KR102089241B1 - A method for prediction of the immunotherapy effects to cancer patients - Google Patents

A method for prediction of the immunotherapy effects to cancer patients Download PDF

Info

Publication number
KR102089241B1
KR102089241B1 KR1020180014177A KR20180014177A KR102089241B1 KR 102089241 B1 KR102089241 B1 KR 102089241B1 KR 1020180014177 A KR1020180014177 A KR 1020180014177A KR 20180014177 A KR20180014177 A KR 20180014177A KR 102089241 B1 KR102089241 B1 KR 102089241B1
Authority
KR
South Korea
Prior art keywords
cancer
measured value
subject
cells
predicting
Prior art date
Application number
KR1020180014177A
Other languages
Korean (ko)
Other versions
KR20190094710A (en
Inventor
신의철
김경환
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020180014177A priority Critical patent/KR102089241B1/en
Priority to PCT/KR2019/001037 priority patent/WO2019151712A1/en
Publication of KR20190094710A publication Critical patent/KR20190094710A/en
Application granted granted Critical
Publication of KR102089241B1 publication Critical patent/KR102089241B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Abstract

본 발명은 암 환자에서 면역 치료 효과를 예측하는 방법, 보다 구체적으로 항 PD-1 면역항암제 치료 효과를 예측하는 방법에 관한 것이다. 면역항암제란 인체가 가지고 있는 고유의 면역계를 강화시켜 암에 대항력을 높여 주는 약물을 의미한다. 면역항암제는 기존의 암 치료법의 단점을 보완하였는데, 1세대 화학항암제가 암세포를 직접 공격하고, 2세대 표적 항암제가 암 관련 유전자를 공격하는 기능을 한다면, 3세대 항암제라 불리는 면역항암제는 면역력을 강화해 암을 치료하게 된다. 가장 대표적인 면역항암제인 PD-1 면역항암제로 키트루다와 옵디보가 출시되어 의학 분야에서 암 치료에 이용되고 있으나, PD-1 면역항암제가 효과가 있는 환자군과 효과가 없는 환자군을 사전에 구분할 수 있는 방법이 부재하여, 효과가 없는 환자군의 경우 PD-1 면역항암제 치료에 대한 비용과 시간을 손실하고 있는 실정이다.
따라서 본 발명은 암 환자에서 면역 치료 효과를 예측하는 방법에 관한 것으로, 본 발명의 방법에 따르면 PD-1 면역항암제가 효과가 있는 환자군과 효과가 없는 환자군을 사전에 구분 가능하므로, 의학 분야에서 크게 이용될 것으로 기대된다.
The present invention relates to a method for predicting the effect of immunotherapy in cancer patients, and more specifically, to a method for predicting the effect of treatment with anti-PD-1 immunoanticancer agents. Immune anti-cancer drugs are drugs that strengthen the body's own immune system and increase its resistance against cancer. Immune anti-cancer drugs complement the shortcomings of existing cancer treatments. If the first-generation chemotherapeutic agents attack cancer cells directly and the second-generation target anti-cancer drugs function to attack cancer-related genes, the immuno-cancer drugs called third-generation anticancer drugs enhance immunity To treat cancer. Kitruda and Opdivo are released as PD-1 immuno-cancer drugs, which are the most representative immuno-cancer drugs. They are used in cancer treatment in the medical field, but PD-1 immuno-cancer drugs are effective in distinguishing patients from those that are effective and those who are not. In the absence of a method, in the case of the ineffective patient group, the cost and time for the treatment of the PD-1 immuno-cancer agent are being lost.
Therefore, the present invention relates to a method for predicting an immunotherapy effect in a cancer patient, and according to the method of the present invention, it is possible to distinguish between a patient group in which a PD-1 immune anticancer agent is effective and an ineffective patient group in advance. It is expected to be used.

Description

암 환자에서 면역 치료 효과를 예측하는 방법{A method for prediction of the immunotherapy effects to cancer patients}A method for prediction of the immunotherapy effects to cancer patients}

본 발명은 암 환자에서 면역 치료 효과를 예측하는 방법에 관한 것으로, 보다 구체적으로 항 PD-1 면역항암제 치료 효과를 예측하는 방법에 관한 것이다.The present invention relates to a method for predicting an immunotherapy effect in a cancer patient, and more particularly, to a method for predicting an anti-PD-1 immunoanticancer treatment effect.

종래의 암 치료는 수술, 방사선 요법, 및 화학요법으로 최대한 암세포를 환자에게서 제거해 내는 방법이었다. 그러나 수술 및 방사선 요법은 비교적 초기 암으로 전이가 되지 않은 상황에서 완전히 암세포를 제거하였을 때 치료 효과가 있다. 즉, 수술에 의해 암 조직을 제거하더라도 소수의 암세포가 신체의 다른 부위로 전이된 경우에는 재발 위험이 높다. 또한 화학요법은 광범위하게 암 치료에 사용할 수 있으나, 대부분의 고형암에서 치료율이 좋지 않고, 빠르게 분열하는 정상적인 세포들을 함께 사멸시키므로 여러 가지 부작용이 나타나는 단점이 있었다. 이러한 종래의 문제점을 개선하기 위해서, 최근에는 면역항암제를 이용한 면역 치료가 대두되고 있다.Conventional cancer treatment has been a method of removing cancer cells from a patient as much as possible by surgery, radiation therapy, and chemotherapy. However, surgery and radiation therapy have a therapeutic effect when cancer cells are completely removed in a situation where metastasis to a relatively early cancer has not occurred. That is, even if cancer tissue is removed by surgery, the risk of recurrence is high when a small number of cancer cells have spread to other parts of the body. In addition, chemotherapy can be widely used for the treatment of cancer, but in most solid cancers, the treatment rate is poor, and it kills normal cells that divide rapidly. In order to improve these conventional problems, in recent years, immunotherapeutics using immuno-cancer agents have emerged.

면역항암제란 인체가 가지고 있는 고유의 면역계를 강화시켜 암에 대항력을 높여 주는 약물을 의미한다. 인체가 가진 본연의 힘으로 암을 저지한다는 점에서 종래의 암치료를 바라보는 개념과 근본적인 차이가 있다. 면역항암제는 기존의 암 치료법의 단점을 보완하였는데, 1세대 화학항암제가 암세포를 직접 공격하고, 2세대 표적 항암제가 암 관련 유전자를 공격하는 기능을 한다면, 3세대 항암제라 불리는 면역항암제는 면역력을 강화해 암을 치료하게 된다.Immune anti-cancer drugs are drugs that strengthen the body's own immune system and increase its resistance against cancer. There is a fundamental difference from the concept of looking at conventional cancer treatment in that it stops cancer with the power of the human body. Immune anti-cancer drugs complement the shortcomings of existing cancer treatments. If the first-generation chemotherapeutic agents attack cancer cells directly and the second-generation target anti-cancer drugs function to attack cancer-related genes, the immuno-cancer drugs called third-generation anticancer drugs enhance immunity. To treat cancer.

가장 대표적인 면역항암제인 항 PD-1 항체는 활성화된 T세포(면역세포)의 표면에 있는 단백질인 PD-1과 암세포의 표면에 있는 단백질인 PD-L1, PD-L2의 결합을 막아주는 치료제이다. 암세포의 표면에 있는 PD-L1과 PD-L2가 T세포의 표면에 있는 단백질인 PD-1과 결합하면, T세포의 기능이 저하되고 암세포를 공격하지 못한다. 따라서 항 PD-1 면역항암제는 T세포의 PD-1 수용체에 달라붙어, 암세포의 PD-L1, PD-L2와 T세포의 PD-1이 결합하는 것을 억제함으로서, 암 세포에 대한 T세포의 활성을 유지하도록 하고 암세포의 회피 기능을 억제한다. 항 PD-1 면역항암제로 키트루다와 옵디보가 출시되어 의학 분야에서 암 치료에 이용되고 있으나, 항 PD-1 면역항암제가 효과가 있는 환자군과 효과가 없는 환자군을 사전에 구분할 수 있는 방법이 부재하여, 효과가 없는 환자군의 경우 항 PD-1 면역항암제 치료에 대한 비용과 시간을 손실하고 있는 실정이다.Anti-PD-1 antibody, the most representative immuno-cancer drug, is a therapeutic agent that prevents the binding of the protein PD-1 on the surface of activated T cells (immune cells) and the proteins PD-L1 and PD-L2 on the surface of cancer cells. . When PD-L1 and PD-L2 on the surface of cancer cells bind to PD-1, a protein on the surface of T cells, the function of T cells is reduced and cancer cells cannot be attacked. Therefore, the anti-PD-1 immune anti-cancer agent adheres to the PD-1 receptor of T cells and inhibits the binding of PD-L1, PD-L2 of cancer cells to PD-1 of T cells, thereby activating T cells against cancer cells. And inhibits the evasion function of cancer cells. Although Kitruda and Opdivo are released as anti-PD-1 immuno-cancer drugs, they are used in cancer treatment in the medical field, but there is no way to distinguish between the effective and ineffective patient groups. Therefore, in the case of the ineffective patient group, it is a situation that is losing the cost and time for the treatment of the anti-PD-1 immune anti-cancer agent.

따라서 본 발명은 암 환자에서 면역 치료 효과를 예측하는 방법에 관한 것으로, 본 발명의 방법에 따르면 항 PD-1 면역항암제가 효과가 있는 환자군과 효과가 없는 환자군을 사전에 구분 가능하므로, 의학 분야에서 크게 이용될 것으로 기대된다.Therefore, the present invention relates to a method for predicting an immunotherapy effect in a cancer patient, and according to the method of the present invention, it is possible to distinguish between an effective patient group and an ineffective patient group according to the method of the present invention in the medical field. It is expected to be used greatly.

본 발명은 상기와 같은 종래의 기술상의 문제점을 해결하기 위해 안출된 것으로, 암 환자에서 면역 치료 효과를 예측하는 방법, 보다 구체적으로 항 PD-1 면역항암제 치료 효과를 예측하는 방법에 관한 것이다.The present invention has been devised to solve the problems of the prior art as described above, and relates to a method for predicting an immunotherapy effect in a cancer patient, and more specifically, a method for predicting an anti-PD-1 immunoanticancer treatment effect.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.Hereinafter, various embodiments described herein are described with reference to the drawings. In the following description, for the full understanding of the present invention, various specific details, such as specific forms, compositions and processes, have been described. However, certain embodiments may be practiced without one or more of these specific details, or in combination with other known methods and forms. In other instances, well-known processes and manufacturing techniques are not described in specific details in order not to unnecessarily obscure the present invention. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, form, composition or characteristic described in connection with the embodiment is included in one or more embodiments of the invention. Thus, the context of “in one embodiment” or “an embodiment” expressed in various places throughout this specification does not necessarily represent the same embodiment of the invention. Additionally, special features, shapes, compositions, or properties can be combined in any suitable way in one or more embodiments.

명세서에서 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.Unless otherwise specified in the specification, all scientific and technical terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains.

본 발명의 일 구체예에서 "면역항암제"란, 방사선, 항암제 등 암세포를 직접적으로 공격하는 치료나 약물 대신 환자의 면역력을 키워 암을 치료할 수 있도록 돕는 치료제를 말한다. 주로 면역 체크포인트 단백질(PD-1, PD-L1, CTLA-4)을 찾아 암세포의 면역회피 기능을 마비시켜 T세포(면역세포)가 암세포를 파괴하는 것을 도와주는 방식이다. 몸속의 면역체계가 암세포를 공격하는 성질을 활성화시키는 역할을 하기 때문에 다양한 암에 적용할 수 있으며 소화불량, 구토, 백혈구 감소증, 탈모 등의 부작용도 줄일 수 있다. 현재 면역 체크포인트 단백질을 막는 다양한 항체들이 임상적으로 사용되거나 임상시험중에 있으며 항 PD-1 항체는 opdivo(nivolumab), keytruda(pembrolizumab), MEDI0680, pidizilumab가 있고 항 PD-L1 항체는 tecentriq(atezolizumab), Imfinzi(duvuralumab), Bavencio(Avelumab), MDX-1105 이 있으며, 항 CTLA-4 항체는 Yervoy(ipilimumab)이 있다(Topalian et al., 2015 Cancer Cell 27:450-461; Alsaab et al.,2017 Front Pharmacol 23:561). In one embodiment of the present invention, "immune anti-cancer agent" refers to a therapeutic agent that helps to treat cancer by increasing the immunity of the patient instead of treatment or drugs that directly attack cancer cells, such as radiation and anti-cancer agents. It is a method that helps T cells (immune cells) destroy cancer cells by paralyzing the immune evasion function of cancer cells by mainly looking for immune checkpoint proteins (PD-1, PD-L1, CTLA-4). Since the body's immune system plays a role in activating the properties of attacking cancer cells, it can be applied to various cancers and can also reduce side effects such as indigestion, vomiting, leukopenia, and hair loss. Various antibodies that block the immune checkpoint protein are currently in clinical use or in clinical trials, and anti-PD-1 antibodies are opdivo (nivolumab), keytruda (pembrolizumab), MEDI0680, pidizilumab, and anti-PD-L1 antibodies are tecentriq (atezolizumab) , Imfinzi (duvuralumab), Bavencio (Avelumab), MDX-1105, and the anti-CTLA-4 antibody is Yervoy (ipilimumab) (Topalian et al., 2015 Cancer Cell 27: 450-461; Alsaab et al., 2017 Front Pharmacol 23: 561).

본 발명의 일 구체예에서 “PD-1”이란, CD279로도 명명되며, CD28/CTLA4 공동 자극/억제 수용체 패밀리(co-stimulatory/inhibitory receptor family)와 관련된 55 KD의 수용체 단백질이다(Blank et al., 2005 Cancer Immunol Immunother 54:307-314). PD-1을 코딩하는 유전자 및 cDNA를 클로닝하여 마우스 및 인간에서의 특징을 살펴본 바 있다(Ishida et al., 1992 EMBO J 11:3887-3395; Shinohara et al., 1994 Genomics 23:704-706). 전장 PD-1은 288개의 아미노산 잔기 (NCBI accession number: NP_005009)를 포함한다. 세포외 도메인은 1-167 아미노산 잔기로 구성되고, 세포질 C-말단 꼬리는 191-288 잔기를 포함하며, 이는 2개의 가설적 면역-조절 모티프인 면역수용체 티로신 기반 저해 모티프(ITIM; Vivier et al., 1997 Immunol Today 18:286-291) 및 면역수용체 티로신 스위치 모티프(ITSM; Chemnitz et al., 2004 J Immunol 173:945-954)를 포함한다. 지금까지, 2개의 서열 관련 리간드 PD-L1(B7-H1), 및 PD-L2(B7-DC)는 PD-1과 특이적으로 상호작용하여 세포 내 신호전달을 유도하고, CD3 및 CD28 매개 T-세포 활성화를 저해하는 것으로 확인되었으며(Riley, 2009 Immunol Rev 229:114-125), 결국 T-세포 활성을 조절 예를 들어, 기타 성장 인자 및 싸이토카인 분비뿐 아니라, 세포 성장, IL-2 및 IFN-γ 분비를 감소시키는 것이다.In one embodiment of the present invention, “PD-1”, also called CD279, is a receptor protein of 55 KD associated with the CD28 / CTLA4 co-stimulatory / inhibitory receptor family (Blank et al. , 2005 Cancer Immunol Immunother 54: 307-314). Genes in PD-1 and cDNA were cloned to examine characteristics in mice and humans (Ishida et al., 1992 EMBO J 11: 3887-3395; Shinohara et al., 1994 Genomics 23: 704-706) . The full-length PD-1 contains 288 amino acid residues (NCBI accession number: NP_005009). The extracellular domain consists of 1-167 amino acid residues, and the cytoplasmic C-terminal tail contains 191-288 residues, which are two hypothetical immuno-regulatory motifs, the immunoreceptor tyrosine-based inhibitory motif (ITIM; Vivier et al. , 1997 Immunol Today 18: 286-291) and the immunoreceptor tyrosine switch motif (ITSM; Chemnitz et al., 2004 J Immunol 173: 945-954). To date, two sequence-related ligands PD-L1 (B7-H1), and PD-L2 (B7-DC) specifically interact with PD-1 to induce intracellular signaling, CD3 and CD28 mediated T It has been shown to inhibit cell activation (Riley, 2009 Immunol Rev 229: 114-125), which eventually modulates T-cell activity, for example cell growth, IL-2 and IFN, as well as other growth factors and cytokine secretion It is to reduce -γ secretion.

PD-1의 발현은 T-세포, B-세포, 단핵세포 및 자연살해(NK) 세포와 같은 면역세포에서 빈번하게 확인된다. 기타 인간 조직, 예를 들어 근육, 상피, 신경 조직 등에서는 거의 발현되지 않는다. 또한, 고레벨의 PD-1 발현은 종종 면역세포의 활성과 관련이 있다. 예를 들어, 인간 T-세포주인 Jurkat이 PHA(phytohaemagglutinin) 또는 포르볼 에스테르(12-O-tetradecanoylphorbol-13-acetate 또는 TPA)에 의해 활성화되면, 웨스턴 블랏에서 보이는 바와 같이 PD-1의 발현이 상향 조절되었다(Vibharka et al., 1997 Exp Cell Res 232:25-28). 항-CD3 항체의 자극에 의해, 자극된 마우스 T- 및 B-림프구와 1차 인간 CD4+ T 세포에서 동일한 현상이 관찰되었다(Agata et al., 1996 Int Immunol 8:765-772; Bennett et al., 2003 J Immunol 170:711-118). PD-1 발현 증가에 의해 효과 T세포를 자극하고, 활성화된 효과 T세포를 고갈 및 감소된 면역활성 방향으로 다시 안내한다. 따라서, PD-1 매개 저해 신호는 면역 관용에 중요한 역할을 한다(Bour-Jordan et al., 2011 Immunol Rev 241:180-205).Expression of PD-1 is frequently confirmed in immune cells such as T-cells, B-cells, monocytes and natural killer (NK) cells. It is rarely expressed in other human tissues, such as muscle, epithelium, and nerve tissues. In addition, high levels of PD-1 expression are often associated with the activity of immune cells. For example, when the human T-cell line Jurkat is activated by phytohaemagglutinin (PHA) or porbol ester (12-O-tetradecanoylphorbol-13-acetate or TPA), the expression of PD-1 is elevated as seen in Western blots. Was regulated (Vibharka et al., 1997 Exp Cell Res 232: 25-28). The same phenomenon was observed in stimulated mouse T- and B-lymphocytes and primary human CD4 + T cells by stimulation of anti-CD3 antibodies (Agata et al., 1996 Int Immunol 8: 765-772; Bennett et al ., 2003 J Immunol 170: 711-118). The effect T cells are stimulated by increased PD-1 expression, and the activated effect T cells are depleted and guided back to the reduced immune activity direction. Thus, PD-1 mediated inhibition signals play an important role in immune tolerance (Bour-Jordan et al., 2011 Immunol Rev 241: 180-205).

다양한 암에서 종양 침윤 림프구(tumor-infiltrating lymphocytes: TILs)의 PD-1 발현 및 종양 세포의 PD-1 리간드 발현 증가가 보고되었고, 다른 유형의 조직 및 기관 예를 들어 폐(Konishi et al., 2004 Clin Cancer Res 10:5094-5100), 간(Shi et al., 2008 Int J Cancer 128:887-896; Gao et al., 2009 Clin Cancer Res 15:971-979), 위(Wu et al., 2006 Acta Histochem 108:19-24), 신장(Thompson et al., 2004 Proc Natl Acad Sci 101:17174-17179; Thompson et al., 2007 Clin Cancer Res 13:1757-1761), 유방 (Ghebeh et al., 2006 Neoplasia 8:190-198), 난소(Hamanishi et al. 2007 Proc Natl Acad Sci 104:3360-3365), 췌장(Nomi et al., 2007 Clin Cancer Res 13:2151-2157), 멜라노사이트(Hino et al., 2010 Cancer 116:1757-1766), 및 식도(Ohigashi et al., 2005 Clin Cancer Res 11:2947-2953)가 포함된다. 더욱 빈번하게, 이러한 암에서 PD-1 및 PD-L1의 발현은 환자 생존 결과에 대한 좋지 못한 예후와 연관된다. PD-1 유전자를 낙아웃하여 이종이식(Xenograft) 암 세포 성장을 억제한 형질전환 마우스를 통해, 암 제거 또는 관용을 위한 면역 시스템 조절에서의 PD-1 신호전달에 대한 중요성을 더욱 자세히 설명하였다(Zhang et al., 2009 Blood 114:1545-1552).Increased PD-1 expression of tumor-infiltrating lymphocytes (TILs) in various cancers and PD-1 ligand expression in tumor cells has been reported, and other types of tissues and organs such as lungs (Konishi et al., 2004 Clin Cancer Res 10: 5094-5100), liver (Shi et al., 2008 Int J Cancer 128: 887-896; Gao et al., 2009 Clin Cancer Res 15: 971-979), stomach (Wu et al., 2006 Acta Histochem 108: 19-24), kidney (Thompson et al., 2004 Proc Natl Acad Sci 101: 17174-17179; Thompson et al., 2007 Clin Cancer Res 13: 1757-1761), breast (Ghebeh et al. , 2006 Neoplasia 8: 190-198), ovary (Hamanishi et al. 2007 Proc Natl Acad Sci 104: 3360-3365), pancreas (Nomi et al., 2007 Clin Cancer Res 13: 2151-2157), melanocytes (Hino et al., 2010 Cancer 116: 1757-1766), and the esophagus (Ohigashi et al., 2005 Clin Cancer Res 11: 2947-2953). More frequently, the expression of PD-1 and PD-L1 in these cancers is associated with poor prognosis for patient survival outcomes. The importance of PD-1 signaling in immune system regulation for cancer elimination or tolerance was described in more detail through transgenic mice that knocked out the PD-1 gene and inhibited Xenograft cancer cell growth ( Zhang et al., 2009 Blood 114: 1545-1552).

PD-1 신호전달의 상향 조절에 의해 면역 관용의 암 증식으로 이어질 뿐 아니라, 인간의 바이러스 감염 및 확장으로도 이어진다. 유행성 간 감염 바이러스 HBV 및 HCV는 간세포에서 PD-1 리간드의 과발현을 유도하고 효과 T세포에서 PD-1 신호전달을 활성화하여, 바이러스 감염에 대한 T-세포 고갈 및 관용을 야기한다(Boni et al., 2007 J Virol 81:4215-4225; Golden-Mason et al., 2008 J Immunol 180:3637-3641). 마찬가지로, HIV 감염은 유사한 기작으로 인간 면역 시스템을 빈번하게 회피한다. 길항 분자에 의해 PD-1 신호전달을 치료적으로 조절하여 관용으로부터 면역세포를 회복할 수 있고, 재활성시켜 암 및 만성 바이러스 감염을 제거할 수 있다(Blank et al., 2005 Cancer Immunol Immunother 54:307-314; Okazaki et al., 2007 Int Immunol 19:813-824).Up-regulation of PD-1 signaling not only leads to cancer proliferation of immune tolerance, but also to human viral infection and expansion. Epidemic liver infection viruses HBV and HCV induce overexpression of PD-1 ligand in hepatocytes and activate PD-1 signaling in effect T cells, causing T-cell depletion and tolerance for viral infections (Boni et al. , 2007 J Virol 81: 4215-4225; Golden-Mason et al., 2008 J Immunol 180: 3637-3641). Likewise, HIV infection frequently evades the human immune system with a similar mechanism. PD-1 signaling can be modulated therapeutically by antagonist molecules to recover immune cells from tolerance and re-activated to eliminate cancer and chronic viral infections (Blank et al., 2005 Cancer Immunol Immunother 54: 307-314; Okazaki et al., 2007 Int Immunol 19: 813-824).

본 발명의 일 구체예에서, (a) 피검체의 T 세포수를 측정하는 단계; (b) 상기 피검체에게 면역항암제를 투여하는 단계; (c) 상기 피검체의 T 세포수를 1차 재측정하는 단계; (d) (a)단계에서의 측정값보다 (c)단계에서의 측정값이 증가하는 것을 확인하는 단계;를 포함하는 암 환자에 있어서 면역항암제 치료 효과를 예측하는 방법을 제공하고, 상기 방법은 (e) 상기 피검체의 T 세포수를 2차 재측정하는 단계;를 추가로 포함하는 방법을 제공하며, 상기 (c)단계는 (b)단계로부터 1일 내지 14일에 수행하는 것을 특징으로 하는 방법을 제공하며, 상기 방법은 (f) (c)단계에서의 측정값보다 (e)단계에서의 측정값이 감소하는 것을 확인하는 단계;를 추가로 포함하는 방법을 제공하며, 상기 (e)단계는 (b)단계로부터 15일 내지 21일에 수행하는 것을 특징으로 하는 방법을 제공한다.In one embodiment of the present invention, (a) measuring the T cell number of the subject; (b) administering an anti-cancer agent to the subject; (c) primary re-measurement of the number of T cells in the subject; (d) confirming that the measured value in step (c) is increased than the measured value in step (a); and provides a method for predicting the therapeutic effect of an immuno-cancer drug in a cancer patient, the method comprising: (e) a second re-measurement of the T cell number of the subject; provides a method further comprising, the step (c) is characterized in that it is carried out from 1 to 14 days from step (b) It provides a method, wherein the method (f) (c) step of confirming that the measured value in step (e) decreases than the measured value; provides a method further comprising, Step) provides a method characterized in that it is performed on the 15th to 21st days from step (b).

또한 상기의 T 세포수는 T 세포수, T 세포의 활성화 분비물, 및 T 세포 활성화도 중에서 T 세포수를 측정하는 것을 특징으로 하는 암 환자에 있어서 면역항암제 치료 효과를 예측하는 방법을 제공하고, 상기 T 세포수는 Ki-67 발현값으로 측정하는 것을 특징으로 하는 방법을 제공하며, 상기 발현값은 유전자 발현값, 또는 단백질 발현값인 방법을 제공하며, 상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 이상일 경우에, 상기 피검체의 면역항암제 치료 효과가 높을 것으로 예측하는 단계를 포함하는 방법을 제공하며, 상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 이상일 경우에, 상기 피검체의 예후가 좋을 것으로 예측하는 단계를 포함하는 방법을 제공하며, 상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 미만일 경우에, 상기 피검체의 면역항암제 치료 효과가 낮을 것으로 예측하는 단계를 포함하는 방법을 제공하며, 상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 미만일 경우에, 상기 피검체의 예후가 나쁠 것으로 예측하는 단계를 포함하는 방법을 제공한다.In addition, the T cell number provides a method for predicting the therapeutic effect of an immunoanticancer agent in a cancer patient, characterized in that the T cell number is measured in the T cell number, T cell activation secretion, and T cell activation degree. The number of T cells provides a method characterized by measuring the Ki-67 expression value, and the expression value provides a method that is a gene expression value or a protein expression value, and the measured value in step (c) is (a). ) If the 2.8 times or more than the measured value of the step, provides a method comprising the step of predicting that the therapeutic effect of the immune anti-cancer agent of the subject is high, the measured value of step (c) is the measured value of step (a) If it is more than 2.8 times, provides a method comprising the step of predicting that the prognosis of the subject is good, if the measured value of step (c) is less than 2.8 times the measured value of step (a), the Immunity of the subject Providing a method comprising the step of predicting that the cancer drug treatment effect is low, if the measured value of step (c) is less than 2.8 times the measured value of step (a), predicting that the prognosis of the subject is poor Provides a method comprising steps.

또한 상기의 암은 유방암, 자궁경부암, 신경교종, 뇌암, 흑색종, 폐암, 방광암, 전립선암, 백혈병, 신장암, 간암, 대장암, 췌장암, 위암, 담낭암, 난소암, 임파종, 골육종, 자궁암, 구강암, 기관지암, 비인두암, 후두암, 피부암, 혈액암, 갑상선암, 부갑상선암, 요관암, 선암, 및 흉선암으로 구성되는 그룹으로부터 선택되는 어느 하나 이상인 암 환자에 있어서 면역항암제 치료 효과를 예측하는 방법을 제공하고, 상기 암은 폐암 또는 흉선암인 방법을 제공한다.In addition, the cancer is breast cancer, cervical cancer, glioma, brain cancer, melanoma, lung cancer, bladder cancer, prostate cancer, leukemia, kidney cancer, liver cancer, colon cancer, pancreatic cancer, stomach cancer, gallbladder cancer, ovarian cancer, lymphoma, osteosarcoma, uterine cancer, Method for predicting the therapeutic effect of immunocancer drug therapy in patients with at least one cancer selected from the group consisting of oral cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, skin cancer, blood cancer, thyroid cancer, parathyroid cancer, ureteral cancer, adenocarcinoma, and thymic cancer And the cancer is lung cancer or thymic cancer.

또한 상기의 면역항암제는 항 PD-1 항체, 항 PD-L1 항체, 또는 항 CTLA-4 항체인, 암 환자에 있어서 면역항암제 치료 효과를 예측하는 방법을 제공한다.In addition, the immunoanti-cancer agent provides an anti-PD-1 antibody, an anti-PD-L1 antibody, or an anti-CTLA-4 antibody.

본 발명의 다른 구체예에서, (a) 피검체의 T 세포수를 측정하는 단계; (b) 상기 피검체에게 후보물질을 투여하는 단계; (c) 상기 피검체의 T 세포수를 1차 재측정하는 단계; (d) (a)단계에서의 측정값보다 (c)단계에서의 측정값이 증가하는 것을 확인하는 단계;를 포함하는 암 환자에 있어서 면역항암제 후보물질의 암 치료 효과를 스크리닝하는 방법을 제공하고, 상기 (c)단계는 (b)단계로부터 1일 내지 14일에 수행하는 것을 특징으로 하는 방법을 제공하며, 상기 T 세포수는 Ki-67 발현값으로 측정하는 것을 특징으로 하는 방법을 제공하며, 상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 이상일 경우에, 상기 면역항암제 후보물질을 암 치료용 물질인 것으로 판단하는 단계를 포함하는 방법을 제공하며, 상기 암은 유방암, 자궁경부암, 신경교종, 뇌암, 흑색종, 폐암, 방광암, 전립선암, 백혈병, 신장암, 간암, 대장암, 췌장암, 위암, 담낭암, 난소암, 임파종, 골육종, 자궁암, 구강암, 기관지암, 비인두암, 후두암, 피부암, 혈액암, 갑상선암, 부갑상선암, 요관암, 선암, 및 흉선암으로 구성되는 그룹으로부터 선택되는 어느 하나 이상인 방법을 제공하며, 상기 암은 폐암 또는 흉선암인 방법을 제공한다.In another embodiment of the present invention, (a) measuring the T cell number of the subject; (b) administering a candidate substance to the subject; (c) primary re-measurement of the number of T cells in the subject; (d) confirming that the measured value in step (c) is higher than the measured value in step (a); and providing a method for screening the cancer treatment effect of an immunocancer drug candidate in a cancer patient comprising a , The step (c) provides a method characterized in that it is performed from 1 to 14 days from step (b), and the T cell number provides a method characterized by measuring with Ki-67 expression value, , When the measured value of step (c) is 2.8 times or more than the measured value of step (a), it provides a method comprising determining the candidate candidate for the anti-cancer agent as a cancer treatment substance, wherein the cancer is Breast cancer, cervical cancer, glioma, brain cancer, melanoma, lung cancer, bladder cancer, prostate cancer, leukemia, kidney cancer, liver cancer, colon cancer, pancreatic cancer, stomach cancer, gallbladder cancer, ovarian cancer, lymphoma, osteosarcoma, uterine cancer, oral cancer, bronchial cancer, Nasopharyngeal cancer, laryngeal cancer, skin cancer, blood cancer, Service sangseonam, part thyroid cancer, ureteral cancer, any one or more methods selected from the group consisting of cancer, and thymic cancer, and the cancer is lung cancer or thymus cancer provides methods.

이하 상기 본 발명을 단계별로 상세히 설명한다.Hereinafter, the present invention will be described in detail step by step.

본 발명은 암 환자에서 면역 치료 효과를 예측하는 방법에 관한 것으로, 본 발명의 방법에 따르면 PD-1 면역항암제가 효과가 있는 환자군과 효과가 없는 환자군을 사전에 구분 가능하므로, 의학 분야에서 크게 이용될 것으로 기대된다.The present invention relates to a method for predicting an immunotherapy effect in a cancer patient, and according to the method of the present invention, it is possible to distinguish between a patient group in which a PD-1 immune anticancer agent is effective and an ineffective patient group, so it is widely used in the medical field. It is expected to be.

도 1은 본 발명의 일 실시예에 따른, anti-PD-1 치료된 흉선상피종양 환자에서 약물투여, 및 혈액 채취의 시간적 도식을 나타낸 도이다.
도 2는 본 발명의 일 실시예에 따른, 본 발명에서 사용한 유세포분석의 게이트 전략(gating strategies)을 나타낸 도이다.
도 3은 본 발명의 일 실시예에 따른, anti-PD-1 치료된 흉선상피종양 환자에서 T 세포의 항원 특이성에 근거한 anti-PD-1 치료의 효과를 나타낸 도이다.
도 4는 본 발명의 일 실시예에 따른, anti-PD-1 치료된 흉선상피종양 환자에서 anti-PD-1 치료 후 PD-1+CD8+ T세포의 Ki-67+과 HLA-DR+CD38+ 빈도 변화를 나타낸 도이다.
도 5은 본 발명의 일 실시예에 따른, anti-PD-1 치료된 흉선상피종양 환자에서 anti-PD-1 치료 이후에 135개 파라미터들의 치료반응응 예측력을 나타낸 도이다.
도 6은 본 발명의 일 실시예에 따른, anti-PD-1 치료된 흉선상피종양 환자에서 환자의 치료반응에 따른 PD-1+CD8+ T세포에서 Ki-67 발현의 변화(Ki-67D7 /D0)를 나타낸 도이다.
도 7는 본 발명의 일 실시예에 따른, anti-PD-1 치료된 흉선상피종양 환자에서 Ki-67D7/D0 컷오프값이 2.8을 기준으로 구분한 환자들의 질병통제율, 및 질병 무진행 생존율을 나타낸 도이다.
도 8은 본 발명의 일 실시예에 따른, anti-PD-1 치료된 비소세포폐암 환자에서 약물투여 및 혈액 채취의 시간적 도식, 및 실험 결과를 나타낸 도이다.
도 9은 본 발명의 일 실시예에 따른, anti-PD-1 치료된 비소세포폐암 환자에서 anti-PD-1 치료 전, 치료 1주 후, 치료 3주 후 의 PD-1+CD8+ T세포에서 Ki-67+의 빈도 변화를 나타낸 도이다.
도 10은 본 발명의 일 실시예에 따른, anti-PD-1 치료된 비소세포폐암 환자에서 Ki-67D7 /D0 컷오프값이 2.8을 기준으로 구분한 환자들의 질병통제율, 질병 무진행 생존율, 및 전체 생존기간을 나타낸 도이다.
1 is a diagram showing a time diagram of drug administration and blood collection in an anti-PD-1 treated thyroid epithelial tumor patient, according to an embodiment of the present invention.
FIG. 2 is a diagram showing a gate strategy of flow cytometry analysis used in the present invention according to an embodiment of the present invention.
3 is a view showing the effect of anti-PD-1 treatment based on antigen specificity of T cells in an thymic epithelial tumor patient treated with anti-PD-1, according to an embodiment of the present invention.
Figure 4, in accordance with an embodiment of the present invention, after the anti-PD-1 treatment in patients with anti-PD-1 treated thymic epithelial tumor, PD-1 + CD8 + Ki-67 + and HLA-DR + CD38 of T cells + Diagram showing frequency change.
5 is a view showing the predictive power of response response of 135 parameters after anti-PD-1 treatment in an anti-PD-1 treated thyroid epithelial tumor patient, according to an embodiment of the present invention.
6 is a change of Ki-67 expression in PD-1 + CD8 + T cells according to a treatment response of a patient in an anti-PD-1 treated thyroid epithelial tumor patient according to an embodiment of the present invention (Ki-67 D7 / D0 ).
7 is a disease control rate and disease-free survival rate of patients with a Ki-67 D7 / D0 cutoff value based on 2.8 in an anti-PD-1 treated thyroid epithelial tumor patient, according to an embodiment of the present invention. It is a diagram showing.
8 is a view showing a time diagram of drug administration and blood collection in a non-small cell lung cancer patient treated with anti-PD-1 according to an embodiment of the present invention, and experimental results.
9 is PD-1 + CD8 + T cells after anti-PD-1 treatment, 1 week after treatment, and 3 weeks after treatment in a non-small cell lung cancer patient treated with anti-PD-1 according to an embodiment of the present invention. It is a diagram showing the frequency change of Ki-67 + in.
10 is a disease control rate, disease-free survival rate of patients with a Ki-67 D7 / D0 cutoff value based on 2.8 in an anti-PD-1 treated non-small cell lung cancer patient, according to an embodiment of the present invention. And overall survival.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

환자 및 샘플 수집Patient and sample collection

2016년 3월부터 2016년 6월까지 펨브롤리주맙(pembrolizumab)을 투여(200mg/ 3주)하여 효과를 평가하는 2기 임상 시험(NCT02607631)에 등록된 환자 중 적어도 1회 이상의 백금계 항암제를 이용한 항암요법을 받은 4기 흉선상피종양(thymic epithelial tumor; TET) 환자들 중 기관 검사위원회(Institutional Review Boards)에 따라 혈액 수집에 동의한 환자 31명으로부터 첫번째 펨브롤리주맙 투여 전(Day 0)과 투여 7일 후(Day 7) 말초 혈액을 채취하였다. 상기 약물투여 및 혈액 채취의 시간적 도식을 도 1에 나타내었다. 상기와 같은 방법으로, 2016년 4월부터 2017년 4월까지 펨브롤리주맙(pembrolizumab, 200mg/ 3주) 또는 니볼루맙(nivolumab, 2 mg/Kg/ 2주)을 투여받은 4기 비소세포폐암(non-small cell lung cancer; NSCLC) 환자 29명에게서도 혈액을 채취하였다. 이들의 자료는 TET 코호트에서 발견된 예측 마커의 검증에 사용하였다. 일부 환자에게서는 0일, 7일, 및 21일째에 혈액 수집을 실시하여 면역 반응의 변화를 모니터링하였다.From March 2016 to June 2016, at least one platinum-based anticancer drug used in at least one of the patients enrolled in the Phase 2 clinical trial (NCT02607631) evaluating the effect by administering pembrolizumab (200 mg / 3 weeks) Of 31 patients with thymic epithelial tumor (TET) who received chemotherapy, 31 patients who agreed to collect blood according to the Institutional Review Boards before and after the first administration of Pembrolizumab (Day 0) Peripheral blood was collected 7 days later (Day 7). The time diagram of the drug administration and blood collection is shown in FIG. 1. In the same manner as described above, stage 4 non-small cell lung cancer received pembrolizumab (200 mg / 3 weeks) or nivolumab (2 mg / Kg / 2 weeks) from April 2016 to April 2017 Blood was also collected from 29 patients with non-small cell lung cancer (NSCLC). Their data were used to validate predictive markers found in the TET cohort. Blood collection was performed on days 0, 7, and 21 in some patients to monitor changes in the immune response.

수집 혈액으로부터 Ficoll-Paque(GE Healthcare, Uppsala, Sweden) 밀도 구배 원심 분리법으로 말초 혈액 단핵세포(PBMCs)를 분리하였고, 실험에 사용하기 전까지 냉동 보존하였다.Peripheral blood mononuclear cells (PBMCs) were isolated from the collected blood by Ficoll-Paque (GE Healthcare, Uppsala, Sweden) density gradient centrifugation and cryopreserved until use in the experiment.

종양 반응은 고체 종양의 반응 평가 기준(RECIST, 버전 1.1.)에 따라 컴퓨터 단층 촬영 또는 자기 공명 영상으로 9주마다 평가하였다. 객관적 반응은 완전 반응 또는 부분 반응으로 구분하였고, 질병통제대조군(Durable disease control)은 6 개월 이상 지속되는 부분적 또는 안정적인 암환자군으로 구분하였다.Tumor response was evaluated every 9 weeks by computed tomography or magnetic resonance imaging according to the response evaluation criteria of solid tumors (RECIST, version 1.1.). The objective response was divided into a complete response or a partial response, and the disease control control was divided into a partial or stable cancer patient group that lasted more than 6 months.

유세포 분석Flow cytometry

멀티칼라 유세포 분석에 사용된 형광 접합 항체 종류를 하기 표 1에 기재하였다.Table 1 shows the types of fluorescent conjugated antibodies used for multi-color flow cytometry.

항체명Antibody name 비고Remark anti-CD8anti-CD8 (SK1 and RPA-T8), BD Biosciences, San Jose, CA(SK1 and RPA-T8), BD Biosciences, San Jose, CA anti-CD3anti-CD3 (UCTH1 or SK7), BD Biosciences, San Jose, CA(UCTH1 or SK7), BD Biosciences, San Jose, CA anti-CD45RAanti-CD45RA (HI100), BD Biosciences, San Jose, CA(HI100), BD Biosciences, San Jose, CA anti-CD4anti-CD4 (SK3), BD Biosciences, San Jose, CA(SK3), BD Biosciences, San Jose, CA anti-ICOSanti-ICOS (DX29), BD Biosciences, San Jose, CA(DX29), BD Biosciences, San Jose, CA anti-CD25anti-CD25 (M-A251), BD Biosciences, San Jose, CA(M-A251), BD Biosciences, San Jose, CA anti-CD28anti-CD28 (CD28.2), BD Biosciences, San Jose, CA(CD28.2), BD Biosciences, San Jose, CA anti-Granzyme Banti-Granzyme B (GB11), BD Biosciences, San Jose, CA(GB11), BD Biosciences, San Jose, CA anti-PD-1anti-PD-1 (EH.12.2H7), Biolegend, San Diego, CA(EH.12.2H7), Biolegend, San Diego, CA anti-Ki-67anti-Ki-67 (Ki-67), Biolegend, San Diego, CA(Ki-67), Biolegend, San Diego, CA anti-CD38anti-CD38 (HB7), Biolegend, San Diego, CA(HB7), Biolegend, San Diego, CA anti-CTLA-4anti-CTLA-4 (L3D10), Biolegend, San Diego, CA(L3D10), Biolegend, San Diego, CA anti-CD127anti-CD127 (A019D5), Biolegend, San Diego, CA(A019D5), Biolegend, San Diego, CA anti-GITRanti-GITR (108-17), Biolegend, San Diego, CA(108-17), Biolegend, San Diego, CA anti-TIGITanti-TIGIT (MBSA43), eBioscience, San Diego, CA(MBSA43), eBioscience, San Diego, CA anti-HLA-DRanti-HLA-DR (LN3), eBioscience, San Diego, CA(LN3), eBioscience, San Diego, CA anti-CCR4anti-CCR4 (D8SEE), eBioscience, San Diego, CA(D8SEE), eBioscience, San Diego, CA amti-FoxP3amti-FoxP3 (PCH101), eBioscience, San Diego, CA(PCH101), eBioscience, San Diego, CA anti-CD14anti-CD14 (61D3), eBioscience, San Diego, CA(61D3), eBioscience, San Diego, CA anti-CD19anti-CD19 (HIB19), eBioscience, San Diego, CA(HIB19), eBioscience, San Diego, CA anti-CD57anti-CD57 (TBO1), eBioscience, San Diego, CA(TBO1), eBioscience, San Diego, CA anti-CCR7anti-CCR7 (FAB197F), R&D Systems(FAB197F), R & D Systems anti-human IgG4 Fcanti-human IgG4 Fc (HP6025), Southern Biotech(HP6025), Southern Biotech

PD-1 발현 세포에 대한 펨브롤리주맙 또는 니볼루맙(human IgG4) 약제의 결합이 치료 후 시료에서 PD-1 염색을 방해하기 때문에, anti-PD-1 염색과 함께 anti-human IgG4 Fc 염색을 수행하였다. 생존/사멸(Live/dead) 세포 식별은 적색-형광 반응성 염료(Invitrogen, Carlsbad, CA)를 사용하였고, Ki-67, granzyme B, FoxP3, 및 CTLA-4에 대한 세포내 염색은 FoxP3 전사 인자 염색 완충액 키트(eBioscience)를 사용하였다. 종양 항원에 특이적인 CD8 T 세포는 PE-conjugated MHC I dextramer NY-ESO-1157-165(SLLMWITQV/HLA-A*0201, Immudex, Copenhagen, Denmark)를 를 사용하여 검출하였고, HCMV에 특이적인 CD8 T 세포는 PE-conjugated MHC I pentamer HCMV pp65 495-504(NLVPMVATV/HLA-A*0201, Proimmune, Oxford, UK)를 사용하여 검출하였다. 모든 유세포분석은 LSR II 유동 세포 계측기(BD Biosciences)로 수행하였고, FlowJo 소프트웨어(Treestar, San Carlos, CA)로 데이터 분석하였다. 본 발명에서 사용한 유세포분석의 게이트 전략(gating strategies)을 도 2에 나타내었다. 구체적으로, (A)는 PD-1+ CD8 T 세포, (B)는 multimer-positive CD8 T 세포의 게이팅 전략을 나타낸다.Since binding of pembrolizumab or nivolumab (human IgG4) drug to PD-1 expressing cells interferes with PD-1 staining in samples after treatment, anti-human IgG4 Fc staining is performed together with anti-PD-1 staining Did. For live / dead cell identification, red-fluorescent reactive dyes (Invitrogen, Carlsbad, CA) were used, and intracellular staining for Ki-67, granzyme B, FoxP3, and CTLA-4 stained FoxP3 transcription factor A buffer kit (eBioscience) was used. CD8 T cells specific for tumor antigens were detected using PE-conjugated MHC I dextramer NY-ESO-1 157-165 (SLLMWITQV / HLA-A * 0201, Immudex, Copenhagen, Denmark) and CD8 specific for HCMV T cells were detected using PE-conjugated MHC I pentamer HCMV pp65 495-504 (NLVPMVATV / HLA-A * 0201, Proimmune, Oxford, UK). All flow cytometry was performed with LSR II flow cytometry (BD Biosciences) and data analysis with FlowJo software (Treestar, San Carlos, CA). The gate strategies of the flow cytometry analysis used in the present invention are shown in FIG. 2. Specifically, (A) shows the gating strategy of PD-1 + CD8 T cells, and (B) multimer-positive CD8 T cells.

통계 처리Statistics processing

마커의 발현량 변화는 7일 시료의 양성 세포 빈도를 0일 시료의 빈도를 기준으로 환산하여 분석하였다. 범주형 변수는 chi-square test, 또는 Fisher's exact test를 사용하여 비교하였다. 정규 분포 연속 변수의 경우에는 Student's t-test와 paired t-test를 사용하여, 정규 분포가 아닌 경우에는 Mann-Whitney U-test와 Wilcoxon signed-rank 검정을 사용하여 쌍을 이루지 않은 값과 쌍을 이루는 값을 각각 비교하였다. 2개 이상의 그룹을 비교할 때에는 One-way analysis of variance(ANOVA) 분석을 사용하였고, 데이터가 비정상적으로 분포되었을 때에는 Kruskal-Wallis test를 이용하였다. 두 매개 변수 사이의 상관 관계는 Pearson 상관 계수를 사용하여 평가하였다. 바이오 마커의 효용성을 평가하기 위해서는 receiver operating characteristic curve (ROC)로부터 area under curve(AUC)를 평가하였고, Youden 지수가 최대화된 지점에서 최적의 cutoff point를 추출하였다. 생존 곡선은 Kaplan-Meier 방법을 사용하여 생성하였고, 비교는 log-rank test로 수행 하였으며, 생존율과 관련하여 발견된 바이오 마커의 독립적인 중요성을 평가하기 위해 나이, 성별, 조직학적 데이터, 이전 화학 요법 병력, 및 전이 부위 수를 조정한 다변수 cox 회귀 분석을 수행하였다. 모든 통계 분석에서 0.05 미만의 양면 P 값을 통계적으로 유의하다고 간주하였고, Prism software version 6.0(GraphPad, La Jolla, CA), 및 R statistical software(version 3.2.2, The R Foundation for Statistical Computing, Vienna, Austria)를 이용하여 분석하였다.The change in the expression level of the marker was analyzed by converting the positive cell frequency of the 7-day sample based on the frequency of the 0-day sample. Categorical variables were compared using the chi-square test, or Fisher's exact test. Paired with unpaired values using Student's t-test and paired t-test for normal distribution continuous variables, and Mann-Whitney U-test and Wilcoxon signed-rank test for non-normal distribution The values were compared respectively. One-way analysis of variance (ANOVA) analysis was used to compare two or more groups, and the Kruskal-Wallis test was used when data were abnormally distributed. The correlation between the two parameters was evaluated using the Pearson correlation coefficient. To evaluate the effectiveness of the biomarker, the area under curve (AUC) was evaluated from the receiver operating characteristic curve (ROC), and the optimal cutoff point was extracted at the point where the Youden index was maximized. Survival curves were generated using the Kaplan-Meier method, comparisons were performed with a log-rank test, and age, gender, histological data, and previous chemotherapy were used to evaluate the independent significance of the biomarkers found in relation to survival rates. A multivariate cox regression analysis was performed that adjusted the history and number of metastatic sites. A double-sided P value of less than 0.05 was considered statistically significant in all statistical analyzes, Prism software version 6.0 (GraphPad, La Jolla, CA), and R statistical software (version 3.2.2, The R Foundation for Statistical Computing, Vienna, Austria).

환자의 임상적 특징 분석Analysis of patient's clinical characteristics

TET 환자의 임상 병리학적 특징과 NSCLC 환자의 임상 병리학적 특징을 각각 표 2와 표 3에 나타내었다.Table 2 and Table 3 show the clinical pathological characteristics of TET patients and the clinical pathological characteristics of NSCLC patients, respectively.

CharacteristicCharacteristic Discovery cohort (n = 31)Discovery cohort (n = 31) Age, median (range), yrsAge, median (range), yrs 5858 (26-78)(26-78) Sex, n (%)Sex, n (%) Male   Male 2020 (64.5)(64.5) Female   Female 1111 (35.5)(35.5) Histology, n (%)Histology, n (%) Thymoma   Thymoma 66 (19.4)(19.4) Thymic carcinoma   Thymic carcinoma 2525 (80.6)(80.6) Prior chemotherapy line, median (range)Prior chemotherapy line, median (range) 22 (1-5)(1-5) Tumor burden, median (range), cmTumor burden, median (range), cm 12.412.4 (1.7-27.0)(1.7-27.0) Study drug, n (%)Study drug, n (%) Pembrolizumab   Pembrolizumab 3131 (100.0)(100.0) Nivolumab   Nivolumab 00 (0)(0) Best overall response, n (%)Best overall response, n (%) Complete response   Complete response 00 (0)(0) Partial response   Partial response 66 (19.4)(19.4) Stable disease   Stable disease 1818 (58.1)(58.1) Progressive disease   Progressive disease 77 (22.6)(22.6)

CharacteristicCharacteristic Validation cohort (n = 29)Validation cohort (n = 29) Age, median (range), yrsAge, median (range), yrs 6565 (35-82)(35-82) Sex, n (%)Sex, n (%) Male   Male 2121 (72.4)(72.4) Female   Female 88 (27.6)(27.6) Histology, n (%)Histology, n (%) Adenocarcinoma   Adenocarcinoma 1515 (51.7)(51.7) Squamous cell carcinoma   Squamous cell carcinoma 1010 (34.5)(34.5) Others   Others 44 (13.8)(13.8) Prior chemotherapy, median (range)Prior chemotherapy, median (range) 33 (1-9)(1-9) Tumor burden, median (range), cmTumor burden, median (range), cm 7.57.5 (2.0-15.7)(2.0-15.7) Study drug, n (%)Study drug, n (%) Pembrolizumab   Pembrolizumab 1313 (44.8)(44.8) Nivolumab   Nivolumab 1616 (55.2)(55.2) Best overall response, n (%)Best overall response, n (%) Complete response   Complete response 1One (3.4)(3.4) Partial response   Partial response 77 (24.2)(24.2) Stable disease   Stable disease 88 (27.6)(27.6) Progressive disease   Progressive disease 1313 (44.8)(44.8)

TET 환자들에게 펨브롤리주맙 중앙값 8 주기(range, 1-22 주기) 치료를 수행하였다. 그 중 6명의 환자들이 객관적인 종양 반응을 나타내었고, 질병통제대조군은 11명의 환자로 구성되었다. NSCLC 환자를 대상으로 한 검증 코호트에서 펨브롤리주맙을 투여받은 환자는 13명이었고, 니볼루맙을 투여받은 환자는 16명이었다. 그 중 8명의 환자들이 객관적인 종양 반응을 나타내었고, 10명의 환자들이 질병통제대조군으로 나타내었다. 니볼루맙 또는 펨브롤리주맙 투여 주기의 중간값은 4 주기(1-32 주기)였다.TET patients were treated with pembrolizumab median 8 cycles (range 1-22 cycles). Six patients had an objective tumor response, and the disease control group consisted of 11 patients. In the validation cohort of NSCLC patients, 13 patients received pembrolizumab and 16 patients received nivolumab. Eight patients showed an objective tumor response, and 10 patients showed a disease control control. The median of the Nivolumab or Pembrolizumab administration cycle was 4 cycles (1-32 cycles).

TETTET 환자에서 anti-PD-1 치료 후 말초 CD8  Peripheral CD8 after anti-PD-1 treatment in patients T세포의T cell 반응 확인 Check reaction

약물 투여 0일, 및 7일째에 채혈된 말초 혈액에서 CD8 T세포의 T세포 활성화(CD38, HLA-DR) 및 증식(Ki-67) 정도를 표현형 마커로 확인하였다. 여섯명의 비소세포폐암 환자로 부터 얻은 선행결과상 7일째 PD-1+CD8+ T세포에서 Ki-67+ 빈도의 증가가 보였으나 21일째에는 유의하게 감소하는 것을 확인하였고, 이를 도 9에 나타내었다. 그래서 치료 전과 치료 7일째의 검체를 분석하였다. 먼저, 항원 특이성에 근거한 anti-PD-1 치료의 효과를 도 3에 나타내었다. NY-ESO-1 mRNA가 상향 조절된 환자와 잠재적인 HCMV 감염이 있는 환자를 평가하였다. 평가 결과, 약물 투여 7 일째 종양 특이적 NY-ESO-1+CD8+ T세포는 Ki-67+과 HLA-DR+CD38+ 빈도의 유의한 증가를 보였으나, 종양 특이성이 없는 HCMV-specific pp65+CD8+ T세포는 최소 증가를 보였다. 그 결과를 도 3에 나타내었다. Ki-67+과 HLA-DR+CD38+ 빈도의 증가는 PD-1+CD8+ T세포에서도 관찰되었고, 그 결과를 도 4에 나타내었다. 상기 결과로부터 anti-PD-1 치료가 PD-1+CD8+ T세포를 활성화시키고, 이러한 현상이 약물 투여 후 시간이 지남에 따라 증가 후 감소한다는 것을 알 수 있었다. The degree of T cell activation (CD38, HLA-DR) and proliferation (Ki-67) of CD8 T cells in peripheral blood collected on day 0 and 7 of drug administration was confirmed by phenotypic markers. Prior results obtained from six non-small cell lung cancer patients showed an increase in Ki-67 + frequency in PD-1 + CD8 + T cells on the 7th day, but it was confirmed to decrease significantly on the 21st day. . Therefore, samples were analyzed before and 7 days after treatment. First, the effect of anti-PD-1 treatment based on antigen specificity is shown in FIG. 3. Patients with up-regulated NY-ESO-1 mRNA and patients with potential HCMV infection were evaluated. As a result of the evaluation, on the 7th day of drug administration, tumor-specific NY-ESO-1 + CD8 + T cells showed a significant increase in Ki-67 + and HLA-DR + CD38 + frequency, but HCMV-specific pp65 + without tumor specificity CD8 + T cells showed minimal increase. The results are shown in FIG. 3. Ki-67 + and HLA-DR + CD38 + increase in frequency was observed in PD-1 + CD8 + T cells, and the results are shown in FIG. 4. From the above results, it was found that anti-PD-1 treatment activates PD-1 + CD8 + T cells, and this phenomenon increases and decreases over time after drug administration.

PD-1PD-1 + + CD8CD8 ++ T세포의T cell 초기 증식 반응으로  With initial proliferative TETTET 환자에서 anti-PD-1 치료에 대한 종양 반응과 예후를 예측 가능하다. The tumor response and prognosis for anti-PD-1 treatment in patients is predictable.

약물 투여 후 치료 반응을 예측 가능한 바이오 마커를 발굴하기 위해서, PD-1+CD8+ T세포, CD8+ T세포, 및 CD4+ T세포의 빈도 및 표현형 표지자를 포함하여 멀티칼라 유세포 분석으로부터 도출된 135개 파라미터를 통합 분석하였다. 상기 상세 분석값을 표 4에 나타내었다.135 derived from multicolor flow cytometry analysis, including the frequency and phenotypic markers of PD-1 + CD8 + T cells, CD8 + T cells, and CD4 + T cells, in order to discover biomarkers predictable treatment response after drug administration The dog parameters were analyzed in integrated. Table 4 shows the detailed analysis values.

Figure 112019110537573-pat00011

Figure 112019110537573-pat00012

Figure 112019110537573-pat00013

0일과 7일째의 측정값뿐만 아니라, anti-PD-1 치료 이후에 디자인된 파라미터들의 변화까지도 평가하였다. 6개월 이상 질병통제된 종양 환자(n=11)와 6개월 미만으로 질병통제된 종양 환자(n=20)를 비교하였고, 화산 도표(Volcano plot)는 반응자와 비반응자 사이의 log2 비율로 나타내었다. x축은 135개 파라미터의 log2 비율, y축은 p값(Mann-Whitney U-test)을 나타낸다. 상기 결과를 도 5와 표 4에 나타내었다.
Figure 112019110537573-pat00011

Figure 112019110537573-pat00012

Figure 112019110537573-pat00013

The measured values on day 0 and 7, as well as changes in parameters designed after anti-PD-1 treatment were evaluated. Patients with disease control over 6 months (n = 11) and those with disease control under 6 months (n = 20) were compared, and the volcano plot was expressed as the ratio of log2 between responders and non-responders. . The x-axis represents the log2 ratio of 135 parameters, and the y-axis represents the p-value (Mann-Whitney U-test). The results are shown in Figure 5 and Table 4.

삭제delete

분석 결과, 소수의 파라미터만이 질병통제 되거나 되지 않은 환자간에 차이를 나타내었는데, PD-1+CD8+ T세포에서 Ki-67 발현의 변화(Ki-67D7 /D0)가 파라미터들 중에서 가장 큰 변화가 있었다(P <0.05). 또한 Ki-67D7 / D0 는 질병통제대조군에서도 가장 높은 예측 정확성을 보였고(AUC = 0.86, 95% CI 0.71-1.00, P = 0.001), 특히 안정된 질병상태(stable disease; SD), 또는 진행성 질병상태(progressive disease; PD)에 비해서 부분 반응(partial response; PR)을 보이는 환자군에서 더 측정값이 높게 나타났다. 상기 결과를 도 6에 나타내었다.As a result of analysis, only a small number of parameters showed a difference between patients with or without disease control. The change in Ki-67 expression (Ki-67 D7 / D0 ) in PD-1 + CD8 + T cells was the largest among the parameters. There was (P <0.05). In addition, Ki-67 D7 / D0 showed the highest predictive accuracy in the disease control control group (AUC = 0.86, 95% CI 0.71-1.00, P = 0.001), especially stable disease (SD), or progressive disease state Compared with (progressive disease; PD), the patient group with partial response (PR) showed higher measurement value. The results are shown in FIG. 6.

ROC 곡선으로부터 2.8을 최적 컷오프값으로 결정하였고, 상기 컷오프값에 따라 환자를 이분화하였다. 질병통제대조군에서의 감도, 특이도, 음성 예측도(NPV), 및 양성 예측도(PPV)는 각각 90.9%, 75.0%, 93.8%, 및 66.7%로 나타났다. 높은 민감도와 음성 예측도는 Ki-67D7 / D0 가 anti-PD-1 치료로 효과를 얻지 못할 것으로 예상되는 환자를 정확하게 예측할 수 있다는 것을 의미한다. Ki-67D7 /D0 컷오프값이 2.8 미만인 환자들은 질병통제율(durable disease control rates)이 낮은 것으로 나타났다. 또한 이 환자들은 질병 무진행 생존율 (progression-free survival; PFS)이 매우 낮은 것으로 나타났다. 상기 결과를 도 7에 나타내었다. 또한 다양한 임상병리학적 요인들을 반영하여 조정한 다변수 분석에서도 Ki-67D7 / D0 가 질병 무진행 생존율의 독립적으로 유의미한 요소인 것을 확인하였다(adjusted hazard ratio; aHR 0.20, 95% confidence interval; CI 0.07-0.56, P=0.002). 이를 하기 표 5에 나타내었다.2.8 was determined as the optimal cutoff value from the ROC curve, and the patient was divided according to the cutoff value. Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) in the disease control control were 90.9%, 75.0%, 93.8%, and 66.7%, respectively. The high sensitivity and negative predictability means that Ki-67 D7 / D0 can accurately predict patients who are not expected to benefit from anti-PD-1 treatment. Patients with Ki-67 D7 / D0 cutoff values less than 2.8 were found to have low durable disease control rates. The patients also had very low progression-free survival (PFS). The results are shown in FIG. 7. In addition, in multivariate analysis adjusted to reflect various clinical and pathological factors, it was confirmed that Ki-67 D7 / D0 is an independently significant factor of disease-free survival (adjusted hazard ratio; aHR 0.20, 95% confidence interval; CI 0.07 -0.56, P = 0.002). It is shown in Table 5 below.

UnivariateUnivariate MultivariateMultivariate VariableVariable CategoryCategory HRHR 95% CI95% CI PP aHRaHR 95% CI95% CI PP KiKi -- 6767 D7D7 /D0/ D0 < 2.8<2.8 1.001.00 0.0300.030 1.001.00 0.0020.002 ≥2.8≥2.8 0.400.40 0.17-0.910.17-0.91 0.200.20 0.07-0.560.07-0.56 AgeAge < 60 yrs<60 yrs 1.001.00 0.4570.457 1.001.00 0.0280.028 ≥60 yrs≥60 yrs 1.341.34 0.62-2.920.62-2.92 2.952.95 1.12-7.781.12-7.78 SexSex MaleMale 1.001.00 0.0860.086 1.001.00 0.0110.011 FemaleFemale 2.032.03 0.90-4.560.90-4.56 3.303.30 1.31-8.281.31-8.28 HistologyHistology ThymomaThymoma 1.001.00 0.9860.986 1.001.00 0.6070.607 Thymic ca.Thymic ca. 0.990.99 0.37-2.650.37-2.65 1.321.32 0.46-3.730.46-3.73 Prior chemotherapyPrior chemotherapy < 3rd line<3 rd line 1.001.00 0.0980.098 1.001.00 0.8760.876 ≥3rd line≥3 rd line 2.002.00 0.88-4.540.88-4.54 0.930.93 0.40-2.200.40-2.20 Tumor burdenTumor burden < 12.5 cm<12.5 cm 1.001.00 0.9260.926 1.001.00 0.1180.118 ≥12.5 cm≥12.5 cm 1.041.04 0.48-2.250.48-2.25 2.132.13 0.83-5.470.83-5.47

anti-PD-1 치료 후 PD-1PD-1 after anti-PD-1 treatment ++ CD8  CD8 T세포에서In T cells KiKi -67 발현 변화는 -67 changes in expression 비소세포폐암Non-small cell lung cancer 환자의 종양 반응 및 예후와 관련이 있다. It is related to the patient's tumor response and prognosis.

예측 바이오 마커로서 Ki-67D7 / D0 의 가치를 검증하기 위해, anti-PD-1 치료된 비소세포폐암 환자의 독립적 검증 코호트를 사용하였다. 그 모식도 및 결과를 도 8에 나타내었다. 실험 결과, TET 환자와 유사하게, PD-1-CD8+ T세포와 비교하여 PD-1+CD8+ T세포에서 Ki-67 발현이 더 크게 증가하였고, Ki-67D7 / D0 는 진행성 질병상태(progressive disease; PD) 환자보다 부분 반응(partial response; PR)을 보이는 환자군에서 더 측정값이 높게 나타났다. 이 코호트 조사에서, 컷오프값 2.8을 기준으로 암의 진행이 없는 질병통제대조군의 감도, 특이도, 음성 예측도(NPV), 및 양성 예측도(PPV)는 각각 80.0%, 73.7%, 87.5%, 및 61.5%로 나타났다. 구체적으로, Ki-67D7/D0 ≥2.8인 환자의 경우 질병통제율이 현저히 낮게 나타났고, 질병 무진행 생존율(PFS)과 전체 생존율(OS)이 유의하게 높았다. 상기 결과를 도 10에 나타내었다. 또한 다양한 임상병리학적 요인들을 반영하여 조정한 다변수 분석에서도 Ki-67D7 / D0 가 질병 무진행 생존율(aHR 0.14, 95% CI 0.04-0.46, P = 0.001), 및 전체 생존율(aHR 0.14, 95% CI 0.03-0.63, P = 0.010)의 독립적인 상관 관계를 확인하였다(표 6, 표 7 참조).To verify the value of Ki-67 D7 / D0 as a predictive biomarker, an independent validation cohort of anti-PD-1 treated non-small cell lung cancer patients was used. The schematic diagram and results are shown in FIG. 8. Experimental results, TET analogy to patients, PD-1 - CD8 + in comparison with the T cell was the Ki-67 expression for a larger increase in PD-1 + CD8 + T cells, Ki-67 D7 / D0 is a progressive disease states ( Patients with partial response (PR) showed higher measurements than patients with progressive disease (PD). In this cohort investigation, the sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the disease control control group without cancer progression based on the cutoff value of 2.8 were 80.0%, 73.7%, and 87.5%, respectively. And 61.5%. Specifically, in patients with Ki-67 D7 / D0 ≥2.8, the disease control rate was significantly lower, and disease-free survival (PFS) and overall survival (OS) were significantly higher. The results are shown in FIG. 10. In addition, Ki-67 D7 / D0 is disease-free survival rate (aHR 0.14, 95% CI 0.04-0.46, P = 0.001), and overall survival rate (aHR 0.14, 95) in multivariate analysis adjusted to reflect various clinical and pathological factors. % CI 0.03-0.63, P = 0.010) was confirmed independent correlation (see Table 6, Table 7).

Figure 112019110537573-pat00014
Figure 112019110537573-pat00014

Figure 112019110537573-pat00015
Figure 112019110537573-pat00015

삭제delete

삭제delete

상기 실시예 및 결과로부터, anti-PD-1 치료 후에 PD-1+ CD8+ T세포의 초기 증식 반응으로부터 anti-PD-1에 대한 치료 효과가 없을 것으로 예상되는 음성 예측도(NPV) 고위 환자군을 예측하여 선별할 수 있음을 알 수 있었다. 이는 PD-1 면역항암제가 효과가 있는 환자군이 PD-1 면역항암제 치료를 받는 동안에 감수해야 하는 경제적, 시간적 손실을 사전에 방지할 수 있으므로, 의학 분야에서 크게 이용될 것으로 기대된다.From the above examples and results, a negative predictive value (NPV) senior patient group expected to have no therapeutic effect on anti-PD-1 from the initial proliferative response of PD-1 + CD8 + T cells after anti-PD-1 treatment was obtained. It was found that it can be predicted and selected. This is expected to be greatly used in the medical field, since it is possible to prevent the economic and temporal loss that a patient group in which a PD-1 immunocancer agent is effective undergoes while undergoing PD-1 immunocancer drug treatment in advance.

Claims (21)

(a) 피검체의 T 세포수를 측정하는 단계;
(b) 상기 피검체에게 면역항암제를 투여하는 단계;
(c) 상기 피검체의 T 세포수를 1차 재측정하는 단계; 및
(d) (a)단계에서의 측정값보다 (c)단계에서의 측정값이 증가하는 것을 확인하는 단계;를 포함하는, 암 환자에 있어서 면역항암제 치료 효과를 예측하는 방법으로서,
상기 (c)단계는 (b)단계로부터 1일 내지 14일에 수행하는 것을 특징으로 하고,
상기 치료 효과 예측을 위한 (c)단계에서의 측정값 기준은 “(a)단계에서의 측정값의 2.8배”인 것을 특징으로 하는, 방법.
(a) measuring the number of T cells in the subject;
(b) administering an anti-cancer agent to the subject;
(c) primary re-measurement of the number of T cells in the subject; And
(d) confirming that the measured value in step (c) is increased than the measured value in step (a).
The step (c) is characterized in that it is performed on the 1st to 14th days from the step (b),
The method of claim 1, wherein the criterion of the measured value in step (c) for predicting the treatment effect is “2.8 times the measured value in step (a)”.
제 1항에 있어서,
상기 방법은 (e) 상기 피검체의 T 세포수를 2차 재측정하는 단계;를 추가로 포함하는, 방법
According to claim 1,
The method further comprises (e) a second re-measurement of the T cell number of the subject; further comprising
삭제delete 제 2항에 있어서,
상기 방법은 (f) (c)단계에서의 측정값보다 (e)단계에서의 측정값이 감소하는 것을 확인하는 단계;를 추가로 포함하는, 방법.
According to claim 2,
The method further comprises (f) confirming that the measured value in step (e) decreases from the measured value in step (c).
제 2항에 있어서,
상기 (e)단계는 (b)단계로부터 15일 내지 21일에 수행하는 것을 특징으로 하는, 방법.
According to claim 2,
The step (e) is characterized in that it is carried out on the 15th to 21st days from the step (b).
제 1항에 있어서,
상기 T 세포수는 T 세포수, T 세포의 활성화 분비물, 및 T 세포 활성화도 중에서 T 세포수를 측정하는 것을 특징으로 하는, 방법.
According to claim 1,
The T cell number is characterized by measuring the T cell number in the T cell number, T cell activation secretion, and T cell activation.
제 6항에 있어서,
상기 T 세포수는 Ki-67 발현값으로 측정하는 것을 특징으로 하는, 방법.
The method of claim 6,
The T cell number is characterized in that measured by the expression value of Ki-67, method.
제 7항에 있어서,
상기 발현값은 유전자 발현값, 또는 단백질 발현값인, 방법.
The method of claim 7,
The expression value is a gene expression value, or a protein expression value.
제 1항에 있어서,
상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 이상일 경우에, 상기 피검체의 면역항암제 치료 효과가 높을 것으로 예측하는 단계를 포함하는, 방법.
According to claim 1,
And when the measured value of step (c) is 2.8 times or more than the measured value of step (a), predicting that the therapeutic effect of the immune anti-cancer agent of the subject is high.
제 1항에 있어서,
상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 이상일 경우에, 상기 피검체의 예후가 좋을 것으로 예측하는 단계를 포함하는, 방법.
According to claim 1,
And when the measured value in step (c) is 2.8 times or more than the measured value in step (a), predicting that the prognosis of the subject is good.
제 1항에 있어서,
상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 미만일 경우에, 상기 피검체의 면역항암제 치료 효과가 낮을 것으로 예측하는 단계를 포함하는, 방법.
According to claim 1,
And when the measured value of step (c) is less than 2.8 times the measured value of step (a), predicting that the therapeutic effect of the immune anti-cancer agent of the subject is low.
제 1항에 있어서,
상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 미만일 경우에, 상기 피검체의 예후가 나쁠 것으로 예측하는 단계를 포함하는, 방법.
According to claim 1,
And when the measured value of step (c) is less than 2.8 times the measured value of step (a), predicting that the prognosis of the subject is poor.
제 1항에 있어서,
상기 암은 유방암, 자궁경부암, 신경교종, 뇌암, 흑색종, 폐암, 방광암, 전립선암, 백혈병, 신장암, 간암, 대장암, 췌장암, 위암, 담낭암, 난소암, 임파종, 골육종, 자궁암, 구강암, 기관지암, 비인두암, 후두암, 피부암, 혈액암, 갑상선암, 부갑상선암, 요관암, 선암, 및 흉선암으로 구성되는 그룹으로부터 선택되는 어느 하나 이상인, 방법.
According to claim 1,
The cancer is breast cancer, cervical cancer, glioma, brain cancer, melanoma, lung cancer, bladder cancer, prostate cancer, leukemia, kidney cancer, liver cancer, colon cancer, pancreatic cancer, stomach cancer, gallbladder cancer, ovarian cancer, lymphoma, osteosarcoma, uterine cancer, oral cancer, The method of any one or more selected from the group consisting of bronchial cancer, nasopharyngeal cancer, laryngeal cancer, skin cancer, blood cancer, thyroid cancer, parathyroid cancer, ureteral cancer, adenocarcinoma, and thymic cancer.
제 13항에 있어서,
상기 암은 폐암 또는 흉선암인, 방법.
The method of claim 13,
The method is lung cancer or thymic cancer.
제 1항에 있어서,
상기 면역항암제는 항 PD-1 항체, 항 PD-L1 항체, 또는 항 CTLA-4 항체인, 방법.
According to claim 1,
The immunoanticancer agent is an anti-PD-1 antibody, an anti-PD-L1 antibody, or an anti-CTLA-4 antibody.
(a) 피검체의 T 세포수를 측정하는 단계;
(b) 상기 피검체에게 면역항암제 후보물질을 투여하는 단계;
(c) 상기 피검체의 T 세포수를 1차 재측정하는 단계; 및
(d) (a)단계에서의 측정값보다 (c)단계에서의 측정값이 증가하는 것을 확인하는 단계;를 포함하는, 암 환자에 있어서 면역항암제 후보물질의 암 치료 효과를 스크리닝하는 방법으로서,
상기 (c)단계는 (b)단계로부터 1일 내지 14일에 수행하는 것을 특징으로 하고,
상기 치료 효과 예측을 위한 (c)단계에서의 측정값 기준은 “(a)단계에서의 측정값의 2.8배”인 것을 특징으로 하는, 방법.
(a) measuring the number of T cells in the subject;
(b) administering a candidate anti-cancer drug to the subject;
(c) primary re-measurement of the number of T cells in the subject; And
(d) confirming that the measured value in step (c) is increased than the measured value in step (a); comprising a method for screening the cancer treatment effect of an immunocancer drug candidate in a cancer patient,
The step (c) is characterized in that it is performed on the 1st to 14th days from the step (b),
The method of claim 1, wherein the criterion of the measured value in step (c) for predicting the treatment effect is “2.8 times the measured value in step (a)”.
삭제delete 제 16항에 있어서,
상기 T 세포수는 Ki-67 발현값으로 측정하는 것을 특징으로 하는, 방법.
The method of claim 16,
The T cell number is characterized in that measured by the expression value of Ki-67, method.
제 16항에 있어서,
상기 (c)단계의 측정값이 (a)단계의 측정값보다 2.8배 이상일 경우에, 상기 면역항암제 후보물질을 효과적인 면역항암제로 판단하는 단계를 포함하는, 방법.
The method of claim 16,
And when the measured value in step (c) is 2.8 times or more than the measured value in step (a), determining the candidate candidate for the immunocancer agent as an effective immunocancer agent.
제 16항에 있어서,
상기 암은 유방암, 자궁경부암, 신경교종, 뇌암, 흑색종, 폐암, 방광암, 전립선암, 백혈병, 신장암, 간암, 대장암, 췌장암, 위암, 담낭암, 난소암, 임파종, 골육종, 자궁암, 구강암, 기관지암, 비인두암, 후두암, 피부암, 혈액암, 갑상선암, 부갑상선암, 요관암, 선암, 및 흉선암으로 구성되는 그룹으로부터 선택되는 어느 하나 이상인, 방법.
The method of claim 16,
The cancer is breast cancer, cervical cancer, glioma, brain cancer, melanoma, lung cancer, bladder cancer, prostate cancer, leukemia, kidney cancer, liver cancer, colon cancer, pancreatic cancer, stomach cancer, gallbladder cancer, ovarian cancer, lymphoma, osteosarcoma, uterine cancer, oral cancer, The method of any one or more selected from the group consisting of bronchial cancer, nasopharyngeal cancer, laryngeal cancer, skin cancer, blood cancer, thyroid cancer, parathyroid cancer, ureteral cancer, adenocarcinoma, and thymic cancer.
제 20항에 있어서,
상기 암은 폐암 또는 흉선암인, 방법.
The method of claim 20,
The method is lung cancer or thymic cancer.
KR1020180014177A 2018-02-05 2018-02-05 A method for prediction of the immunotherapy effects to cancer patients KR102089241B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180014177A KR102089241B1 (en) 2018-02-05 2018-02-05 A method for prediction of the immunotherapy effects to cancer patients
PCT/KR2019/001037 WO2019151712A1 (en) 2018-02-05 2019-01-24 Method for predicting effect of immunotherapy on cancer patient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180014177A KR102089241B1 (en) 2018-02-05 2018-02-05 A method for prediction of the immunotherapy effects to cancer patients

Publications (2)

Publication Number Publication Date
KR20190094710A KR20190094710A (en) 2019-08-14
KR102089241B1 true KR102089241B1 (en) 2020-03-16

Family

ID=67479833

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180014177A KR102089241B1 (en) 2018-02-05 2018-02-05 A method for prediction of the immunotherapy effects to cancer patients

Country Status (2)

Country Link
KR (1) KR102089241B1 (en)
WO (1) WO2019151712A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182091B1 (en) 2019-10-07 2020-11-23 한국과학기술원 Prediction method for resistance to immunotherapeutic agent and analysis apparatus
KR102371903B1 (en) * 2019-12-24 2022-03-08 주식회사 테라젠바이오 Methods for poviding information about responses to cancer immunotherapy and devices using the same
KR102395580B1 (en) * 2020-02-18 2022-05-10 (주)이노베이션바이오 Companion diagnostic biomarker composition and companion diagnostic kit comprising the same
KR102428863B1 (en) 2020-08-11 2022-08-03 서울대학교병원 Information providing method for predicting occur of autoimmune encephalitis
WO2022145879A1 (en) * 2020-12-28 2022-07-07 연세대학교 산학협력단 Method for screening immune checkpoint inhibitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182964A (en) 2014-03-20 2015-10-22 学校法人慶應義塾 Inhibitor of chronic inflammation accompanying aging or obesity, therapeutic agent or preventive agent for diseases associated with chronic inflammation accompanying aging or obesity, device for assessing affection probability, and screening method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2773921T3 (en) * 2012-09-17 2020-07-15 Galectin Therapeutics Inc Method to improve specific immunotherapies in cancer treatment
KR20230070054A (en) * 2013-03-15 2023-05-19 제넨테크, 인크. Biomarkers and methods of treating pd-1 and pd-l1 related conditions
EP3114144A1 (en) * 2014-03-05 2017-01-11 Bristol-Myers Squibb Company Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
CA2949121A1 (en) * 2014-05-15 2015-11-19 Bristol-Myers Squibb Company Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182964A (en) 2014-03-20 2015-10-22 学校法人慶應義塾 Inhibitor of chronic inflammation accompanying aging or obesity, therapeutic agent or preventive agent for diseases associated with chronic inflammation accompanying aging or obesity, device for assessing affection probability, and screening method

Also Published As

Publication number Publication date
WO2019151712A1 (en) 2019-08-08
KR20190094710A (en) 2019-08-14

Similar Documents

Publication Publication Date Title
KR102089241B1 (en) A method for prediction of the immunotherapy effects to cancer patients
Zhang et al. Interferon gamma inhibits CXCL8–CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer
Doi et al. Safety and antitumor activity of the anti–programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma
Soo et al. Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer: Current controversies and future directions
Sgambato et al. Anti PD-1 and PDL-1 immunotherapy in the treatment of advanced non-small cell lung cancer (NSCLC): a review on toxicity profile and its management
Pianko et al. Immune checkpoint blockade for hematologic malignancies: a review
Osipov et al. From immune checkpoints to vaccines: The past, present and future of cancer immunotherapy
Harris et al. Immuno-oncology combinations: raising the tail of the survival curve
Merelli et al. Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities
Shen et al. The efficacy of third generation anti‑HER2 chimeric antigen receptor T cells in combination with PD1 blockade against malignant glioblastoma cells
DK2904011T3 (en) COMBINATION OF ANTI-KIR ANTIBODIES AND ANTI-PD-1 ANTIBODIES FOR TREATMENT OF CANCER
Ray et al. A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma
Tarhini Tremelimumab: a review of development to date in solid tumors
Naidoo et al. Immune checkpoint blockade
Huang et al. Soluble CD27-pool in humans may contribute to T cell activation and tumor immunity
Lee et al. Expression of lymphocyte-activating gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM domains in cutaneous melanoma and their correlation with programmed cell death 1 expression in tumor-infiltrating lymphocytes
Bell et al. OX40 signaling in head and neck squamous cell carcinoma: overcoming immunosuppression in the tumor microenvironment
Urwyler et al. Mechanisms of checkpoint inhibition-induced adverse events
US20220332823A1 (en) Methods of treating cancer
Alteber et al. Therapeutic targeting of checkpoint receptors within the DNAM1 axis
KR20150042784A (en) Toxicity management for anti-tumor activity of cars
Borrie et al. T Lymphocyte–Based Cancer Immunotherapeutics
Stagg et al. Immunomodulation via chemotherapy and targeted therapy: a new paradigm in breast cancer therapy?
TW202210084A (en) Treatment of cd30-positive cancer
Carter et al. Immuno-oncology agents for cancer therapy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant