KR102068667B1 - Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof - Google Patents

Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof Download PDF

Info

Publication number
KR102068667B1
KR102068667B1 KR1020190024388A KR20190024388A KR102068667B1 KR 102068667 B1 KR102068667 B1 KR 102068667B1 KR 1020190024388 A KR1020190024388 A KR 1020190024388A KR 20190024388 A KR20190024388 A KR 20190024388A KR 102068667 B1 KR102068667 B1 KR 102068667B1
Authority
KR
South Korea
Prior art keywords
risk
genetic
subject
risk score
prostate cancer
Prior art date
Application number
KR1020190024388A
Other languages
Korean (ko)
Inventor
김은애
우은진
Original Assignee
주식회사 프로카젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프로카젠 filed Critical 주식회사 프로카젠
Priority to KR1020190024388A priority Critical patent/KR102068667B1/en
Priority to KR1020190126465A priority patent/KR102371655B1/en
Application granted granted Critical
Publication of KR102068667B1 publication Critical patent/KR102068667B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Wood Science & Technology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to an apparatus and a method for calculating a risk score of prostate cancer by using genetic information, and a recording medium thereof. The method for calculating a risk score of prostate cancer by using genetic information according to an embodiment of the present invention comprises the steps of: receiving genetic information of a subject; calculating a genetic risk score for genetic information by using a weighted risk model; identifying a risk group to which the genetic risk score belongs; and setting the subject as a centralized management target when the risk group to which the genetic risk score for the genetic information belongs is a high risk group.

Description

전립선암 유전위험점수 산출장치, 산출방법 및 이의 기록매체{Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof} Prostate Cancer Genetic Risk Score Calculating Device, Calculation Method and Recording Medium {Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium}

본 발명은 유전정보를 이용하여 전립선암의 위험점수를 산출하기 위한 산출장치, 산출방법 및 이의 기록매체에 관한 것이다.The present invention relates to a calculation apparatus, a calculation method, and a recording medium thereof for calculating the risk score of prostate cancer using genetic information.

전립선암은 한국에서 남성 암 유병률 3위 및 발병률 4위인 암종으로 남성 사망의 주된 원인이 되고 있다. 이에 종래에는 전립선암을 예측하기 위해 유전정보를 이용하는 등의 연구가 진행되어왔다. Prostate cancer is the leading cause of death for men, with cancer being the third most prevalent and fourth most common cancer in Korea. In the past, researches such as using genetic information to predict prostate cancer have been conducted.

한편, 전립선암의 발병율과 그로 인한 사망율은 전세계적으로 큰 차이를 나타내는데, 미국과 유럽 남성의 발병율이 높고, 특히 아프리카계 미국인의 사망율이 가장 높게 나타나는 반면에, 아시아인의 발병율과 사망율은 상대적으로 낮은 편이다. 이러한 인종적 차이는 전립선암 발병이 환경적 차이뿐만 아니라 유전적 이질성(heterogeneity)에 기인할 가능성을 시사한다. 따라서 유전적 이질성에 의한 인종 간의 차이를 반영하여 전립선암 발병의 위험성을 판단할 필요성이 대두된다. On the other hand, the incidence and probable mortality rates of prostate cancer vary widely around the world, with the highest incidence rates among American and European men, especially among African-Americans, while the incidence and mortality rates of Asians are relatively high. It is low. These racial differences suggest that prostate cancer development is due not only to environmental differences but also to genetic heterogeneity. Therefore, the necessity of judging the risk of developing prostate cancer by reflecting ethnic differences due to genetic heterogeneity is emerging.

또한 종래의 전립선암 진단은 진단 당시의 암 위험 여부를 안내해주는 것이 그치기 때문에, 피험자 별로 효율적인 관리 및 모니터링이 불가능하다. In addition, since the conventional prostate cancer diagnosis only guides the risk of cancer at the time of diagnosis, effective management and monitoring for each subject is impossible.

본 발명은 상술한 필요성에 따른 것으로, 유전 정보를 이용한 인종 별 전립선암을 예측하기 위해 유전위험도 점수를 산출하는 장치, 방법 및 기록매체를 제공하는 것을 목적으로 한다.The present invention is directed to the above-described needs, and an object of the present invention is to provide an apparatus, method and recording medium for calculating a genetic risk score for predicting prostate cancer by race using genetic information.

또한 본 발명은 전립선암 발생에 유의미한 영향을 주는 대표 유전 변이들에 대해 상이한 가중치를 부여하여 정확한 유전위험도 점수를 산출하는 장치, 방법 및 기록매체를 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide an apparatus, method and recording medium for calculating accurate genetic risk scores by assigning different weights to representative genetic variations that have a significant impact on the development of prostate cancer.

또한 본 발명은 순차적인 전립선암 위험 정도를 진단하여 효율적인 피험자 관리를 제공하는 장치, 방법 및 기록매체를 제공하는 것을 목적으로 한다. It is another object of the present invention to provide an apparatus, a method, and a recording medium for sequential diagnosis of prostate cancer risk and providing efficient subject management.

그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다. However, these problems are exemplary, and the scope of the present invention is not limited thereby.

본 발명의 일 실시 예에 따른 전립선 암 위험도 산출 방법은 피험자의 유전 정보를 입력 받는 단계; 가중치 위험도 모델을 이용하여 상기 유전 정보에 대한 유전위험 점수를 산출하는 단계; 상기 유전위험 점수가 속하는 위험 그룹을 식별하는 단계; 및 상기 유전 정보에 대한 유전위험 점수가 속하는 위험 그룹이 고위험 그룹인 경우, 상기 피험자를 집중관리 대상자로 설정하는 단계;를 포함할 수 있다. Prostate cancer risk calculation method according to an embodiment of the present invention comprises the steps of receiving the genetic information of the subject; Calculating a genetic risk score for the genetic information using a weighted risk model; Identifying a risk group to which the genetic risk score belongs; And when the risk group to which the genetic risk score for the genetic information belongs is a high risk group, setting the subject as a intensive management target.

또한, 상기 유전위험 점수를 산출하는 단계는 상기 유전 정보에 대응되는 가중치 위험도 모델을 통해 산출하는 것을 특징으로 할 수 있다.The calculating of the genetic risk score may be performed through a weighted risk model corresponding to the genetic information.

또한, 상기 가중치 위험도 모델은 4개 SNP(단일염기다형성) 마커 또는 6개 SNP 마커를 이용하는 것을 특징으로 할 수 있다.. In addition, the weight risk model may be characterized by using four SNP (monopolymorphism) markers or six SNP markers.

한편, 본 발명의 일 실시예에 따른 기록매체는 상기 전립선 암 위험도 산출 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체일 수 있다.On the other hand, the recording medium according to an embodiment of the present invention may be a computer-readable recording medium recording a program for executing the prostate cancer risk calculation method.

전술한 것 외의 다른 측면, 특징, 이점은 이하의 발명을 실시하기 위한 구체적인 내용, 청구범위 및 도면으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the following detailed description, claims, and drawings.

상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 인종 별로 상이한 가중치 모델을 적용함으로써 피험자 인종 특이성을 반영한 전립선암 위험점수를 산출할 수 있다. According to one embodiment of the present invention made as described above, by applying a different weight model for each race can be calculated prostate cancer risk score reflecting the subject's race specificity.

특히, 본 발명의 일 실시예에 따르면, 유전 정보 중 특정 유전변이에 대하여 가중치를 부여함으로써 정밀한 위험도를 산출할 수 있다. In particular, according to an embodiment of the present invention, a precise risk may be calculated by weighting a specific genetic variation in the genetic information.

물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따른 전립선암 유전위험점수 산출 시스템을 설명하기 위한 시스템도이다.
도 2는 본 발명의 일 실시예에 따른 산출장치의 구성요소를 설명하기 위한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 유전위험 점수를 산출하는 방법을 설명하기 위한 흐름도이다.
도 4는 발견(discovery) GWAS(Genome Wide Association Study) 단계에서의 맨하탄 플롯(Manhattan plots)의 총괄자료를 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 유전위험 점수 계산에 포함되는 후보 유전변이 목록을 도시한 도면이다.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 유전변이의 개수에 따른 예측력을 비교하기 위한 ROC(Receiver Operating Characteristic) 곡선을 도시한 도면이다.
도 7a 내지 7g는 본 발명의 일 실시예에 따른 가중치를 부여한 모델(weighted model)의 유전변이 개수에 따른 GRS 분포를 설명하기 위한 도면이다.
도 8a 내지 8g는 본 발명의 일 실시예에 따른 가중치를 부여하지 않은 모델(non-weighted model)의 유전변이 개수에 따른 GRS 분포를 설명하기 위한 도면이다.
도 9는 본 발명의 일 실시예에 따른 GRS 그룹 별 전립선암에 대한 교차비를 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따른 GRS 그룹 중 고위험군 그룹에서의 교차비를 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시예에 따른 상이한 인구집단의 가중위험점수 비교를 위해 포함되는 유전변이를 설명하기 위한 도면이다.
도 12a 및 12b는 본 발명의 일 실시예에 따른 가중치 위험도 모델을 유럽인 데이터 및 한국인 데이터에 적용하였을 때의 GRS 분포를 도시한 도면이다.
도 13a 및 13b는 본 발명의 일 실시예에 따른 가중치 위험도 모델을 유럽인 데이터 및 한국인 데이터에 적용하였을 때의 ROC 곡선을 도시한 도면이다.
도 14a 및 14b는 본 발명의 일 실시예에 따른 유전위험 점수 그룹을 설명하기 위한 도면이다.
1 is a system diagram for explaining a prostate cancer genetic risk score calculation system according to an embodiment of the present invention.
2 is a block diagram illustrating components of a calculation device according to an embodiment of the present invention.
3 is a flowchart illustrating a method of calculating a genetic risk score according to an embodiment of the present invention.
FIG. 4 is a general view of Manhattan plots at the discovery Genome Wide Association Study (GWAS) stage.
5 is a view showing a list of candidate genetic variations included in the genetic risk score calculation according to an embodiment of the present invention.
6A and 6B are diagrams illustrating a receiver operating characteristic (ROC) curve for comparing predictive power according to the number of genetic variations according to an embodiment of the present invention.
7A to 7G are diagrams for describing a GRS distribution according to the number of genetic variations of a weighted model according to an embodiment of the present invention.
8A to 8G are diagrams for explaining GRS distribution according to the number of genetic variations of a non-weighted model according to an embodiment of the present invention.
9 is a view for explaining the ratio of crossover for prostate cancer for each GRS group according to an embodiment of the present invention.
FIG. 10 is a view for explaining a crossing ratio in a high risk group of a GRS group according to an embodiment of the present invention. FIG.
FIG. 11 is a diagram illustrating genetic variation included for comparison of weighted risk scores of different populations according to an embodiment of the present invention.
12A and 12B are diagrams illustrating a GRS distribution when a weighted risk model according to an embodiment of the present invention is applied to European data and Korean data.
13A and 13B illustrate ROC curves when a weighted risk model according to an embodiment of the present invention is applied to European data and Korean data.
14A and 14B are diagrams for describing a genetic risk score group according to an embodiment of the present invention.

이하, 본 개시의 다양한 실시예가 첨부된 도면과 연관되어 기재된다. 본 개시의 다양한 실시예는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들이 도면에 예시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 본 개시의 다양한 실시예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 개시의 다양한 실시예의 사상 및 기술 범위에 포함되는 모든 변경 및/또는 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용되었다.DETAILED DESCRIPTION Various embodiments of the present disclosure are described below in connection with the accompanying drawings. Various embodiments of the present disclosure may have various changes and various embodiments, and specific embodiments are illustrated in the drawings and described in detail. However, this is not intended to limit the various embodiments of the present disclosure to specific embodiments, it should be understood to include all modifications and / or equivalents and substitutes included in the spirit and scope of the various embodiments of the present disclosure. In the description of the drawings, similar reference numerals are used for similar elements.

본 개시의 다양한 실시예에서 사용될 수 있는 "포함한다." 또는 "포함할 수 있다." 등의 표현은 개시(disclosure)된 해당 기능, 동작 또는 구성요소 등의 존재를 가리키며, 추가적인 하나 이상의 기능, 동작 또는 구성요소 등을 제한하지 않는다. 또한, 본 개시의 다양한 실시예에서, "포함하다." 또는 "가지다." 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.“Contains,” which may be used in various embodiments of the present disclosure. Or "can include." And the like refer to the existence of a corresponding function, operation, or component disclosed, and do not limit one or more additional functions, operations, or components. In addition, in various embodiments of the present disclosure, "includes." Or "have." And the like are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, and one or more other features or numbers, steps, actions, components, parts, or It should be understood that they do not preclude the presence or possibility of adding these in advance.

본 개시의 다양한 실시예에서 "또는" 등의 표현은 함께 나열된 단어들의 어떠한, 그리고 모든 조합을 포함한다. 예를 들어, "A 또는 B"는, A를 포함할 수도, B를 포함할 수도, 또는 A 와 B 모두를 포함할 수도 있다.In various embodiments of the present disclosure, the expression “or” includes any and all combinations of words listed together. For example, "A or B" may include A, may include B, or may include both A and B.

본 개시의 다양한 실시예에서 사용된 "제1", "제2", "첫째", 또는 "둘째" 등의 표현들은 다양한 실시예들의 다양한 구성요소들을 수식할 수 있지만, 해당 구성요소들을 한정하지 않는다. 예를 들어, 상기 표현들은 해당 구성요소들의 순서 및/또는 중요도 등을 한정하지 않는다. 상기 표현들은 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 수 있다. 예를 들어, 제1 사용자 기기와 제2 사용자 기기는 모두 사용자 기기이며, 서로 다른 사용자 기기를 나타낸다. 예를 들어, 본 개시의 다양한 실시예의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.The expressions “first,” “second,” “first,” or “second,” etc., used in various embodiments of the present disclosure may modify various elements of the various embodiments, but do not limit the corresponding elements. Do not. For example, the above expressions do not limit the order and / or importance of the corresponding elements. The above expressions may be used to distinguish one component from another. For example, both a first user device and a second user device are user devices and represent different user devices. For example, without departing from the scope of the various embodiments of the present disclosure, the first component may be named a second component, and similarly, the second component may also be named the first component.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재하지 않는 것으로 이해될 수 있어야 할 것이다.When a component is said to be "connected" or "connected" to another component, the component may or may not be directly connected to or connected to the other component. It is to be understood that there may be new other components between the other components. On the other hand, when a component is referred to as being "directly connected" or "directly connected" to another component, it will be understood that there is no new other component between the component and the other component. Should be able.

본 개시의 실시 예에서 "모듈", "유닛", "부(part)" 등과 같은 용어는 적어도 하나의 기능이나 동작을 수행하는 구성요소를 지칭하기 위한 용어이며, 이러한 구성요소는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, 복수의 "모듈", "유닛", "부(part)" 등은 각각이 개별적인 특정한 하드웨어로 구현될 필요가 있는 경우를 제외하고는, 적어도 하나의 모듈이나 칩으로 일체화되어 적어도 하나의 프로세서로 구현될 수 있다.In the embodiments of the present disclosure, terms such as “module”, “unit”, “part”, and the like are terms for referring to a component that performs at least one function or operation, and such components are referred to as hardware or software. It may be implemented or in a combination of hardware and software. In addition, a plurality of "modules", "units", "parts", etc. are integrated into at least one module or chip, except that each needs to be implemented by a particular specific hardware, and is at least one processor. It can be implemented as.

본 개시의 다양한 실시예에서 사용한 용어는 단지 특정일 실시예를 설명하기 위해 사용된 것으로, 본 개시의 다양한 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in various embodiments of the present disclosure are merely used to describe specific embodiments, and are not intended to limit the various embodiments of the present disclosure. Singular expressions include plural expressions unless the context clearly indicates otherwise.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 개시의 다양한 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which various embodiments of the present disclosure belong.

일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 개시의 다양한 실시예에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are ideally or excessively formal, unless expressly defined in the various embodiments of the present disclosure. It is not interpreted in the sense.

이하에서, 첨부된 도면을 이용하여 본 발명의 다양한 실시 예들에 대하여 구체적으로 설명한다. Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예예 따른 전립선암 유전위험점수 산출 시스템을 설명하기 위한 시스템도이다. 1 is a system diagram for explaining a prostate cancer genetic risk score calculation system according to an embodiment of the present invention.

도 1을 참조하면, 산출 시스템은 위험점수 산출장치(100, 이하 산출장치), 서버(200), 단말기(301) 및 외부 기관(302)을 포함할 수 있다. Referring to FIG. 1, the calculation system may include a risk score calculator 100 (hereinafter, referred to as a calculator), a server 200, a terminal 301, and an external organization 302.

산출장치(100)는 데스크 탑 컴퓨터일 수 있으나, 이에 한정하지 않으며 유전 정보를 통해 전립선암 발병에 대한 위험점수를 산출하기 위한 방법을 수행하기 위한 프로그램을 실행시킬 수 있는 모든 종류의 전자장치일 수 있다. The calculating device 100 may be a desktop computer, but is not limited thereto, and may be any type of electronic device capable of executing a program for performing a method for calculating a risk score for developing a prostate cancer through genetic information. have.

사용자 단말기(301)는 유무선 통신 환경에서 데이터를 송수신할 수 있는 통신 단말기를 의미한다. 여기서, 사용자 단말기(301)는 사용자의 퍼스널 컴퓨터 일 수도 있고, 사용자의 휴대용 단말기일 수도 있다. 사용자는 피험자일 수 있고, 피험자는 직접 유전 정보를 입력하여 서버(200)로 전송할 수 있다. The user terminal 301 refers to a communication terminal capable of transmitting and receiving data in a wired or wireless communication environment. Here, the user terminal 301 may be a user's personal computer or a user's portable terminal. The user may be a subject, and the subject may directly input genetic information and transmit the genetic information to the server 200.

도 1에서는 사용자 단말기(301)는 휴대용 단말기가 스마트폰으로 도시되었지만 본 발명의 사상은 이에 제한되지 아니하며 상술한 바와 같이 통신망과 연결이 가능한 프로그램이 탑재되거나 통신 모듈과 연결된 모든 종류의 전자기기를 포함할 수 있다. 구체적으로 사용자 단말기(301)는 컴퓨터(예를 들면, 데스크톱, 랩톱, 태블릿 등), 미디어 컴퓨팅 플랫폼(예를 들면, 케이블, 위성 셋톱박스, 디지털 비디오 레코더), 핸드헬드 컴퓨팅 디바이스(예를 들면, PDA, 이메일 클라이언트 등), 핸드폰의 임의의 형태 또는 다른 종류의 컴퓨팅 또는 커뮤니케이션 플랫폼의 임의의 형태를 포함할 수 있으나, 본 발명이 이에 한정되는 것은 아니다.In FIG. 1, the user terminal 301 is shown as a mobile terminal as a smart phone, but the spirit of the present invention is not limited thereto. As described above, a user terminal 301 is equipped with a program capable of connecting to a communication network or includes all kinds of electronic devices connected to a communication module. can do. Specifically, the user terminal 301 may be a computer (eg, desktop, laptop, tablet, etc.), a media computing platform (eg, cable, satellite set top box, digital video recorder), a handheld computing device (eg, PDAs, email clients, etc.), any form of cellular phone, or any form of other kind of computing or communication platform, but the present invention is not limited thereto.

도 1에는 사용자 단말기(301)이 각각 단수로 도시되어 있으나, 본 발명의 일 실시예에 따르면 복수개의 사용자 단말기들이 직접 산출장치(100) 및 서버(200)와 연결될 수 있다. In FIG. 1, the user terminal 301 is illustrated in the singular, but according to an embodiment of the present invention, a plurality of user terminals may be directly connected to the calculation device 100 and the server 200.

기관(302)은 복수의 피험자의 유전 정보를 획득한 병원 및 공공기관일 수 있다. 기관(302)은 서버(200)로 복수의 피험자의 유전 정보에 대한 데이터베이스를 전송할 수 있고, 서버(200)는 수신한 데이터베이스를 바탕으로 전립선암 유전 위험 점수 산출을 위한 가중치 모델을 결정할 수 있다. The institution 302 may be a hospital or a public institution that obtained genetic information of a plurality of subjects. The institution 302 may transmit a database of genetic information of a plurality of subjects to the server 200, and the server 200 may determine a weighted model for calculating a prostate cancer genetic risk score based on the received database.

산출장치(100)는 피험자의 유전 정보를 입력받고, 가중치 위험도 모델을 이용하여 피험자의 전립선 암 위험도 점수를 산출하는 장치일 수 있다. 본 발명의 일 실시예에 따르면 산출장치(100)는 피험자의 인종 정보를 획득하고, 인종 정보에 대응하는 가중치 위험도 모델을 결정하여 유전위험 점수를 산출할 수 있다. 이때 인종 정보는 사용자에 의해 산출장치(100)에 입력된 것일 수 있으나, 이에 한정하지 않으며, 사용자에 의해 사용자 단말기(301)에 입력된 것일 수 있다.The calculating device 100 may be an apparatus for receiving genetic information of a subject and calculating a prostate cancer risk score of the subject using a weighted risk model. According to an embodiment of the present invention, the calculating apparatus 100 may calculate the genetic risk score by acquiring race information of the subject and determining a weighted risk model corresponding to the race information. In this case, the race information may be input to the calculation device 100 by the user, but is not limited thereto and may be input to the user terminal 301 by the user.

본 발명의 또 다른 실시예에 따르면,, 산출장치(100)는 유전 정보에 포함된 염기서열의 특정 SNP(단일염기다형성)를 확인할 수 있다. 이때, 특정 SNP는 rs1456315, rs7837688, rs1512268 및 rs7501939를 포함하는 것일 수 있다. According to another embodiment of the present invention, the calculation device 100 may identify a specific SNP (monopolynucleotide polymorphism) of the nucleotide sequence included in the genetic information. In this case, the specific SNP may include rs1456315, rs7837688, rs1512268, and rs7501939.

본 발명의 또 다른 실시예에 따르면, 산출장치(100)는 피험자의 제1 유전 정보를 입력받고, 이에 대응하는 제1 가중치 위험도 모델을 이용하여 제1 유전 정보에 대한 제1 유전위험 점수를 산출할 수 있다. According to another embodiment of the present invention, the calculating device 100 receives the subject's first genetic information and calculates a first genetic risk score for the first genetic information by using the first weighted risk model corresponding thereto. can do.

산출장치(100)는 복수의 유전위험 점수 그룹 중 제1 유전위험 점수가 속하는 그룹을 판단하고 제1 유전위험 점수가 고위험 그룹으로 판단되면, 제2 가중치 위험도 모델을 이용해 제2 유전위험 점수를 산출할 수 있다. 반면, 제1 유전위험 점수가 저위험 그룹으로 판단되면, 제1 유전위험 점수를 제1 유전 정보에 대한 유전위험 점수로 결정할 수 있다. The calculating device 100 determines a group to which the first genetic risk score belongs among the plurality of genetic risk score groups, and when the first genetic risk score is determined to be a high risk group, calculates the second genetic risk score using the second weighted risk model. can do. On the other hand, if the first genetic risk score is determined to be a low risk group, the first genetic risk score may be determined as the genetic risk score for the first genetic information.

이때, 복수의 유전위험 점수 그룹은 기설정된 GRS 분포에 따른 그룹일 수 있다. 예를 들면, 복수의 피험자에 대한 데이터베이스를 바탕으로 기산출된 GRS 점수를 기초로 고위험 그룹, 중위험 그룹, 저위험 그룹으로 분류된 것일 수 있으나 이에 한정하지 않는다. In this case, the plurality of genetic risk score groups may be a group according to a predetermined GRS distribution. For example, it may be classified into a high risk group, a medium risk group, and a low risk group based on a GRS score calculated based on a database of a plurality of subjects, but is not limited thereto.

제1 가중치 위험도 모델은 피험자의 인종 정보를 고려하여 결정된 가중치 위험도 모델일 수 있다. 제2 가중치 위험도 모델은 인종 정보 및 피험자의 생활 정보를 고려하여 결정된 가중치 모델일 수 있다. 다만 피험자의 인종 정보 및/또는 생활 정보는 일 예에 불과하고, 피험자에 대한 다양한 정보를 이용하여 가중치 모델을 결정할 수 있다. The first weighted risk model may be a weighted risk model determined in consideration of the race information of the subject. The second weighted risk model may be a weighted model determined in consideration of race information and subject's living information. However, the race information and / or living information of the subject is merely an example, and a weight model may be determined using various information about the subject.

또한 피험자에 대한 정보를 통한 가중치 위험도 모델의 결정은 일 실시예에 불과하고, 제1 가중치 위험도 모델 및 제2 가중치 위험도 모델을 결정하는 기준은 다양할 수 있다. 예를 들면, 제1 가중치 위험도 모델은 표준화된 가중치 위험도 모델로써, 5개의 SNP 마커를 이용한 것이고, 제2 가중치 위험도 모델은 4개의 SNP 마커를 이용하여 더 고성능의 모델일 수 있다. In addition, the determination of the weighted risk model through the information on the subject is only an example, and the criteria for determining the first weighted risk model and the second weighted risk model may vary. For example, the first weighted risk model is a standardized weighted risk model using five SNP markers, and the second weighted risk model may be a higher performance model using four SNP markers.

상술한 실시예를 통해, 1차적으로 피험자에 대한 유전위험도를 진단하고, 필요에 따라 더욱 정밀한 유전위험 진단을 수행할 수 있다. Through the above-described embodiment, the genetic risk for the subject may be primarily diagnosed, and more precise genetic risk diagnosis may be performed as necessary.

본 발명의 또 다른 실시예에 따르면, 산출장치(100)는 제1 유전 정보보다 후행하는 시점의 피험자의 제2 유전 정보를 입력 받는 경우, 제2 유전 정보에 대한 유전위험 점수가 속하는 그룹이 제1 유전 정보에 대한 유전위험 점수에 비해 고위험 그룹으로 변경되는 경우, 피험자를 집중관리 대상자로 설정할 수 있다. According to another embodiment of the present invention, when the calculation device 100 receives the second genetic information of the subject at a later time than the first genetic information, the group to which the genetic risk score for the second genetic information belongs is generated. 1 If subjects are changed to a higher risk group than the genetic risk score for genetic information, the subject may be targeted for intensive care.

즉, 피험자의 전립선암에 대한 위험점수가 증가하는 경우, 피험자를 집중관리 대상자로 설정하고 가이드라인을 제시할 수 있다는 효과가 있다. 구체적으로 피험자가 집중관리 대상자로 설정되는 경우, 산출장치(100)는 피험자의 생활 습관, 식습관 등에 대한 가이드라인을 제공하고, 차기 전립선암 검사 일정에 대해 안내할 수 있다.That is, when the risk score for the prostate cancer of the subject increases, there is an effect that the subject can be set as a intensive management target and the guideline can be presented. Specifically, when the subject is set as the intensive management target, the calculation device 100 may provide guidelines for the subject's lifestyle, eating habits, and the like, and may guide the next prostate cancer test schedule.

또한, 본 발명의 일 실시예에 따르면 산출장치(100)는 위험점수 증가 정도에 따라 집중관리 대상자 등급을 결정할 수 있다. 예를 들어, 위험점수의 등급이 4단계인 경우, 1단계만큼 고위험 그룹으로 변경된 경우, 하급 집중관리 대상자로 결정하고, 2단계 이상만큼 고위험 그룹으로 변경되는 피험자를 상급 집중관리 대상자로 결정할 수 있으나, 이는 일 예에 불과하며, 위험점수의 등급 및 집중관리 대상자의 등급은 다양할 수 있다.In addition, according to an embodiment of the present invention, the calculating device 100 may determine the class of the centralized management subject according to the degree of risk score increase. For example, if the risk score is level 4, if the level is changed to a high risk group by 1 level, the subject may be determined as a low concentration group, and a subject who is changed to a high risk group by 2 or more levels may be selected as a high level group. For example, this is only an example, and the grade of risk score and the grade of centralized management subject can vary.

한편, 상술한 예에 따른 산출장치(100)는 상급 집중관리 대상자에 결정된 피험자에 대하여 추가적인 가이딩을 제공할 수 있다. 예를 들어, 산출장치(100)는 상급 집중관리 대상자의 연락처 정보 등과 같은 개인정보를 이용하여 피험자에게 주기적인 검사 안내 문자 또는 검사 안내 메일을 전송할 수 있다. On the other hand, the calculation device 100 according to the above-described example may provide additional guiding for the subject determined to the senior intensive management subject. For example, the calculation device 100 may transmit a periodic test guide letter or test guide mail to the subject by using personal information such as contact information of a higher concentration management subject.

한편, 가중치 위험도 모델은 서버(200)로부터 수신한 것일 수 있다. 즉, 서버(200)는 단말기(301) 및 외부 기관(302)으로부터 수신한 데이터베이스를 바탕으로 전립선암을 예측하기 위한 가중치 위험도 모델을 결정할 수 있고, 이를 산출장치(100)로 전송할 수 있다. Meanwhile, the weight risk model may be received from the server 200. That is, the server 200 may determine a weighted risk model for predicting prostate cancer based on databases received from the terminal 301 and the external organ 302, and transmit the weighted risk model to the calculation device 100.

구체적으로 서버(200)는 전립선암 관련 유전변이 탐색할 수 있다. 구체적으로 서버(200)는 60,276개의 유전변이에 대해 Discovery set 에서 전립선암 환자(998명)-정상 대조군(2,641명) 비교할 수 있다. 또한, 서버(200)는 재현(Replication)을 위한 유전 변이 17개를 추출할 수 있다. 서버(200)는 데이터베이스 및 유전 변이를 기초로 가중치 위험도 모델을 결정할 수 있다. In detail, the server 200 may search for genetic mutations related to prostate cancer. Specifically, the server 200 may compare prostate cancer patients (998 people) to normal controls (2,641 people) in a discovery set for 60,276 genetic mutations. In addition, the server 200 may extract 17 genetic variations for replication. The server 200 may determine a weighted risk model based on the database and genetic variation.

본 발명의 일 실시예예 따르면, 서버(200)는 17개의 변이 중에서 9개의 대표 변이로 추출하여 새로운 독립적인 자료원(replication set: 전립선암 환자 (514명) + 정상 대조군 (548명))으로 가중유전위험점수를 계산할 수 있다. 이때, 서버(200)는 특정 유전 변이를 통해 전립선암과 관련된 유전위험점수를 산출할 수 있다. 이때, 대표 변이를 추출하는 과정에 있어서, 인종 별로 구분된 유전 변이가 고려될 수 있다.According to an embodiment of the present invention, the server 200 is extracted from nine representative variants out of 17 mutations and weighted by a new independent replication set (replication set: prostate cancer patients (514) + normal control (548)) The risk score can be calculated. In this case, the server 200 may calculate a genetic risk score associated with prostate cancer through a specific genetic variation. At this time, in the process of extracting the representative variation, genetic variation classified by race may be considered.

서버(200)는 유전 변이의 발생 횟수에 가중치를 부여할 수 있으나, 이에 한정하지 않는다. 본 발명의 일 실시예에 따르면, 서버(200)는 유전 변이의 중요도(또는 질병에 기여하는 정도)에 따라 가중치를 부여할 수 있다. 즉, 서버(200)는 유전 변이와의 연관성 정도를 나타내는 교차비에 로그(logarithm)를 취한 값을 가중치로 사용할 수 있다. The server 200 may weight the number of occurrences of the genetic variation, but is not limited thereto. According to an embodiment of the present invention, the server 200 may assign a weight according to the importance (or degree of contribution to disease) of the genetic variation. That is, the server 200 may use a value obtained by taking a logarithm at a cross ratio indicating a degree of association with a genetic variation as a weight.

본 발명의 일 실시예에 따르면, 서버(200)는 인공지능 모델을 이용하여 가중치 위험도 모델을 학습시킬 수 있다. 이때 인공지능 모델은 CNN, RNN, BNN 등을 포함하는 다양한 딥러닝 알고리즘일 수 있으나, 이에 한정하지 않는다.According to an embodiment of the present invention, the server 200 may train the weighted risk model using an artificial intelligence model. In this case, the artificial intelligence model may be various deep learning algorithms including CNN, RNN, BNN, and the like, but is not limited thereto.

또한, 상기 가중치 위험도 모델은 각각의 피험자에 대해 전립선 암과 관련된 상기 SNP 들의 위험 대립 유전자 (risk allele) 의 수를 합하며, 이때 각각의 SNP 에 대해 위험 대립 유전자 개수에 따라 0, 1 또는 2 의 세부 점수를 부여하고, 각 SNP 별로 전립선암에 대한 기여도에 따라 가중치를 부여하는 모델일 수 있으나, 이에 한정하지 않는다. 이에 대하여 추후 상세히 설명하기로 한다. In addition, the weighted risk model sums the number of risk alleles of the SNPs associated with prostate cancer for each subject, where 0, 1 or 2, depending on the number of risk alleles for each SNP. It may be a model that gives a detailed score and weights each SNP according to the contribution to prostate cancer, but is not limited thereto. This will be described later in detail.

본 발명의 일 실시예에 따른 산출장치(100)는 계산기와 같은 형태로 구현될 수 있다. 즉, 산출장치(100)는 유전 변이와 관련된 유전 정보 값을 입력 받고, 입력된 값들로부터 산출된 전립선암 위험도 및/또는 가이드 라인 등을 디스플레이를 통해 출력할 수 있다. The calculating device 100 according to an embodiment of the present invention may be implemented in the form of a calculator. That is, the calculator 100 may receive a genetic information value related to the genetic variation and output a prostate cancer risk and / or guideline calculated from the input values through a display.

본 발명의 일 실시예에 따른 산출장치(100)는 전립선암과 관련된 유전 변이 종류를 변경할 수 있다. 산출장치(100)는 사용자 정보, 예를 들면 나이, 성별, 인종 등에 대한 정보에 따라서 가중치 모델에 반영할 유전 변이 종류를 변경할 수 있다.The calculating device 100 according to an embodiment of the present invention may change the type of genetic variation associated with prostate cancer. The calculator 100 may change the type of genetic variation to be reflected in the weighting model according to user information, for example, information about age, gender, race, and the like.

이때, 산출장치(100)는 서버(200)와 연동하여 서버(200)에서 설정된 다양한 가중치 모델 중 사용자 정보에 대응되는 가중치 모델을 결정할 수 있다. 예를 들면, 산출장치(100)는 입력된 피험자의 인종이 유럽인이라고 판단하면, 서버(200)로부터 유럽인에 대응되는 유전 변이에 가중치를 부여한 가중치 모델을 수신하고, 피험자의 전립선암 위험점수를 산출할 수 있다. In this case, the calculation apparatus 100 may determine the weight model corresponding to the user information among various weight models set in the server 200 in cooperation with the server 200. For example, when the input device 100 determines that the race of the input subject is European, the server 100 receives a weighting model weighting genetic variation corresponding to the European from the server 200 and calculates the risk score of the prostate cancer of the subject. can do.

본 발명의 또 다른 실시예에 따른 산출장치(100)는 사용자 또는 피험자의 신체 정보, 생활 정보와 전립선암 위험 점수 사이의 관계를 추론하여 가중치 모델을 설정할 수 있다. 예를 들면, 산출장치(100)는 피험자가 흡연자인 경우, 해당 생활 정보에 대응되는 유전 변이에 가중치를 부여한 가중치 모델을 이용하여 전립선암의 위험점수를 계산할 수 있다. 이 경우에도 산출장치(100)는 서버(200)와 연동하여 다양한 가중치 모델을 사용할 수 있다. The calculation device 100 according to another embodiment of the present invention may set a weight model by inferring a relationship between the physical information, the life information of the user or the subject, and the prostate cancer risk score. For example, when the subject is a smoker, the calculator 100 may calculate a risk score of prostate cancer using a weighted model that weights the genetic variation corresponding to the living information. In this case, the calculation device 100 may use various weight models in association with the server 200.

도 2는 본 발명의 일 실시예에 따른 산출장치의 구성요소를 설명하기 위한 블록도이다. 2 is a block diagram illustrating components of a calculation device according to an embodiment of the present invention.

도 2를 참조하면, 산출장치(100)는 통신부(110), 입력부(120), 메모리(130), 디스플레이(140) 및 프로세서(150)를 포함할 수 있다. 2, the calculator 100 may include a communication unit 110, an input unit 120, a memory 130, a display 140, and a processor 150.

통신부(110)는 서버(200), 사용자 단말기(301) 및 기관(302)를 비롯한 외부기관 및 장치와 데이터를 송수신하기 위한 구성이다. 통신부(100)는 블루투스 통신부, BLE(Bluetooth Low Energy) 통신부, 근거리 무선 통신부(Near Field Communication unit), WLAN(와이파이) 통신부, 지그비(Zigbee) 통신부, 적외선(IrDA, infrared Data Association) 통신부, WFD(Wi-Fi Direct) 통신부, UWB(ultra wideband) 통신부, Ant+ 통신부 등의 근거리 통신부, 이동통신 망을 포함할 수 있다.The communication unit 110 is a configuration for transmitting and receiving data to and from external organizations and devices, including the server 200, the user terminal 301, and the organization 302. The communication unit 100 may include a Bluetooth communication unit, a BLE (Bluetooth Low Energy) communication unit, a near field communication unit (Near Field Communication unit), a WLAN (Wi-Fi) communication unit, a Zigbee communication unit, an infrared ray (IrDA, infrared data association) communication unit, a WFD ( It may include a local area communication unit such as a Wi-Fi Direct communication unit, an ultra wideband communication unit, an Ant + communication unit, and a mobile communication network.

입력부(120)는 산출장치(100)에 다양한 정보를 입력하기 위한 사용자 인터페이스를 포함할 수 있다. 이때, 산출장치(100)에 입력되는 다양한 정보는 피험자의 유전 정보, 피험자의 나이, 성별, 인종 등에 대한 정보, 피험자의 생활 습관 정보 등을 포함할 수 있으나, 이에 한정되지 않는다. The input unit 120 may include a user interface for inputting various information into the calculator 100. In this case, the various information input to the calculation device 100 may include genetic information of the subject, information about the age, gender, race, etc. of the subject, lifestyle information of the subject, and the like, but is not limited thereto.

메모리(130)는 프로세서(150)의 처리 또는 제어를 위한 프로그램 등 산출장치(100) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(130)는 산출장치(100)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션(application)), 산출장치(100)의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는, 무선 통신을 통해 외부 서버로부터 다운로드 될 수 있다. 또한 이러한 응용 프로그램 중 적어도 일부는, 산출장치(100)의 기본적인 기능을 위하여 출고 당시부터 산출장치(100) 상에 존재할 수 있다. 응용 프로그램은, 메모리(130)에 저장되고, 프로세서(150)에 의하여 산출장치(100)의 동작(또는 기능)을 수행하도록 구동될 수 있다.The memory 130 may store various data for the overall operation of the calculator 100, such as a program for processing or controlling the processor 150. The memory 130 may store a plurality of application programs or applications that are driven by the output device 100, data for operating the output device 100, and instructions. At least some of these applications may be downloaded from an external server through wireless communication. In addition, at least some of these application programs may exist on the calculation device 100 from the time of shipment for the basic function of the calculation device 100. The application program may be stored in the memory 130 and may be driven by the processor 150 to perform an operation (or a function) of the calculator 100.

디스플레이(140)는 산출장치(100)가 가중치 위험도 모델을 통해 산출한 피험자의 전립선암 위험도 점수를 디스플레이할 수 있다. 본 발명의 일 실시예에 따르면 디스플레이(140)는 입력부(120)를 통해 입력된 정보들로부터 산출된 전립선암 위험도 점수를 표시할 수 있고, 이를 통해 피험자의 생활 습관에 대한 가이드 라인 등을 디스플레이를 통해 출력할 수 있다. The display 140 may display the prostate cancer risk score of the subject calculated by the calculator 100 through the weighted risk model. According to an embodiment of the present invention, the display 140 may display a prostate cancer risk score calculated from the information input through the input unit 120, thereby displaying a guide line or the like regarding the lifestyle of the subject. Can be output via

디스플레이(140)는 다양한 형태의 디스플레이 패널로 구현될 수 있다. 예로, 디스플레이 패널은 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes), AM-OLED(Active-Matrix Organic Light-Emitting Diode), LcoS(Liquid Crystal on Silicon) 또는 DLP(Digital Light Processing) 등과 같은 다양한 디스플레이 기술로 구현될 수 있다. 또한, 디스플레이(140)는 플렉서블 디스플레이(flexible display)의 형태로 디스플레이 장치(140)의 전면 영역 및, 측면 영역 및 후면 영역 중 적어도 하나에 결합될 수도 있다. The display 140 may be implemented as various types of display panels. For example, the display panel may be a liquid crystal display (LCD), organic light emitting diodes (OLED), active-matrix organic light-emitting diode (AM-OLED), liquid crystal on silicon (LcoS), or digital light processing (DLP). It can be implemented with various display technologies. In addition, the display 140 may be coupled to at least one of a front region, a side region, and a rear region of the display device 140 in the form of a flexible display.

디스플레이(140)는 레이어 구조의 터치 스크린으로 구현될 수 있다. 터치 스크린은 디스플레이 기능뿐만 아니라 터치 입력 위치, 터치된 면적뿐만 아니라 터치 입력 압력까지도 검출하는 기능을 가질 수 있고, 또한 실질적인 터치(real-touch)뿐만 아니라 근접 터치(proximity touch)도 검출하는 기능을 가질 수 있다.The display 140 may be implemented as a touch screen having a layer structure. The touch screen may have a function of detecting not only a display function but also a touch input position, a touched area as well as a touch input pressure, and a function of detecting a proximity touch as well as a real touch. Can be.

프로세서(150)는 산출장치(100)를 전반적으로 제어하기 위한 구성이다. 구체적으로, 프로세서(150)는 산출장치(100)의 메모리(130)에 저장된 각종 프로그램을 이용하여 산출장치(100)의 전반적인 동작을 제어한다. 예를 들어, 프로세서(150)는 CPU, 램(RAM), 롬(ROM), 시스템 버스를 포함할 수 있다. 여기서, 롬은 시스템 부팅을 위한 명령어 세트가 저장되는 구성이고, CPU는 롬에 저장된 명령어에 따라 산출장치(100)의 메모리에 저장된 운영체제를 램에 복사하고, O/S를 실행시켜 시스템을 부팅시킨다. 부팅이 완료되면, CPU는 메모리(130)에 저장된 각종 애플리케이션을 램에 복사하고, 실행시켜 각종 동작을 수행할 수 있다. 이상에서는 프로세서(150)가 하나의 CPU만을 포함하는 것으로 설명하였지만, 구현 시에는 복수의 CPU(또는 DSP, SoC 등)으로 구현될 수 있다.The processor 150 is a component for controlling the output device 100 as a whole. Specifically, the processor 150 controls the overall operation of the calculation device 100 using various programs stored in the memory 130 of the calculation device 100. For example, the processor 150 may include a CPU, a RAM, a ROM, and a system bus. Here, the ROM is a configuration in which a command set for system booting is stored, and the CPU copies an operating system stored in a memory of the output device 100 to RAM according to the instructions stored in the ROM, and executes O / S to boot the system. . When the booting is completed, the CPU may copy and execute various applications stored in the memory 130 to RAM and perform various operations. In the above description, the processor 150 includes only one CPU. However, the processor 150 may be implemented by a plurality of CPUs (or DSPs, SoCs, etc.).

본 발명의 일 실시 예에 따라, 프로세서(150)는 디지털 신호를 처리하는 디지털 시그널 프로세서(digital signal processor(DSP), 마이크로 프로세서(microprocessor), TCON(Time controller)으로 구현될 수 있다. 다만, 이에 한정되는 것은 아니며, 중앙처리장치(central processing unit(CPU)), MCU(Micro Controller Unit), MPU(micro processing unit), 컨트롤러(controller), 어플리케이션 프로세서(application processor(AP)), 또는 커뮤니케이션 프로세서(communication processor(CP)), ARM 프로세서 중 하나 또는 그 이상을 포함하거나, 해당 용어로 정의될 수 있다. 또한, 프로세서(150)는 프로세싱 알고리즘이 내장된 SoC(System on Chip), LSI(large scale integration)로 구현될 수도 있고, FPGA(Field Programmable gate array) 형태로 구현될 수도 있다.According to an embodiment of the present disclosure, the processor 150 may be implemented as a digital signal processor (DSP), a microprocessor, or a time controller (TCON) that processes digital signals. The present invention is not limited thereto, and may include a central processing unit (CPU), a micro controller unit (MCU), a micro processing unit (MPU), a controller, an application processor (AP), or a communication processor ( The processor 150 may include one or more of a communication processor (CP), an ARM processor, or may be defined in a corresponding term. ) Or may be implemented in the form of a field programmable gate array (FPGA).

본 발명의 일 실시예에 따르면 프로세서(150)는 유전위험점수 산출부(151) 및 위험도 등급 결정부(152)를 포함할 수 있다. According to an embodiment of the present invention, the processor 150 may include a genetic risk score calculator 151 and a risk grade determiner 152.

유전위험점수 산출부(151)는 입력된 피험자에 대한 정보를 통해 피험자의 유전위험 점수를 산출하기 위한 구성이며, 위험도 등급 결정부(152)는 피험자의 가중치 위험도 모델을 통한 위험점수의 등급을 결정하기 위한 구성이다. Genetic risk score calculation unit 151 is configured to calculate the genetic risk score of the subject based on the information on the input subject, risk rating determiner 152 determines the grade of the risk score through the weighted risk model of the subject. It is a structure for doing so.

유전위험점수 산출부(151) 및 위험도 등급 결정부(152) 각각은 컴퓨팅 장치 상에서 프로그램을 실행하기 위해 필요한 프로세서(150) 등에 의해 각각 구현될 수 있다. 이처럼 유전위험점수 산출부(151) 및 위험도 등급 결정부(152)는 물리적으로 독립된 각각의 구성에 의해 구현될 수도 있고, 하나의 프로세서 내에서 기능적으로 구분되는 형태로 구현될 수도 있다Each of the genetic risk score calculating unit 151 and the risk class determining unit 152 may be implemented by a processor 150 or the like necessary for executing a program on a computing device. As described above, the genetic risk score calculating unit 151 and the risk class determining unit 152 may be implemented by physically independent configurations, or may be implemented in a functionally divided form within a single processor.

한편, 도 1 및 도 2에서는 서버(200)는 산출장치(100)와 별도의 구성으로 구현된 것을 도시하였으나, 본 발명의 일 실시예에 따르면 서버(200)는 산출장치(100)와 하나의 구성으로 구현될 수 있다. Meanwhile, in FIGS. 1 and 2, the server 200 is implemented in a separate configuration from the calculation apparatus 100, but according to an embodiment of the present invention, the server 200 is one of the calculation apparatus 100. It can be implemented in a configuration.

예를 들어, 서버(200)에서 실행되는 일련의 프로세스는 산출장치(100)에서 실행될 수 있다. 즉, 산출장치(100)는 병원(301), 사용자 단말기(302) 등으로부터 직접 데이터를 수신하고, 데이터를 바탕으로 피험자 정보에 대응하도록 가중치를 상이하게 적용하는 가중치 위험도 모델을 결정할 수 있다. For example, a series of processes executed in the server 200 may be executed in the calculation device 100. That is, the calculator 100 may directly receive data from the hospital 301, the user terminal 302, or the like, and determine a weighted risk model that applies weights differently to correspond to the subject information based on the data.

이하에서는 설명의 편의를 위해, 서버(200)에서 수행되는 모든 프로세스가 산출장치(100)에서 수행되는 실시예를 전제로 설명하기로 한다. Hereinafter, for convenience of description, it will be described on the premise of the embodiment in which all processes performed in the server 200 is performed in the calculation device 100.

도 3은 본 발명의 일 실시예에 따른 유전위험 점수를 산출하는 방법을 설명하기 위한 흐름도이다. 3 is a flowchart illustrating a method of calculating a genetic risk score according to an embodiment of the present invention.

산출장치(100)는 피험자에 대한 유전 정보를 입력 받을 수 있다(S300). 이때, 유전 정보는 전립선암과 관련된 단일염기다형성(SNP) 및 SNP를 포함하는 연속적인 염기서열을 포함할 수 있다. 또한, 유전 정보는 피험자에 대한 인종 정보, 생활 습관 정보 등 다양한 정보를 포함할 수 있다. The calculating apparatus 100 may receive genetic information about the subject (S300). In this case, the genetic information may include a single base polymorphism (SNP) associated with prostate cancer and a continuous sequence including the SNP. In addition, the genetic information may include various information such as race information and lifestyle information about the subject.

산출장치(100)는 피험자의 유전 정보를 바탕으로 제1 가중치 위험도 모델을 결정할 수 있다. 이때, 산출장치(100)는 인종간의 유전자 비율 차이를 비교하여 그에 대응하는 제1 가중치 위험도 모델을 결정할 수 있다. 예를 들어, 피험자의 인종 정보가 유럽인인 경우, 산출장치(100)는 유럽인 전립선암 위험도와 관련성이 높은 특정 유전 변이에 가중치를 부여한 제1 가중치 위험도 모델을 결정할 수 있다. 인종간의 유전자 비율 비교는 2010년 사이언스지에 공지된 논문 'A Draft Sequence of the Neandertal Genome'의 방법을 이용할 수 있으나, 이에 한정하지 않는다. The calculator 100 may determine the first weight risk model based on the genetic information of the subject. In this case, the calculator 100 may compare the difference in gene ratios between races and determine a first weighting risk model corresponding thereto. For example, if the race information of the subject is European, the calculation device 100 may determine a first weighted risk model that weights a specific genetic variation that is highly related to European prostate cancer risk. Comparison of the ratio of genes between races may be performed using the method of the paper 'A Draft Sequence of the Neandertal Genome' published in 2010, but is not limited thereto.

산출장치(100)는 제1 가중치 위험도 모델을 통해 제1 유전위험 점수를 산출할 수 있다(S310). 한편, 산출장치(100)는 산출된 제1 유전위험 점수가 고위험군 그룹인지 여부를 판단할 수 있다(S320). 판단 결과, 제1 유전위험 점수가 고위험군이 아닌 경우(S320-N), 해당 점수를 최종 유전위험 점수로 결정할 수 있다. The calculating apparatus 100 may calculate a first genetic risk score through the first weighted risk model (S310). Meanwhile, the calculator 100 may determine whether the calculated first genetic risk score is a high risk group (S320). As a result of the determination, when the first genetic risk score is not the high risk group (S320-N), the score may be determined as the final genetic risk score.

다만, 판단 결과 제1 유전위험 점수가 고위험군인 경우(S320-Y), 산출장치(100)는 제2 가중치 위험도 모델을 결정하여 제2 유전위험 점수를 산출할 수 있다(S340). 구체적으로, 산출장치(100)는 피험자에 대한 추가적인 정보를 통해 제2 가중치 위험도 모델을 결정할 수 있다. 예를 들어, 피험자가 유럽인에 고령자라는 정보를 통해, 산출장치(100)는 유럽인 뿐만 아니라 고령자의 전립선 암 위험도와 관련성이 높은 특정 유전 변이에 가중치를 부여한 제2 가중치 위험도 모델을 결정할 수 있다. However, when the determination result that the first genetic risk score is a high risk group (S320-Y), the calculation device 100 may calculate the second genetic risk score by determining the second weighted risk model (S340). In detail, the calculator 100 may determine the second weighted risk model through additional information about the subject. For example, based on information that a subject is an elderly person in Europe, the calculation device 100 may determine a second weighted risk model that weights a specific genetic variation that is highly related to prostate cancer risk of not only Europeans but also elderly people.

이후, 산출장치(100)는 제2 가중치 위험도 모델을 통한 제2 유전위험 점수를 최종유전위험 점수로 결정할 수 있다(S330).Thereafter, the calculation apparatus 100 may determine the second genetic risk score as the final genetic risk score through the second weighted risk model (S330).

본 발명의 일 실시예에 따르면, 산출장치(100)는 산출된 유전위험 점수를 ROC(Receiver Operating Characteristics)를 통해 검증하고, 상기 검증 결과, 기설정된 AUC(Area under the curve) 값을 초과하는 유전위험 점수를 상기 유전위험 점수로 결정할 수 있다. According to an embodiment of the present invention, the calculation device 100 verifies the calculated genetic risk score through a receiver operating characteristics (ROC), and as a result of the verification, the genetic value exceeding a predetermined AUC (Area under the curve) value. The risk score can be determined by the genetic risk score.

도 4는 발견(discovery) GWAS(Genome Wide Association Study) 단계에서의 맨하탄 플롯(Manhattan plots)의 총괄자료를 도시한 도면이다. FIG. 4 is a general view of Manhattan plots at the discovery Genome Wide Association Study (GWAS) stage.

GWAS는 일반적으로 Case (관심 형질을 가진 집단, 환자군) 와 Control (형질을 갖지 않는 집단, 정상군)의 두 집단의 유전 정보를 얻은 후에 서로 비교하여, case에서 더 많은 빈도를 갖는, 즉 연관성을 가진 유전자를 찾기 위한 단계이다. 즉 GWAS는 인과 관계를 찾는 것이 아니라 우연히 연관되어 나타나는 유전자들의 후보를 찾는 과정이다. 따라서 일반적으로 연구는 GWAS를 통한 후보 유전자 탐색, 그리고 이 후에 더 많은 환자군에서 확인 (replication cohort) 또는 실험에서 생물학적 입증의 결과를 거쳐 최종적으로 유전자-형질의 관계를 밝히는 과정으로 진행된다.GWAS generally obtains genetic information from two groups, `` Case (group of interest, patient group) '' and (Control (group without trait, normal group) and then compares with each other to have more frequencies in the case, i.e. This step is to find the genes you have. GWAS is not about finding causality, but about finding candidates for genes that occur by chance. Thus, generally, the research proceeds to search for candidate genes through GWAS, and then to confirm the gene-trait relationship through the results of the replication cohort in the more patient group or the biological demonstration in the experiment.

연관불균형(LD, Linkage Disequilibrium)은 유전형의 재배열 과정에서 서로 거리가 가까운 유전자끼리 유전형이 섞이지 않고 모자이크 패턴으로 함께 이동하게 되며, LD block을 형성하는 것이다. 같은 LD block에 포함된 위치에 대해서는 연관성 분석을 하게 되면, 비슷한 연관성의 강도 및 통계적 유의수준 (p값)을 보인다. 이는 도 4와 같이 GWAS에 흔히 이용되는 맨하탄 플롯(Manhattan plot)에서 시그널이 주위에서 모두 높게 나오는 이유가 된다. Linkage Disequilibrium (LD) is a process of rearrangement of genotypes, in which genes close to each other move together in a mosaic pattern without mixing genotypes, forming LD blocks. When the correlation analysis is performed on the locations included in the same LD block, similar correlation strengths and statistical significance levels (p values) are shown. This is the reason why the signal is high all around in the Manhattan plot which is commonly used in GWAS as shown in FIG. 4.

도 5는 본 발명의 일 실시예에 따른 유전위험 점수 계산에 포함되는 후보 유전변이 목록을 도시한 도면이다. 5 is a diagram illustrating a list of candidate genetic variations included in the genetic risk score calculation according to an embodiment of the present invention.

산출장치(100)는 전립선암과 관련된 주요 SNP 유전 변이 9개를 추출할 수 있다. 도 5를 참조하면, 주요 유전변이 SNP는 rs1456315, rs7837688, rs1512268, rs7501939, rs2735839, rs339331, rs2016588, rs11147922, rs57006764인 것을 확인할 수 있다. The calculator 100 may extract nine major SNP genetic variations associated with prostate cancer. Referring to FIG. 5, it can be seen that the main genetic variation SNPs are rs1456315, rs7837688, rs1512268, rs7501939, rs2735839, rs339331, rs2016588, rs11147922, and rs57006764.

본 발명의 일 실시예에 따른 가중치 위험도 모델은 각각의 SNP에 전립선암과 관련된 교차비(OR)을 기준으로 가중치를 부여할 수 있다. 예를 들면, SNP 중 rs1456315의 전립선암에 대한 교차비는 1.797이므로, rs1456315에 대하여 가중치(weight)로 log(OR)의 결과인 0.586을 부여할 수 있다. The weighted risk model according to an embodiment of the present invention may assign weights to each SNP based on a crossover ratio (OR) associated with prostate cancer. For example, since the crossover ratio of rs1456315 to prostate cancer in the SNP is 1.797, 0.586, which is a result of log (OR), can be given as a weight to rs1456315.

상술한 가중치를 바탕으로 본 발명의 일 실시예에 따른 9개의 유전 변이를 고려한GRS(genetic risk score)는 아래의 식과 같을 수 있다. Based on the above-mentioned weights, the genetic risk score (GRS) considering nine genetic variations according to an embodiment of the present invention may be as follows.

wGRS(weighted genetic risk score) =

Figure 112019021574340-pat00001
wGRS (weighted genetic risk score) =
Figure 112019021574340-pat00001

이때, X1 내지 X9 는 각각의 SNP(rs1456315, rs7837688, rs1512268, rs7501939, rs2735839, rs339331, rs2016588, rs11147922, rs57006764)에 대한 위험 대립유전자의 개수에 대응한다. 구체적으로, 산출장치(100)는 유전 정보에 포함된 각각의 SNP에 대해 위험대립 유전자(risk allele)의 개수에 따라, 0개 (Xn = 0), 1개 (Xn = 1), 또는 2개 (Xn = 2)의 세부 점수를 부여할 수 있다. 즉, 가중치 위험도 모델은 각각의 대립유전자 수에 비례하는 가중치를 부여하도록 설정될 수 있다. Wherein X 1 to X 9 correspond to the number of risk alleles for each SNP (rs1456315, rs7837688, rs1512268, rs7501939, rs2735839, rs339331, rs2016588, rs11147922, rs57006764). Specifically, the calculation device 100 is 0 (X n = 0), 1 (X n = 1), or, depending on the number of risk alleles for each SNP included in the genetic information, or Two (X n = 2) detailed points can be given. That is, the weighted risk model may be set to give a weight proportional to the number of alleles.

다만 이는 일 실시예에 불과하고, 본 발명의 산출장치(100)는 다양한 유전 변이 개수로 GRS 식을 결정할 수 있다. 예를 들어, 상술한 가중치 모델은 9개의 유전 변이 모두에 대한 GRS인 반면, 산출장치(100)는 피험자의 정보에 따라 관련성이 높은 최적의 SNP의 조합에 따라 GRS 식을 결정할 수 있다. However, this is only an example, and the calculation apparatus 100 of the present invention may determine the GRS equation based on the number of various genetic variations. For example, the weighting model described above is a GRS for all nine genetic variations, whereas the calculation device 100 may determine the GRS equation according to a combination of optimal SNPs that are highly related to the subject's information.

예를 들어, 산출장치(100)는 피험자의 인종 정보에 대응하는 SNP 마커 세트만을 이용하여 가중치를 부여할 수 있고, 피험자의 생활 습관 정보에 대응하는 SNP 마커 세트만을 이용하여 가중치를 부여할 수 있다. For example, the calculator 100 may assign a weight using only the SNP marker set corresponding to the race information of the subject, and may assign the weight using only the SNP marker set corresponding to the lifestyle information of the subject. .

상술한 최적의 SNP 마커 세트는 데이터베이스를 이용하여 인공지능 모델을 통해 결정될 수 있으나, 이는 일 예에 불과하고 다양한 방법을 통해 결정된 것일 수 있다. The optimal SNP marker set described above may be determined through an artificial intelligence model using a database, but this is only an example and may be determined through various methods.

도 6a 및 도 6b는 본 발명의 일 실시예에 따른 유전변이의 개수에 따른 예측력을 비교하기 위한 ROC(Receiver Operating Characteristic) 곡선을 도시한 도면이다. 6A and 6B illustrate ROC (Receiver Operating Characteristic) curves for comparing predictive power according to the number of genetic variations according to an embodiment of the present invention.

ROC (Receiver Operating Characteristics) 곡선은 예측 성능을 평가하기 위하여 시각화한 도표이다. 예측 성능은 곡선 아래의 면적 (Area under the curve, AUC) 으로 평가한다. ROC 는 각 평가 기준 (threshold) 에 따른 특이도 (specificity) 와 민감도 (sensitivity) 를 각각 X, Y 좌표로 나타내어 선으로 연결하여 나타낸다. The Receiver Operating Characteristics (ROC) curve is a visualized plot to evaluate the predictive performance. Prediction performance is assessed by Area under the curve (AUC). ROC represents the specificity and sensitivity of each threshold by X and Y coordinates, and is connected by a line.

이때, 특이도는 질병이 없는 환자를 질병이 없다고 예측할 비율, 민감도는 질병이 있을 때 있다고 예측할 확률로 정의되며, 두 지표는 서로 트레이드 오프(trade-off) 관계를 보인다. 곡선의 X, Y 좌표는 (0,0) 에서 (1,1) 까지의 값을 가지며, 예측력이 좋을수록 AUC 값은 1에 가까운 값을 가진다. In this case, the specificity is defined as the ratio of predicting that there is no disease to the patient without disease, and the sensitivity is defined as the probability of predicting that there is a disease, and the two indicators show a trade-off relationship with each other. The X, Y coordinates of the curve have values from (0,0) to (1,1), and the better the predictive power, the closer the AUC value is to 1.

본 발명의 일 실시예에 따르면, 산출장치(100)는 ROC를 유전위험점수의 기준 (threshold) 에 따라 민감도와 특이도가 어떻게 달라지는지 시각화할 수 있고, 곡선의 AUC 를 산출하여 모형의 성능을 평가할 수 있다. 또한, 본 발명의 산출장치(100)는 통계적 유의 수준에 따라 포함된 유전 변이의 개수에 따라 전립선암 환자군과 정상군을 얼마나 잘 구분하는지를 각각 나타내어 비교할 수 있다.According to an embodiment of the present invention, the calculation device 100 may visualize how the sensitivity and specificity vary according to the threshold of the genetic risk score, and calculate the performance of the model by calculating the AUC of the curve. Can be evaluated In addition, the calculation apparatus 100 of the present invention may compare and show how well the prostate cancer patient group and the normal group are distinguished according to the number of genetic mutations included according to the statistical significance level.

도 6a를 참조하면 가중치 위험도 모델은 유전변이의 개수가 4개와 6개일 때 AUC 가 가장 큰 값 (0.680) 을 가지면서 가장 높은 예측 성능을 보인다. 또한, 도 6b를 참조하면, 가중치 위험도 모델은 포함된 유전변이의 개수가 5개와 9개일 때 0.679 로 두번째로 높은 예측 성능을 보인다.Referring to FIG. 6A, the weighted risk model shows the highest predictive performance with the largest value (0.680) of AUC when the number of genetic mutations is 4 and 6. In addition, referring to FIG. 6B, the weighted risk model shows the second highest predictive performance at 0.679 when the number of included genetic mutations is 5 and 9.

도 7a 내지 7g는 본 발명의 일 실시예에 따른 가중치를 부여한 모델(weighted model)의 유전변이 개수에 따른 GRS 분포를 설명하기 위한 도면이다.7A to 7G are diagrams for describing a GRS distribution according to the number of genetic variations of a weighted model according to an embodiment of the present invention.

도 7a는 본 발명의 일 실시예에 따른 p 값(통계적 유의성)에 따른 상위 SNP의 개수 별 GRS 및 AUC를 도시한 표이다. FIG. 7A is a table illustrating GRS and AUC according to the number of upper SNPs according to a p value (statistical significance) according to an embodiment of the present invention.

도 7b 내지 7g는 각각 SNP 마커가 4개인 경우부터 9개인 경우까지 순차적으로 case(관심 형질을 가진 집단, 환자군)과 control(관심 형질을 가지지 않은 집단, 정상군)에 대한 GRS 분포를 도시한 그래프이다. 7b to 7g are graphs showing the GRS distributions for case (group with interest trait, patient group) and control (group without interest trait, normal group) sequentially from four to nine SNP markers, respectively. to be.

도 7a 내지 7g를 참조하면, 마커가 4개 및 6개인 경우 큰 GRS 값을 가지며, 높은 정확도를 가진다. Referring to FIGS. 7A to 7G, four and six markers have a large GRS value and high accuracy.

도 8a 내지 8g는 본 발명의 일 실시예에 따른 가중치를 부여하지 않은 모델(non-weighted model)의 유전변이 개수에 따른 GRS 분포를 설명하기 위한 도면이다.8A to 8G are diagrams for explaining GRS distribution according to the number of genetic variations of a non-weighted model according to an embodiment of the present invention.

도 8a는 본 발명의 일 실시예에 따른 p 값(통계적 유의성)에 따른 상위 SNP의 개수 별 GRS 및 AUC를 도시한 표이다. 8A is a table showing GRS and AUC for each number of upper SNPs according to p value (statistical significance) according to an embodiment of the present invention.

도 8b 내지 8g는 각각 SNP 마커가 4개인 경우부터 9개인 경우까지 순차적으로 case(관심 형질을 가진 집단, 환자군)과 control(관심 형질을 가지지 않은 집단, 정상군)에 대한 GRS 분포를 도시한 그래프이다. 8b to 8g are graphs showing the GRS distributions for the case (group with interest trait, patient group) and control (group without interest trait, normal group) sequentially from 4 to 9 SNP markers, respectively. to be.

도 7a 내지 8g를 참조하면, 가중치를 부여한 위험도 모델의 경우에서 모든 마커 개수 유형에서 높은 GRS 값을 가지며, 높은 정확도를 가진다는 것을 확인할 수 있다. 7A to 8G, it can be seen that in the case of a weighted risk model, all marker number types have high GRS values and high accuracy.

도 9는 본 발명의 일 실시예에 따른 GRS 그룹 별 전립선암에 대한 교차비를 설명하기 위한 도면이다. 9 is a view for explaining the ratio of crossover for prostate cancer for each GRS group according to an embodiment of the present invention.

교차비는 입력변수(독립변수 또는 설명변수)가 종속변수에 대한 인과관계를 파악하기 위한 것으로, 입력변수와 종속변수 사이에서 계산된 값이 1을 넘으면 양(positive)의 연관성을 나타내고, 계산된 값이 1보다 낮으면 음(negative)의 연관성을 나타내는 지표이다.The crossover ratio is used to determine the causal relationship between the input variable (independent variable or explanatory variable) for the dependent variable.If the calculated value between the input variable and the dependent variable exceeds 1, it represents a positive association. If it is lower than 1, it is an index indicating negative association.

즉, 특정 대립유전자를 가지고 있는 사람들에서의 질병 여부에 대한 비(odds) 와 그 대립유전자가 없는 사람들이 가지는 질병에 대한 여부의 비 (ratio) 및 특정 대립유전자를 가진 그룹과 그렇지 않은 그룹의 질병의 위험도를 비교하기 위함이다. That is, the odds of the disease in people with a particular allele, the ratio of the disease to those who do not have the allele, and the disease of groups with and without specific alleles. To compare the risks of

Prostate cancer group (Cases)Prostate cancer group (Cases) Healthy controlsHealthy controls Risk alleleRisk allele AA BB Protective alleleProtective allele CC DD

Odds Ratio =

Figure 112019021574340-pat00004
Odds Ratio =
Figure 112019021574340-pat00004

도 9의 x축은 본 발명의 일 실시예에 따른 도 7b 내지 7g의 GRS 분포에서 GRS를 상위로부터 도수분포로 4분위수(Quartile)로 그룹화하여 배열한 것이고, y축은 각각의 GRS 그룹 별 전립선암에 대한 교차비에 대한 것이다. In FIG. 9, the x-axis is arranged by grouping the GRSs into quartiles from the top to the quartiles in the GRS distribution of FIGS. 7b to 7g according to an embodiment of the present invention, and the y-axis represents prostate cancer of each GRS group. For the odds ratio.

도 9를 참조하면, Q4(4분위수의 가장 상위 그룹)은 GRS 범위가 0.26~0.45이며, 교차비(OR, Odds Ratio)가 6으로 전립선암에 대하여 큰 연관성을 가진다. 이외의 그룹으로 Q3는 GRS 범위 0.19~0.26 및 교차비 3.1, Q2는 GRS 범위 0.12~0.19 및 교차비 1.72, Q1은 GRS 범위 0-0.12을 보이며, 다른 그룹과의 연관성 비교를 위한 참조 그룹으로써 교차비 1을 보인다. Referring to FIG. 9, Q4 (the uppermost group of the quartiles) has a GRS range of 0.26 to 0.45 and an OR ratio of 6, which is highly related to prostate cancer. In the other groups, Q3 shows the GRS range of 0.19 to 0.26 and the crossing ratio 3.1, Q2 shows the GRS range of 0.12 to 0.19 and the crossing ratio of 1.72, and Q1 shows the GRS range of 0-0.12. see.

도 10은 본 발명의 일 실시예에 따른 GRS 그룹 중 고위험군 그룹에서의 교차비를 설명하기 위한 도면이다. 도 10을 참조하면, Q4 그룹 안에서도 GRS cut-off가 0.35인 top 2.5% 인 경우의 교차비가 4.65로 가장 큰 것으로 나타난다. FIG. 10 is a view for explaining a crossing ratio in a high risk group of a GRS group according to an embodiment of the present invention. FIG. Referring to FIG. 10, even when the GRS cut-off is 0.35 and the top 2.5% within the Q4 group, the intersection ratio is 4.65, the largest.

도 11은 본 발명의 일 실시예에 따른 상이한 인구집단의 가중위험점수 비교를 위해 포함되는 유전변이를 설명하기 위한 도면이다. FIG. 11 is a diagram illustrating genetic variation included for comparison of weighted risk scores of different populations according to an embodiment of the present invention.

본 분석에서 포함된 SNP 들과 가장 많은 수의 SNP (N=4) 가 겹치는 Xu, Jianfeng, et al. "Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31. 2 and 19q13. 4." Nature genetics 44.11 (2012): 1231. 문헌의 결과 (Supplementary Table 2) 중 유럽인종의 OR 값을 참조한 것이다. Xu, Jianfeng, et al., Where the SNPs included in this analysis overlap with the largest number of SNPs (N = 4). OmeGenome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31. 2 and 19q13. 4. "Nature genetics 44.11 (2012): 1231. References to OR values for Europeans in the Supplementary Table 2.

도 11을 참조하면, 특히 대립유전자(risk allele) A의 SNP rs4430796의 경우, 한국인(KOR)에 GRS는 0.292고 유럽인(EUR)에 대한 GRS는 0.086으로 크게 차이남을 알 수 있다.Referring to FIG. 11, in particular, in the case of SNP rs4430796 of allel A, the GRS is 0.292 for Korean (KOR) and the GRS for European (EUR) is 0.086.

예를 들어 산출장치(100)는 피험자의 인종 정보가 한국인으로 판단한 경우, rs1456315, rs7837688, rs1512268 및 rs7501939과 같은 SNP를 가중치 모델에 포함하여 위험도를 계산할 수 있다. For example, the calculation device 100 may calculate risk by including SNPs such as rs1456315, rs7837688, rs1512268, and rs7501939 in the weighted model when the race information of the subject is determined to be Korean.

도 12a 및 12b는 본 발명의 일 실시예에 따른 가중치 위험도 모델을 유럽인 데이터 및 한국인 데이터에 적용하였을 때의 GRS 분포를 도시한 도면이다. 12A and 12B are diagrams illustrating a GRS distribution when a weighted risk model according to an embodiment of the present invention is applied to European data and Korean data.

도 12a는 유럽인 데이터에서 도출된 가중치를 적용하였을 때의 GRS 분포를 나타내고, 도 12b는 한국인 데이터에서 도출된 가중치를 적용하였을 때의 GRS 분포를 나타낸다. FIG. 12A shows a GRS distribution when applying a weight derived from European data, and FIG. 12B shows a GRS distribution when applying a weight derived from Korean data.

도 12a를 참조하면, rs1456315, rs7837688, rs1512268 및 rs7501939과 같은 SNP를 포함한 가중치 모델에 유럽인 데이터가 적용된 결과 control과 case 모두 낮은 GRS를 보인다. 반면, 한국인 데이터가 적용되면 도 12b에서와 같이 상대적으로 높은 GRS 분포를 보인다. Referring to FIG. 12A, as a result of applying European data to a weight model including SNPs such as rs1456315, rs7837688, rs1512268, and rs7501939, both control and case show low GRS. On the other hand, when Korean data is applied, a relatively high GRS distribution is shown, as shown in FIG. 12B.

도 13a 및 13b는 본 발명의 일 실시예에 따른 가중치 위험도 모델을 유럽인 데이터 및 한국인 데이터에 적용하였을 때의 ROC 곡선을 도시한 도면이다. 13A and 13B illustrate ROC curves when a weighted risk model is applied to European data and Korean data according to an embodiment of the present invention.

구체적으로 도 13a는 유럽인 데이터에서 도출된 가중치를 적용하였을 때의 ROC를 나타내고, 도 13b는 한국인 데이터에서 도출된 가중치를 적용하였을 때의 ROC를 나타낸다. Specifically, FIG. 13A illustrates the ROC when the weight derived from the European data is applied, and FIG. 13B illustrates the ROC when the weight derived from the Korean data is applied.

도 12a 및 12b와 마찬가지로, 한국인 데이터의 경우 AUC가 0.604로 유럽인 데이터의 AUC 0.591에 비해 더 높은 성능을 보인다. 즉, 인종 별로 상이한 가중치 모델을 사용하여야 할 필요성이 있음을 알 수 있다.12A and 12B, the AUC is 0.604 for Korean data, which is higher than that of AUC 0.591 for European data. That is, it can be seen that there is a need to use different weighting models for each race.

이에, 본 발명의 산출장치(100)는 인종 별 가중치 위험도 모델을 상이하게 변경함으로써, 높은 정확도의 위험점수를 산출할 수 있다. Accordingly, the calculation apparatus 100 of the present invention may calculate the risk score with high accuracy by changing the weighted risk model for each race differently.

도 14a 및 14b는 본 발명의 일 실시예에 따른 유전위험 점수 그룹을 설명하기 위한 도면이다. 14A and 14B are diagrams for describing a genetic risk score group according to an embodiment of the present invention.

도 14a는 x축은 GRS 분포에서 GRS를 상위로부터 도수분포로 5분위수(Quintile)로 그룹화하여 배열한 것이고, y축은 case(환자군) 및 control(정상군)에 대한 수를 나타낸다. FIG. 14A shows the x-axis arranging the GRS in the GRS distribution from the upper to the quartile (Quintile), and the y-axis shows the number of cases (patient group) and control (normal group).

도 14b는 x축은 GRS 분포에서 GRS를 상위로부터 도수분포로 4분위수(Quartile)로 그룹화하여 배열한 것이고, y축은 case(환자군) 및 control(정상군)에 대한 수를 나타낸다.FIG. 14B shows the x-axis arranging the GRS in the GRS distribution by grouping the quartiles from the upper into quartiles, and the y-axis shows the number of cases (patients) and control (normal group).

즉, 본 발명의 산출장치(100)는 실시예에 따라서 GRS를 기준으로 4분위 또는 5분위 등 다양하게 그룹화할 수 있다. 산출장치(100)는 가중치 위험도 모델을 통해 피험자에 대한 유전위험 점수를 산출하면 해당 점수가 어느 그룹에 속하는지 판단할 수 있다. That is, the calculation device 100 of the present invention may be variously grouped, such as the quartile or the fifth quartile, based on the GRS according to the embodiment. When the calculator 100 calculates a genetic risk score for a subject through a weighted risk model, the calculator 100 may determine which group the score belongs to.

본 발명의 일 실시예에 따르면, 산출장치(100)는 제1 유전 정보보다 후행하는 시점의 피험자의 제2 유전 정보를 입력 받을 수 있다. 이 경우 제2 유전 정보에 대한 유전위험 점수가 속하는 그룹이 제1 유전 정보에 대한 유전위험 점수에 비해 고위험 그룹으로 변경되는 경우, 산출장치(100)는 해당 피험자를 집중관리 대상자로 설정할 수 있다. 산출장치(100)는 집중관리 대상자로 설정된 피험자에게 생활 습관 개선, 주기적인 전립선암 진단 제안 등 다양한 가이드라인을 제시할 수 있다. According to an embodiment of the present invention, the calculation device 100 may receive the second genetic information of the subject at a later time point than the first genetic information. In this case, when the group to which the genetic risk score for the second genetic information belongs is changed to a higher risk group than the genetic risk score for the first genetic information, the calculation device 100 may set the subject as the centralized management target. The calculating device 100 may present various guidelines, such as improving lifestyle, suggesting periodic prostate cancer diagnosis, to a subject set as the intensive management subject.

본 발명의 또 다른 실시예에 따르면, 제2 유전 정보보다 후행하는 제3 유전 정보에 대한 유전위험 점수가 저위험 그룹으로 변경되는 경우, 산출장치(100)는 해당 피험자를 집중관리 대상자에서 해제할 수 있다. According to another embodiment of the present invention, when the genetic risk score for the third genetic information following the second genetic information is changed to a low risk group, the calculation apparatus 100 may release the subject from the centralized management subject. Can be.

한편, 상술한 본 발명의 다양한 실시 예들에 따른 방법들은, 기존 전자 장치에 설치 가능한 어플리케이션 형태로 구현될 수 있다. Meanwhile, the above-described methods according to various embodiments of the present disclosure may be implemented in an application form that can be installed in an existing electronic device.

또한, 상술한 본 발명의 다양한 실시 예들에 따른 방법들은, 기존 전자 장치에 대한 소프트웨어 업그레이드, 또는 하드웨어 업그레이드 만으로도 구현될 수 있다. In addition, the above-described methods according to various embodiments of the present disclosure may be implemented only by software upgrade or hardware upgrade of an existing electronic device.

또한, 상술한 본 발명의 다양한 실시예들은 전자 장치에 구비된 임베디드 서버, 또는 전자장치의 외부 서버를 통해 수행되는 것도 가능하다. In addition, the above-described various embodiments of the present disclosure may be performed through an embedded server included in the electronic device or an external server of the electronic device.

한편, 본 발명의 일 실시예에 따르면, 이상에서 설명된 다양한 실시예들은 소프트웨어(software), 하드웨어(hardware) 또는 이들의 조합을 이용하여 컴퓨터(computer) 또는 이와 유사한 장치로 읽을 수 있는 기록매체(computer readable recording medium)에 저장된 명령어를 포함하는 소프트웨어로 구현될 수 있다. 일부 경우에 있어 본 명세서에서 설명되는 실시예들이 프로세서 자체로 구현될 수 있다. 소프트웨어적인 구현에 의하면, 본 명세서에서 설명되는 절차 및 기능과 같은 실시 예들은 별도의 소프트웨어 모듈들로 구현될 수 있다. 소프트웨어 모듈들 각각은 본 명세서에서 설명되는 하나 이상의 기능 및 동작을 수행할 수 있다. On the other hand, according to an embodiment of the present invention, the various embodiments described above is a recording medium that can be read by a computer (or similar device) using software, hardware, or a combination thereof. It may be implemented in software including instructions stored on a computer readable recording medium. In some cases the embodiments described herein may be implemented in the processor itself. According to the software implementation, embodiments such as the procedures and functions described herein may be implemented as separate software modules. Each of the software modules may perform one or more functions and operations described herein.

한편, 컴퓨터(computer) 또는 이와 유사한 장치는, 저장 매체로부터 저장된 명령어를 호출하고, 호출된 명령어에 따라 동작할 수 있는 장치로서, 개시된 실시 예들에 따른 장치를 포함할 수 있다. 상기 명령이 프로세서에 의해 실행될 경우, 프로세서가 직접, 또는 상기 프로세서의 제어 하에 다른 구성요소들을 이용하여 상기 명령에 해당하는 기능을 수행할 수 있다. 명령은 컴파일러 또는 인터프리터에 의해 생성 또는 실행되는 코드를 포함할 수 있다. On the other hand, a computer (or similar device) is a device capable of calling a stored command from a storage medium and operating according to the called command, and may include a device according to the disclosed embodiments. When the command is executed by a processor, the processor may perform a function corresponding to the command directly or by using other components under the control of the processor. The instructions can include code generated or executed by a compiler or interpreter.

기기로 읽을 수 있는 기록매체는, 비일시적 기록매체(non-transitory computer readable recording medium)의 형태로 제공될 수 있다. 여기서, '비일시적'은 저장매체가 신호(signal)를 포함하지 않으며 실재(tangible)한다는 것을 의미할 뿐 데이터가 저장매체에 반영구적 또는 임시적으로 저장됨을 구분하지 않는다. 이때 비일시적 컴퓨터 판독 가능 매체란 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 비일시적 컴퓨터 판독 가능 매체의 구체적인 예로는, CD, DVD, 하드 디스크, 블루레이 디스크, USB, 메모리카드, ROM 등이 있을 수 있다.The device-readable recording medium may be provided in the form of a non-transitory computer readable recording medium. Here, 'non-temporary' means that the storage medium does not include a signal and is tangible, but does not distinguish that data is stored semi-permanently or temporarily on the storage medium. In this case, the non-transitory computer readable medium refers to a medium that stores data semi-permanently rather than a medium storing data for a short time such as a register, a cache, a memory, and the like, and can be read by a device. Specific examples of non-transitory computer readable media may be CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM, and the like.

이와 같이 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의하여 정해져야 할 것이다.As described above, the present invention has been described with reference to the embodiments shown in the drawings, which are merely exemplary and will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. . Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

100: 위험점수 산출장치
110: 통신부
120: 입력부
130: 메모리
140: 디스플레이
150: 프로세서
151: 유전위험점수 산출부
152: 위험도 등급 결정부
200: 서버
301: 사용자 단말기
302: 기관
100: risk score calculator
110: communication unit
120: input unit
130: memory
140: display
150: processor
151: genetic risk score calculation unit
152: risk class determination unit
200: server
301: user terminal
302: institution

Claims (4)

입력부 및 프로세서를 포함하는 전립선암 위험도 산출장치의 위험점수 산출방법에 있어서,
상기 입력부에 의해, 피험자의 인종 정보로 한국인을 입력 받는 단계;
상기 입력부에 의해, 상기 피험자의 제1 유전 정보 및 상기 제1 유전 정보보다 후행하는 시점의 상기 피험자의 제2 유전 정보를 입력 받는 단계;
상기 프로세서에 의해, 제1 가중치 위험도 모델을 이용하여 상기 제1 유전 정보에 대한 제1 유전위험 점수 및 상기 제2 유전 정보에 대한 제2 유전위험 점수를 산출하는 단계;
상기 프로세서에 의해, 상기 제2 유전위험 점수가 속하는 그룹이 상기 제1 유전위험 점수에 비해 고위험 그룹으로 기설정된 등급 이상 상승하는 경우 상기 피험자를 상급 집중관리 대상자로 설정하고, 상기 제2 유전위험 점수가 속하는 그룹이 상기 제1 유전위험 점수에 비해 고위험 그룹으로 상기 기설정된 등급 미만 상승하는 경우 상기 피험자를 하급 집중관리 대상자로 설정하는 단계; 를 포함하고,
상기 가중치 위험도 모델은,
Figure 112019110784768-pat00035
이고,
상기 W1은 rs16901979 마커에 대응하는 가중치로 0.586이고, 상기 W2은 rs1512268 마커에 대응하는 가중치로 0.313이고, 상기 W3은 rs4430796 마커에 대응하는 가중치로 0.349이고, 상기 W4는 rs2735839 마커에 대응하는 가중치로 0.281이고,
상기 X1은 상기 rs16901979 마커에 대응하는 위험대립 유전자의 수이고, 상기 X2는 상기 rs1512268 마커에 대응하는 위험대립 유전자의 수이고, 상기 X3는 상기 rs4430796 마커에 대응하는 위험대립 유전자의 수이고, 상기 X4는 상기 rs2735839 마커에 대응하는 위험대립 유전자의 수이고, 상기 X1 내지 X4는 0 내지 2 중 하나인 위험도 산출방법.
In the risk score calculation method of the prostate cancer risk calculator comprising an input unit and a processor,
Receiving, by the input unit, a Korean as race information of a subject;
Receiving, by the input unit, the first genetic information of the subject and the second genetic information of the subject at a point following the first genetic information;
Calculating, by the processor, a first genetic risk score for the first genetic information and a second genetic risk score for the second genetic information using a first weighted risk model;
By the processor, when the group to which the second genetic risk score belongs is higher than a predetermined level as a high risk group compared to the first genetic risk score, the subject is set as an advanced intensive care subject, and the second genetic risk score is set. Setting the subject as a lower intensive care subject when the group to which the group belongs to the high risk group rises below the predetermined grade to a high risk group; Including,
The weighted risk model,
Figure 112019110784768-pat00035
ego,
W1 is 0.586 as a weight corresponding to rs16901979 marker, W2 is 0.313 as a weight corresponding to rs1512268 marker, W3 is 0.349 as a weight corresponding to rs4430796 marker, and W4 is 0.281 as a weight corresponding to rs2735839 marker. ego,
X1 is the number of risk alleles corresponding to the rs16901979 marker, X2 is the number of risk alleles corresponding to the rs1512268 marker, X3 is the number of risk alleles corresponding to the rs4430796 marker, and X4 Is a number of risk alleles corresponding to the rs2735839 marker, wherein X1 to X4 is one of 0 to 2.
제1항에 있어서,
상기 유전위험 점수를 산출하는 단계는 상기 가중치 위험도 모델을 통해 산출하는 것이고,
상기 W1은 상기 rs16901979 마커에 대응하는 전립선암과 관련된 교차비에 로그를 취한 값이고, 상기 W2는 상기 rs1512268 마커에 대응하는 전립선암과 관련된 교차비에 로그를 취한 값이고, 상기 W3은 상기 rs4430796 마커에 대응하는 전립선암과 관련된 교차비에 로그를 취한 값이고, 상기 W4는 상기 rs2735839 마커에 대응하는 전립선암과 관련된 교차비에 로그를 취한 값인 위험도 산출방법.
The method of claim 1,
Computing the genetic risk score is to calculate through the weighted risk model,
W1 is a logarithmic ratio of prostate cancer associated with the rs16901979 marker, W2 is a logarithmic ratio associated with prostate cancer corresponding to the rs1512268 marker, and W3 corresponds to the rs4430796 marker And logarithm of the logarithmic ratio associated with the prostate cancer corresponding to the rs2735839 marker.
삭제delete 제1항 및 제2항 중 어느 한 항에 있어서,
상기 전립선 암 위험도 산출 방법을 실행 시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
The method according to any one of claims 1 and 2,
A computer-readable recording medium having recorded thereon a program for executing the prostate cancer risk calculation method.
KR1020190024388A 2019-02-28 2019-02-28 Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof KR102068667B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190024388A KR102068667B1 (en) 2019-02-28 2019-02-28 Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof
KR1020190126465A KR102371655B1 (en) 2019-02-28 2019-10-11 Device, Method of Calculating Prostate Cancer Genetic Risk Score Based on Individual Weights for each Genetic Variation and Recording Medium thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190024388A KR102068667B1 (en) 2019-02-28 2019-02-28 Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190126465A Division KR102371655B1 (en) 2019-02-28 2019-10-11 Device, Method of Calculating Prostate Cancer Genetic Risk Score Based on Individual Weights for each Genetic Variation and Recording Medium thereof

Publications (1)

Publication Number Publication Date
KR102068667B1 true KR102068667B1 (en) 2020-01-21

Family

ID=69369636

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190024388A KR102068667B1 (en) 2019-02-28 2019-02-28 Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof

Country Status (1)

Country Link
KR (1) KR102068667B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520745A (en) * 2007-02-07 2010-06-17 デコード・ジェネティクス・イーエイチエフ Genetic variants that contribute to prostate cancer risk
KR20150110477A (en) * 2012-11-20 2015-10-02 파디아 에이비 Method for indicating a presence or non-presence of aggressive prostate cancer
KR20170113239A (en) * 2016-03-24 2017-10-12 서울대학교산학협력단 Single Nucleotide Polymorphisms Associated With Korean Prostate Cancer And Development Of Genetic Risk Score Using Thereof
KR20170134203A (en) * 2016-05-27 2017-12-06 (주) 메디젠휴먼케어 A system and apparatus for disease-related genomic analysis using SNP

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520745A (en) * 2007-02-07 2010-06-17 デコード・ジェネティクス・イーエイチエフ Genetic variants that contribute to prostate cancer risk
KR20150110477A (en) * 2012-11-20 2015-10-02 파디아 에이비 Method for indicating a presence or non-presence of aggressive prostate cancer
KR20170113239A (en) * 2016-03-24 2017-10-12 서울대학교산학협력단 Single Nucleotide Polymorphisms Associated With Korean Prostate Cancer And Development Of Genetic Risk Score Using Thereof
KR20170134203A (en) * 2016-05-27 2017-12-06 (주) 메디젠휴먼케어 A system and apparatus for disease-related genomic analysis using SNP

Similar Documents

Publication Publication Date Title
US20180260925A1 (en) Identifying group and individual-level risk factors via risk-driven patient stratification
CN110993104B (en) Tumor patient lifetime prediction system
Van Belle et al. A mathematical model for interpretable clinical decision support with applications in gynecology
El-Solh et al. Comparison of in-hospital mortality risk prediction models from COVID-19
US20200251193A1 (en) System and method for integrating genotypic information and phenotypic measurements for precision health assessments
Huang et al. Identifying optimal biomarker combinations for treatment selection via a robust kernel method
CN112735592B (en) Construction method and application method of lung cancer prognosis model and electronic equipment
US20210232954A1 (en) Predictive data analysis using custom-parameterized dimensionality reduction
Grogan et al. A simulation based method for assessing the statistical significance of logistic regression models after common variable selection procedures
Liu et al. Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: a systematic review and meta-analysis
KR102371655B1 (en) Device, Method of Calculating Prostate Cancer Genetic Risk Score Based on Individual Weights for each Genetic Variation and Recording Medium thereof
KR102068667B1 (en) Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof
Barrio et al. Selecting the number of categories of the lymph node ratio in cancer research: A bootstrap-based hypothesis test
KR102068666B1 (en) Ethnic-specific Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof
KR102371654B1 (en) Device, Calculating Method of Calculating Ethnic-specific Prostate Cancer Genetic Risk Score Considering the Predictive Power According to the Number of Genetic Variations and Recording Medium thereof
Szabo et al. Admission lactate level and the GRACE 2.0 score are independent and additive predictors of 30-day mortality of STEMI patients treated with primary PCI—Results of a real-world registry
KR102102848B1 (en) Prostate cancer risk score calculator, and method of the above calculator
Syed et al. Toolkit to compute time-based Elixhauser comorbidity indices and extension to common data models
KR20210046220A (en) Reagent and Kit for the Detection of Prostate Cancer Gene Biomarkers
KR20210046221A (en) Method And Device Of Screening Prostate Cancer Using Blood Prostate Specific Antigen And Genetic Marker
KR20220097276A (en) Prostate Cancer Genetic Risk Score Calculating Device, Calculating Method and Recording Medium thereof
KR102387586B1 (en) Method for predicting risk for developing dementia in parkinson's disease and device using the same
KR102303272B1 (en) System for predictting a direction of prostate cancer risk
Dehal et al. Accuracy of nodal staging is influenced by sidedness in colon cancer
Tsai et al. Significance analysis of ROC indices for comparing diagnostic markers: applications to gene microarray data

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant