KR102088093B1 - 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템 - Google Patents

자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템 Download PDF

Info

Publication number
KR102088093B1
KR102088093B1 KR1020180002077A KR20180002077A KR102088093B1 KR 102088093 B1 KR102088093 B1 KR 102088093B1 KR 1020180002077 A KR1020180002077 A KR 1020180002077A KR 20180002077 A KR20180002077 A KR 20180002077A KR 102088093 B1 KR102088093 B1 KR 102088093B1
Authority
KR
South Korea
Prior art keywords
wireless charging
receiving end
coil
charging efficiency
current
Prior art date
Application number
KR1020180002077A
Other languages
English (en)
Other versions
KR20190084388A (ko
Inventor
최완
박상준
강진호
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020180002077A priority Critical patent/KR102088093B1/ko
Priority to PCT/KR2018/001298 priority patent/WO2019135440A1/ko
Publication of KR20190084388A publication Critical patent/KR20190084388A/ko
Application granted granted Critical
Publication of KR102088093B1 publication Critical patent/KR102088093B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • H02J5/005
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/025

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템이 제시된다. 본 발명에서 제안하는 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법은 상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구하는 단계, 상기 송신단으로부터 상기 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하는 단계 및 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구하는 단계를 포함한다.

Description

자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템{Method and SYSTEM for SELECTION of OPTIMAL TRANSMITTER COIL CURRENT AND RECEIVER COIL GROUP IN A MAGNETIC MIMO WIRELESS POWER TRANSFER SYSTEM}
본 발명은 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템에 관한 것이다.
최근 IoT 통신 네트워크에 대한 관심도가 높아지고 전자 기기의 양이 급격하게 증가하면서 배터리 충전에 대한 문제가 대두되고 있다. 기존의 충전 방식인 유선 충전은 적은 양의 기기를 사용할 때는 문제가 없지만 IoT 환경에서와 같이 수 많은 기기를 충전할 경우 각 기기에 하나의 유선 충전기가 필요하기 때문에 배터리를 주기적으로 교체하거나 유선으로 충전하는 점에 불편함이 있다. 따라서 이러한 충전 문제를 해결할 수 있는 기술의 개발이 필요하다.
이러한 한계를 극복하기 위해 최근 무선 전력 통신 네트워크(Wireless powered communication networks) 기술이 큰 주목을 받고 있다. IoT 통신에 활용되는 모바일 폰(mobile phone), 태블릿(tablet), 웨어러블 전자 장치(wearable electronic device)가 무선 전력 기지국으로부터 전력을 공급 받음으로써 무선 충전할 수 있는 연구에 관한 관심이 높아지고 있다. 기존의 유선 충전과는 달리 주기적인 배터리 교체나 유선 충전기 사용이 불필요하므로 많은 장치들로 인해 충전 수요가 급증하는 최근의 통신 네트워크에서 불편함과 운용 비용을 감소시킬 수 있다.
이러한 유선 충전의 문제를 해결하기 위해 자기장 기반의 무선 충전 연구에 대한 관심이 높아지고 있다. 무선 충전을 하기 위해 송신단과 수신단은 유도기와 축전기로 구성된 회로를 갖추고 있어야 하며 송신단에 흐르는 전류가 시간에 따라 변하면서 유도기가 수신단 유도기에 전자기장을 생성한다. 생성된 전자기장은 수신단에 전기장을 생성하고 이로 인해 수신단에 전압 차이가 생겨 에너지를 충전하게 된다.
무선 충전을 이용하면 충전기와 기기 사이의 거리가 떨어져 있는 환경에서도 충전이 가능하고 한 충전기를 이용하여 동시에 여러 기기를 충전도 가능하다. 이러한 무선 충전의 장점으로 최근 국내외 학계 및 산업계에서 자기장 기반 무선 충전 제품을 연구 및 출시하고 있는 반면, 현재의 무선 충전 기술은 유선 충전과 비교해봤을 때 충전 효율이 낮아 실제 네트워크 시스템에 사용하는데 한계가 있다. 따라서 IoT 등 실제 실용 가능한 상황에서 무선 충전 기술을 사용할 수 있도록 충전 효율을 높이기 위한 연구가 필수적이다.
기존에는 무선 충전을 할 때 송신단 혹은 수신단 한 쪽에서만 다수의 코일을 갖추고 다른 한쪽에는 하나의 코일을 이용하여 충전하는 기술에 대한 연구가 이루어졌다. 다수의 송신 코일과 하나의 수신 코일을 이용하는 경우 무선 통신에서 송신단 안테나 빔포밍과 비슷한 방법으로 다수의 송신 코일의 전류를 최적화하여 충전 효율을 높이려고 하였다.
하나의 송신 코일과 다수의 수신 코일을 이용하는 경우에는 부하 저항과 같은 소자 값을 바꾸어 충전 효율을 높이려고 하였다. 그러나 이 경우 수신단 코일 사이의 거리가 멀다고 가정하여 수신단 코일 사이의 상호 인덕턴스 값을 0이라고 가정하고 문제를 풀어나간다. 반면, 실제 무선 충전 시스템에서는 송신단과 수신단 사이의 상호 인덕턴스 값이 존재하며, 이는 충전 효율에 직접적인 영향을 미치게 된다. 또한, 수신단에서 다수의 코일들의 거리와 위치에 따라 상호 인덕턴스 값들이 변하기 때문에 이를 명확히 고려한 연구가 필수적이다. 하지만 현재까지 송신단과 수신단 양쪽 모두 다수의 코일을 이용하여 무선 충전하는 기술에 관한 연구는 아직까지 이루어지지 않았다.
본 발명이 이루고자 하는 기술적 과제는 IoT 등 실제 실용 가능한 상황에서 무선 충전 기술을 사용할 수 있도록 충전 효율을 높이기 위한 방법 및 시스템을 제공하는데 있다. 수신단에서의 상호 인덕턴스의 변화를 고려하여 수신단에서의 다수 코일로 인한 무선 충전 효율을 최대화 할 수 있는 송신단에서의 전류 할당 기법과 수신단 코일 선택 기법, 이를 위한 알고리즘을 제안하고자 한다.
일 측면에 있어서, 본 발명에서 제안하는 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법은 상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구하는 단계, 상기 송신단으로부터 상기 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하는 단계 및 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구하는 단계를 포함한다.
상기 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구하는 단계는 상기 수신단 코일 집합에 대하여 최적의 송신단 코일 전류를 구하는 단계 및 상기 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구하는 단계를 포함한다.
상기 수신단 코일 집합에 대하여 최적의 송신단 코일 전류를 구하는 단계는,
고정된 수신단 코일 그룹에 대하여 최적의 송신단 코일 전류와 전송 전력을 하기식을 이용하여 구하고,
Figure 112018001906661-pat00001
여기서
Figure 112018001906661-pat00002
이고
Figure 112018001906661-pat00003
Figure 112018001906661-pat00004
의 최대 고유값이고,
Figure 112018001906661-pat00005
는 대응되는 고유벡터이며
Figure 112018001906661-pat00006
이다.
상기 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구하는 단계는 상기 최적의 수신 전력들을 비교하여 최적의 송신단 코일 전류를 구하고, 최적의 수신단 코일 그룹을 구하기 위해 모든 수신단 코일 그룹에 대하여 상기 최적의 송신단 코일 전류의 최적 전송 전력을 구한 후 비교한다.
모든 수신단 코일 그룹을 비교하여 최적의 송신단 코일 전류를 구하고 가장 낮은 전송 전력과 비교하여 총 전송 전력이 최적 전송 전력보다 더 작은 경우 최적 전송 전력을 해당 총 전송 전력으로 갱신하고, 최적의 수신단 코일 그룹도 갱신하며, 수신단 코일 그룹 내의 수신단 코일의 개수에 대해 반복함으로써 최적 전송 전력과 최적의 수신단 코일 그룹 및 최적의 송신단 코일 전류를 구한다.
또 다른 일 측면에 있어서, 본 발명에서 제안하는 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 시스템은 복수의 코일을 포함하는 송신단, 복수의 코일을 포함하는 하나의 수신단 및 상기 송신단 및 상기 수신단으로부터 전류 및 전압, 코일의 특성을 포함하는 정보를 받아 최적의 송신단 코일 전류, 최적의 수신단 코일 그룹을 결정하는 제어부를 포함한다.
상기 제어부는 상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구하고, 상기 송신단으로부터 상기 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하고, 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구한다.
상기 제어부는 상기 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구하기 위해, 상기 수신단 코일 집합에 대하여 최적의 송신단 코일 전류를 구하고, 상기 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구한다.
또한, 상기 제어부는 상기 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구하기 위해, 상기 최적의 수신 전력들을 비교하여 최적의 송신단 코일 전류를 구하고, 최적의 수신단 코일 그룹을 구하기 위해 모든 수신단 코일 그룹에 대하여 상기 최적의 송신단 코일 전류의 최적 전송 전력을 구한 후 비교한다.
본 발명의 실시예들에 따른 신호 처리 방법은 IoT 통신에 활용되는 모바일 폰, 태블릿, 웨어러블 전자 장치 등이 무선 전력 통시 네트워크에서 무선 충전을 가능하게 할 수 있고, 송신단과 수신단 양쪽 모두 다수의 코일을 고려함으로써 무선 충전 효율을 높일 수 있다. 또한, 수신단에서의 상호 인덕턴스의 변화를 고려하여 수신단에서의 다수 코일로 인한 무선 충전 효율을 최대화 할 수 있는 송신단에서의 전류 할당 기법과 수신단 코일 선택 기법, 이를 위한 알고리즘을 제안한다.
도 1은 본 발명의 일 실시예에 따른 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법을 설명하기 위한 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 자기 공진 무선 전력 전송 다중 코일 시스템의 구성을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 송신단 코일 및 수신단 코일과 해당 법선 벡터를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 최소한의 수신 전력에 대한 최적 전송 전력의 비율을 나타내는 그래프이다.
본 발명에서는 다수의 코일로 에너지를 전송하는 송신단과 다수의 코일로 에너지를 충전하는 단일 수신단이 있는 무선 충전 시스템 환경을 고려하였다. 이전의 선행 기술과는 달리 수신단 사이의 상호 인덕턴스 값이 0이 아니라는 실제적인 환경을 고려하였다. 수신단 사이의 상호 인덕턴스를 고려한다면 이는 충전 효율에 직접적인 영향을 미친다.
수신 코일을 모두 사용한다면 상호 인덕턴스 값들에 따라서 에너지 손실이 일어날 수 있기 때문에 이를 고려하여 수신단을 설계하여야 한다. 이는 상호 인덕턴스가 수신단 코일들의 거리와 위치에 따라 변하기 때문에 실제 실용 가능한 환경에 무선 충전 기기 위치에 관계 없이 충전 효율을 높이기 위함이다. 따라서 수신단의 각 회로에는 스위치를 설치하여 충전할 때 상호 인덕턴스 값들에 따라 수신 코일을 선택하여 사용할 수 있게 설계하였다. 이는 수신단에서 다중 코일로 인한 충전 효율을 최대화 할 수 있다.
또한 시스템에 컨트롤러가 존재하여 송신단과 수신단으로부터 전류 및 전압, 코일의 특성과 같은 정보를 받아 최적의 전류를 형성하고, 충전할 때 스위치를 켜서 사용할 최적의 수신단 코일 집합을 결정함으로써 이를 이용하여 충전 효율을 최대화 한다. 따라서 에너지 효율을 높이는 최적화 방안을 제안하고 송신단 전류와 수신단 코일 집합에 대하여 최적화된 결과를 도출해야 한다. 이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법을 설명하기 위한 흐름도이다.
복수의 코일을 포함하는 송신단 및 복수의 코일을 포함하는 하나의 수신단이 있는 자기 공진 기반 무선 충전 시스템에 대한 제안하는 무선 충전 방법은 상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구하는 단계(110), 상기 송신단으로부터 상기 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하는 단계(120) 및 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구하는 단계(130)를 포함한다.
다시 도 1을 참조하면, 단계(110)에서 상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구한다. 단계(110)는 상기 수신단 코일 집합에 대하여 최적의 송신단 코일 전류를 구하는 단계 및 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구하는 단계를 포함한다.
상기 수신단 코일 집합에 대하여 최적의 송신단 코일 전류를 구하는 단계에서는 고정된 수신단 코일 그룹에 대하여 최적의 송신단 코일 전류와 전송 전력을 구할 수 있다.
상기 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구하는 단계에서는 상기 최적의 수신 전력들을 비교하여 최적의 송신단 코일 전류를 구하고, 최적의 수신단 코일 그룹을 구하기 위해 모든 수신단 코일 그룹에 대하여 상기 최적의 송신단 코일 전류의 최적 전송 전력을 구한 후 비교할 수 있다.
이때, 모든 수신단 코일 그룹을 비교하여 최적의 송신단 코일 전류를 구하고 가장 낮은 전송 전력과 비교하여 총 전송 전력이 최적 전송 전력보다 더 작은 경우 최적 전송 전력을 해당 총 전송 전력으로 갱신하고, 최적의 수신단 코일 그룹도 갱신하며, 수신단 코일 그룹 내의 수신단 코일의 개수에 대해 반복함으로써 최적 전송 전력과 최적의 수신단 코일 그룹 및 최적의 송신단 코일 전류를 구할 수 있다. 도 2를 참조하여 복수의 코일을 포함하는 송신단 및 복수의 코일을 포함하는 하나의 수신단이 있는 자기 공진 기반 무선 충전 시스템에 대한 제안하는 무선 충전 방법에 대하여 더욱 상세히 설명한다.
도 2는 본 발명의 일 실시예에 따른 자기 공진 무선 전력 전송 다중 코일 시스템의 구성을 나타내는 도면이다.
제안하는 자기 공진 무선 전력 전송 다중 코일 시스템은 복수의 코일을 포함하는 송신단(210) 및 복수의 코일을 포함하는 하나의 수신단(220) 및 상기 송신단(210) 및 상기 수신단(220)으로부터 전류 및 전압, 코일의 특성을 포함하는 정보를 받아 최적의 송신단 코일 전류, 최적의 수신단 코일 그룹을 결정하는 제어부(230)를 포함한다.
제어부(230)는 송신단 및 수신단의 공진 주파수를 동일하게 설정하고, 수신단의 코일 전류, 송신단의 코일 전류, 송신단의 코일 전압 및 송수신 전력을 구할 수 있다. 또한, 송신단으로부터 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하고, 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구할 수 있다.
제어부(230)는 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구하기 위해, 수신단 코일 집합에 대하여 최적의 송신단 코일 전류를 구하고, 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구할 수 있다.
또한, 제어부(230)는 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구하기 위해, 최적의 수신 전력들을 비교하여 최적의 송신단 코일 전류를 구하고, 최적의 수신단 코일 그룹을 구하기 위해 모든 수신단 코일 그룹에 대하여 상기 최적의 송신단 코일 전류의 최적 전송 전력을 구한 후 비교할 수 있다.
본 발명에서는 N개의 코일로 이루어진 송신단(210)과 Q개의 코일로 이루어진 하나의 수신단(220)이 있는 자기 공진 기반 무선 충전 시스템을 고려하였다. n번째 송신단 코일은 복소 전압
Figure 112018001906661-pat00007
의 전원이 연결되어있고 흐르는 복소 전류는
Figure 112018001906661-pat00008
이고, q번째 수신단 코일에 흐르는 전류는
Figure 112018001906661-pat00009
이다. 시스템에 있는 제어부(230)는 송신단 전원의 전압 값을 바꾸어 송신단 코일 전류 값을 변화시킬 수 있다.
Figure 112018001906661-pat00010
,
Figure 112018001906661-pat00011
,
Figure 112018001906661-pat00012
는 각각 송신단 저항, 수신단 부하 저항, 송신단 유도기, 수신단 유도기, 송신단 축전기, 수신단 축전기 값을 나타낸다. 이때 공진 주파수를 모두
Figure 112018001906661-pat00013
로 맞추기 위하여
Figure 112018001906661-pat00014
로 설정한다. 각 수신단 코일에 스위치가 있어 충전할 때 코일을 사용할지 안 할지 정할 수 있다.
Figure 112018001906661-pat00015
,
Figure 112018001906661-pat00016
,
Figure 112018001906661-pat00017
은 각각 n번째 송신단 코일과 q번째 수신단 코일, n번째 송신단 코일과 n'번째 송신단 코일, q번째 수신단 코일과 q'번째 수신단 코일 사이의 상호 인덕턴스를 나타낸다.
Figure 112018001906661-pat00018
,
Figure 112018001906661-pat00019
,
Figure 112018001906661-pat00020
Figure 112018001906661-pat00021
,
Figure 112018001906661-pat00022
,
Figure 112018001906661-pat00023
상호 인덕턴스 행렬을 나타내고
Figure 112018001906661-pat00024
,
Figure 112018001906661-pat00025
,
Figure 112018001906661-pat00026
이고
Figure 112018001906661-pat00027
Figure 112018001906661-pat00028
의 q번째 열벡터일 때
Figure 112018001906661-pat00029
으로도 나타낼 수 있다.
다시 도 1을 참조하면, 단계(110)에서 상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구한다. 단계(110)는 상기 수신단 코일 집합에 대하여 최적의 송신단 코일 전류를 구하는 단계 및 모든 수신단 코일 집합에 대하여 최적의 수신 전력들을 구하고, 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구하는 단계를 포함한다.
단계(120)에서, 송신단으로부터 상기 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하고, 단계(130)에서 수신단 코일 집합에 대하여, 최적의 수신 전력, 최적의 송신단 코일 전류 및 최적의 수신단 코일 그룹을 구한다.
수신단 코일 전류, 송신단 코일 전류, 송신단 코일 전압, 송수신 전력에 관한 표현은 아래에서 상세히 설명한다.
Figure 112018001906661-pat00030
를 충전에 사용되는 수신단 코일 집합이라고 하면 키리히호프 전압 법칙(KVL) 에 의하여 수신단 코일 전류를 다음과 같은 행렬 형태로 표현할 수 있다.
Figure 112018001906661-pat00031
여기서
Figure 112018001906661-pat00032
Figure 112018001906661-pat00033
항등 행렬,
Figure 112018001906661-pat00034
,
Figure 112018001906661-pat00035
,
Figure 112018001906661-pat00036
,
Figure 112018001906661-pat00037
,
Figure 112018001906661-pat00038
,
Figure 112018001906661-pat00039
, 
Figure 112018001906661-pat00040
. 총 수신되는 전력과 전송되는 전력은 다음과 같다.
Figure 112018001906661-pat00041
Figure 112018001906661-pat00042
다음으로, 전송 전력을 최소화 하기 위한 최적화 문제 설정 및 풀이 알고리즘을 설명한다. 위에서 설명된 식들에 기초하여 최적화 문제를 구성하면 다음과 같다.
문제 1:
Figure 112018001906661-pat00043
위 문제 1의 첫 번째 제한은 최소한의 수신 전력을 나타내고 두 번째 제한은 송신단 최대 전압, 마지막 제한은 송신단 최대 전류를 나타내고 위의 제한들을 만족하면서 전송 전력을 최소화한다. 위 문제에서 두 번째와 세 번째 제한을 완화시키면서 만든 문제는 다음과 같다.
문제 2:
Figure 112018001906661-pat00044
위 문제는 다음과 같이 두 단계로 나누어서 푼다.
1. 임의의
Figure 112018001906661-pat00045
에 대하여 최적의 송신단 코일 전류를 구한다.
2. 모든
Figure 112018001906661-pat00046
에 대해 최적의 전력을 구하고 그 값들을 비교하여 최적의 송신단 코일 전류와 최적의 수신단 코일 그룹을 구한다.
수신단 코일 그룹이 고정 되어있을 때 최적의 송신단 코일 전류를 구하기 위해 고정된 수신단 코일 그룹에 대하여 최적의 송신단 코일 전류와 최적의 전송 전력을 구하면 다음과 같다.
Figure 112018001906661-pat00047
Figure 112018001906661-pat00048
여기서
Figure 112018001906661-pat00049
이고
Figure 112018001906661-pat00050
Figure 112018001906661-pat00051
Figure 112018001906661-pat00052
의 최대 고유값이고 이에 대응되는 고유벡터이며
Figure 112018001906661-pat00053
은 다음과 같다.
Figure 112018001906661-pat00054
다음으로, 최적의 수신단 코일 그룹을 구하기 위해 모든 수신단 코일 그룹에 대하여 최적 전송 전력을 구한 후 비교한다. 여기서 가장 작은 값이 최적값이고 이때의 송신단 코일 전류와 수신단 코일 그룹이 최적이다.
아래는 위 두 단계를 알고리즘으로 나타낸 것이다.
Figure 112018001906661-pat00055
위 알고리즘에서 q는 수신단 코일 그룹 안에 속하는 수신단 코일의 개수이다. Q개 중 q개를 선택하여 얻을 수 있는 총 그룹의 개수는
Figure 112018001906661-pat00056
개이고 k 를 통해 q개의 수신단 코일을 가진 모든 그룹을 비교한다. 위에서 말하는 relaxed P1 은 수신단 코일 그룹을
Figure 112018001906661-pat00057
로 고정한 최적화 문제를 뜻한다. 총 전송 전력
Figure 112018001906661-pat00058
을 고정된 수신단 코일 그룹에 대하여 최적의 송신단 코일 전류와 최적의 전송 전력을 구하는 방식을 이용하여 구하고 지금까지 가장 작았던 전송 전력을 최적 전송 전력
Figure 112018001906661-pat00059
와 비교한다. 만약
Figure 112018001906661-pat00060
Figure 112018001906661-pat00061
보다 더 작으면
Figure 112018001906661-pat00062
Figure 112018001906661-pat00063
로 갱신해주고 수신단 코일 그룹도 갱신한다. 이것을 k와 q에 대해 계속 반복하면 최적 전송 전력과 최적의 수신단 코일 그룹 및 송신단 코일 전류를 구할 수 있다.
도 3은 본 발명의 일 실시예에 따른 송신단 코일 및 수신단 코일과 해당 법선 벡터를 설명하기 위한 도면이다.
알고리즘 없이 최적의 수신단 코일 그룹을 알 수 있는 경우, 송신단 코일 개수가 N개 수신단 코일 개수가 총 2개일 때(Q=2) 다음과 같이 최적의 수신단 코일 그룹을 구할 수 있다.
Figure 112018001906661-pat00064
여기서  
Figure 112018001906661-pat00065
,
Figure 112018001906661-pat00066
는 최대 고유값을 나타낸다.
수신단 코일 사이에 상호 인덕턴스가 없을 때(
Figure 112018001906661-pat00067
) 모든 수신단 코일을 사용하여 충전을 하는 것이 최적이다.
본 발명의 실시예에 따른 값들은 N=2, Q=6,
Figure 112018001906661-pat00068
MHz,
Figure 112018001906661-pat00069
,
Figure 112018001906661-pat00070
,
Figure 112018001906661-pat00071
,
Figure 112018001906661-pat00072
이다.
도 3에 나타낸 바와 같이 첫 번째 송신단 코일은 (0,0.6,0), 두 번째 송신단 코일은 (0,-0.6,0)에 위치시킨다. 1,2,3번째 수신단 코일들은 (0.5424,0.5424,0.1), 4,5,6번째 수신단 코일들은 (0.4576,0.4576,0.1)에 위치시킨다. 각 송신단 코일과 수신단 코일의 반지름은 0.1, 0.02 m 이고 코일의 감은 수는 250, 50 번이다. 1,2번째 송신단 코일들의 법선 벡터는 (0,0,1), 1,2,4,5번째 수신단 코일들의 법선 벡터는 (0,0,1)이고 3,6번째 수신단 코일들의 법선 벡터는 (0.7071,0.7071,0) 이다.
도 3에 나타낸 송신단 및 수신단에 대하여 구한 코일 간 상호 인덕턴스는 다음 표와 같다.
Figure 112018001906661-pat00073

도 4는 본 발명의 일 실시예에 따른 최소한의 수신 전력에 대한 최적 전송 전력의 비율을 나타내는 그래프이다.
도 4는 충전할 때 필요한 최소한의 수신 전력 (P) 대비 최적의 전송 전력 (
Figure 112018001906661-pat00074
)를 나타낸다. 선(Relaxation + RX selection)은 상기 문제 2의 최적의 수신단 코일 그룹과 최적의 송신단 코일 전류를 사용한 결과를 나타내고, 선(Search + RX selection)은 전구간 탐색으로 상기 문제 1을 만족하는 최적의 수신단 코일 그룹과 최적의 송신단 코일 전류를 사용한 결과를 나타내며 마지막으로 선(Relaxation + All RX coils)은 수신단 코일 선택을 하지 않고 모든 코일을 사용한 결과를 나타낸다. 도 4에서 볼 수 있듯이 같은 P에서 선(Relaxaion + All RX coils)이 선(Search + RX selection)과 선(Relaxation + RX selection)보다 위에 있기 때문에 더 많은 전송 전력을 필요로 하는 것을 볼 수 있다. 따라서 수신단 코일 중 일부만 사용하는 것이 유리하다. 또한 도 3에서 설명한 실시예의 결과에 따르면,
Figure 112018001906661-pat00075
까지 상기 문제 1과 상기 문제 2의 최적 전송 전력 및 최적의 수신단 코일 그룹, 최적의 송신단 코일 전류가 동일한 결과를 나타낸다. 이는 간소화한 문제 2를 알고리즘으로 푼 결과가
Figure 112018001906661-pat00076
P 값에 따라 본 문제 1의 최적의 결과와 일치한다는 것을 보여준다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다.  또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다.  이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다.  예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다.  또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다.  소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다.  소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다.  상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.  상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.  컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다.  프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다.  예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (10)

  1. 복수의 코일을 포함하는 송신단 및 복수의 코일을 포함하는 하나의 수신단이 있는 자기 공진 기반 무선 충전 시스템에 대한 무선 충전 방법에 있어서,
    상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구하는 단계;
    상기 송신단으로부터 상기 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하는 단계; 및
    수신단 코일 집합에 대하여, 최대 무선 충전 효율을 위한 수신 전력, 송신단 코일 전류 및 수신단 코일 그룹을 구하는 단계
    를 포함하고,
    상기 수신단 코일 집합에 대하여, 최대 무선 충전 효율을 위한 수신 전력, 송신단 코일 전류 및 수신단 코일 그룹을 구하는 단계는,
    상기 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하는 단계; 및
    모든 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 수신 전력들을 구하고, 최대 무선 충전 효율을 위한 송신단 코일 전류와 수신단 코일 그룹을 구하는 단계
    를 포함하는 무선 충전 방법.
  2. 삭제
  3. 제1항에 있어서,
    상기 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하는 단계는,
    고정된 수신단 코일 그룹에 대하여 최대 무선 충전 효율을 위한 송신단 코일 전류와 전송 전력을 하기식을 이용하여 구하고,
    Figure 112019084441375-pat00093

    여기서
    Figure 112019084441375-pat00094
    이고
    Figure 112019084441375-pat00095
    Figure 112019084441375-pat00096
    의 최대 고유값이고,
    Figure 112019084441375-pat00097
    는 대응되는 고유벡터이며
    Figure 112019084441375-pat00098

    무선 충전 방법.
  4. 제1항에 있어서,
    모든 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 수신 전력들을 구하고, 최대 무선 충전 효율을 위한 송신단 코일 전류와 수신단 코일 그룹을 구하는 단계는,
    상기 최대 무선 충전 효율을 위한 수신 전력들을 비교하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하고, 최대 무선 충전 효율을 위한 수신단 코일 그룹을 구하기 위해 모든 수신단 코일 그룹에 대하여 상기 최대 무선 충전 효율을 위한 송신단 코일 전류의 전송 전력을 구한 후 비교하는
    무선 충전 방법.
  5. 제4항에 있어서,
    모든 수신단 코일 그룹을 비교하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하고 가장 낮은 전송 전력과 비교하여 총 전송 전력이 최대 무선 충전 효율을 위한 전송 전력보다 더 작은 경우 최대 무선 충전 효율을 위한 전송 전력을 해당 총 전송 전력으로 갱신하고, 최대 무선 충전 효율을 위한 수신단 코일 그룹도 갱신하며, 수신단 코일 그룹 내의 수신단 코일의 개수에 대해 반복함으로써 최대 무선 충전 효율을 위한 전송 전력과 최대 무선 충전 효율을 위한 수신단 코일 그룹 및 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하는
    무선 충전 방법.
  6. 복수의 코일을 포함하는 송신단;
    복수의 코일을 포함하는 하나의 수신단; 및
    상기 송신단 및 상기 수신단으로부터 전류 및 전압, 코일의 특성을 포함하는 정보를 받아 최대 무선 충전 효율을 위한 송신단 코일 전류, 수신단 코일 그룹을 결정하는 제어부
    를 포함하고,
    상기 제어부는,
    상기 송신단 및 상기 수신단의 공진 주파수를 동일하게 설정하고, 상기 수신단의 코일 전류, 상기 송신단의 코일 전류, 상기 송신단의 코일 전압 및 송수신 전력을 구하고;
    상기 송신단으로부터 상기 수신단으로의 전송 전력의 최소화를 위해 최소 수신 전력, 최대 송신단 전압, 최대 송신단 전류를 제한하고;
    수신단 코일 집합에 대하여, 최대 무선 충전 효율을 위한 수신 전력, 송신단 코일 전류 및 수신단 코일 그룹을 구하고;
    상기 수신단 코일 집합에 대하여, 최대 무선 충전 효율을 위한 수신 전력, 송신단 코일 전류 및 수신단 코일 그룹을 구하기 위해,
    상기 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하고;
    모든 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 수신 전력들을 구하고, 최대 무선 충전 효율을 위한 송신단 코일 전류와 수신단 코일 그룹을 구하는
    무선 충전 시스템.
  7. 삭제
  8. 제6항에 있어서,
    상기 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하기 위해,
    고정된 수신단 코일 그룹에 대하여 최대 무선 충전 효율을 위한 송신단 코일 전류와 전송 전력을 하기식을 이용하여 구하고,
    Figure 112019084441375-pat00099

    여기서
    Figure 112019084441375-pat00100
    이고
    Figure 112019084441375-pat00101
    Figure 112019084441375-pat00102
    의 최대 고유값이고,
    Figure 112019084441375-pat00103
    는 대응되는 고유벡터이며
    Figure 112019084441375-pat00104

    무선 충전 시스템.
  9. 제6항에 있어서,
    모든 수신단 코일 집합에 대하여 최대 무선 충전 효율을 위한 수신 전력들을 구하고, 최대 무선 충전 효율을 위한 송신단 코일 전류와 수신단 코일 그룹을 구하기 위해,
    상기 최대 무선 충전 효율을 위한 수신 전력들을 비교하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하고, 최대 무선 충전 효율을 위한 수신단 코일 그룹을 구하기 위해 모든 수신단 코일 그룹에 대하여 상기 최대 무선 충전 효율을 위한 송신단 코일 전류의 최대 무선 충전 효율을 위한 전송 전력을 구한 후 비교하는
    무선 충전 시스템.
  10. 제9항에 있어서,
    모든 수신단 코일 그룹을 비교하여 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하고 가장 낮은 전송 전력과 비교하여 총 전송 전력이 최대 무선 충전 효율을 위한 전송 전력보다 더 작은 경우 최대 무선 충전 효율을 위한 전송 전력을 해당 총 전송 전력으로 갱신하고, 최대 무선 충전 효율을 위한 수신단 코일 그룹도 갱신하며, 수신단 코일 그룹 내의 수신단 코일의 개수에 대해 반복함으로써 최대 무선 충전 효율을 위한 전송 전력과 최대 무선 충전 효율을 위한 수신단 코일 그룹 및 최대 무선 충전 효율을 위한 송신단 코일 전류를 구하는
    무선 충전 시스템.

KR1020180002077A 2018-01-08 2018-01-08 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템 KR102088093B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180002077A KR102088093B1 (ko) 2018-01-08 2018-01-08 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템
PCT/KR2018/001298 WO2019135440A1 (ko) 2018-01-08 2018-01-30 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180002077A KR102088093B1 (ko) 2018-01-08 2018-01-08 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템

Publications (2)

Publication Number Publication Date
KR20190084388A KR20190084388A (ko) 2019-07-17
KR102088093B1 true KR102088093B1 (ko) 2020-04-29

Family

ID=67144188

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180002077A KR102088093B1 (ko) 2018-01-08 2018-01-08 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템

Country Status (2)

Country Link
KR (1) KR102088093B1 (ko)
WO (1) WO2019135440A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509865B (zh) * 2020-03-20 2022-09-02 中国电力科学研究院有限公司 一种无线充电系统最大效率跟踪控制方法及系统
KR20220153907A (ko) * 2021-05-12 2022-11-21 삼성전자주식회사 전자 장치 및 전자 장치에서 다중 코일 기반의 전력 전송 방법
US12003119B2 (en) 2021-05-12 2024-06-04 Samsung Electronics Co., Ltd. Electronic device and method for transmitting power based on multiple coils

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504877A (ja) 2014-12-31 2018-02-15 マサチューセッツ インスティテュート オブ テクノロジー ワイヤレス電力伝達の適応制御

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054863B2 (ja) * 2010-06-10 2016-12-27 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 誘導式電力転送のためのコイルの構成
KR101394963B1 (ko) * 2010-07-29 2014-05-16 한국전자통신연구원 무선 전력 송신기, 무선 전력 수신기, 및 그것들을 이용한 무선 전력 전송 방법
US9231412B2 (en) * 2010-12-29 2016-01-05 National Semiconductor Corporation Resonant system for wireless power transmission to multiple receivers
KR101350309B1 (ko) * 2011-12-09 2014-01-10 전자부품연구원 특정 무선 충전기기로 송신전력을 집중할 수 있는 무선 전력전송 장치 및 방법
KR101455170B1 (ko) * 2012-07-31 2014-10-28 인텔렉추얼디스커버리 주식회사 무선통신 기반 무선전력전송 시스템의 무선 충전 방법
US9438064B2 (en) * 2013-08-30 2016-09-06 Qualcomm Incorporated System and method for alignment and compatibility detection for a wireless power transfer system
KR101785648B1 (ko) * 2015-04-06 2017-10-16 엘지이노텍 주식회사 무선 전력 전송 방법 및 이를 위한 장치
KR20160133140A (ko) * 2015-05-12 2016-11-22 엘지이노텍 주식회사 무선 전력 송신 방법, 무선 전력 수신 방법 및 이를 위한 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504877A (ja) 2014-12-31 2018-02-15 マサチューセッツ インスティテュート オブ テクノロジー ワイヤレス電力伝達の適応制御

Also Published As

Publication number Publication date
WO2019135440A1 (ko) 2019-07-11
KR20190084388A (ko) 2019-07-17

Similar Documents

Publication Publication Date Title
KR102088093B1 (ko) 자기 공진 무선 전력 전송 다중 코일 시스템에서 최적의 송신단 코일 전류와 수신단 코일 그룹 선택 방법 및 시스템
US10340742B2 (en) Method and apparatus for controlling wireless power transmission
KR102410533B1 (ko) 무선 전력 전송 및 충전 시스템
KR102423618B1 (ko) 무선 전력 송신기
KR101438294B1 (ko) 자계 공명형 전력 전송 시스템에 있어서의 공진 주파수 제어 방법, 송전 장치, 및 수전 장치
US20120306283A1 (en) Apparatus and method of dividing wireless power in wireless resonant power transmission system
WO2019173590A1 (en) Method and system for wireless power delivery
KR101485345B1 (ko) 무선전력전송 시스템에서 다중 루프를 갖는 코일의 자기장 조절 방법
KR102233383B1 (ko) 전송 스케쥴에 기초한 무선 전력 전송 시스템 및 방법
CN106961165B (zh) 无线电能传输电路、无线电能发射端和无线电能接收端
KR20200064420A (ko) 다중 장치 무선전력전송 시스템에 대한 자기공진조건 탐색방법
Sampath et al. Coil enhancements for high efficiency wireless power transfer applications
Kim et al. Design of transmitting coil for wireless charging system to expand charging area for drone applications
US11502555B2 (en) System and method for wireless power transmission
Huang et al. A spiral electrically small magnetic antenna with high radiation efficiency for wireless power transfer
US10778036B2 (en) Wireless power transmitter
Park et al. Mode reconfigurable resonators insensitive to alignment for magnetic resonance wireless power transmission
KR20120127991A (ko) 자기공진유도 방식 지향성 무선 전력 전송 장치
Lee et al. Design of multiple receiver for wireless power transfer using metamaterial
US20200153276A1 (en) Wireless kinetic charger
KR102239540B1 (ko) 다중기기의 자유 위치 무선 충전을 위한 무선 전력 송신 및 수신 장치
JP7061913B2 (ja) 無線電力伝送システムおよび無線電力伝送方法
KR101494144B1 (ko) 자계 공명형 전력 전송 시스템에 있어서의 공진 주파수 제어 방법, 송전 장치, 및 수전 장치
Pu et al. An efficient wireless power transmission system by employing 3× 3 stacked coil antenna arrays
Pu et al. To improve wireless power transmission efficiency by using coil arrays

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant