KR102069704B1 - Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법 - Google Patents

Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법 Download PDF

Info

Publication number
KR102069704B1
KR102069704B1 KR1020180055858A KR20180055858A KR102069704B1 KR 102069704 B1 KR102069704 B1 KR 102069704B1 KR 1020180055858 A KR1020180055858 A KR 1020180055858A KR 20180055858 A KR20180055858 A KR 20180055858A KR 102069704 B1 KR102069704 B1 KR 102069704B1
Authority
KR
South Korea
Prior art keywords
cells
natural killer
killer cells
cell
hdac inhibitor
Prior art date
Application number
KR1020180055858A
Other languages
English (en)
Other versions
KR20190131239A (ko
Inventor
이경미
임선아
이 캐시안
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020180055858A priority Critical patent/KR102069704B1/ko
Priority to CN201980042879.7A priority patent/CN112368371A/zh
Priority to US17/055,678 priority patent/US20210198627A1/en
Priority to EP19802523.1A priority patent/EP3812458A4/en
Priority to PCT/KR2019/005721 priority patent/WO2019221463A1/ko
Publication of KR20190131239A publication Critical patent/KR20190131239A/ko
Application granted granted Critical
Publication of KR102069704B1 publication Critical patent/KR102069704B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/065Modulators of histone acetylation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 자연살해세포의 확장배양법에 관한 것으로, 더욱 자세하게는 배양된 자연살해세포에 HDAC 억제제를 처리하는 것을 특징으로 하는 자연살해세포의 확장배양법에 관한 것으로, 본 발명에 따르면, 자연살해세포를 체외에서 확장 배양시에 세포의 세포사를 억제하여, 세포의 생존율과 수득율이 현저히 향상되어, 암치료 등의 세포치료에 필요한 자연살해세포를 효율적으로 수득할 수 있다.

Description

HDAC 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법{Method for Expansion of Human NK Cell Using HDAC Inhibitor}
본 발명은 자연살해세포의 확장배양법에 관한 것으로, 더욱 자세하게는 배양된 자연살해세포에 HDAC 억제제를 처리하는 것을 특징으로 하는 자연살해세포의 확장배양법에 관한 것이다.
인체의 면역계는 복잡한 기전에 의해서 조절이 되며 면역계에 이상이 생길 경우 면역시스템에 불균형이 초래되어 암과 같은 각종 난치성 질환이 발생할 수 있다. 따라서 면역계에서 발생하는 불균형을 해소하여 정상상태로 회복, 강화시켜 면역관련 질환을 치료하는 방법인 면역세포치료제의 개발이 각광을 받고 있다.
우리 몸의 면역계는 선천성 면역계와 후천성 면역계로 나뉘며 선천면역계는 우리 몸에 외부 항원이 들어오면 제일 먼저 공격을 하는 세포들로 구성되어 있으며 대표적인 세포로는 자연살해세포가 있으며 다양한 종류의 암세포를 살상가능하고 항원유무에 관계없이 암세포를 인식할 수 있다는 장점이 있기 때문에 세포 치료제로 주목을 받고 있다.
면역세포를 세포치료제로 사용하기 위해 필요한 것은 다량의 세포 수 확보, 세포의 높은 항암능력이 무엇보다 중요하다. 또한, 확보된 면역세포들을 환자의 체내 주입하였을 때 효과적으로 체내에서 생존해야 한다.
하지만 체외에서 배양된 면역세포를 체내에 주입할 경우에는 활성이 오래 유지되지 못하며, 특히나 세포를 과도하게 확장시키면 필연적으로 세포사나 세포 노화에 빠지기 쉽다. 다라서, 배양된 면역세포가 환자의 체내에서 오랫동안 안정성을 유지해야만 세포치료제로써 제대로 효력을 발휘할 수 있다.
후생유전학(epigenetics)은 DNA의 염기서열이 변화하지 않는 상태에서 유전자 발현이 조절되는 현상으로, 크로마틴의 구조적 변화 "크로마틴 리모델링"에 영향을 주어 유전자 발현이 조절된다. 이 분야는 최근 각광을 받고 있는 분야로써 면역세포의 활성화 및 비활성화에 중요한 역할을 하는 것으로 보고되고 있다. (Schenk et al., Int J Mol Sci, 2016).
히스톤 탈아세틸화 효소(Histone Deacetylases, HDACs)는 Chromatin Remodeling에 관여하는 효소이며, 주로 전사과정에 영향을 주는 것으로 알려져 있고, 히스톤이 과아세틸화되면 전사가 억제되는 것으로 보고되어 있다(Smith et al., BioEssay, Vol 30:15-24, 2007). 또한 HDAC는 히스톤을 변형시키는 것 외에도 많은 비히스톤 단백질 기질을 표적으로 하여 유전자 발현을 조절하는 것으로 알려져 있다. 따라서 HDAC을 억제하면 Chromatin 구조가 열리면서 다양한 전사조절 인자들이 결합할 수 있게 된다.
기존의 보고에 의하면 IL-2로 배양한 NK 세포(자연살해세포, Natural Killer cell)에 anti-CD2 항체를 처리하면 Chromatin이 응축되고 세포사를 유도하는 것으로 보고되어 있다(Ida et al., Eur J Immunol, Vol 28:1292-1300, 1998). 따라서 NK 세포가 외부 자극에 의해 활성화됨에 따라 HDAC에 의해 Chromatin이 닫힌 구조를 이루어 전사인자들의 결합할 수 없게 되고 결국 세포 증식억제 및 세포사가 유도 되게 된다. 따라서 HDAC을 억제하여 Chromatin 구조적 변화를 유도함으로써 세포의 생존 관련 전사인자들이 결합할 수 있도록 하여 세포사를 억제하는 방안에 대해 개발하고자 하였다.
HDAC 억제제에 대하여는 히스톤 탈아세틸화효소 억제제 (HDACi)가 다양한 암 세포주에서 분화, 세포주기 정지, 세포사, 자가 포식 작용 및 괴사를 유도하는 것으로 보고된바 있다(Senese et al., Molecular and Cellular Biology, Vol 27:4784-4795, 2007). HDAC 억제제는 암세포의 DNA 손상 반응을 향상시키고, DNA 복구를 억제함으로써 암세포 세포사멸을 촉진하는 것으로 알려져있고 이러한 기전은 정상세포에서는 일어나지 않는다. 따라서, HDAC 억제제는 암 및 정상 세포에서 차별적인 효과를 보일 것으로 생각이 되었다.
면역세포와 연관되어서는 HDAC 억제제를 암세포에 처리 시 NKG2D 리간드의 발현이 증가되어 NK 세포가 암세포를 잘 인식하게 되어(Lopez-Soto et al., Oncogene, Vol 28:2370-2382, 2009) 항암효과가 있는 것으로 보고되고 있으며, 면역 세포사(immunogenic cell death)를 증가시킨다는 보고 등이 있다(West et al., Cancer Research, Vol 7:7265-7276, 2013)
NK 세포에 HDAC 억제제인 Valproic Acid를 처리 시에 NK 세포의 증식 및 암세포 살상능이 감소되는 것으로 보고된바 있다(Ogbomo et al., FEBS Letters, Vol 581:1317-1322, 2007) 또한, 활성화 시킨 NK 세포에서 Vorinostat을 처리하면 암세포 살상능에 변화가 없음이 보고되어 있다. (Wang et al., Biol Blood Marrow Transplant, Vol 18:747-753, 2012)
T 세포의 경우도 CD4 T 세포의 경우는 억제제 처리에 따라 세포 생존능이 저하되고 증식 및 사이토카인 분비가 억제 되는 것이 보고되어 있으며 (Schmudde et al., Cancer Lett, Vol 295:173-181, 2010) CD8 T 세포의 경우 memory 기능이 증가됨이 보고되어 있다 (Vo et al., Cancer Research, Vol 69:8693-9699, 2009).
이와 대조적으로 Regulatory 면역 세포인 Treg의 경우 Foxp3의 발현 및 면역 억제능이 증가하는 것이 보고되어 있으며 (Tao et al., Nature Med, Vol 13:1299-1307, 2007) MDSC의 Differentiation을 증대시키는 것이 보고되어 있다(Rosborough et al., J Leukoc Biol, Vol 91:701-709, 2012).
이에, 본 발명자들은 면역세포의 확장시에 생존율과 수득율을 효과적으로 높이는 방법을 개발하고자 예의 노력한 결과, NK 세포의 체외 확장 배양시에, 증식중인 NK 세포에 HDAC 억제제를 처리하는 경우, NK 세포의 확장이 증대되어 세포 생존율과 수득율이 현저히 높아진다는 것을 확인하고, 본 발명을 완성하게 되었다.
본 발명의 목적은 자연살해세포의 체외 배양시 확장율을 증대시키는 배양방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 자연살해세포를 1~15일 배양하는 단계; (b) 배양된 자연살해세포에 HDAC 억제제를 처리하는 단계; 및 (c) 처리된 자연살해세포를 추가로 배양하는 단계를 포함하는 자연살해세포의 확장 배양방법을 제공한다.
본 발명에 따르면, 자연살해세포를 체외에서 확장 배양시에 세포의 세포사를 억제하여, 세포의 생존율과 수득율이 현저히 향상되어, 암치료 등의 세포치료에 필요한 자연살해세포를 효율적으로 수득할 수 있다.
도 1은 자연 살해세포의 성장에 HDAC 억제제가 미치는 영향을 확인한 결과를 나타낸 것으로, (A)는 자연살해세포 확장 배양 시 약물 처리방법을 나타낸 것이고, (B)는 HDAC 억제제 처리 후, 자연살해세포의 성장곡선 및 자연살해세포의 분포 변화를 나타낸 것이며, (C)는 0일 또는 10일에 HDAC 억제제를 추가하여 NK 세포를 배양하고 성장곡선을 나타낸 도식이다.
도 2는 자연살해세포의 성장에HDAC 억제제가 미치는 영향을 확인한 결과를 나타낸 것으로, HDAC 억제제의 처리 유무에 따라 자연 살해세포의 세포사 및 증식을 확인한 것이다.
도 3의 A는 HDAC 억제제를 처리한 후 자연 살해세포의 암세포 살상능을 확인한 결과를 나타낸 것이고, B는 HDAC 억제제 처리 유무에 따라 배양한 자연살해세포의 CD107a (살상능 척도)의 발현, IFN-g (사이토카인)의 분비를 확인한 결과를 나타낸 것이다.
본 발명에서는 자연살해세포(NK 세포)를 체외에서 확장배양하는 경우에, HDAC억제제(히스톤 탈아세틸화효소 억제제)를 이용하여, 자연살해세포의 수득율을 높이는 방법을 개발하였으며, 초기에 HDAC 억제제를 처리하면 기존 보고와 동일하게 NK 세포의 증식이 억제되지만 증식중인 자연살해세포에 HDAC 억제제를 처리하면 기존의 보고와 달리 HDAC 억제제를 처리하지 않은 대조군에 비해 자연살해세포의 확장이 증대된다는 사실을 발견하였고, 이는 HDAC 억제제의 처리가 세포사를 억제함으로써 더 많은 수의 자연살해세포를 획득할 수 있다는 사실을 알 수 있었다. 이는 증식 중인 세포와는 달리 resting 자연살해세포의 증식에 있어서는 HDAC의 활성이 중요하기 때문에 HDAC 억제제를 증식중인 세포에 처리하는 것이 세포수 증대에 핵심적이라는 사실을 새로이 발견하였다. 뿐만아니라 HDAC 억제제를 처리한 자연살해세포가 HDAC 억제제의 처리 유무에 관계없이 암세포 살상능을 유지할 수 있다는 사실을 확인하였다.
따라서, 본 발명은 (a) 자연살해세포를 5~15일 배양하는 단계; (b) 배양된 자연살해세포에 HDAC 억제제를 처리하는 단계; 및 (c) 처리된 자연살해세포를 추가로 배양하는 단계를 포함하는 자연살해세포의 확장 배양방법에 관한 것이다.
본 발명에 있어서, HDAC 억제제는 SAHA, Vaproic acid, Vorinostat, Entinostat, Romidepsin, Romidepsin 로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 본 발명에서 처리되는 HDAC 억제제는 31.25nM~ 125nM 농도로 처리하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 자연살해세포는 5~15일 배양 후 HDAC 억제제를 처리하며, 바람직하게는 6~12일 배양 후 처리할 수 있고, 더욱 바람직하게는 7~10일 배양후 처리하는 것이 바람직하다.
본 발명에 있어서, HDAC 억제제는 자연살해세포의 배양 6일째에 첫번째 처리한 후, 4일 간격으로 3~4회 추가적으로 처리하는 것을 특징으로 할 수 있다.
본 발명에서, 상기 (c) 단계에서는 IL-2가 추가된 배지에서 배양하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 자연살해세포는 공배양에 의해서 배양될 수 있으며, 함께 배양되는 피더세포로는 Jurkat (KL-1) 세포, EBV-LCL 세포, K562 세포 등이 사용될 수 있다.
본 발명의 일양태에서는 사람유래 말초혈액 단핵세포를 분리하여 Jurkat 세포와 EBV-LCL 세포로 공배양하여, 10일간 배양한 후, HDAC 억제제로 SAHA를 처리하였을 때, 기존 배양 방법에 비해 자연살해세포의 세포수가 증가되었으며, 억제제 처리에 의한 세포 증식에는 변화가 없고 자연살해세포의 세포사를 억제하는 것으로 확인되었으며, 억제제 처리에 의한 자연살해세포의 암세포 살상능에 변화는 없었다. 또한, 억제제 처리에 의해 Interferon gamma 분비능에는 변화가 없었다.
따라서 본 방법은 기존의 방법에 비해 자연 살해 세포의 기능에는 변화가 없으나 세포사를 억제하여 더 많은 세포수를 확보 가능한 방법이다.
또한, 본 발명의 다른 양태에서는 자연살해세포를 배양하지 않고, 초기에 HDAC 억제제로 SAHA를 처리한 경우에는 세포수 증가효과가 확인되지 않았다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 자연살해세포 배양 시 HDAC 억제제 처리에 의한 세포수 증가
사람의 혈액을 채혈한 후, Ficoll(Ficoll-paqueTM PLUS, GE healthcare)을 이용하여 2500 rpm에서 30분간 원심분리한 후, 연막층(buffy coat)에서 말초혈액 단핵세포를 분리하였다. 그 후 100Gy로 방사선 조사한 Jurkat 세포주(한국세포주은행)와 EBV-LCL 세포주(한국세포주은행)를 사용하여 IL-2 500 U/ml 존재 하에 말초혈액단핵세포:Jurkat 세포:EBV-LCL 세포의 비율을 1:0.5:0.5로 하여, RPMI1640 배지(Corningㄾ)에 10% FBS와 1% penicillin/streptomycin을 넣은 hRPMI 배지에 공배양하여 3~4일 마다 한번씩 IL-2가 500 U/ml로 첨가된 hRPMI 배지로 교환해 주면서 배양을 하였다.
HDAC 억제제가 자연살해세포에 미치는 영향을 확인하기 위하여, 상기 조건에서 6일간 배양한 자연살해세포에 4일에 1번 HDAC 억제제 (SAHA, Sigma Aldrich, USA); 125nM)를 처리하여 배양하고 세포수를 확인하였다(도 1A). 이 때 약 12일간 더 배양을 하며 4일에 한번씩 헤마토사이토미터를 이용하여 세포수를 계수하였으며, IL-2가 500 U/ml로 첨가된 hRPMI 배지로 교환해 주면서 배양하였다.
그 결과, 도 1B에 나타난 바와 같이, HDAC 억제제를 처리하지 않은 대조군에 비해, HDAC 억제제인 SAHA를 처리한 실험군이 대조군에 비해 2배 이상 세포수가 더 많아지는 것을 확인하였다.
아울러, 도 1C에는 자연살해세포 배양 시 0일 또는 10일에 HDAC 억제제를 첨가하여 배양 후, 자연살해세포의 성장곡선을 나타내었으며, 배양 0일에 HDAC 억제제를 처리한 경우, 10일에 처리한 실험군과 달리 NK 세포의 증식이 저하되는 것을 알 수 있었다.
또한, 도 2A에서 볼 수 있듯이 공배양 6일 째부터 SAHA를 처리한 실험군에서의 세포수가 가장 높게 측정이 되었고 농도상으로는 62.5nM에서 NK 세포의 증식이 가장 높은 것을 확인하여 처리 시기 및 처리 용량을 최적화하였다.
실시예 2: 자연살해세포 배양 시 HDAC 억제제 처리에 의한 세포사 및 세포증식 측정
실시예 1과 동일한 방법으로, 10일간 체외 확장시킨 자연살해세포에 HDAC 억제제를 처리하여 8일간 더 배양한 세포를 수거한 후 5X105 개의 세포를 얻어서 세포사 및 세포 증식을 유세포 분석기를 이용하여 측정하였다.
세포사를 측정하기 위해서, 세포를 걷은 후 아넥신 V(annexin V)(2.5㎕)와 7AAD 2㎕로 15분간 염색한 후 FACS CantoII(BD)를 사용하여 annexinV-/7AAD가 염색된 세포의 비율을 분석하였다. 세포 증식을 측정하기 위하여 먼저 Percp-labeled CD3 mAb(Biolgendㄾ Cat No.344814 clone SK7), APC-labeled CD56 mAb(Biolegendㄾ Cat No.362504 clone 5.1H11)를 넣고 4℃에서 20분간 반응시켰다. Intracellular FACS를 위해 세포를 FACS buffer로 세척하고 eBioscience Foxp3/Transcription factor staining buffer set (eBioscienceㄾ Cat No. 00-5523-00)를 이용하여 세포 핵내의 Ki67를 염색하여 확인하였다.
그 결과, 도 3에 나타난 바와 같이, HDAC억제제를 처리한 경우 자연살해세포의 증식에는 큰 변화가 없으며, HDAC억제제 처리에 의하여, 자연살해세포의 세포사(apoptosis)가 억제되는 것을 확인할 수 있었다.
실시예 3: 자연살해세포 배양 시 HDAC 억제제 처리에 의한 암세포 살상능 변화 확인
실시예 1의 방법으로 체외 확장된 자연살해세포의 암세포 살상능의 변화를 확인하기 위하여, 타겟 암세포로 K562(한국세포주은행), A375(한국세포주은행) 세포를 준비한 후 Chromium으로 1시간 동안 라벨링한 후 자연살해세포와 1:1 비율로 섞어 비율로 37℃에서 공동 배양하고 4시간 후 상층액을 취해서 gamma counter로 동위원소 값을 확인하였다.
FITC labeled anti CD107a mAb를 2.5㎕ 넣고 Golgi stop (BD pharmingen)을 넣은 후 5시간 동안 37℃에서 배양하였다. 배양이 끝난 후 Percp-labeled CD3 mAb(Biolgendㄾ Cat No.344814 clone SK7), APC-labeled CD56mAb(Biolegendㄾ Cat No.362504 clone 5.1H11)를 넣고 4℃에서 20분간 반응한다. Intracellular FACS를 위해 세포를 FACS buffer로 세척하고 고정시킨 후 BD cytoperm/cytofix kit (BD Pharmingen, San Diego, CA)로 투과시켜 PE-labeled IFN-g mAb로 염색한 후 유세포 분석기를 이용하여 분석하였다. 양성대조군으로 PMA/Ionomycin을 처리한 자연살해세포를 사용하였다.
그 결과, 도 4에 나타난 바와 같이, HDAC 억제제를 처리한 자연살해세포군은 처리하지 않은 대조군과 암세포 살상능이 비슷한 것을 알 수 있었다. 도 3B는 HDAC 억제제 처리 유무에 따라 배양한 자연 살해세포의 CD107a (살상능 척도)의 발현, IFN-g (사이토카인)의 분비를 확인한 결과, HDAC 억제제 처리 후 자연살해세포의 기능에 변화가 없다는 사실을 알 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (5)

  1. 다음 단계를 포함하는 자연살해세포의 확장 배양방법:
    (a) 자연살해세포를 5~15일 배양하는 단계;
    (b) 배양된 자연살해세포에 HDAC 억제제인 SAHA를 처리하는 단계; 및
    (c) 처리된 자연살해세포를 추가로 배양하는 단계.
  2. 제1항에 있어서, HDAC 억제제 SAHA는 자연살해세포의 배양 5~15일에 첫번째 처리한 후, 2~4일 간격으로 1~3회 추가적으로 처리하는 것을 특징으로 하는 방법.
  3. 삭제
  4. 제1항에 있어서, HDAC 억제제 SAHA를 31.25nM~ 125nM 농도로 처리하는 것을 특징으로 하는 방법.
  5. 제1항에 있어서, 상기 (c) 단계는 IL-2가 함유된 배지에서 배양하는 것을 특징으로 하는 방법.
KR1020180055858A 2018-05-16 2018-05-16 Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법 KR102069704B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020180055858A KR102069704B1 (ko) 2018-05-16 2018-05-16 Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법
CN201980042879.7A CN112368371A (zh) 2018-05-16 2019-05-13 使用hdac抑制剂的人源性自然杀伤细胞的扩增培养方法
US17/055,678 US20210198627A1 (en) 2018-05-16 2019-05-13 Expansion culture method for human-derived natural killer cells by using hdac inhibitor
EP19802523.1A EP3812458A4 (en) 2018-05-16 2019-05-13 EXPANSION GROWING PROCEDURE FOR HUMAN-DERIVED NATURAL KILLER CELLS USING HDAC INHIBITOR
PCT/KR2019/005721 WO2019221463A1 (ko) 2018-05-16 2019-05-13 Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180055858A KR102069704B1 (ko) 2018-05-16 2018-05-16 Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법

Publications (2)

Publication Number Publication Date
KR20190131239A KR20190131239A (ko) 2019-11-26
KR102069704B1 true KR102069704B1 (ko) 2020-01-23

Family

ID=68540602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180055858A KR102069704B1 (ko) 2018-05-16 2018-05-16 Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법

Country Status (5)

Country Link
US (1) US20210198627A1 (ko)
EP (1) EP3812458A4 (ko)
KR (1) KR102069704B1 (ko)
CN (1) CN112368371A (ko)
WO (1) WO2019221463A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014643A1 (ko) * 2022-07-11 2024-01-18 주식회사 노보셀바이오 세포 독성이 향상된 면역세포 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2411507B1 (en) * 2009-03-26 2019-09-25 CellProtect Nordic Pharmaceuticals AB Expansion of nk cells
KR101384203B1 (ko) * 2012-01-17 2014-04-10 공주대학교 산학협력단 개 유래의 자연살해세포의 대량 증식방법
US9938498B2 (en) * 2012-05-07 2018-04-10 Nkmax Co., Ltd. Method for the induction and expansion of natural killer cells derived from peripheral blood mononuclear cells
JP6585041B2 (ja) * 2013-07-18 2019-10-02 ベイラー カレッジ オブ メディスンBaylor College Of Medicine 免疫細胞の能力を増強する方法
KR101697473B1 (ko) * 2014-11-26 2017-01-18 주식회사 녹십자랩셀 T 세포를 이용한 자연살해세포의 배양방법
US20180021378A1 (en) * 2014-12-31 2018-01-25 Anthrogenesis Corporation Methods of treating hematological disorders, solid tumors, or infectious diseases using natural killer cells
KR101909879B1 (ko) * 2015-06-24 2018-10-19 주식회사 차바이오텍 자연살해세포의 증식 방법 및 자연살해세포 증식용 조성물
EP3773626A4 (en) * 2018-03-28 2022-01-05 Board of Regents, The University of Texas System USING HISTONE MODIFIERS TO REPROGRAM LYMPHOCYTES AND EFFECTORS

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cancer Sci. 2014 Jun; 105(6): 713-722.
Oncoimmunology. 2017; 6(8): e1333214.

Also Published As

Publication number Publication date
CN112368371A (zh) 2021-02-12
WO2019221463A1 (ko) 2019-11-21
US20210198627A1 (en) 2021-07-01
KR20190131239A (ko) 2019-11-26
EP3812458A1 (en) 2021-04-28
EP3812458A4 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
Simula et al. Drp1 controls effective T cell immune-surveillance by regulating T cell migration, proliferation, and cMyc-dependent metabolic reprogramming
Kong et al. Antigen‐specific transforming growth factor β–induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance
Evans et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses
Scottà et al. Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+ CD25+ FOXP3+ T regulatory cell subpopulations
Kim et al. The transcription factor TCF1 in T cell differentiation and aging
Dang et al. Control of TH17/Treg balance by hypoxia-inducible factor 1
Huber et al. A Th17‐like developmental process leads to CD8+ Tc17 cells with reduced cytotoxic activity
Stephens et al. IL‐9 is a Th17‐derived cytokine that limits pathogenic activity in organ‐specific autoimmune disease
Hill et al. Glycogen synthase kinase‐3 controls IL‐10 expression in CD4+ effector T‐cell subsets through epigenetic modification of the IL‐10 promoter
Liang et al. IL‐33 promotes innate IFN‐γ production and modulates dendritic cell response in LCMV‐induced hepatitis in mice
Yang et al. Amelioration of acute graft‐versus‐host disease by adoptive transfer of ex vivo expanded human cord blood CD4+ CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/Th17 balance in a mouse model
Preglej et al. Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation
Fessler et al. Therapeutic potential of regulatory T cells in autoimmune disorders
Guindi et al. Role of the p38 MAPK/C/EBPβ pathway in the regulation of phenotype and IL-10 and IL-12 production by tolerogenic bone marrow-derived dendritic cells
Li et al. Immunotherapeutic potential of T memory stem cells
Sousa et al. MicroRNA expression profiles in human CD3+ T cells following stimulation with anti-human CD3 antibodies
Wang et al. Inhibition of cardiac allograft rejection in mice using interleukin‐35‐modified mesenchymal stem cells
Lin et al. Dendritic cells: versatile players in renal transplantation
KR102069704B1 (ko) Hdac 억제제를 이용한 사람 유래 자연살해세포의 확장 배양법
Boks et al. Inhibition of TNF receptor signaling by anti-TNFα biologicals primes naïve CD4+ T cells towards IL-10+ T cells with a regulatory phenotype and function
Effros Replicative senescence: the final stage of memory T cell differentiation?
Loh et al. Ezh2 controls skin tolerance through distinct mechanisms in different subsets of skin dendritic cells
Kujur et al. Caerulomycin A suppresses the differentiation of naive T cells and alleviates the symptoms of experimental autoimmune encephalomyelitis
Hashimoto et al. Induction of alopecia areata in C3H/HeJ mice using cryopreserved lymphocytes
Gupta et al. Reduced Satb1 expression predisposes CD4+ T conventional cells to Treg suppression and promotes transplant survival

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right