JP2010081837A - Burkholderia bacterium, plant disease-controlling agent and controlling method using the same - Google Patents

Burkholderia bacterium, plant disease-controlling agent and controlling method using the same Download PDF

Info

Publication number
JP2010081837A
JP2010081837A JP2008252981A JP2008252981A JP2010081837A JP 2010081837 A JP2010081837 A JP 2010081837A JP 2008252981 A JP2008252981 A JP 2008252981A JP 2008252981 A JP2008252981 A JP 2008252981A JP 2010081837 A JP2010081837 A JP 2010081837A
Authority
JP
Japan
Prior art keywords
strain
crse
burkholderia
plant
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252981A
Other languages
Japanese (ja)
Other versions
JP5441092B2 (en
Inventor
Yutaka Ishida
豊 石田
Seiji Kokuni
聖治 小國
Kazumasa Kakibuchi
和正 垣渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc filed Critical Shikoku Research Institute Inc
Priority to JP2008252981A priority Critical patent/JP5441092B2/en
Publication of JP2010081837A publication Critical patent/JP2010081837A/en
Application granted granted Critical
Publication of JP5441092B2 publication Critical patent/JP5441092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new microorganism which controls the growth of more kinds of plant-pathogenic microbes than those by conventional microorganisms and exhibits excellent control effects against plant diseases, has a degradation ability for widely degrading many kinds of replant-obstructing substances, and has also an excellent control action against replant failures: to provide a plant disease-controlling agent: and to provide a plant disease-controlling method which each uses the new microorganism, is high in safety, and little pollutes environments. <P>SOLUTION: There are provided the Burkholderia bacterium which controls plant diseases and degrades replant-obstructing substances; and the Burkholderia bacterium, in which the base sequence of 16S liposome DNA (16S rDNA) is a base sequence represented by sequence No. 1, and which exhibits a β-galactosidase activity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、植物に感染する糸状菌性の植物病害に対する防除能、かつ安息香酸およびその誘導体に起因した連作障害に対する防除能を有するバークホルデリア属(Burkholderia属)細菌、それを用いた植物病害防除剤および防除方法に関する。   The present invention relates to a bacterium belonging to the genus Burkholderia (genus Burkholderia) having an ability to control a fungal plant disease that infects a plant, and an ability to control a continuous cropping disorder caused by benzoic acid and its derivatives, and a plant disease using the same The present invention relates to a control agent and a control method.

農業生産において、病虫害対策は最も重要であり、化学農薬は、病虫害を防除する目的、農作業を省力化する目的、品質や収穫量を安定させる目的等で使用され、食糧生産量の確保の上で現在の農業に不可欠な物となっている。   In agricultural production, pest control is the most important. Chemical pesticides are used for the purpose of controlling pests, saving labor, stabilizing the quality and yield, etc. It is indispensable for current agriculture.

しかし一方で、化学農薬は殺虫や殺菌という用途から見ても、人間に対する毒性は高く、農業生産者や消費者の健康に悪影響を及ぼす危険性を有している。   On the other hand, chemical pesticides are highly toxic to humans from the viewpoint of insecticidal and sterilizing applications, and have a risk of adversely affecting the health of agricultural producers and consumers.

農薬取締法に定められた化学農薬の使用基準等により使用できる化学農薬の種類や使用量が安全性の観点から制限されているが、使用が許可されている化学農薬の中にも、急性毒性、慢性毒性、発癌性、催奇形性、多世代遺伝毒性などが懸念されるものが数多く含まれているのが現状である。   The types and amounts of chemical pesticides that can be used are restricted from the viewpoint of safety according to the chemical pesticide use standards stipulated in the Agricultural Chemicals Control Law. In fact, there are many things that are concerned about chronic toxicity, carcinogenicity, teratogenicity, multi-generation genotoxicity, and the like.

また、最近では、農作物に対する病原体感染を防ぐために化学農薬の散布が一般に行われているが、農産物への化学農薬の残留も大きな問題となっており、農産物に残留した化学農薬による人体への影響、環境に対する汚染等、安全性に関する問題が多い。   Recently, chemical pesticides are generally sprayed to prevent pathogen infection on crops. However, chemical pesticide residues on agricultural products are also a major problem, and the effects of chemical pesticides remaining on agricultural products on the human body There are many safety problems such as environmental pollution.

従来の化学農薬に替えて、木酢液、竹酢液、重曹、電解酸性水などを用いた方法が、安全性が高く環境にも優しい植物病害の防除方法として知られているが、効果やコストの面で十分とは言えず、安全で防除効果が高く安価に実施できる植物病害の防除方法が求められている。   Methods that use wood vinegar, bamboo vinegar, baking soda, electrolytic acid water, etc. in place of conventional chemical pesticides are known as safe and environmentally friendly methods for controlling plant diseases. Therefore, there is a need for a method for controlling plant diseases that is not sufficient in terms of safety and that is safe, has a high control effect, and can be carried out inexpensively.

その一つとして、微生物を含有し微生物の植物病原菌に対する拮抗作用等を利用した植物病害防除剤やそれを用いた植物病害の防除方法が開発されており、一部は微生物農薬(植物病害防除剤)として実用化が始まっている。   As one of them, plant disease control agents that contain microorganisms and use antagonism of microorganisms against plant pathogens and plant disease control methods using the same have been developed, some of which are microbial pesticides (plant disease control agents) ) Has been put into practical use.

微生物を利用した植物病害防除剤やそれを用いた植物病害の防除方法の例としては、糸状菌の一種であるタラロマイセス・フラバス(Talaromyces flavus)およびケトミウム・アウレウム(Chaetomium aureum)によりイチゴ炭疽病を防除する例(特許文献1)や、細菌の一種であるバチルス・ズブチルス(Bacillus subtilis)を利用して各種植物病害を防除する例が知られている(特許文献2)。   Examples of plant disease control agents using microorganisms and plant disease control methods using the same include control of strawberry anthracnose with Talaromyces flavus and ketium aureum. (Patent Document 1) and examples of controlling various plant diseases using Bacillus subtilis, which is a kind of bacteria, are known (Patent Document 2).

一方、農業生産における連作障害も農作物の生産性を低下させる深刻な問題であり、その原因としては、農作物の根などから分泌される生育阻害物質(連作障害物質)の土壌への蓄積、土壌中の植物病原菌密度の上昇、土壌中の線虫密度の上昇、土壌の物理性悪化などが考えられており、その対策として、輪作、客土、土壌消毒などが行われている。   On the other hand, continuous cropping failure in agricultural production is also a serious problem that lowers the productivity of crops. This is caused by the accumulation of growth inhibitors (successive cropping barriers) secreted from crop roots in soil, The increase in the density of phytopathogenic fungi, the increase in the density of nematodes in the soil, the deterioration of the physical properties of the soil, etc. are considered.

安息香酸などのフェノール誘導体に起因した連作障害は、イネ、イチゴ、トマト、スイカ、キュウリ、レタス、アスパラガス、サトイモなど多くの農作物で報告されている。
特開平10−229872号公報 特開平5−51305号公報
Continuous crop damage caused by phenol derivatives such as benzoic acid has been reported in many crops such as rice, strawberries, tomatoes, watermelons, cucumbers, lettuce, asparagus and taro.
Japanese Patent Laid-Open No. 10-229872 JP-A-5-51305

ところで、特許文献1に記載されているケタミウムを用いた発明や特許文献2に記載されている枯草菌を用いた発明は、多種類の植物病原菌の生育を幅広く抑制(幅広い作用スペクトルを有)せず、また土壌中に含まれる連作障害物質を分解する効果を有しているか記載されていない。   By the way, the invention using ketium described in Patent Document 1 and the invention using Bacillus subtilis described in Patent Document 2 broadly suppress the growth of various types of phytopathogenic fungi (having a wide action spectrum). Moreover, it is not described whether it has the effect of decomposing the continuous cropping obstacle substance contained in the soil.

本発明の課題は、従来に比べてより多くの種類の植物病原菌の生育を抑制し植物病害に対して優れた防除効果を発揮し、かつ多種類の連作障害物質を幅広く分解する分解能を有し連作障害に対しても優れた防除作用を併せ持つ新規微生物を提供することであり、さらにその新規微生物を利用することにより、安全性が高く環境汚染の少ない植物病害防除剤および防除方法を提供することにある。   The object of the present invention is to suppress the growth of more types of phytopathogenic fungi than before, to exhibit excellent control effects against plant diseases, and to have the ability to decompose a wide variety of continuous crop disorder substances. To provide a new microorganism having an excellent control action against continuous cropping disorders, and also to provide a plant disease control agent and a control method with high safety and low environmental pollution by using the new microorganism. It is in.

本発明は、植物病害を防除し且つ連作障害物質を分解するバークホルデリア属(Burkholderia属)細菌である。   The present invention is a bacterium belonging to the genus Burkholderia which controls plant diseases and decomposes substances that hinder continuous cropping.

本発明者らは、上記の課題を解決するために研究を鋭意重ねた結果、植物病害防除に優れた効果を発揮しうるバークホルデリア属(Burkholderia属)に属する新規微生物菌株の単離に成功した。   As a result of intensive research to solve the above problems, the present inventors have succeeded in isolating a novel microbial strain belonging to the genus Burkholderia (genus Burkholderia) that can exert an excellent effect on plant disease control. did.

さらに、本菌株を用いて各種植物病原菌に対する増殖抑制効果を調べた結果、ホウレンソウ立枯病菌(Pythium. sp.)、イネ立枯病菌(Fusarium、Pythium、Rhizopu、Trichoderma)、ホウレンソウ萎凋病菌(Fusarium oxysporum f. sp. spinaciae)、キャベツ萎黄病菌(Fusarium oxysporum f.sp.conglutinans Cong)、イチゴ萎黄病菌(Fusarium oxysporum f. sp. fragariae)、トマト萎凋病菌(Fusarium oxysporum f. sp. lycopersici and f. sp. radicis-lycopersici)、ダイコン萎黄病菌(Fusarium oxysporum f. sp. raphani)、トマト半身萎凋病菌(Varticillium dahliae)、イチゴ炭疽病菌(Glomerella cingulata)、イチゴ葉枯れ炭疽病菌(Glomerella cingulata)に対して抑制活性を示すことを見出した。   Furthermore, as a result of investigating the growth inhibitory effect against various plant pathogens using this strain, spinach blight fungus (Pythium. Sp.), Rice blight fungus (Fusarium, Pythium, Rhizopu, Trichoderma), spinach dwarf fungus (Fusarium oxysporum) sp. spinaciae), Fusarium oxysporum f. sp. conglutinans Cong, Fusarium oxysporum f. sp. fragariae, Fusarium oxysporum f. sp. lycopersici and f. sp. Inhibitory activity against radicis-lycopersici), radish-oxysporum f. Found to show.

あわせて、連作障害に関与することが報告されているフェノール誘導体(連作障害物質)に対する分解能力を調べた結果、安息香酸、サリチル酸、m-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、プロトカテク酸、バニリン酸、シリンガ酸、ゲンチジン酸、2,4-ジクロロ安息香酸の全てに幅広く分解スペクトルを有することを見出した。   In addition, as a result of investigating the degradation ability of phenol derivatives (substance cropping disorder substances) that have been reported to be involved in continuous cropping disorders, benzoic acid, salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillin It has been found that acids, syringic acid, gentisic acid and 2,4-dichlorobenzoic acid all have a broad decomposition spectrum.

さらに、各種の植物病害発生系や連作障害発生系を用いて、防除効果を示すことを見出し、本発明を完成するに至った。   Furthermore, it discovered that it showed the control effect using various plant disease generation | occurrence | production system and continuous cropping failure generation | occurrence | production system, and came to complete this invention.

本発明の微生物は、バークホルデリア属(Burkholderia属)に属し、動植物に対して病原性を示さない。好ましくは、本発明者がイチゴの根より分離したバークホルデリア属(Burkholderia属)細菌CRSE−3株が挙げられる。   The microorganism of the present invention belongs to the genus Burkholderia and does not show pathogenicity to animals and plants. Preferably, the Burkholderia genus (Burkholderia genus) CRSE-3 strain isolated from the strawberry root by the inventor is mentioned.

CRSE−3株は、新規分離菌株であって、上記のとおり、植物病原菌の増殖を抑制しかつ連作障害に関与することが報告されているフェノール誘導体の分解能力を有するという極めて優れた性質を有している。   The CRSE-3 strain is a novel isolate, and as described above, has an extremely excellent property that it has the ability to degrade a phenol derivative that has been reported to inhibit the growth of phytopathogenic bacteria and to be involved in continuous cropping disorders. is doing.

多種類の植物病害菌の生育を抑制し多種類の連作障害物質を分解する新規微生物を提供することにより、農作物の植物病害に対して従来に比べて幅広い作用スペクトルを持つなど優れた防除効果を発揮し、且つ、連作障害物質を原因とする農作物の連作障害を防除することができる。   By providing new microorganisms that suppress the growth of various types of plant diseases and decompose many types of continuous cropping obstacles, they have excellent control effects such as having a broad spectrum of action against plant diseases of crops. Demonstrates and can prevent crop failures caused by continuous cropping substances.

さらに新規微生物が人畜無害であることから、この新規微生物を利用することにより、安全性が高く環境汚染の少ない植物病害防除剤を提供することができる。   Furthermore, since the new microorganism is harmless to humans, the use of this new microorganism can provide a plant disease control agent that is highly safe and has little environmental pollution.

本発明者は、各種植物病原菌に対して増殖抑制効果を示し、かつ連作障害に関与することが報告されている各種フェノール誘導体の分解能力を有する微生物を探索した結果、香川県高松市の株式会社四国総合研究所で栽培されているイチゴの根よりバークホルデリア属細菌CRSE−3株を分離することに成功した。   As a result of searching for microorganisms capable of degrading various phenol derivatives that have been reported to exhibit growth inhibitory effects against various plant pathogens and to be involved in continuous cropping disorders, the inventor of Takamatsu City, Kagawa Pref. We succeeded in isolating Burkholderia genus CRSE-3 from strawberry roots cultivated at Shikoku Research Institute.

この菌株の細菌学的性質は以下のとおりである。   The bacteriological properties of this strain are as follows.

CRSE−3株は、Nutrient agar平板、30℃にて1〜3日、好気培養を行うことで増殖させることができ、その形態的特徴として、胞子形成は無く、上記培養1日で直径1mm、淡黄色、円形、レンズ状隆起状態、全縁スムーズで不透明、バター様の粘稠度を有するコロニーを形成する。   The CRSE-3 strain can be grown by aerobic culture at Nutrient agar plate at 30 ° C. for 1 to 3 days. As a morphological feature, there is no spore formation, and the above culture day has a diameter of 1 mm. , Pale yellow, round, lenticular, smooth, opaque, butter-like colonies are formed.

CRSE−3株の好ましい培養温度は25℃〜37℃であり、その細胞形態は、大きさ0.7〜0.8×1.2〜1.5μm程度の桿菌であり、運動性を有し、鞭毛染色では極鞭毛を有し、グラム染色:−(陰性)である。   The preferred culture temperature of the CRSE-3 strain is 25 ° C. to 37 ° C., and its cell form is a gonococcus having a size of about 0.7 to 0.8 × 1.2 to 1.5 μm, has motility, and flagella staining shows polar flagella. Yes, Gram stain:-(negative).

CRSE−3株の生理的性質は、カタラーゼ:+、オキシダーゼ:−、酸/ガス産生(グルコース):−/−、O/Fテスト(グルコース):−/−(+:陽性、−:陰性)である。   The physiological properties of the CRSE-3 strain are catalase: +, oxidase:-, acid / gas production (glucose):-/-, O / F test (glucose):-/-(+: positive,-: negative) It is.

CRSE−3株の資化性は、D-グルコース:+、L-アラビノース:+、D-マンノース:+、D-マンニトール:+、N-アセチル-D-グルコサミン:+、マルトース:−、トレハロース:−、サッカロース:−、L-アルギニン:+、グルコン酸カリウム:+、n-カプリン酸:+、アジピン酸:+、DL-リンゴ酸:+、クエン酸ナトリウム:+、酢酸フェニル:+(+:資化する、−:資化しない)である。   The utilization of the CRSE-3 strain is as follows: D-glucose: +, L-arabinose: +, D-mannose: +, D-mannitol: +, N-acetyl-D-glucosamine: +, maltose:-, trehalose: -, Sucrose:-, L-arginine: +, potassium gluconate: +, n-capric acid: +, adipic acid: +, DL-malic acid: +, sodium citrate: +, phenyl acetate: + (+: Assimilate,-: not assimilate).

また、CRSE−3株は、硝酸塩を還元し、エスクリンを加水分解せず(β-グルコシダーゼ活性がなく)、β-ガラクトシダーゼ活性を示し、1.5% NaCl存在下でも生育する。特に、β-ガラクトシダーゼ活性を示す点はBurkholderia fungorumの性状とは異なる。   The CRSE-3 strain reduces nitrate, does not hydrolyze esculin (no β-glucosidase activity), exhibits β-galactosidase activity, and grows in the presence of 1.5% NaCl. In particular, it differs from the properties of Burkholderia fungorum in that it exhibits β-galactosidase activity.

CRSE−3株の16S rDNA塩基配列は、塩基配列1(配列表の配列番号1、図6参照)に示す通りであり、BLAST(遺伝子や蛋白質の相同性を検索するソフトでPubMed(http://www.ncbi.nlm.nih.gov/pubmed/)にて無償で公開されている。)を用いた細菌基準株データベースに対する相同性検索の結果、16S rDNA塩基配列は、Burkholderia fungorum LMG16225株(Accession No. AF215705)の16S rDNA(配列表の配列番号2、図6参照)において3箇所の塩基配列が異なり99.8%の相同性を示した。   The 16S rDNA base sequence of the CRSE-3 strain is as shown in the base sequence 1 (SEQ ID NO: 1 in the Sequence Listing, see FIG. 6), and BLAST (pubMed (http: / as a result of homology search against the bacterial reference strain database using the No. AF215705) 16S rDNA (SEQ ID NO: 2 in the sequence listing, see FIG. 6), the nucleotide sequences at three positions differed, indicating 99.8% homology.

以上の性質から、CRSE−3株はBurkholderia fungorumに極めて近縁な新種のバークホルデリア属細菌であることが確認された。   From the above properties, it was confirmed that the CRSE-3 strain is a new species of Burkholderia genus that is very closely related to Burkholderia fungorum.

CRSE−3株は、独立行政法人製品評価技術基盤機構の特許微生物寄託センターにバークホルデリア属細菌CRSE−3として寄託し、寄託番号はNITE P-486である。   The CRSE-3 strain is deposited as a Burkholderia bacterium CRSE-3 at the Patent Microorganism Deposit Center of the National Institute of Technology and Evaluation, the deposit number is NITE P-486.

CRSE−3株の培養には、通常の細菌の培養法を用いることができ、液体培地による振とう培養法または通気撹拌培養法などが好ましい。   For culturing the CRSE-3 strain, a normal bacterial culture method can be used, and a shaking culture method using a liquid medium or an aeration and agitation culture method is preferred.

使用する栄養培地の炭素源としては、例えば、グルコース、フラクトース、シュークロースなどの糖質類が好ましく、窒素源としては、例えば、ペプトン、ポリペクトン、バクトトリプトンなどのカゼイン分解物や肉エキス、大豆煮汁酵素分解物などが好ましいが、必ずしもこれらに限定されるものではない。   As the carbon source of the nutrient medium to be used, for example, carbohydrates such as glucose, fructose and sucrose are preferable, and as the nitrogen source, for example, casein decomposition products such as peptone, polypectone, and bacttotryptone, meat extract, soybean Boiled enzyme degradation products and the like are preferred, but are not necessarily limited thereto.

CRSE−3株は、従来のBurkholderia fungorumと比較して、16S rDNAにおいて3箇所の塩基配列が異なり、さらにβ-ガラクトシダーゼ活性を示す点でも異なる。16S rDNAに基づくCRSE−3株の分子系統樹を図7に示す。   The CRSE-3 strain is different from the conventional Burkholderia fungorum in that the nucleotide sequence at three positions in 16S rDNA is different and that it also exhibits β-galactosidase activity. A molecular phylogenetic tree of CRSE-3 strain based on 16S rDNA is shown in FIG.

従来のBurkholderia fungorumに関する文献(Coenye T, Laevens S, Willems A, Ohlen M, Hannant W, Govan JR, Gillis M, Falsen E and Vandamme P., Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples., Int. J. Syst. Evol. Microbiol., 51, 1099-1107 (2001))と照らし合わせても、CRSE−3株はBurkholderia fungorumとは異なり、新種のBurkholderia属細菌である。   Previous literature on Burkholderia fungorum (Coenye T, Laevens S, Willems A, Ohlen M, Hannant W, Govan JR, Gillis M, Falsen E and Vandamme P., Burkholderia fungorum sp. Nov. And Burkholderia caledonica sp. Nov., Two New species isolated from the environment, animals and human clinical samples., Int. J. Syst. Evol. Microbiol., 51, 1099-1107 (2001)), CRSE-3 strain is different from Burkholderia fungorum A new species of Burkholderia sp.

以下、本発明を実施例によりさらに詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。また、無菌操作を必要とする手順については、記載されている場合も含めて無菌操作しているものとする。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the scope of the present invention is not limited to these Examples. In addition, procedures that require aseptic operation are assumed to be aseptic including those described.

<菌の単離>
バークホルデリア属細菌CRSE−3株の単離方法について説明する。
<Isolation of bacteria>
A method for isolating the Burkholderia bacterium CRSE-3 strain will be described.

イチゴ(品種‘スマイルルビー’四国総合研究所にて育成。農水省登録第6562号)を1年以上同じポットで栽培し、老化している根を単離源として用いた。   Strawberries (variety 'Smile Ruby' grown at Shikoku Research Institute. Registered No. 6562 of the Ministry of Agriculture and Fisheries) were cultivated in the same pot for more than a year, and aging roots were used as an isolation source.

この根を採取し、70%(v/v) エタノール中で1分間振とう処理した後、1,000倍希釈した次亜塩素酸ナトリウム溶液中で更に2分間振とう処理し、根に付着している微生物を殺菌した。   The roots were collected, shaken in 70% (v / v) ethanol for 1 minute, then shaken in a 1,000-fold diluted sodium hypochlorite solution for 2 minutes, and attached to the roots. Microorganisms were sterilized.

液体培地には、根に生息する安息香酸資化性菌の単離を容易にするため、安息香酸を唯一の炭素源とする液体培地(安息香酸培地、表1参照)を用いた。液体培地300 mlを三角フラスコ(500ml容)に加えて通気性のシリコン栓で栓をした後、オートクレーブ滅菌して培養に用いた。   As the liquid medium, a liquid medium containing benzoic acid as a sole carbon source (benzoic acid medium, see Table 1) was used in order to facilitate isolation of benzoic acid-utilizing bacteria living in the roots. 300 ml of a liquid medium was added to an Erlenmeyer flask (500 ml volume), stoppered with a breathable silicon stopper, sterilized by autoclave and used for culture.

上記殺菌処理したイチゴの根を滅菌蒸留水にて5回洗浄し、そのうち0.3 gを上記三角フラスコの培養液に添加した後、30 ℃で、3日間振とうさせ、安息香酸資化性菌の集積培養を行った。   The sterilized strawberry root was washed 5 times with sterilized distilled water, 0.3 g of which was added to the Erlenmeyer flask culture solution, and then shaken at 30 ° C. for 3 days. Concentrated culture was performed.

得られた集積培養液を1.5% (w/v) の寒天を含む安息香酸培地に画線培養し、安息香酸資化性菌をコロニー分離した。この安息香酸培地は寒天の組成を除き上記液体培地と同じ組成のものを用いた。   The resulting enriched culture was streaked on a benzoic acid medium containing 1.5% (w / v) agar to isolate benzoic acid-utilizing bacteria. The benzoic acid medium was the same as the liquid medium except for the agar composition.

コロニー分離で得られた安息香酸資化性菌をイチゴ炭疽病菌(Glomerella cingulata NBRC 6426)とポテトデキストロース寒天培地(PDA培地)上で30℃で5日間対峙培養した。   Benzoic acid-assimilating bacteria obtained by colony isolation were cultured for 5 days at 30 ° C. on strawberry anthrax (Glomerella cingulata NBRC 6426) and potato dextrose agar medium (PDA medium).

対峙培養した後に観察を行い、イチゴ炭疽病菌の生育抑制能を有する安息香酸資化性菌を拮抗菌として選択した。   Observation was carried out after culturing the cells against each other, and benzoic acid-assimilating bacteria having the ability to suppress the growth of strawberry anthracnose bacteria were selected as antagonistic bacteria.

選択した拮抗菌の中から、イチゴ炭疽病菌の生育抑制能力が最も高い菌株を絞り込んだ結果、CRSE−3株の単離に成功した。   As a result of narrowing down the strains having the highest ability to suppress the growth of strawberry anthracnose fungi from the selected antagonistic bacteria, the CRSE-3 strain was successfully isolated.

Figure 2010081837
<安全性試験>
単離したCRSE−3株が動植物に対し毒性、病原性がないことを確認するために、ラットおよび各種農作物に対するCRSE−3株の影響を調べた。
<ラットによる安全性確認試験>
ラット(系統:Crl:CD(SD)、微生物レベル:SPF、週齢:5週齢)雌雄各5匹を用意し、ラット1匹あたり1.0 ×108cfu (colony forming unit)のCRSE−3株の菌体を経口投与した。
Figure 2010081837
<Safety test>
In order to confirm that the isolated CRSE-3 strain is not toxic or pathogenic to animals and plants, the influence of the CRSE-3 strain on rats and various crops was examined.
<Safety confirmation test using rats>
Prepare 5 males and 5 females (strain: Crl: CD (SD), microorganism level: SPF, week age: 5 weeks old), and CRSE-3 strain of 1.0 × 10 8 cfu (colony forming unit) per rat Were orally administered.

経口投与した後、温度:19.0〜25.0℃、湿度:35.0〜75.0%、照明時間:12時間/日の条件で上記ラットを21日間飼育した。   After oral administration, the rats were raised for 21 days under the conditions of temperature: 19.0-25.0 ° C., humidity: 35.0-75.0%, lighting time: 12 hours / day.

ラットの飼料として、実験動物用固形飼料(MF、オリエンタル酵母工業株式会社製)を用いた。ラットの食餌については、CRSE−3株の菌体を経口投与する前日の夕方から投与日の投与後約3時間までの絶食期間を除いて自由摂取とした。   As animal feed, experimental animal solid feed (MF, manufactured by Oriental Yeast Co., Ltd.) was used. Rats were allowed to eat ad libitum except for the fasting period from the evening before the oral administration of the cells of the CRSE-3 strain to about 3 hours after administration on the day of administration.

ラットの飼育期間中、各ラットの生死観察および体重測定を行った。経口投与から21日間経過した全てのラットに、ペントバルビタールナトリウム(ネンブタール、大日本製薬株式会社製)を腹腔内投与する麻酔下で腹大動脈を切断し放血および安楽死させた。その後、ラットの肉眼的検査および主要な器官の病理学的検査を行った。   During the breeding period of rats, observation of life and death of each rat and body weight measurement were performed. All rats 21 days after oral administration were subjected to intraperitoneal administration of pentobarbital sodium (Nembutal, manufactured by Dainippon Pharmaceutical Co., Ltd.), and the abdominal aorta was cut and exsanguinated and euthanized. Thereafter, macroscopic examination of rats and pathological examination of major organs were performed.

その結果、CRSE−3株の投与が原因と考えられるラットの死亡、寿命の短縮および病理的な変化は全く認められなかった。
<農作物への影響>
各農作物(イチゴ、トマト、コマツナ、イネ)に対するCRSE−3株の影響を調べた。
As a result, no death, shortening of life span, and pathological change of rats considered to be caused by administration of the CRSE-3 strain were observed.
<Influence on crops>
The influence of the CRSE-3 strain on each crop (strawberry, tomato, komatsuna, rice) was examined.

まず、CRSE−3株をL字試験管に入れた10mlのTrypticase Soy Broth(TSB)培地(表2参照)に接種し30℃にて2日間振とう培養した。その後、培養液を遠心分離して得られた菌体を滅菌水で3回洗浄し、1×108cfu/mlとなるように調整して菌体懸濁液を得た。この菌体懸濁液を、イチゴ、トマト、コマツナ、イネに対して、週に1回、植物体の全体、葉の表面、裏面にいたるまで散布した。 First, the CRSE-3 strain was inoculated into 10 ml of Trypticase Soy Broth (TSB) medium (see Table 2) in an L-shaped test tube and cultured with shaking at 30 ° C. for 2 days. Thereafter, the cells obtained by centrifuging the culture solution were washed three times with sterilized water and adjusted to 1 × 10 8 cfu / ml to obtain a cell suspension. This bacterial cell suspension was sprayed once a week on strawberries, tomatoes, komatsuna, and rice until the entire plant body, the leaf surface, and the back surface.

その結果、各農作物に対するCRSE−3株の病原性は全く認められなかった。   As a result, no pathogenicity of the CRSE-3 strain to each crop was observed.

Figure 2010081837
<試験1>
単離したCRSE−3株の各種植物病原菌に対する増殖抑制作用を調べる試験を行った。
Figure 2010081837
<Test 1>
A test was conducted to examine the growth inhibitory action of the isolated CRSE-3 strain on various plant pathogens.

この増殖抑制試験に供した植物病原菌は、表3に示すように、ホウレンソウ立枯病菌(Pythium ultimum var. ultimum NBRC 32426株)、イネ立枯病菌(Pythium spinosum NBRC 32423株)、ホウレンソウ萎凋病菌(Fusarium oxysporum sp. Spinaciae NBRC 30467株)、キャベツ萎黄病菌(Fusarium oxysporum sp. Conglutinans NBRC 9469株)、イチゴ萎黄病菌(Fusarium oxysporum sp. fragariae NBRC 31180株)、トマト萎凋病菌(Fusarium oxysporum sp. Lycopersici NBRC 6531株)、ダイコン萎黄病菌(Fusarium oxysporum sp. raphani NBRC 9972株)、トマト半身萎凋病菌(Verticillium dahliae NBRC 9939株)、イチゴ炭疽病菌(Glomerella cingulata NBRC6425株)、イチゴ葉枯れ炭疽病菌(Colletotrichum orbiculare NBRC 33130株)、灰色かび病菌(Botrytis cinerea NBRC 9760株)である。 As shown in Table 3, the plant pathogens used in this growth inhibition test were spinach blight ( Pythium ultimum var. Ultimum NBRC 32426 ), rice blight ( Pythium spinosum NBRC 32423 ), spinach wilt ( Fusarium) oxysporum sp. Spinaciae NBRC 30467 ), cabbage dwarf fungus ( Fusarium oxysporum sp. Conglutinans NBRC 9469 ), strawberry dwarf fungus ( Fusarium oxysporum sp. fragariae NBRC 31180 ), tomato dwarf fungus ( Fusarium oxysporum sp. NB Lycopersic ) Radish yellow rot ( Fusarium oxysporum sp. Raphani NBRC 9972 strain ), tomato half body wilt fungus ( Verticillium dahliae NBRC 9939 strain ), strawberry anthracnose fungus ( Glomerella cingulata NBRC6425 strain ), strawberry leaf blight anthracnose fungus ( Colletotrichum orbiculare NBRC 33 strain ) It is a gray mold fungus ( Botrytis cinerea NBRC 9760 strain ).

まず、PDA培地(日水製薬社製)を複数個用意し、各PDA培地の中央部分に植物病原菌を種類別にそれぞれ植菌した。ただし、トマト半身萎凋病菌は増殖が遅かったため、25℃、暗黒条件で事前に2日間前培養し、その菌叢を植菌に用いた。   First, a plurality of PDA media (manufactured by Nissui Pharmaceutical Co., Ltd.) were prepared, and plant pathogens were inoculated by type in the center of each PDA medium. However, since the tomato half-wilt disease was slow to grow, it was pre-cultured for 2 days in advance at 25 ° C. in the dark, and the bacterial flora was used for inoculation.

各植物病原菌を植菌した後に、植菌した部分から約3cm離れた同培地の部分にCRSE
−3株を1cm×1cmの範囲でそれぞれ植菌した。
After inoculating each phytopathogenic fungus, add CRSE to the part of the same medium about 3 cm away from the inoculated part.
-3 strains were inoculated in the range of 1 cm × 1 cm.

植菌した植物病原菌とCRSE−3株を25℃、暗黒条件下で3日間培養した後、各植物病原菌に対する生育阻止帯の形成を観察・測定し植物病原菌の増殖を調べることによりCRSE−3株の各植物病原菌に対する拮抗能を評価した。   After culturing the inoculated plant pathogen and the CRSE-3 strain at 25 ° C. under dark conditions for 3 days, observe and measure the formation of a growth-inhibiting zone against each plant pathogen and examine the growth of the plant pathogen by examining the growth of the plant pathogen Were evaluated for their ability to antagonize each plant pathogen.

評価基準は、+++:極めて強い拮抗能あり(植物病原菌の増殖がほとんど停止する)、++:強い拮抗能あり(1mm以上の明確な阻止帯がある)、+:拮抗能あり(1mm未満の阻止帯がある)、−:拮抗能なしとした。   Evaluation criteria are +++: extremely strong antagonism (phytopathogenic growth almost stops), ++: strong antagonism (with a clear inhibition zone of 1 mm or more), +: antagonism (inhibition of less than 1 mm) There is a band),-: No antagonistic ability.

その結果を表3に示す。この表3から分かるように、灰色かび病菌以外の上記植物病原菌の増殖がCRSE−3株によって抑制され、CRSE‐3株が多種類の植物病原菌に対し幅広く作用してその増殖を抑制することが確認できた。   The results are shown in Table 3. As can be seen from Table 3, the growth of the above-mentioned phytopathogenic fungi other than the gray mold fungus is suppressed by the CRSE-3 strain, and the CRSE-3 strain acts on a wide variety of phytopathogenic fungi to suppress its growth. It could be confirmed.

このことはCRSE−3株がイチゴ炭疽病だけでなく各種植物病害を抑制できる可能性を示している。   This indicates the possibility that the CRSE-3 strain can suppress not only strawberry anthracnose but also various plant diseases.

Figure 2010081837
<CRSE−3株による生育阻害物質の分解試験>
単離したCRSE−3株について、代表的な生育阻害物質の分解能を調べた。
Figure 2010081837
<Degradation test of growth inhibitory substance by CRSE-3 strain>
For the isolated CRSE-3 strain, the resolution of representative growth inhibitors was examined.

CRSE-3株を2本のL字試験管に入れた10mlのTrypticase Soy Broth(TSB)培地(表2参照)に接種し30℃にて一晩振とう培養した。その結果、培養液の菌濃度が波長600nmの吸光度(OD600)で約0.731、及び0.6216となった。 The CRSE-3 strain was inoculated into 10 ml of Trypticase Soy Broth (TSB) medium (see Table 2) in two L-shaped test tubes and cultured overnight at 30 ° C. with shaking. As a result, the bacterial concentration of the culture solution was about 0.731 and 0.6216 in absorbance (OD 600 ) at a wavelength of 600 nm.

前培養液の菌濃度はTAITEC PHOTO METER mini photo 518R(タイテック(株)社製)を用いて測定した(以下吸光度の測定には同機器を用いた)。   The bacterial concentration in the preculture was measured using TAITEC PHOTO METER mini photo 518R (manufactured by Taitec Co., Ltd.) (hereinafter, the same instrument was used for measuring the absorbance).

W培地(芳香族化合物代謝培地、表4参照)10mlを含む試験管を複数本用意し、安息香酸、サリチル酸、m -ヒドロキシ安息香酸、p -ヒドロキシ安息香酸、プロトカテク酸、バニリン酸、シリンガ酸、ゲンチジン酸、2,4-ジクロロ安息香酸の基質溶液をそれぞれ用意し、1つのW培地に1種類の基質が20mMの濃度で含まれるように各試験管へ基質溶液を添加した。   Prepare a plurality of test tubes containing 10 ml of W medium (aromatic compound metabolism medium, see Table 4). Benzoic acid, salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, syringic acid, A substrate solution of gentisic acid and 2,4-dichlorobenzoic acid was prepared, and the substrate solution was added to each test tube so that one type of substrate was contained in one W medium at a concentration of 20 mM.

Figure 2010081837
W培地に前培養液200μlを添加して27℃、125rpmの条件で振とう培養を行った。培養開始から3日後に培養液の600nmにおける吸光度を測定してCRSE−3株の増殖を確認した。
Figure 2010081837
A preculture solution (200 μl) was added to W medium, and shaking culture was performed at 27 ° C. and 125 rpm. Three days after the start of culture, the absorbance of the culture solution at 600 nm was measured to confirm the growth of the CRSE-3 strain.

その結果を表5に示す。この表5から分かるように、CRSE−3株がほぼ全ての生育阻害物質を栄養源として分解・利用(資化)できることが確認され、特に難分解性塩素化合物である2,4-ジクロロ安息香酸もある程度資化することが確認された。   The results are shown in Table 5. As can be seen from Table 5, it was confirmed that the CRSE-3 strain can be decomposed and utilized (assimilated) using almost all growth-inhibiting substances as nutrient sources. In particular, 2,4-dichlorobenzoic acid which is a hardly-degradable chlorine compound Was confirmed to be assimilated to some extent.

Figure 2010081837
Figure 2010081837

CRSE−3株のホウレンソウ萎黄病に対する病害防除効果を種子栽培による試験で確認した。
128穴育苗トレイにオートクレーブ滅菌したピートモスを主体とした培土(有機担体)を充填し、1×108cfu/mlに調整したCRSE−3株の菌懸濁液を128穴育苗トレイの各穴に10 mlずつ分注した。
その後、ホウレンソウ‘ミレイ’の種子(山陽種苗社製)を15粒ずつ各穴に播種し、温度25℃、湿度80%、照度20,000Lux、日長12時間に調整した人工気象室内で栽培した。
播種後7日目に2.3×105cfu/mlに調整した萎黄病菌(Fusarium oxysporum f. sp. spinaciae、NBRC No.30467)の分生子懸濁液を各穴に5mlずつ分注して接種した。
CRSE−3株を添加せず萎黄病菌のみを接種した区を対照区Aとし、CRSE−3株の添加も萎黄病菌の接種も行わなかった区を対照区Bとした。
萎黄病菌を接種した7日後に、発芽率と生存率(子葉と本葉共に濃緑色の個体の割合)を調査した。
その結果、図1に示すように、対照区Aでは栽培植物の葉や茎に病徴は確認されず、生存率が80%であった。また、対照区Bでは、萎黄病による子葉の黄化が進行し、生存率は70%程度であった。
The disease control effect of CRSE-3 strain on spinach dwarf disease was confirmed by a test by seed cultivation.
Peat moss which was autoclaved in 128 holes seedling tray filled soil (organic carrier) consisting mainly of, 1 × 10 8 cfu / ml bacterial suspension CRSE-3 strain was adjusted to the respective holes of 128 holes seedling tray 10 ml aliquots were dispensed.
Thereafter, 15 seeds of spinach 'Mirei' (manufactured by Sanyo Seed) were sown in each hole and cultivated in an artificial weather chamber adjusted to a temperature of 25 ° C, a humidity of 80%, an illuminance of 20,000 Lux, and a day length of 12 hours.
Seven days after sowing, 5 ml each of conidial suspension of Fusarium oxysporum f. Sp. Spinaciae (NBRC No. 30467) adjusted to 2.3 × 10 5 cfu / ml was dispensed and inoculated. .
A group in which only CREW-3 strain was not added and inoculated with only yellow wilt bacteria was designated as control group A, and a group in which neither CRSE-3 strain was added nor yellow mold was inoculated was designated as control group B.
Seven days after inoculation with the yellow-yellowing fungus, germination rate and survival rate (ratio of dark green individuals in cotyledons and true leaves) were investigated.
As a result, as shown in FIG. 1, in the control group A, no symptom was observed on the leaves and stems of the cultivated plants, and the survival rate was 80%. In the control group B, cotyledon yellowing due to yellowing progressed, and the survival rate was about 70%.

これに対して、試験区1では萎黄病による子葉が黄化する個体の割合が減少すると共に栽培植物の生存率が対照区Aに比べて10%、対照区Bに比べて20%向上し、CRSE-3株の添加によりホウレンソウ萎黄病に対して高い病害防除効果を示した。   On the other hand, in the test group 1, the proportion of individuals whose cotyledons are yellowed due to yellowing is reduced, and the survival rate of the cultivated plants is improved by 10% compared to the control group A and 20% compared to the control group B. Addition of CRSE-3 strain showed high disease control effect against spinach wilt.

CRSE−3株のチンゲンサイ立枯病に対する病害防除効果を種子栽培による試験で確認した。
128穴育苗トレイにオートクレーブ滅菌したピートモスを主体とした培土を充填し、1×108cfu/mlに調整したCRSE−3株を各穴に10 mlずつ分注した。
上記培土には、ゼオライトやアタパルジャイト、セピアライト、モンモリロナイト、パーライト、鹿沼土、赤玉土、軽石、木炭、サンゴ砂などの無機多孔質担体(無機担体)を含めてもよい。
その後、各穴にチンゲンサイ‘長陽’(タキイ種苗社製)の種子を15粒ずつ播種し、温度25℃、湿度80%、照度20,000Lux、12時間日長に調整した人工気象室内で7日間栽培し、この植物を試験に用いた。
立枯病菌(Pythium ultimum Trow var. ultimum、NBRC No.32426) をシャーレに入れたPDA培地(日水製薬社製)にて25℃で培養し、培養後の立枯病菌の菌叢を滅菌したコルクボーラなどで培地ごとφ5mmに切り出し、PDA培地から寒天を除いたポテトデキストロース(PD)液体培地を200ml含む500ml容三角フラスコに植菌して7日間25℃にて振とう培養した。培養後、培養液を滅菌水により10倍希釈し、トレイの1穴あたり5 mlを接種した。
接種12日後に16穴中の中央8穴について、茎の腐敗していない発芽本数を調査した。CRSE−3株の添加も立枯病菌の接種も行わなかった区を対照区Cとし、CRSE−3株を添加せず立枯病菌のみを接種した区を対照区Dとした。
The disease control effect of the CRSE-3 strain on the blight of Chingensai was confirmed by a test by seed cultivation.
A 128-well seedling tray was filled with soil containing mainly peat moss sterilized by autoclaving, and 10 ml of CRSE-3 strain adjusted to 1 × 10 8 cfu / ml was dispensed into each hole.
The above soil may contain an inorganic porous carrier (inorganic carrier) such as zeolite, attapulgite, sepialite, montmorillonite, pearlite, Kanuma soil, Akadama soil, pumice, charcoal, coral sand and the like.
After that, seeds of Chingensai 'Changyang' (manufactured by Takii Seed Co., Ltd.) were sown in each hole by 15 seeds and cultivated for 7 days in an artificial weather chamber adjusted to a temperature of 25 ° C, humidity of 80%, illuminance of 20,000Lux, and 12-hour day length This plant was used for the test.
Bacterial fungus (Pythium ultimum Trow var. Ultimum, NBRC No.32426) was cultured at 25 ° C. in a PDA medium (manufactured by Nissui Pharmaceutical Co., Ltd.) in a petri dish, and the bacterial flora of the fungus after culturing was sterilized The medium was cut into φ5 mm with a cork borer, etc., inoculated into a 500 ml Erlenmeyer flask containing 200 ml of potato dextrose (PD) liquid medium obtained by removing agar from PDA medium, and cultured with shaking at 25 ° C. for 7 days. After culturing, the culture solution was diluted 10-fold with sterilized water, and 5 ml was inoculated per well of the tray.
Twelve days after the inoculation, the number of germinated stalks in the middle of the 16 holes was investigated. A group in which neither the CRSE-3 strain was added nor inoculated with the blight fungus was designated as a control group C, and a group in which no CRSE-3 strain was added and only the blight fungus was inoculated was designated as a control group D.

その結果、図2に示すように、対照区Cでは栽培植物の葉や茎に病徴は確認されず、生存率が80%であった。また、対照区Dでは、萎黄病による子葉の黄化が進行し、生存率は70%程度であった。   As a result, as shown in FIG. 2, in the control plot C, no symptom was confirmed on the leaves and stems of the cultivated plants, and the survival rate was 80%. In control group D, cotyledon yellowing due to yellowing progressed, and the survival rate was about 70%.

これに対し試験区2では、CRSE−3株を培地に添加することにより、立枯病菌による子葉黄化した個体の割合が減少し、生存率についてはCRSE−3株の添加も萎黄病菌の接種も行わなかった対象区Cより約10%向上し、対照区Dと比較して約23%向上し、ホウレンソウ萎黄病に対する病害防除効果と同程度の高い病害防除効果を示した。   On the other hand, in Test Zone 2, by adding the CRSE-3 strain to the medium, the proportion of cotyledonized individuals due to the bacterial wilt decreased, and for the survival rate, the addition of the CRSE-3 strain was also inoculated with the yellow rot fungus. It was about 10% better than the target group C, which was not performed, and about 23% better than the control group D, showing a disease control effect similar to the disease control effect on spinach dwarf disease.

葉面散布によるCRSE−3株のイチゴ炭疽病の抑制効果を調査した。
イチゴ幼苗(展開葉3枚)の葉全体に1×108cfu/mlに調整したCRSE−3株の菌懸濁液をハンドスプレーで満遍なく散布することにより接種した。
CRSE−3株を散布した後、このイチゴ幼苗を温度20℃、湿度80%、照度:20,000 Lux、日長12時間に制御した人工気象室に搬入した。
CRES−3株を散布してから1日後に、約106個/mlに濃度調整したイチゴ炭そ病菌(Glomerella cingulata NBRC6425株)の分生子懸濁液を、ハンドスプレーでイチゴ幼苗に満遍なく散布することにより炭疽病菌をイチゴ幼苗に接種した。
炭そ病菌の接種後、イチゴ幼苗をビニール袋で覆い、室温20℃、湿度90%、照度:20,000Lux、日長12時間の条件で2日間養生した。
養生後ビニール袋を除去し、室温30℃、湿度85%、照度:20,000Lux、日長12時間の人工気象室で2週間栽培を行った。
栽培開始から2週間後、イチゴ幼苗の観察を行い、イチゴの葉面に病斑を発症した株を発病株、それらが確認されなかった株を健全株として判定を行った。すなわち、イチゴの葉面に病斑が全く認められない株を健全株とし、葉面に病斑が認められた株を発病株とした。さらに発病株は、病斑の程度(わずかに病斑が見られる、明確に病斑が見られる、著しい病斑が見られる)により3段階に分けて評価した。
The inhibitory effect of CRSE-3 strain on strawberry anthracnose by foliar application was investigated.
The entire leaves of strawberry seedlings (3 developed leaves) were inoculated by uniformly spraying the CRSE-3 strain suspension adjusted to 1 × 10 8 cfu / ml with a hand spray.
After spraying the CRSE-3 strain, the strawberry seedlings were carried into a climate chamber controlled at a temperature of 20 ° C., a humidity of 80%, an illuminance of 20,000 Lux, and a day length of 12 hours.
One day after spraying the CRES-3 strain, a conidial suspension of strawberry anthracnose fungus (Glomerella cingulata NBRC6425 strain) adjusted to a concentration of about 10 6 cells / ml is spread evenly over the strawberry seedlings by hand spraying. The strawberry seedlings were inoculated with anthracnose fungi.
After inoculation with anthracnose fungi, strawberry seedlings were covered with a plastic bag and cured for 2 days under conditions of room temperature 20 ° C, humidity 90%, illuminance: 20,000 Lux, day length 12 hours.
After curing, the plastic bag was removed, and cultivation was carried out for 2 weeks in an artificial weather room with a room temperature of 30 ° C, humidity of 85%, illuminance of 20,000 Lux, and a day length of 12 hours.
Two weeks after the start of cultivation, strawberry seedlings were observed, and the strains that developed lesions on the leaves of the strawberries were determined as diseased strains, and the strains in which they were not confirmed were determined as healthy strains. That is, a strain in which no lesions were found on the leaves of strawberries was regarded as a healthy strain, and a strain in which lesions were found on the leaves was designated as a diseased strain. Further, the diseased strains were evaluated in three stages according to the degree of lesions (slight lesions, clear lesions, and significant lesions).

その結果、図3に示すように、対照区Eでは、発病率が高かったが、CRSE−3株を散布した試験区3で病害の程度が軽減された。   As a result, as shown in FIG. 3, in the control group E, the disease incidence was high, but in the test group 3 sprayed with the CRSE-3 strain, the degree of disease was reduced.

代表的な連作障害物質である安息香酸を原因とした農作物の生育障害に対し、CRSE−3株を供することによってどの程度低減効果が得られるか水耕栽培で調査した。   It was investigated by hydroponics how much the reduction effect can be obtained by providing CRSE-3 strain against the growth failure of crops caused by benzoic acid, which is a typical continuous cropping obstacle substance.

肥料養液に1/2濃度園試処方養液(山崎肯哉著、「養液栽培全編(増訂版)、博友社、昭和57年発行、107頁参照)を用い、この肥料養液に安息香酸を2mMとなるように添加した後、孔経0.22μmのポリエーテルスルフォン(PES)製のメンブレンフィルター(PES Bottle Top Filter 150ml、500ml、Nalge Nunc International Corp.製)を用いてフィルター(濾過)滅菌した。   This fertilizer nutrient solution is a 1 / 2-concentration garden prescription nutrient solution (see Yoshiya Yamazaki, “Nutrient Solution Cultivation (revised edition), Hirotosha, published in 1987, p. 107)”. After adding benzoic acid to 2 mM, filter with a membrane filter made of polyethersulfone (PES) with a pore size of 0.22 μm (PES Bottle Top Filter 150 ml, 500 ml, manufactured by Nalge Nunc International Corp.) ) Sterilized.

この肥料養液 200ml を 500ml容三角フラスコに分注し、肥料養液にCRSE−3株を植菌(水耕溶液処理)して通気性のシリコン栓をした後に25℃、120rpmにて7日間振とう培養した。シリコン栓および三角フラスコは事前に滅菌処理したものを用いた。   Dispense 200 ml of this fertilizer nutrient solution into a 500 ml Erlenmeyer flask, inoculate the fertilizer nutrient solution with CRSE-3 strain (hydroponic solution treatment), and plug a breathable silicone stopper for 7 days at 25 ° C and 120 rpm. Cultured with shaking. Silicone stoppers and Erlenmeyer flasks were sterilized in advance.

培養後の肥料養液には、約1.3×109 cfu/mlの密度でCRSE−3株が含まれていた。培養後の肥料養液を370ml 容の蓋付プラスチック容器(プラントボックス、旭テクノグラス(株)社製)に加えて根を肥料溶液に浸漬させた状態でチンゲンサイ無菌播種実生を定植した。 The fertilizer nutrient solution after the culture contained the CRSE-3 strain at a density of about 1.3 × 10 9 cfu / ml. The cultured fertilizer nutrient solution was added to a plastic container with a lid of 370 ml (plant box, manufactured by Asahi Techno Glass Co., Ltd.), and the rooting was immersed in the fertilizer solution.

その後、このチンゲンサイ無菌播種実生を温度:25℃一定、湿度80%、照度:20,000Lux、日長12時間に制御した人工気象室内で栽培した。   Thereafter, this seedling seedling seedling was cultivated in an artificial weather chamber controlled at a temperature of 25 ° C., a humidity of 80%, an illuminance of 20,000 Lux, and a day length of 12 hours.

なお、安息香酸もCRSE−3株も添加しなかった肥料養液で栽培した区を対照区F、安息香酸のみ添加しCRSE−3株を添加しなかった肥料養液で栽培した区を対照区Gとした。   In addition, the section cultivated with the fertilizer nutrient solution to which neither benzoic acid nor the CRSE-3 strain was added was the control plot F, and the plot cultivated with the fertilizer nutrient solution to which only the benzoic acid was added and the CRSE-3 strain was not added was the control plot. G.

調査は栽培7日目に行い、主根長、胚軸長、子葉長、最長側根長および側根本数を調査した。   The survey was conducted on the seventh day of cultivation, and the main root length, hypocotyl length, cotyledon length, longest side root length, and number of side roots were examined.

その結果、図4に示すように、安息香酸もCRSE−3株も添加しなかった対照区Fでは旺盛な生育が認められ、安息香酸のみ添加しCRSE−3株を添加しなかった対照区Gでは顕著に生育が低下した。   As a result, as shown in FIG. 4, vigorous growth was observed in the control group F in which neither benzoic acid nor the CRSE-3 strain was added, and the control group G in which only benzoic acid was added but no CRSE-3 strain was added. The growth was significantly reduced.

これに対し、安息香酸およびCRSE−3株を添加した試験区4では、何も添加しなかった対照区Fと比較して生長(胚軸長、子葉長、側根本数)がほぼ同程度にまで回復し、CRSE−3株が連作障害物質に対して高い分解能を有していることが示された。   On the other hand, in the test group 4 to which benzoic acid and the CRSE-3 strain were added, the growth (hypocotyl length, cotyledon length, number of lateral roots) was almost the same as the control group F to which nothing was added. It was shown that the CRSE-3 strain has high resolution against continuous cropping disorder substances.

CRSE−3株を培土に添加する(土壌処理)ことにより、安息香酸による生育障害がどの程度低減されるか調査した。   It was investigated how much the growth damage caused by benzoic acid was reduced by adding the CRSE-3 strain to the soil (soil treatment).

128穴育苗トレイにオートクレーブ滅菌したピートモスを主体とした培土を充填し、1×108cfu/mlに調整したCRSE−3株を各穴に10 ml添加し、各穴にチンゲンサイ‘長陽’の種子(タキイ種苗社製)を15粒播種した。 Fill the 128-hole seedling tray with soil containing mainly peat moss sterilized by autoclaving, add 10 ml of CRSE-3 strain adjusted to 1 × 10 8 cfu / ml to each hole, and seeds of Chinggensai 'Changyang' into each hole 15 seeds (Takii Seedling) were sown.

潅水として、1/2濃度園試処方養液に安息香酸を0 mM、2mM、10mM、20mM濃度で含むものを128穴育苗トレイの底面から供給し、温度25℃、湿度80%、照度20,000Lux、12時間日長に調整した人工気象室内で栽培した。   For irrigation, a 1 / 2-concentration garden prescription nutrient solution containing benzoic acid at a concentration of 0 mM, 2 mM, 10 mM, and 20 mM is supplied from the bottom of the 128-hole seedling tray, temperature 25 ° C, humidity 80%, illuminance 20,000 Lux Cultivated in a climate chamber adjusted to 12 hours of day length.

また、1/2濃度園試処方養液にCRSE−3株を添加せず安息香酸を0 mM、2mM、10mM、20mM濃度で添加したものを対照区H〜Kとして用いた。   Moreover, what added benzoic acid by 0 mM, 2 mM, 10 mM, and 20 mM density | concentration to the 1/2 density | concentration garden prescription nutrient solution without adding CRSE-3 strain | stump | stock was used as control group HK.

調査は栽培7日目に行い、発芽率および子葉長を計測した。   The survey was conducted on the seventh day of cultivation, and the germination rate and cotyledon length were measured.

その結果、図5に示すように、播種したチンゲンサイ全てが健全に生長して子葉長が10mm以上となった場合を健全成長率100%とすると、安息香酸無添加(0mM)の対照区Hでは健全成長率が86.4%であったが、安息香酸を20mM含む対照区Kでは健全成長率が24.4%まで低下した。   As a result, as shown in FIG. 5, when all the seedlings that were sown were grown healthy and the cotyledon length was 10 mm or more, and the healthy growth rate was 100%, the control group H without benzoic acid added (0 mM) The healthy growth rate was 86.4%, but the healthy growth rate dropped to 24.4% in the control plot K containing 20 mM benzoic acid.

これに対して、培地にCRSE−3株を添加した試験区5では、生長が回復して20mM安息香酸を加えた試験区8でも、健全成長率が60.6%にまで回復し、CRSE−3株は、培土や土壌に含まれる連作障害物質に対しても、実施例5の水耕栽培の試験で示されたように、高い分解能を有し、その結果、チンゲンサイの生長が回復することが示された。   On the other hand, in the test group 5 in which the CRSE-3 strain was added to the culture medium, the healthy growth rate recovered to 60.6% even in the test group 8 in which the growth was recovered and 20 mM benzoic acid was added. The three strains have high resolution even against continuous cropping substances contained in soil and soil, as shown in the hydroponic culture test of Example 5, and as a result, the growth of Chingen rhinoceros is restored. It has been shown.

CRSE-3のホウレンソウ萎黄病低減効果を示す図である。It is a figure which shows the spinach dwarf yellowing effect of CRSE-3. CRSE-3株のチンゲンサイ立枯病低減効果を示す図である。It is a figure which shows the Chingensai blight reduction effect of CRSE-3 strain | stump | stock. CRSE-3株のイチゴ炭そ病低減効果を示す図である。It is a figure which shows the strawberry anthracnose reduction effect of CRSE-3 stock | strain. 水耕でのCRSE-3株の安息香酸による生育阻害低減効果を示す図である。It is a figure which shows the growth inhibitory reduction effect by the benzoic acid of CRSE-3 strain | stump | stock by hydroponics. CRSE-3株添加培土の安息香酸による生育阻害低減効果を示す図である。It is a figure which shows the growth inhibition reduction effect by the benzoic acid of CRSE-3 stock addition culture. CRSE−3株とB.fungorumのrDNAの塩基配列を示す。The base sequences of rDNA of CRSE-3 strain and B. fungorum are shown. 16s rDNAの塩基配列に基づくCRSE−3株の分子系統樹を示す。枝の分岐付近の数字はブートストラップ値、左下の線はスケールバーを示す。株名の末尾のTはその種の基準株(Type strain)であることを示す。The molecular phylogenetic tree of CRSE-3 strain based on the base sequence of 16s rDNA is shown. The number near the branch of the branch indicates the bootstrap value, and the lower left line indicates the scale bar. The T at the end of the strain name indicates that type strain.

配列番号1:Burkholderia sp.(CRSE-3株)のrDNA(1472mer.)
配列番号2:Burkholderia fungorumのrDNA(1472mer.)
SEQ ID NO: 1 rDNA (1472mer.) Of Burkholderia sp. (CRSE-3 strain)
Sequence number 2: Burkholderia fungorum rDNA (1472mer.)

Claims (8)

植物病害を防除し且つ連作障害物質を分解するバークホルデリア属細菌。   A bacterium belonging to the genus Burkholderia that controls plant diseases and decomposes substances that hinder continuous cropping. 16SリボゾームDNA(16S rDNA)の塩基配列が配列番号1に示す塩基配列であり、β-ガラクトシダーゼ活性を示すことを特徴とする請求項1に記載のバークホルデリア属細菌。   The Burkholderia bacterium according to claim 1, wherein the base sequence of 16S ribosomal DNA (16S rDNA) is the base sequence shown in SEQ ID NO: 1 and exhibits β-galactosidase activity. CRSE−3株(NITE P-486)であることを特徴とする請求項1に記載のバークホルデリア属細菌。   The Burkholderia bacterium according to claim 1, which is a CRSE-3 strain (NITE P-486). 請求項1乃至3のいずれか1つに記載のバークホルデリア属細菌を含有することを特徴とする植物病害防除剤。   A plant disease control agent comprising the Burkholderia bacterium according to any one of claims 1 to 3. 請求項1乃至請求項3いずれか1つに記載のバークホルデリア属細菌を吸着した有機担体または無機担体を含有することを特徴とする植物病害防除剤。   A plant disease control agent comprising an organic carrier or an inorganic carrier to which the Burkholderia bacterium according to any one of claims 1 to 3 is adsorbed. 請求項1乃至請求項3のいずれか一つに記載のバークホルデリア属細菌を用いて土壌処理または水耕養液処理することを特徴とする病害防除方法。   A disease control method, wherein the soil treatment or hydroponic solution treatment is performed using the Burkholderia bacterium according to any one of claims 1 to 3. 請求項1乃至請求項3のいずれか一つに記載のバークホルデリア属細菌の培養菌体懸濁液を植物体へ散布することを特徴とする病害防除方法。   A disease control method comprising spraying a cultured cell suspension of Burkholderia bacteria according to any one of claims 1 to 3 to a plant body. 請求項1乃至請求項3のいずれか一つに記載のバークホルデリア属細菌の培養菌体懸濁液に植物体の根を浸漬することを特徴とする病害防除方法。   A disease control method comprising immersing the root of a plant body in a cultured cell suspension of a Burkholderia bacterium according to any one of claims 1 to 3.
JP2008252981A 2008-09-30 2008-09-30 Burkholderia bacteria, plant disease control agent and control method using the same Expired - Fee Related JP5441092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252981A JP5441092B2 (en) 2008-09-30 2008-09-30 Burkholderia bacteria, plant disease control agent and control method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252981A JP5441092B2 (en) 2008-09-30 2008-09-30 Burkholderia bacteria, plant disease control agent and control method using the same

Publications (2)

Publication Number Publication Date
JP2010081837A true JP2010081837A (en) 2010-04-15
JP5441092B2 JP5441092B2 (en) 2014-03-12

Family

ID=42246423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252981A Expired - Fee Related JP5441092B2 (en) 2008-09-30 2008-09-30 Burkholderia bacteria, plant disease control agent and control method using the same

Country Status (1)

Country Link
JP (1) JP5441092B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014573A (en) * 2011-04-19 2013-01-24 Kumiai Chemical Industry Co Ltd Method for controlling disease and/or insect pest of nutriculture plant by light and microorganism
JP2013521227A (en) * 2010-02-25 2013-06-10 マロン バイオ イノベイションズ インコーポレイテッド Isolated strain of the genus Burkholderia and insecticidal metabolites derived therefrom
KR101761877B1 (en) * 2015-03-24 2017-07-26 충청남도 Composition for controlling plant disease using Burkholderia lata CAB13001
CN111836879A (en) * 2018-05-23 2020-10-27 松下知识产权经营株式会社 Tomato pathogenic fungus detection device and detection method using same
CN111836880A (en) * 2018-05-23 2020-10-27 松下知识产权经营株式会社 Tomato pathogenic fungus detection device and detection method using same
KR102201835B1 (en) * 2019-12-06 2021-01-12 전라북도 순창군(농업기술센터장) Burkholderia territorii SCAT001 for controlling plant pathogens and a botanical control agent comprising the same
CN114946885A (en) * 2022-06-22 2022-08-30 湖南省农业环境生态研究所 Microbial pesticide for resisting leaf spot disease of polygonatum odoratum
CN115029253A (en) * 2022-06-22 2022-09-09 湖南省农业环境生态研究所 Application of chaetomium aureofaciens or spores thereof in resisting leaf spot disease of polygonatum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684148B (en) * 2021-08-19 2023-04-14 云南中烟工业有限责任公司 Burkholderia cepacia, and isolated culture method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013010571; 園芸学研究 Vol.5, No.4, 2006, p.431-436 *
JPN6013010572; 日本土壌肥料学雑誌 Vol.64, No.3, 1993, p.243-246 *
JPN6013010573; Food Microbiol. Vol.23, No.4, 2006, p.351-358 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521227A (en) * 2010-02-25 2013-06-10 マロン バイオ イノベイションズ インコーポレイテッド Isolated strain of the genus Burkholderia and insecticidal metabolites derived therefrom
JP2013014573A (en) * 2011-04-19 2013-01-24 Kumiai Chemical Industry Co Ltd Method for controlling disease and/or insect pest of nutriculture plant by light and microorganism
KR101761877B1 (en) * 2015-03-24 2017-07-26 충청남도 Composition for controlling plant disease using Burkholderia lata CAB13001
CN111836879A (en) * 2018-05-23 2020-10-27 松下知识产权经营株式会社 Tomato pathogenic fungus detection device and detection method using same
CN111836880A (en) * 2018-05-23 2020-10-27 松下知识产权经营株式会社 Tomato pathogenic fungus detection device and detection method using same
KR102201835B1 (en) * 2019-12-06 2021-01-12 전라북도 순창군(농업기술센터장) Burkholderia territorii SCAT001 for controlling plant pathogens and a botanical control agent comprising the same
CN114946885A (en) * 2022-06-22 2022-08-30 湖南省农业环境生态研究所 Microbial pesticide for resisting leaf spot disease of polygonatum odoratum
CN115029253A (en) * 2022-06-22 2022-09-09 湖南省农业环境生态研究所 Application of chaetomium aureofaciens or spores thereof in resisting leaf spot disease of polygonatum
CN114946885B (en) * 2022-06-22 2023-06-06 湖南省农业环境生态研究所 Microbial pesticide for resisting leaf spot disease of polygonatum odoratum
CN115029253B (en) * 2022-06-22 2023-06-09 湖南省农业环境生态研究所 Application of chaetomium aureum or spores thereof in resisting leaf spot disease of rhizoma polygonati

Also Published As

Publication number Publication date
JP5441092B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5441092B2 (en) Burkholderia bacteria, plant disease control agent and control method using the same
KR101334742B1 (en) A novel Bacillus subtilis strain and use thereof for protecting the rust of plant roots
RU2550268C2 (en) Novel fluorescent pseudomonade type pseudomonas azotoformans for enhancing plant germination and growth
JP5617092B2 (en) Novel microorganism and plant disease control agent using the microorganism
CN111778173B (en) Bacillus subtilis Pro1A2, microbial inoculum and preparation method thereof, and application of bacillus subtilis Pro1A2 in cultivation of melons
JP2829325B2 (en) Antibacterial and anti-nematode agents, plant cell activators and microorganisms therefor
JP5374260B2 (en) Agricultural materials
KR100942228B1 (en) Biological control of plant diseases using flavobacterium hercynium epb-c313
KR100397796B1 (en) Antifungal Biocontrol Agents and Use thereof
JPH09308372A (en) Culture soil for raising seedling, its production and raising of disease-resistant seedling
JP4630627B2 (en) Plant seed germination rate improver
JPH10287520A (en) Plant growth regulator
JP4398663B2 (en) Plant growth promotion and disease control materials
KR102143334B1 (en) Pseudomonas frederiksbergensis strain possessing antifungal activity against major pathogenic bacteria of plant and use thereof
JP4189224B2 (en) Microorganisms belonging to the genus Bacillus and control agents using the same
Sivakumar et al. Screening and identification of potential Bacillus spp. for the management of bacterial wilt of brinjal
KR102044161B1 (en) Method for controlling pathogenicity of pathogenic bacteria by treating 2R,3R-Butanediol or 2S,3S-Butanediol
JP2004143102A (en) Microbiologic preparation containing actinomyces
KR20090105726A (en) Bacillus megaterium isolate 22-5 controlling bacterial spot and anthracnose of red-pepper
KR20070080775A (en) Serratia plymuthica a21-4, biological control method of phytophthora diseases using the a21-4 and antifungal compound produced by the a21-4
KR100474662B1 (en) Microorganism of Pseudomonas putida which stimulates the growth of mushroom and method for culturing mushrooms using the same
WO2005045004A1 (en) Controlling agent and controlling method for diesease damage on brassicaceous plants
JPH0734738B2 (en) Plant pathogen-suppressing microorganism and method of using the same
KR101475260B1 (en) Bacillus subtilis JS strain promoting plant growth isolated from rhizosphere soil of Miscanthus and uses thereof
KR20180105460A (en) Burkholderia stabilis PG159 strain isolated from mountain-cultivated ginseng roots having antimicrobial activity against ginseng plant pathogen and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110608

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5441092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees