival rate of the larvae of honey bee larva increased by 7-12 times compared to the untreated group. After 24 hours, the survival rate of larvae of honey bee moth in the 2S,3S-BDO 100pM treatment was the highest at 73%. When Pseudomonas aeruginosa was treated with 2S, 3S-BDO, pathogenicity was reduced (FIG. 13).

<110> Korea Research Institute of Bioscience and Biotechnology <120> Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol <130> PN18153 <160> 26 <170> KopatentIn 2.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 ccagcatagt ttgccagttt atc 23 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ggtcaatggc gttcggtata g 21 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ctggaagagc accggtaaat 20 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ccagcatagt ttgccagttt atc 23 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tacctgggag ctgcgtaata 20 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 acgtagggct tggaatcttt atc 23 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 catcacggcg atccaatatc t 21 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggctattgct ggtagtggta tag 23 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gtgccggtag atttgatgga 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cactggacgg caggttatac 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 cactggacgg caggttatac 20 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 atgtccatca ggacaacatc tac 23 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 catgatcggc gatgaggtaa 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tcttcacggt ggacagaaac 20 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ccgagataga gacatcgaag aattag 26 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gcagaataga gcaggtagca tag 23 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 catgatcggc gatgaggtaa 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tcttcacggt ggacagaaac 20 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 actcacgctc atcaacctaa a 21 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 ttcatccagc agttgaggta tt 22 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 tactggcgca acgcttaat 19 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 caatttcacc atctgcggta aag 23 <210> 23 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ccagcttaca ctcagggaat ta 22 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gcaatcacac caaacgtcag 20 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gcgaacaggc attgatgatt t 21 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 acgttgtcga tcgcgttta 19 <110> Korea Research Institute of Bioscience and Biotechnology <120> Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol <130> PN18153 <160> 26 <170> KopatentIn 2.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 ccagcatagt ttgccagttt atc 23 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ggtcaatggc gttcggtata g 21 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ctggaagagc accggtaaat 20 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ccagcatagt ttgccagttt atc 23 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tacctgggag ctgcgtaata 20 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 acgtagggct tggaatcttt atc 23 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 catcacggcg atccaatatc t 21 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggctattgct ggtagtggta tag 23 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gtgccggtag atttgatgga 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cactggacgg caggttatac 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 cactggacgg caggttatac 20 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 atgtccatca ggacaacatc tac 23 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 catgatcggc gatgaggtaa 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tcttcacggt ggacagaaac 20 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ccgagataga gacatcgaag aattag 26 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gcagaataga gcaggtagca tag 23 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 catgatcggc gatgaggtaa 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tcttcacggt ggacagaaac 20 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 actcacgctc atcaacctaa a 21 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 ttcatccagc agttgaggta tt 22 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 tactggcgca acgcttaat 19 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 caatttcacc atctgcggta aag 23 <210> 23 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ccagcttaca ctcagggaat ta 22 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gcaatcacac caaacgtcag 20 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gcgaacaggc attgatgatt t 21 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 acgttgtcga tcgcgttta 19

Claims (4)

2S,3S-부탄디올(2S,3S-butanediol)을 유효성분으로 함유하는 랄스토니아 솔라나세아룸(Ralstonia solanacearum)의 병원성 감소용 조성물로,
상기 병원성 감소용 조성물에 랄스토니아 솔라나세아룸을 노출시킴으로써 랄스토니아 솔라나세아룸의 병원성 감소에 의하여 식물의 시들음 증상의 감소능을 갖는, 랄스토니아 솔라나세아룸의 병원성 감소용 조성물.
As a composition for reducing pathogenicity of Ralstonia solanacearum containing 2S, 3S-butanediol (2S, 3S-butanediol) as an active ingredient,
The composition for reducing pathogenicity of Ralstonia solanacearum having the ability to reduce the withering symptoms of plants by reducing the pathogenicity of Ralstonia solanacearum by exposing Ralstonia solanacearum to the composition for reducing pathogenicity .
제1항에 있어서, 상기 2S,3S-부탄디올(2S,3S-butanediol)은 랄스토니아 솔라나세아룸(Ralstonia solanacearum)의 병원성 조절인자 단백질을 코딩하는 유전자의 발현을 조절하여 병원성을 감소시키는 것을 특징으로 하는 조성물.The method of claim 1, wherein the 2S, 3S-butanediol (2S, 3S-butanediol) is to reduce the pathogenicity by regulating the expression of the gene encoding the pathogenic regulator protein of Ralstonia solanacearum . Composition characterized by. 제2항에 있어서, 상기 병원성 조절인자 유전자는 rsmB (regulator of secondary metabolites B) 또는 pehA (polygalacturonase A)인 것을 특징으로 하는 조성물.The composition of claim 2, wherein the pathogenic regulator gene is rsmB ( regulator of secondary metabolites B ) or pehA ( polygalacturonase A ). 2S,3S-부탄디올을 랄스토니아 솔라나세아룸(Ralstonia solanacearum)에 가하는 단계를 포함하는 랄스토니아 솔라나세아룸의 병원성을 감소시키는 방법으로,
이때 2S,3S-부탄디올에 랄스토니아 솔라나세아룸을 노출시킴으로써 랄스토니아 솔라나세아룸의 병원성 감소에 의하여 식물의 시들음 증상이 감소되는,
랄스토니아 솔라나세아룸의 병원성을 감소시키는 방법.
A method for reducing the pathogenicity of Ralstonia solanacearum comprising the step of adding 2S, 3S-butanediol to Ralstonia solanacearum,
At this time, by exposing Ralstonia solanasearum to 2S, 3S-butanediol, the withering symptoms of plants are reduced by reducing the pathogenicity of Ralstonia solanasearum,
How to reduce the pathogenicity of Lalstonia Solanasearum.
KR1020180055745A 2017-05-31 2018-05-16 Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol KR102093197B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170068051 2017-05-31
KR20170068051 2017-05-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170096707A Division KR102044161B1 (en) 2017-05-31 2017-07-31 Method for controlling pathogenicity of pathogenic bacteria by treating 2R,3R-Butanediol or 2S,3S-Butanediol

Publications (2)

Publication Number Publication Date
KR20180131397A KR20180131397A (en) 2018-12-10
KR102093197B1 true KR102093197B1 (en) 2020-03-25

Family

ID=64670573

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020170096707A KR102044161B1 (en) 2017-05-31 2017-07-31 Method for controlling pathogenicity of pathogenic bacteria by treating 2R,3R-Butanediol or 2S,3S-Butanediol
KR1020180016267A KR20180131366A (en) 2017-05-31 2018-02-09 Composition for lowering pathogenicity of animal pathogenic bacteria comprising 2R,3R-butanediol or 2S,3S-butanediol as effective component
KR1020180055745A KR102093197B1 (en) 2017-05-31 2018-05-16 Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020170096707A KR102044161B1 (en) 2017-05-31 2017-07-31 Method for controlling pathogenicity of pathogenic bacteria by treating 2R,3R-Butanediol or 2S,3S-Butanediol
KR1020180016267A KR20180131366A (en) 2017-05-31 2018-02-09 Composition for lowering pathogenicity of animal pathogenic bacteria comprising 2R,3R-butanediol or 2S,3S-butanediol as effective component

Country Status (1)

Country Link
KR (3) KR102044161B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112509285B (en) * 2020-11-14 2021-07-09 韩瑞 Global typhoon message collection method and system based on convolutional neural network CNN

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943414B1 (en) * 2007-11-12 2010-02-19 전남대학교산학협력단 Method of enhancing systemic resistance against drought and high salt stress of plant and plant produced by the same
KR102320505B1 (en) * 2014-10-21 2021-11-01 지에스칼텍스 주식회사 Antibacterial Composition containing meso-2,3-butanediol

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Molecular Plant-Microbe Interactions. 2006, Volume 19, Number 8, Pages 924-930.
PLOS ONE. 2013, Volume 8, Issue 1, e54248, pp. 1-12.*
내생 및 토양미생물 유래 유도저항성 물질 실용화. 연구책임자: 류충민, 주관연구기관: 한국생명공학연구원, 2011 발행, 2013.04.18. 공개.*

Also Published As

Publication number Publication date
KR20180134268A (en) 2018-12-18
KR20180131366A (en) 2018-12-10
KR102044161B1 (en) 2019-11-13
KR20180131397A (en) 2018-12-10

Similar Documents

Publication Publication Date Title
KR101905045B1 (en) Bacillus subtilis strain YGB70 and microbial agent for prevention of ginseng root rot pathogens comprising the same
JP5617092B2 (en) Novel microorganism and plant disease control agent using the microorganism
KR20130032100A (en) Novel bacillus vallismortis bs07m with promoting effect of plant growth and improving effect of cold-tolerance, and microbial agent containing the same
JP2010081837A (en) Burkholderia bacterium, plant disease-controlling agent and controlling method using the same
KR20210001996A (en) Composition for controlling plant diseases using Brevibacillus brevis HK544
Abada et al. Management Fusarium wilt of sweet pepper by Bacillus strains
KR20140071145A (en) Novel Paenibacillus polymyxa AB-15 strain and use the same
WO2019035067A1 (en) Organic fungicide derived through microbial fermentation
KR20160000537A (en) New microorganism Beauveria bassiana FG274 and Microbial control agent for the prevention of Spodoptera exigua larva
KR102093197B1 (en) Method for controlling pathogenicity of pathogenic bacteria by treating 2S,3S-Butanediol
KR101896932B1 (en) New microorganism Beauveria bassiana FG317 or microbial control agent comprising for the prevention of Spodoptera litura larva
KR100890013B1 (en) Bacillus subtilis kkg-1 and microbial agent and biopesticide containing the same
KR101922410B1 (en) Novel compounds produced by Bacillus oryzicola YC7011 with activities of induced resistance against plant pathogens and insect and plant growth promotion
US20220053769A1 (en) Microbacterium esteraromaticum strain, composition comprising the same, and uses thereof
KR101905058B1 (en) Bacillus amyloliquefaciens strain AK-0 and microbial agent for prevention of ginseng root rot pathogens comprising the same
Kim et al. Comparison of microbial fungicides in antagonistic activities related to the biological control of phytophthora blight in chili pepper caused by Phytophthora capsici
Al-Khatib et al. Biological control of olive leaf spot (peacock spot disease) caused by Cycloconium oleaginum (Spilocea oleaginea)
KR101755325B1 (en) Microorganism mixture of Trichoderma harzianum and Bacillus subtilis having antimicrobial activity against plant pathogen and uses thereof
KR101389975B1 (en) culture medium for preventing disease and promoting growth of plant, manufacturing method of microbial agent using the same
KR101148789B1 (en) Microorganism for preventing Sclerotinia rot and uses thereof
KR100754836B1 (en) Serratia plymuthica A21-4, biological control method of Phytophthora diseases using the A21-4 and antifungal compound produced by the A21-4
EP3476930B1 (en) Pseudozyma
KR101653959B1 (en) Pseudozyma churashimaensis RGJ1 strain isolated from pepper plant and uses thereof
KR20150079323A (en) Composition comprising Pseudomonas otitidis strain YJR27 for controlling plant diseases and plant-growth promiting effect
KR101418492B1 (en) Novel mannosyl lipid derivatives derived from Simplicillium lamellicola KRICT3 and composition containing the same for control plant diseases or insects

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application
E801 Decision on dismissal of amendment
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant