KR102079475B1 - Fabrication method of SCR catalyst for removal of dioxin - Google Patents

Fabrication method of SCR catalyst for removal of dioxin Download PDF

Info

Publication number
KR102079475B1
KR102079475B1 KR1020190091457A KR20190091457A KR102079475B1 KR 102079475 B1 KR102079475 B1 KR 102079475B1 KR 1020190091457 A KR1020190091457 A KR 1020190091457A KR 20190091457 A KR20190091457 A KR 20190091457A KR 102079475 B1 KR102079475 B1 KR 102079475B1
Authority
KR
South Korea
Prior art keywords
weight
raw material
main raw
mixture
scr catalyst
Prior art date
Application number
KR1020190091457A
Other languages
Korean (ko)
Inventor
노한길
Original Assignee
노한길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노한길 filed Critical 노한길
Priority to KR1020190091457A priority Critical patent/KR102079475B1/en
Application granted granted Critical
Publication of KR102079475B1 publication Critical patent/KR102079475B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/108Pore distribution
    • B01J35/109Pore distribution bimodal
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027

Abstract

The present invention relates to a method for manufacturing an SCR catalyst for removing dioxin, and more particularly, to a method for manufacturing an SCR catalyst for removing dioxin, which has excellent adsorption performance and good reactivity. The method for manufacturing the SCR catalyst for removing dioxin according to the present invention comprises: a main raw material manufacturing step; an inorganic binder manufacturing step; a mixture step; a water injection step; an active material input step; an additive input step; an ammonia mixing step; a glass fiber input step; a sludge step; a kneading step; a mixing step; an extrusion molding step; a drying step; and a firing step.

Description

다이옥신 제거용 SCR 촉매 제조방법{Fabrication method of SCR catalyst for removal of dioxin}Fabrication method of SCR catalyst for removal of dioxin

본 발명은 다이옥신 제거용 SCR 촉매 제조방법에 대한 것으로서, 더욱 상세하게는 흡착성능이 뛰어나고 반응성이 좋은 다이옥신 제거용 SCR 촉매를 제조하는 방법에 대한 것이다.The present invention relates to a method for producing an SCR catalyst for dioxin removal, and more particularly, to a method for producing an SCR catalyst for dioxin removal having excellent adsorption performance and good reactivity.

산업폐기물, 도시 폐기물, 철강제조 플랜트, 금속정련 공정과 같은 연소 설비로부터 생성된 배기가스는 황산화물(SOx), 질소산화물(NOx), 염소 이외에도 다이옥신, PCB, 클로로페놀과 같은 독성 유기 염화물의 약간 량을 함유하고 있다.Exhaust gases from combustion plants such as industrial waste, municipal waste, steel manufacturing plants, and metal refining processes are not only sulfur oxides (SOx), nitrogen oxides (NOx), and chlorine, but also some of the toxic organic chlorides such as dioxins, PCBs, and chlorophenols. It contains a quantity.

특히, 각종 암과 기형아 출산의 원인이 되는 맹독성 물질로 알려져 있는 다이옥신은 쓰레기 소각장 및 자원회수시설과 같은 소각로에서 도시폐기물과 의료폐기물 등 다이옥신 전구물질을 함유한 화학폐기물의 소각시 주로 발생한다. 다이옥신으로 통칭되는 화합물은 염소원자로 치환된 2개의 벤젠고리가 2개의 산소로 연결된 다이옥신계 화합물(PCDD;Polychlorinated Dibenzo-p-Dioxin)과 1개의 산소원자로 연결된 퓨란계 (PCDF;Polychlorinated Dibenzo Furan)의 2종류로 나뉘어진다. 다이옥신은 치환된 염소원자의 위치와 수에 따라 다이옥신계는 75개, 퓨란계는 135개의 이성체를 가지며, 총 210개의 다이옥신 화합물이 존재한다. 이중, 인체 및 환경에 미치는 독성과 잔류성이 매우 큰 다이옥신 종류는 2,3,7,8-TCDD로 알려져 있다. 다이옥신은 상당히 안정한 비수용성 물질이고 그 독성은 계속 존재하기 때문에 환경 오염을 야기하는 가장 문제시되는 화학물질로 여겨지고 있다. 소각 및 열공정시 다이옥신류의 생성은 온도, 염소농도(HCl, Cl2), 산소 및 일산화탄소 농도에 크게 좌우되는 것으로 보고되고 있는데, 드 누보(De novo) 합성반응에 의한 다이옥신의 생성최적온도는 약 250∼450℃이며, 600℃이상의 온도에서는 다이옥신이 분해된다.In particular, dioxin, which is known as a highly toxic substance that causes various cancers and birth defects, is mainly generated during incineration of chemical wastes containing dioxin precursors such as municipal waste and medical waste in incinerators such as waste incinerators and resource recovery facilities. Dioxin, commonly referred to as dioxin, is composed of two benzene rings substituted with chlorine atoms and two oxygen-linked dioxin compounds (PCDD; Polychlorinated Dibenzo-p-Dioxin) and one oxygen atom (PCDF; Polychlorinated Dibenzo Furan). It is divided into types. Dioxin has 75 dioxins and 135 isomers according to the position and number of substituted chlorine atoms, and there are a total of 210 dioxins. Of these, the type of dioxin that is extremely toxic and persistent to humans and the environment is known as 2,3,7,8-TCDD. Dioxins are considered to be the most problematic chemicals that cause environmental pollution because they are fairly stable, insoluble substances and their toxicity continues to exist. The production of dioxins during incineration and thermal processes is highly dependent on temperature, chlorine concentrations (HCl, Cl2), oxygen and carbon monoxide concentrations. The optimum temperature for the production of dioxins by de novo synthesis is about 250. It is -450 degreeC, and dioxin decomposes at the temperature of 600 degreeC or more.

소각로에서 발생되는 다이옥신을 제어하기 위한 기술로는 사전처리기술과 사후처리기술로 구분될 수 있으며, 사전처리 기술은 폐기물의 사전분리, 연소기 구조변경, 연소조건 최적화를 통하여 다이옥신을 저감하는 기술이나, 다이옥신의 생성을 완전히 제어하는 것은 실제로 불가능하다. 따라서, 다이옥신을 효율적으로 제어하기 위해서는 사전처리기술의 개발과 더불어 합성된 다이옥신을 효율적으로 제거할 수 있는 후처리 기술이 요구된다.Techniques for controlling dioxins generated in incinerators can be classified into pre-treatment and post-treatment techniques. Pre-treatment techniques are technologies that reduce dioxins by pre-separation of waste, structural change of the combustor, and optimization of combustion conditions. It is practically impossible to completely control the production of dioxin. Therefore, in order to efficiently control dioxin, post-treatment technology capable of efficiently removing synthesized dioxin along with the development of pretreatment technology is required.

후처리 기술로는 촉매산화분해와, 열소각 및 분해 및 흡착분리기술이 있다.Post-treatment techniques include catalytic oxidative decomposition, thermal incineration and decomposition and adsorptive separation techniques.

촉매산화분해방법은 배가스를 촉매와 접촉시켜 다이옥신을 CO2, H2O, HCl 등의 물질로 분해하는 기술이다. 열소각 및 분해기술은 배가스를 1000℃ 이상의 고온으로 재가열하여 다이옥신을 분해하는 기술이지만 막대한 에너지 비용과 장치비용이 필요함 분해 후 냉각과정에서 다이옥신이 재합성된다는 문제점이 있다. 흡착분리기술은 배가스를 흡착제와 접촉시켜 흡착제거하는 방법이지만 흡착제 재생과 폐흡착제 처리에 따른 2차오염물질을 유발한다는 문제점이 있다. 따라서 촉매산화분해방법이 최근에 가장 많은 연구가 진행되고 있는 기술이다.Catalytic oxidative decomposition is a technique of decomposing dioxins into substances such as CO 2 , H 2 O, HCl by contacting exhaust gas with a catalyst. Thermal incineration and decomposition technology is a technology that decomposes dioxin by reheating the exhaust gas to a high temperature of 1000 ° C. or higher, but requires enormous energy cost and device cost. Adsorption separation technology is a method of adsorption and removal of the exhaust gas by contact with the adsorbent, but there is a problem that causes secondary pollutants caused by the adsorbent regeneration and waste adsorbent treatment. Therefore, catalytic oxidation decomposition method is the most researched technology in recent years.

종래의 다이옥신을 분해하기 위하여 촉매를 제조하는 공정은 건식 혼합기에 고상의 원료를 투입한 후 일정시간 혼합하여 수분 및 기타 첨가제를 투입하였다. 그리고 건식 혼합된 원료를 습식 혼합기에 투입하여 일정시간 추가 혼합하여, 표준운영절차에 따라 수분 및 기타 첨가제를 투입하고 일정시간 혼합 후 인출하였다.In the process of preparing a catalyst to decompose the conventional dioxin, a solid phase raw material is added to a dry mixer, followed by mixing for a predetermined time to add moisture and other additives. Then, the dry mixed raw materials were added to the wet mixer and mixed for a predetermined time, and moisture and other additives were added according to the standard operating procedure, and the mixture was withdrawn after a predetermined time.

공개특허 특2001-0018330호(공개일자 2001년 03월 05일)Patent Publication No. 2001-0018330 (published March 05, 2001) 등록특허 제10-0632591호(등록일자 2006년 09월 28일)Registered Patent No. 10-0632591 (Registration date September 28, 2006) 등록특허 제10-0495789호(등록일자 2005년 06월 08일)Patent Registration No. 10-0495789 (Registration Date June 08, 2005) 등록특허 제10-0703630호(등록일자 2007년 03월 29일)Patent Registration No. 10-0703630 (Registration Date March 29, 2007)

종래의 제조방법으로 촉매를 제조할 경우 일정량의 수분 첨가로 인해 원료 내에 포함된 함수량에 따라서 반죽의 불균일성이 발생하였다. 반죽의 불균일성으로 인해 촉매의 균열이 발생할 뿐만 아니라 성형성이 떨어져서 생산성이 저하된다는 문제점이 있었다.When the catalyst is prepared by the conventional manufacturing method, the nonuniformity of the dough is generated according to the water content contained in the raw material due to the addition of a certain amount of water. Due to the non-uniformity of the dough, not only cracking of the catalyst occurs, but also a problem in that productivity is reduced due to poor moldability.

또한, 반죽을 균일하게 하기 위한 혼련 공정에 추가 작업 인원이 필요하여 비용이 증가된다는 문제점이 있었다.In addition, there is a problem in that the cost is increased because additional personnel are required for the kneading process to uniform the dough.

본 발명은 상기의 문제점을 해결하기 위한 것이다. 본 발명은 함수율을 일정하게 조절함으로써 반죽의 균일성을 확보하여 촉매의 균열을 방지하고 성형성을 증가시킬 수 있는 촉매의 제조방법을 제공하는 것을 목적으로 한다.The present invention is to solve the above problems. An object of the present invention is to provide a method for preparing a catalyst that can uniformly control the moisture content to prevent uniform cracking of the catalyst and increase moldability.

본 발명에 따른 다이옥신 제거용 SCR 촉매 제조방법은 주원료 제조단계와, 무기바인더 제조단계와, 혼합물단계와, 물투입단계와, 활성물질 투입단계와, 첨가제 투입단계와, 암모니아 혼합단계와, 유리섬유 투입단계와, 슬러지단계와, 반죽단계와, 혼련단계와, 압출성형단계와, 건조단계 및 소성단계를 포함한다. 상기 주원료 제조단계는 알루미나(Al2O3) 10 ~ 40 중량%와, 타이타니아(TiO2) 60 ~ 80 중량%와, 몰리브덴 0.1 ~ 3 중량%와, 텅스텐 1 ~ 10 중량%를 혼합하여 주원료를 만든다. 상기 무기바인더 제조단계는 상기 주원료 대비 실리카졸 2 ~ 7 중량%에 상기 실리카졸 대비 실리카파우더 5 ~ 20 중량%를 용해시킨다. 상기 혼합물단계는 상기 무기바인더를 상기 주원료에 투입하여 10 ~ 30분간 혼합하여 혼합물을 만든다. 상기 물투입단계는 상기 혼합물에 물을 상기 주원료 대비 20 ~ 40중량%를 투입한다. 상기 활성물질 투입단계는 암모늄메타바나데이트(NH4VO3) 및 바나듐 옥사이드(V2O5)에서 하나 이상 선택된 상기 주원료 대비 1 ~ 5 중량%를 용매인 주원료 대비 1 ~ 5 중량%의 모노에탄올아민(Monoethanolamine)에 녹여 상기 물 투입된 혼합물에 투입한다. 상기 첨가제 투입단계는 상기 주원료 대비 셀룰로스 결합제 1 ~ 3중량%, 폴리에틸렌글리콜(Polyethylene glycol)과 프로필렌글리콜(Propylene glycol)과 폴리에틸렌옥사이드(Poly Ethylene Oxide)에서 하나 선택된 주원료 대비 1 ~ 2.5중량%, 글리세린(Glycerin)과 스테아린산(Stearic Acid)과 스테아릴알코올(Stearyl Alcohol)에서 하나 이상 선택된 주원료 대비 1 ~ 2.5중량%의 첨가제를 상기 활성물질이 투입된 혼합물에 투입한다. 상기 암모니아 혼합단계는 상기 주원료 대비 암모니아수 3 ~ 5 중량%를 상기 첨가제가 투입된 혼합물에 투입하여 60 ~ 120분 가량 혼합한다. 상기 유리섬유 투입단계는 상기 암모니아수가 혼합된 혼합물에 주원료 대비 유리섬유 5 ~ 15중량%를 투입한다. 상기 슬러지단계는 상기 유리섬유가 투입된 상기 혼합물에 상기 주원료 대비 물을 10 ~ 20중량% 투입하여 30 ~ 90분간 혼합하여 슬러지화시킨다. 상기 반죽단계는 상기 슬러지를 함수율 17 ~ 33%로 조절하여 반죽으로 만든다. 상기 혼련단계는 상기 반죽을 혼련시킨다. 상기 압출성형 단계는 상기 혼련된 반죽을 압출성형하여 압출성형체로 만든다. 상기 건조단계는 상기 압출성형체를 건조시킨다. 상기 소성단계는 상기 건조된 압출성형체를 소성시킨다.SCR catalyst production method for dioxin removal according to the present invention, the main raw material manufacturing step, inorganic binder manufacturing step, mixture step, water input step, active material input step, additive input step, ammonia mixing step, glass fiber It includes a dosing step, a sludge step, a kneading step, a kneading step, an extrusion molding step, a drying step and a firing step. The main raw material manufacturing step is a mixture of 10 to 40% by weight of alumina (Al 2 O 3 ), 60 to 80% by weight of titania (TiO 2 ), 0.1 to 3% by weight of molybdenum, 1 to 10% by weight of tungsten Make. The inorganic binder manufacturing step dissolves 5 to 20 wt% of the silica sol relative to the silica sol in 2 to 7 wt% of the silica sol relative to the main raw material. In the mixing step, the inorganic binder is added to the main raw material and mixed for 10 to 30 minutes to make a mixture. In the water input step, 20 to 40% by weight of water to the mixture is added to the mixture. The active material input step is 1 to 5% by weight of monoethanol compared to the main material of 1 to 5% by weight of the main material selected from one or more selected from ammonium metavanadate (NH 4 VO 3 ) and vanadium oxide (V 2 O 5 ) Dissolve in amine (Monoethanolamine) and add to the water mixture. The additive input step is 1 to 3% by weight of the cellulose binder compared to the main raw material, polyethylene glycol (Polyethylene glycol) and propylene glycol (Propylene glycol) and polyethylene oxide (Poly Ethylene Oxide) 1 to 2.5% by weight compared to the main raw material, glycerin ( Glycerin), stearic acid (Stearic Acid) and stearyl alcohol (Stearyl Alcohol) of 1 to 2.5% by weight of the additive to the active material is added to the mixture of the active material. In the ammonia mixing step, 3 to 5% by weight of ammonia water relative to the main raw material is added to the mixture into which the additive is added and mixed for about 60 to 120 minutes. The glass fiber input step is 5 to 15% by weight of the glass fiber compared to the main raw material in the mixed ammonia water. In the sludge step, 10 to 20% by weight of water is added to the mixture into which the glass fiber is added, and mixed for 30 to 90 minutes to sludge. In the kneading step, the sludge is adjusted to a water content of 17 to 33% to form a dough. The kneading step kneads the dough. In the extrusion molding step, the kneaded dough is extruded into an extruded body. The drying step is to dry the extruded body. In the firing step, the dried extrudate is fired.

또한, 상기의 다이옥신 제거용 SCR 촉매 제조방법에 있어서, 상기 무기바인더 제조단계의 경우 상기 실리카졸은 실리카 함량이 10 ~ 30%이며, 상기 실리카 파우더는 입도 3 ~ 7 마이크로 미터의 크기를 가지는 것이 바람직하다.In addition, in the method of manufacturing the SCR catalyst for dioxin removal, in the inorganic binder manufacturing step, the silica sol has a silica content of 10 to 30%, and the silica powder has a particle size of 3 to 7 micrometers. Do.

또한, 상기의 다이옥신 제거용 SCR 촉매 제조방법에 있어서, 상기 혼련단계에서 혼련된 반죽을 격자 크기 1 ~ 3 밀리미터의 스테인리스 메쉬망을 통과시켜 상기 반죽 내부의 이물질을 제거하는 필터링 단계를 더 포함하는 것이 바람직하다.In addition, the SCR catalyst production method for the dioxin removal, the step of passing through the kneading dough kneaded in a stainless steel mesh mesh size of 1 to 3 millimeters further comprises a filtering step of removing foreign matter inside the dough. desirable.

또한, 상기의 다이옥신 제거용 SCR 촉매 제조방법에 있어서, 상기 건조단계는 마이크로웨이브를 사용하여 상기 압출성형체를 섭씨 50 ~ 110도에서 24 ~ 72시간 건조시키는 것이 바람직하다.In addition, in the method of preparing the SCR catalyst for dioxin removal, in the drying step, it is preferable to dry the extruded product at 50 to 110 degrees Celsius for 24 to 72 hours using a microwave.

또한, 상기의 다이옥신 제거용 SCR 촉매 제조방법에 있어서, 상기 소성단계는 상기 건조된 압출성형체를 섭씨 400 ~ 550도에서 3 ~ 7시간 소성시키는 것이 바람직하다.In addition, in the SCR catalyst manufacturing method for dioxin removal, in the firing step, the dried extruded body is preferably baked for 3 to 7 hours at 400 to 550 degrees Celsius.

본 발명의 경우 알루미나와 타이타니아의 파우더를 사용함으로 인하여 촉매가 바이모달(bimodal) 구조를 가짐으로써 흡착능력을 향상시킬 수 있다. 또한, 본 발명에 의하면 조촉매 역할을 하는 몰리브덴, 텅스텐을 첨가함으로 인하여 활성금속이 함침된 최적의 촉매를 제공할 수 있어서 저온, 중온, 고온대역에서 다이옥신 제거능력이 우수하다.In the case of the present invention, by using the powder of alumina and titania, the catalyst has a bimodal structure, thereby improving the adsorption capacity. In addition, according to the present invention it is possible to provide the optimum catalyst impregnated with the active metal by the addition of molybdenum, tungsten, which serves as a cocatalyst, it is excellent in dioxin removal ability in the low temperature, medium temperature, high temperature zone.

또한, 본 발명에 의하면, 함수율을 일정하게 조절함으로써 반죽의 균일성을 확보할 수 있다. 이로 인하여 촉매의 균열방지 및 성형성을 증가시켜 생산성을 높일 수 있다.Moreover, according to this invention, uniformity of dough can be ensured by adjusting water content constant. This can increase productivity by preventing cracking and formability of the catalyst.

도 1은 본 발명에 따른 다이옥신 제거용 SCR 촉매 제조방법의 일 실시예의 개념도이다.1 is a conceptual diagram of one embodiment of a method for producing a SCR catalyst for dioxin removal according to the present invention.

도 1을 참조하여 본 발명에 따른 다이옥신 제거용 SCR 촉매 제조방법의 일 실시예를 설명한다.With reference to Figure 1 will be described an embodiment of the SCR catalyst manufacturing method for dioxin removal according to the present invention.

본 발명에 따른 다이옥신 제거용 SCR 촉매 제조방법은 주원료 제조단계(S11)와, 무기바인더 제조단계(S13)와, 혼합물단계(S15)와, 물투입단계(S17)와, 활성물질 투입단계(S19)와, 첨가제 투입단계(S21)와, 암모니아 혼합단계(S23)와, 유리섬유 투입단계(S25)와, 슬러지단계(S27)와, 반죽단계(S29)와, 혼련단계(S31)와, 필터링단계(S33)와, 압출성형단계(S35)와, 건조단계(S37) 및 소성단계(S39)를 포함한다.SCR catalyst production method for dioxin removal according to the present invention is the main raw material manufacturing step (S11), inorganic binder manufacturing step (S13), mixture step (S15), water input step (S17), and active material input step (S19) ), Additive addition step (S21), ammonia mixing step (S23), glass fiber input step (S25), sludge step (S27), kneading step (S29), kneading step (S31), filtering It includes a step (S33), an extrusion molding step (S35), a drying step (S37) and a firing step (S39).

촉매를 제조하기 위하여 혼합기에 고상의 원료를 투입한다. 고상의 원료는 SCR 촉매의 촉매체의 골격으로 사용되는 담체의 기본적인 원료이며, 활성물질을 담지하고 높은 표면적을 제공해 반응 면적을 높이는 역할을 한다. 이때 고상의 원료는 주원료와 무기바인더로 구성된다.Solid phase raw materials are added to the mixer to prepare a catalyst. Solid phase raw material is a basic raw material of the carrier used as the skeleton of the catalyst body of the SCR catalyst, and serves to increase the reaction area by supporting the active material and providing a high surface area. At this time, the solid material is composed of a main raw material and an inorganic binder.

주원료 제조단계(S11)는 혼합기에 주원료를 투입하는 단계를 말한다. 주원료는 알루미나(Al2O3) 10 ~ 40 중량%와, 타이타니아(TiO2) 60 ~ 80 중량%와, 몰리브덴 0.1 ~ 3 중량%와, 텅스텐 1 ~ 10 중량%를 혼합하여 주원료를 만든다. 그래서 주원료는 타이타니아와 알루미나의 이중 담체로 구성된다. 이중 담체 중 타이타니아는 아나타아제 형태의 결정구조로서 비표면적이 60 ~ 120㎡/g이고, 기공 크기는 140 ~ 190Å의 물성을 가지고, 알루미나는 감마 알루미나(r-Al203) 형태에 비표면적이 120 ~ 190㎡/g이고, 기공 크기가 100 ~ 140Å의 물성을 가진 원료가 사용된다. 몰리브덴과, 텅스텐은 타이타니아와 알루미나의 이중 담체에 담지되어 조촉매 역할을 한다.Main raw material manufacturing step (S11) refers to the step of introducing the main raw material into the mixer. The main raw material is 10 to 40% by weight of alumina (Al 2 O 3 ), 60 to 80% by weight of titania (TiO 2 ), 0.1 to 3% by weight of molybdenum, and 1 to 10% by weight of tungsten to prepare a main raw material. The main raw material thus consists of a dual carrier of titania and alumina. Among the carriers, titania is anatase-type crystal structure with a specific surface area of 60 to 120 m 2 / g, pore size of 140 to 190 kPa, and alumina to gamma alumina (r-Al 2 0 3 ). A raw material having a surface area of 120 to 190 m 2 / g and a pore size of 100 to 140 mm 3 is used. Molybdenum and tungsten are supported on double carriers of titania and alumina to serve as promoters.

무기바인더 제조단계(S13)는 주원료 대비 실리카졸 2 ~ 7 중량%에 상기 실리카졸 대비 실리카 파우더 5 ~ 20중량%를 용해시킨다. 무기 바인더는 촉매 담체의 강도를 증가시키기 위한 실리카(SiO2)이며, 실리카 함량이 10 ~ 30%인 실리카 졸(Silica Sol)의 주원료 대비 2 ~ 7 중량%에 입도 3 ~ 7 ㎛를 가지는 미세한 크기의 실리카 파우더의 실리카 졸 대비 5 ~ 20중량%를 용해시킨다.The inorganic binder manufacturing step (S13) dissolves 5 to 20% by weight of silica powder relative to the silica sol in 2 to 7% by weight of silica sol relative to the main raw material. The inorganic binder is silica (SiO 2 ) for increasing the strength of the catalyst carrier, and has a fine size having a particle size of 3 to 7 μm at 2 to 7 wt% of the main raw material of silica sol having a silica content of 10 to 30%. Dissolve 5 to 20% by weight relative to the silica sol of the silica powder.

혼합물단계(S15)는 무기바인더를 주원료가 투입된 혼합기에 투입하여 10 ~ 30분간 혼합하여 혼합물을 만든다.In the mixing step (S15), the inorganic binder is added to a mixer into which the main raw material is added, followed by mixing for 10 to 30 minutes to make a mixture.

물투입단계(S17)는 혼합물이 만들어진 혼합기에 물을 주원료 대비 20 ~ 40중량%를 투입한다.In the water input step (S17), 20 to 40% by weight of water is added to the mixer in which the mixture is made.

활성물질 투입단계(S19)는 SCR 촉매의 활성물질인 바나듐을 투입하는데 바나듐 전구체인 암모늄메타바나데이트(NH4VO3) 및 바나듐 옥사이드(V2O5)에서 하나 이상 선택하여 주원료 대비 1 ~ 5 중량%를 용매인 주원료 대비 1 ~ 5 중량%의 모노에탄올아민(Monoethanolamine)에 녹여 혼합기에 투입한다.In the active material input step (S19), vanadium, which is an active material of the SCR catalyst, is input, and at least one selected from vanadium precursors, ammonium metavanadate (NH 4 VO 3 ) and vanadium oxide (V 2 O 5 ), is selected from 1 to 5 Dissolve 1% by weight to 1% by weight of monoethanolamine (Monoethanolamine) compared to the main raw material as a solvent and add to the mixer.

첨가제 투입단계(S21)는 기타 첨가제로 SCR 촉매를 압출성형하는데 용이하도록 세라믹 원료 분말끼리 결합시켜주는 용도인 유기바인더인 셀룰로스 결합제(Cellulose binder)를 주원료 대비 1 ~ 3중량%를, SCR 촉매를 압출성형 하는데 용이하도록 가소성을 성형체에 부여하기 위한 가소제로 폴리에틸렌글리콜(Polyethylene glycol)과 프로필렌글리콜(Propylene glycol)과 폴리에틸렌옥사이드(Poly Ethylene Oxide)에서 하나 선택하여 주원료 대비 1 ~ 2.5중량%를, SCR 촉매의 부드러운 압출성형이 가능하도록 반죽에 윤활성을 부여하는 윤활제로 글리세린(Glycerin)과 스테아린산(Stearic Acid)과 스테아릴알코올(Stearyl Alcohol)에서 하나 이상 선택하여 주원료 대비 1 ~ 2.5중량%를 상기 활성물질이 투입된 혼합물에 투입한다.Additive input step (S21) is an organic binder cellulose binder (Cellulose binder) that is used to combine the ceramic raw material powder to facilitate the extrusion molding of the SCR catalyst with other additives 1 ~ 3% by weight compared to the main raw material, SCR catalyst extruded As a plasticizer to give plasticity to the molded product for easy molding, it selects one from polyethylene glycol, propylene glycol, and polyethylene oxide and selects 1 to 2.5% by weight of the main raw material. Lubricating lubricity to the dough to enable a smooth extrusion molding selected from one or more of glycerin (Slyric acid) and stearic acid (Stearic Acid) and stearyl alcohol (Stearyl Alcohol) 1 ~ 2.5% by weight compared to the main raw material To the mixture.

암모니아 혼합단계(S23)는 혼합물의 PH(산도)를 조절하기 위해서 PH조절제로 암모니아(NH3) 함량이 20 ~ 30%인 암모니아수를 주원료 대비 3 ~ 5 중량%를 첨가제가 투입된 혼합기에 투입하여 60 ~ 120분 가량 혼합한다.In the ammonia mixing step (S23), in order to control the pH (acidity) of the mixture, 60 to 30% by weight of ammonia (NH 3 ) with ammonia (NH 3 ) content of 3 to 5% by weight is added to the mixer. Mix for about 120 minutes.

유리섬유 투입단계(S25)는 암모니아수가 혼합된 혼합물에 SCR 촉매 담체의 뼈대 역할을 하여 성형체의 형상을 그대로 유지시켜 주는 충진제로 입도 3 ~ 10 ㎛를 가지는 유리섬유를 주원료 대비 5 ~ 15중량%를 투입한다.Glass fiber feeding step (S25) is a filler that maintains the shape of the molded body by acting as a skeleton of the SCR catalyst carrier in the mixture of ammonia water is 5 ~ 15% by weight of the glass fiber having a particle size of 3 ~ 10 ㎛ compared to the main raw material Input.

슬러지단계(S27)는 상기 혼합물에 주원료 대비 물을 10 ~ 20중량% 투입하여 30 ~ 90분간 혼합시켜 유리섬유가 투입된 혼합물을 슬러지화시킨다.Sludge step (S27) is 10 to 20% by weight of water compared to the main raw material to the mixture is mixed for 30 to 90 minutes to sludge the mixture into the glass fiber.

반죽단계(S29)는 슬러지를 함수율 17 ~ 33%로 조절하여 반죽으로 만든다. 슬러지를 원하는 함수율로 만들기 위하여 먼저 스팀을 이용하여 15~50분 가량 히팅한다. 그리고 히팅을 가한 후 혼합반죽 내부의 열기를 제거하기 위하여 혼합기의 덮개를 개방하여 함수율이 17 ~ 33%가 될 때까지 냉각시킨다. 최종적으로 냉각된 혼합반죽의 함수율이 17 ~ 33%이면 혼합기에서 압출성형용 반죽을 인출한다.The kneading step (S29) is made of dough by adjusting the sludge with a moisture content of 17 to 33%. To produce the sludge at the desired moisture content, first heat it for 15 to 50 minutes using steam. After the heating is applied, the cover of the mixer is opened to remove the heat inside the mixing dough and cooled until the moisture content is 17 to 33%. When the moisture content of the finally cooled mixed dough is 17 to 33%, the extrusion dough is taken out from the mixer.

혼련단계(S31)는 혼합기에서 인출한 반죽을 혼련기(Kneader)를 통하여 혼련시킨다.In the kneading step S31, the dough drawn out from the mixer is kneaded through a kneader.

필터링 단계(S33)는 혼련단계(S31)에서 혼련된 반죽을 격자 크기 1 ~ 3㎜의 스테인리스 메쉬망을 통과시켜 반죽 내부의 이물질을 제거한다.The filtering step S33 removes the foreign matter inside the dough by passing the kneaded dough in the kneading step S31 through a stainless steel mesh mesh having a grid size of 1 to 3 mm.

압출성형단계(S35)는 필터링되어 이물질이 제거된 반죽을 진공 압출기에 투입하여 허니컴 모양의 압출성형체로 만든다.Extrusion molding step (S35) is filtered to put the dough is removed foreign substances into a vacuum extruder to make a honeycomb-shaped extruded body.

건조단계(S37)는 촉매체인 압출성형체를 건조시킨다. 압출성형단계(S35)에서 만들어진 압출성형체를 열풍, 항온 항습, 마이크로웨이브를 사용하여 섭씨 50 ~ 110도에서 24 ~ 72시간 건조시킨다. 이는 촉매체의 제조시에 사용된 물을 제거하는 공정이며, 이 방법의 조합으로 균열이 없는 건조지지체를 제조할 수 있다.Drying step (S37) is to dry the extruded body which is a catalyst body. The extruded body produced in the extrusion step (S35) is dried for 24 to 72 hours at 50 ~ 110 degrees Celsius using hot air, constant temperature and humidity, microwave. This is a step of removing the water used in the production of the catalyst body, by the combination of these methods can be produced dry support without cracks.

소성단계(S39)는 건조된 촉매체를 소성시키기 위하여 열처리를 한다. 보통 섭씨 400 ~ 550도에서 3 ~ 7 시간 소성시킨다. 이는 촉매체의 골격으로 사용된 이중 담체인 타이타니아와 알루미나의 기공구조 및 비표면적을 최적화시키며, 담체에 담지된 활성물질인 바나듐과 조촉매 역할을 하는 몰리브덴, 텅스텐 등을 산화물 형태로 결정화시켜 촉매의 활성을 최적화시킨다. 압출성형체로 제조된 지지체는 소성단계(S39)에서 유기바인더가 타버려 없어진다.Firing step (S39) is subjected to a heat treatment to fire the dried catalyst body. Usually fired for 3 to 7 hours at 400 to 550 degrees Celsius. This optimizes the pore structure and specific surface area of titania and alumina, which are dual carriers used as the backbone of the catalyst, and crystallizes the oxides of vanadium, which is an active material supported on the carrier, and molybdenum, tungsten, etc. Optimize activity. In the support body made of the extruded body, the organic binder is burned away in the firing step (S39).

본 실시예의 경우 원료 및 첨가제의 균일한 혼합을 확보하고 함수율을 일정하게 조절함으로써 반죽의 균일성을 확보할 수 있다. 그리고 촉매의 균열 방지 및 성형성의 증대로 생산성을 높일 수 있다. 그리고 알루미나와 타이타니아의 복합 담체를 사용함으로 인하여 매크로와 마이크로 포어(Pore) 조합의 bi-modal pore 구조를 가질 수 있다. In the present embodiment it is possible to ensure the uniformity of the dough by ensuring a uniform mixing of the raw materials and additives and by adjusting the water content constant. In addition, productivity can be increased by preventing cracking of the catalyst and increasing moldability. In addition, the composite carrier of alumina and titania may have a bi-modal pore structure of a combination of macro and micro pores.

Claims (5)

알루미나(Al2O3) 10 ~ 40 중량%와, 타이타니아(TiO2) 60 ~ 80 중량%와, 몰리브덴 0.1 ~ 3 중량%와, 텅스텐 1 ~ 10 중량%를 혼합하여 주원료를 만드는 주원료 제조단계와,
상기 주원료 대비 실리카졸 2 ~ 7 중량%에 상기 실리카졸 대비 실리카파우더 5 ~ 20 중량%를 용해시키는 무기바인더 제조단계와,
상기 무기바인더를 상기 주원료에 투입하여 10 ~ 30분간 혼합하여 혼합물을 만드는 혼합물단계와,
상기 혼합물에 물을 상기 주원료 대비 20 ~ 40중량%를 투입하는 물투입단계와,
암모늄메타바나데이트(NH4VO3) 및 바나듐 옥사이드(V2O5)에서 하나 이상 선택된 상기 주원료 대비 1 ~ 5 중량%를 용매인 주원료 대비 1 ~ 5 중량%의 모노에탄올아민(Monoethanolamine)에 녹여 상기 물 투입된 혼합물에 투입하는 활성물질 투입단계와,
상기 주원료 대비 셀룰로스 결합제 1 ~ 3중량%, 폴리에틸렌글리콜(Polyethylene glycol)과 프로필렌글리콜(Propylene glycol)과 폴리에틸렌옥사이드(Poly Ethylene Oxide)에서 하나 선택된 주원료 대비 1 ~ 2.5중량%, 글리세린(Glycerin)과 스테아린산(Stearic Acid)과 스테아릴알코올(Stearyl Alcohol)에서 하나 이상 선택된 주원료 대비 1 ~ 2.5중량%의 첨가제를 상기 활성물질이 투입된 혼합물에 투입하는 첨가제 투입단계와,
상기 주원료 대비 암모니아수 3 ~ 5 중량%를 상기 첨가제가 투입된 혼합물에 투입하여 60 ~ 120분 가량 혼합하는 암모니아 혼합단계와,
상기 암모니아수가 혼합된 혼합물에 주원료 대비 유리섬유 5 ~ 15중량%를 투입하는 유리섬유 투입단계와,
상기 유리섬유가 투입된 상기 혼합물에 상기 주원료 대비 물을 10 ~ 20중량% 투입하여 30 ~ 90분간 혼합하여 슬러지화시키는 슬러지단계와,
상기 슬러지를 함수율 17 ~ 33%로 조절하여 반죽으로 만드는 반죽단계와,
상기 반죽을 혼련시키는 혼련단계와,
상기 혼련된 반죽을 압출성형하여 압출성형체로 만드는 압출성형 단계와,
상기 압출성형체를 건조시키는 건조단계와,
상기 건조된 압출성형체를 소성시키는 소성단계를 포함하는 것을 특징으로 하는 다이옥신 제거용 SCR 촉매 제조방법.
The main raw material manufacturing step of making a main raw material by mixing 10 to 40% by weight of alumina (Al 2 O 3 ), 60 to 80% by weight of titania (TiO 2 ), 0.1 to 3% by weight of molybdenum, and 1 to 10% by weight of tungsten ,
An inorganic binder manufacturing step of dissolving 5 to 20 wt% of the silica powder relative to the silica sol in 2 to 7 wt% of the silica sol relative to the main raw material;
A mixing step of adding the inorganic binder to the main raw material and mixing the mixture for 10 to 30 minutes to form a mixture;
A water input step of adding 20 to 40% by weight of water to the mixture with respect to the main raw material,
Dissolve 1 to 5% by weight of monoethanolamine (Monoethanolamine) in an amount of 1 to 5% by weight relative to the main material selected from at least one selected from ammonium metavanadate (NH 4 VO 3 ) and vanadium oxide (V 2 O 5 ). An active material input step of inputting the water input mixture,
1 to 3% by weight of the cellulose binder, 1 to 2.5% by weight of the main raw material selected from polyethylene glycol (Propylene glycol) and polyethylene oxide (Poly Ethylene Oxide), glycerin (Glycerin) and stearic acid ( An additive feeding step of adding 1 to 2.5% by weight of the additive to the mixture into which the active substance is added, compared to one or more selected main ingredients from stearic acid) and stearyl alcohol;
Ammonia mixing step of mixing 3 to 5% by weight of ammonia water compared to the main raw material into the mixture into which the additive is added and mixing for about 60 to 120 minutes;
Glass fiber input step of injecting 5 to 15% by weight of the glass fiber compared to the main raw material in the mixture of the ammonia water,
A sludge step of sludge mixing by mixing 10 to 20% by weight of water relative to the main raw material to the mixture into which the glass fiber is added and mixed for 30 to 90 minutes;
And kneading step of making the dough by adjusting the sludge to moisture content 17 ~ 33%,
A kneading step of kneading the dough;
An extrusion molding step of extruding the kneaded dough into an extruded body,
A drying step of drying the extruded body,
Dioxin removal SCR catalyst manufacturing method comprising the step of firing the dried extruded body.
제1항에 있어서, 상기 무기바인더 제조단계에 있어서,
상기 실리카졸은 실리카 함량이 10 ~ 30%이며, 상기 실리카 파우더는 입도 3 ~ 7 마이크로 미터의 크기를 가지는 것을 특징으로 하는 다이옥신 제거용 SCR 촉매 제조방법.
According to claim 1, In the inorganic binder manufacturing step,
The silica sol has a silica content of 10 to 30%, and the silica powder has a particle size of 3 to 7 micrometers, characterized in that the dioxin removal SCR catalyst manufacturing method.
제2항에 있어서,
상기 혼련단계에서 혼련된 반죽을 격자 크기 1 ~ 3 밀리미터의 스테인리스 메쉬망을 통과시켜 상기 반죽 내부의 이물질을 제거하는 필터링 단계를 더 포함하는 것을 특징으로 하는 다이옥신 제거용 SCR 촉매 제조방법.
The method of claim 2,
The kneading step kneaded in the kneading step passing through a mesh size of 1 ~ 3 millimeters of stainless steel mesh filtering step of removing the foreign matter inside the dough further comprising the step of producing a SCR catalyst for dioxin removal.
제3항에 있어서,
상기 건조단계는 마이크로웨이브를 사용하여 상기 압출성형체를 섭씨 50 ~ 110도에서 24 ~ 72시간 건조시키는 것을 특징으로 다이옥신 제거용 SCR 촉매 제조방법.
The method of claim 3,
The drying step is a method for producing SCR catalyst for dioxin removal, characterized in that for 24 to 72 hours to dry the extruded molded body at 50 to 110 degrees Celsius using microwave.
제4항에 있어서,
상기 소성단계는 상기 건조된 압출성형체를 섭씨 400 ~ 550도에서 3 ~ 7시간 소성시키는 것을 특징으로 하는 다이옥신 제거용 SCR 촉매 제조방법.
The method of claim 4, wherein
The firing step is a method for producing SCR catalyst for dioxin removal, characterized in that the dried extrudate is calcined for 3 to 7 hours at 400 ~ 550 degrees Celsius.
KR1020190091457A 2019-07-29 2019-07-29 Fabrication method of SCR catalyst for removal of dioxin KR102079475B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190091457A KR102079475B1 (en) 2019-07-29 2019-07-29 Fabrication method of SCR catalyst for removal of dioxin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190091457A KR102079475B1 (en) 2019-07-29 2019-07-29 Fabrication method of SCR catalyst for removal of dioxin

Publications (1)

Publication Number Publication Date
KR102079475B1 true KR102079475B1 (en) 2020-02-20

Family

ID=69647625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190091457A KR102079475B1 (en) 2019-07-29 2019-07-29 Fabrication method of SCR catalyst for removal of dioxin

Country Status (1)

Country Link
KR (1) KR102079475B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018330A (en) 1999-08-18 2001-03-05 정태섭 Fabrication of catalyst for removal of dioxin
KR100495789B1 (en) 2000-12-22 2005-06-17 주식회사 포스코 CATALYST FOR NOx DECOMPOSITION AND PREPARATION METHOD OF THE SAME
KR100632591B1 (en) 2000-12-16 2006-10-09 에스케이 주식회사 Catalyst composition for dioxin removal and preparation method thereof
KR100703630B1 (en) 2007-01-08 2007-04-09 포아센산업 주식회사 A composite catalyst for removal of dioxin, and a method for preparation of the same
KR100781726B1 (en) * 2006-09-15 2007-12-03 한국중부발전(주) Method for manufacturing de-nox scr coating catalyst using porous ceramic substrate
JP2010534567A (en) * 2007-07-31 2010-11-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalyst composition, its manufacture and use
KR20160058639A (en) * 2014-11-17 2016-05-25 대영씨엔이(주) De-NOx Catalyst for Selective Catalytic Reduction, and Method for Manufacturing the Same
JP2017064627A (en) * 2015-09-30 2017-04-06 日揮触媒化成株式会社 Catalyst for exhaust gas treatment and method of producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018330A (en) 1999-08-18 2001-03-05 정태섭 Fabrication of catalyst for removal of dioxin
KR100632591B1 (en) 2000-12-16 2006-10-09 에스케이 주식회사 Catalyst composition for dioxin removal and preparation method thereof
KR100495789B1 (en) 2000-12-22 2005-06-17 주식회사 포스코 CATALYST FOR NOx DECOMPOSITION AND PREPARATION METHOD OF THE SAME
KR100781726B1 (en) * 2006-09-15 2007-12-03 한국중부발전(주) Method for manufacturing de-nox scr coating catalyst using porous ceramic substrate
KR100703630B1 (en) 2007-01-08 2007-04-09 포아센산업 주식회사 A composite catalyst for removal of dioxin, and a method for preparation of the same
JP2010534567A (en) * 2007-07-31 2010-11-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalyst composition, its manufacture and use
KR20160058639A (en) * 2014-11-17 2016-05-25 대영씨엔이(주) De-NOx Catalyst for Selective Catalytic Reduction, and Method for Manufacturing the Same
JP2017064627A (en) * 2015-09-30 2017-04-06 日揮触媒化成株式会社 Catalyst for exhaust gas treatment and method of producing the same

Similar Documents

Publication Publication Date Title
KR100632591B1 (en) Catalyst composition for dioxin removal and preparation method thereof
KR100439004B1 (en) A Catalyst for Selective Catalytic Reduction of Nitrogen Oxides and A Method for Preparing the Same
US7842644B2 (en) Catalyst for oxidation of metal mercury
CN106824168B (en) Catalyst for exhaust gas treatment and method for producing same
US10682639B2 (en) Method for preparing a catalyst-containing ceramic filter for off-gas or exhaust gas cleaning
CN103657638A (en) Integral dioxin removing catalyst and preparation method thereof
JPH04118027A (en) Treatment of waste gas
KR102079475B1 (en) Fabrication method of SCR catalyst for removal of dioxin
KR100439005B1 (en) A Catalyst for Selective Catalytic Reduction of Nitrogen Oxides at High Temperature Window and A Method for Preparing the Same
KR101631487B1 (en) Catalyst for Removal of Nitrogen Oxides by Selective Catalytic reduction
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
KR20180064929A (en) NOx Removal Catalyst using Porous Ceramic Structures with Three-Dimensional Network for Exhaust Gases Discharged from Marine Engine and Process for Preparing the Same
KR20200076152A (en) Method of Preparing Catalyst for Removing Nitrogen Oxides Using Waste FCC Catalysts
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
JP4909473B2 (en) Exhaust gas treatment catalyst
KR20030095912A (en) The catalyst for removing injuriousness gas and manufacturing method of the same
JP2002543958A (en) Method for producing catalytically active compound, catalyst provided with this compound, and method for decomposing dioxin and / or furan using this catalyst
JP2000061305A (en) Catalyst and method for treating exhaust gas
JP2005034677A (en) Catalyst for treating exhaust gas and method for treating exhaust gas
JP2005066562A (en) Ceramic filter having organic chlorine compound decomposition function and method for purifying exhaust gas using the same
JP3744587B2 (en) Method for decomposing chlorinated organic compounds
KR100714031B1 (en) Exhaust gas purifying catalyst compound, catalyst comprising said compound and method for preparing the compound
JPH11156191A (en) Cleaning catalyst and cleaning method for waste gas

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant