KR102067813B1 - 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR102067813B1
KR102067813B1 KR1020190004759A KR20190004759A KR102067813B1 KR 102067813 B1 KR102067813 B1 KR 102067813B1 KR 1020190004759 A KR1020190004759 A KR 1020190004759A KR 20190004759 A KR20190004759 A KR 20190004759A KR 102067813 B1 KR102067813 B1 KR 102067813B1
Authority
KR
South Korea
Prior art keywords
parameter
uci
pucch
control information
size
Prior art date
Application number
KR1020190004759A
Other languages
English (en)
Other versions
KR20190086398A (ko
Inventor
김재형
김선욱
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20190086398A publication Critical patent/KR20190086398A/ko
Application granted granted Critical
Publication of KR102067813B1 publication Critical patent/KR102067813B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • H04W72/1289
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

본 명세서는 무선 통신 시스템에서 PUCCH 상에서 다수의 UCI들을 전송하는 방법을 제공한다.
구체적으로, 단말에 의해 수행되는 방법은 상기 다수의 UCI들을 전송하기 위한 PUCCH와 관련된 제 1 제어 정보를 기지국으로부터 수신하는 단계; 상기 제 1 제어 정보에 기초하여 상기 다수의 UCI들에 대한 부호화된 비트의 개수를 나타내는 제 1 파라미터를 결정하는 단계, 상기 다수의 UCI들은 제 1 파트 또는 제 2 파트 중 적어도 하나를 포함하는 CSI를 포함하고; 상기 제 1 파라미터 및 상기 제 1 파트의 크기 결정과 관련된 제 2 제어 정보에 기초하여 상기 제 1 파트의 크기를 결정하는 단계; 및 상기 다수의 UCI들을 상기 PUCCH 상에서 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 PUCCH 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치 {METHOD AND APPRATUS FOR TRANSMITTING AND RECEIVING UPLINK CONTROL INFORMATION ON A PUCCH IN A WIRELESS COMMUNICATION}
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 PUCCH 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 PUCCH 상에서 다수의 UCI(uplink control information)들을 전송하기 위한 방법을 제공함에 목적이 있다.
또한, 본 명세서는 적어도 하나의 파트를 포함하는 UCI의 특정 파트의 크기를 결정하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 CSI 보고를 특정 랭크로 가정하여 CSI 보고를 전송할 PUCCH 자원 및 PUCCH 자원에서의 자원 블록의 개수를 결정하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 PUCCH(physical uplink control channel) 상에서 다수의 UCI(uplink control information)들을 전송하는 방법에 있어서, 단말에 의해 수행되는 방법은, 상기 다수의 UCI들을 전송하기 위한 PUCCH와 관련된 제 1 제어 정보를 기지국으로부터 수신하는 단계; 상기 제 1 제어 정보에 기초하여 상기 다수의 UCI들에 대한 부호화된 비트(coded bit)의 개수를 나타내는 제 1 파라미터를 결정하는 단계, 상기 다수의 UCI들은 제 1 파트(part) 또는 제 2 파트 중 적어도 하나를 포함하는 CSI(channel state information)을 포함하고; 상기 제 1 파라미터 및 상기 제 1 파트의 크기 결정과 관련된 제 2 제어 정보에 기초하여 상기 제 1 파트의 크기를 결정하는 단계; 및 상기 다수의 UCI들을 상기 PUCCH 상에서 상기 기지국으로 전송하는 단계를 포함하되, 상기 제 2 제어 정보는 상기 제 1 파트의 크기를 나타내는 제 2 파라미터, 설정된 최대 코딩 레이트(maximum coding rate)를 나타내는 제 3 파라미터 및 변조 차수(modulation order)를 나타내는 제 4 파라미터를 포함하는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 PUCCH 상에서 CSI(channel state information) 보고(report)를 전송하는 방법에 있어서, 단말에 의해 수행되는 방법은, 상기 CSI 보고를 전송하기 위한 PUCCH 자원과 관련된 정보를 기지국으로부터 수신하는 단계; 제 1 파트 또는 제 2 파트 중 적어도 하나를 포함하는 CSI가 상기 제 2 파트를 포함하는 경우, 상기 CSI 보고가 특정 랭크(rank)임을 가정함으로써 상기 CSI 보고를 전송할 PUCCH 자원과 상기 PUCCH 자원에서의 자원 블록(resource block, RB)의 개수를 결정하는 단계; 및 상기 결정에 기초하여 상기 CSI 보고를 상기 PUCCH 상에서 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 CSI 보고가 복수인 경우, 각 CSI 보고가 특정 랭크임을 가정함으로써 CSI 보고들을 전송할 PUCCH 자원과 상기 PUCCH 자원에서의 자원 블록(resource block, RB)의 개수를 결정하는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 PUCCH(physical uplink control channel) 상에서 다수의 UCI(uplink control information)들을 전송하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 상기 다수의 UCI들을 전송하기 위한 PUCCH와 관련된 제 1 제어 정보를 기지국으로부터 수신하며; 상기 제 1 제어 정보에 기초하여 상기 다수의 UCI들에 대한 부호화된 비트(coded bit)의 개수를 나타내는 제 1 파라미터를 결정하며, 상기 다수의 UCI들은 제 1 파트(part) 또는 제 2 파트(part) 중 적어도 하나를 포함하는 CSI(channel state information)을 포함하고; 상기 제 1 파라미터 및 상기 제 1 파트의 크기 결정과 관련된 제 2 제어 정보에 기초하여 상기 제 1 파트의 크기를 결정하며; 및 상기 다수의 UCI들을 상기 PUCCH 상에서 상기 기지국으로 전송하도록 설정되되, 상기 제 2 제어 정보는 상기 제 1 파트의 크기를 나타내는 제 2 파라미터, 설정된 최대 코딩 레이트(maximum coding rate)를 나타내는 제 3 파라미터 및 변조 차수(modulation order)를 나타내는 제 4 파라미터를 포함하는 것을 특징으로 한다.
본 명세서는 PUCCH 상에서 다수의 UCI들을 멀티플렉싱하기 위한 방법 정의함으로써, 자원을 효율적으로 사용할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained slot 구조의 일례를 나타낸 도이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 7은 NR 시스템에서의 캐리어 병합을 고려한 배치 시나리오들(deployment scenarios)의 예들을 나타낸다.
도 8은 본 명세서에서 제안하는 방법을 수행하는 단말의 동작 방법을 나타낸 순서도이다.
도 9는 본 명세서에서 제안하는 방법을 수행하는 단말의 또 다른 동작 방법을 나타낸 순서도이다.
도 10은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 11은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도의 또 다른 예시이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(next generation NB, general NB, gNodeB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
또한, 5G NR(new radio)은 usage scenario에 따라 eMBB(enhanced Mobile Broadband), mMTC(massive Machine Type Communications), URLLC(Ultra-Reliable and Low Latency Communications), V2X(vehicle-to-everything)을 정의한다.
그리고, 5G NR 규격(standard)는 NR 시스템과 LTE 시스템 사이의 공존(co-existence)에 따라 standalone(SA)와 non-standalone(NSA)으로 구분한다.
그리고, 5G NR은 다양한 서브캐리어 간격(subcarrier spacing)을 지원하며, 하향링크에서 CP-OFDM을, 상향링크에서 CP-OFDM 및 DFT-S-OFDM(SC-OFDM)을 지원한다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
뉴머로러지(numerology): 주파수 영역에서 하나의 subcarrier spacing에 대응한다. Reference subcarrier spacing을 정수 N으로 scaling함으로써, 상이한 numerology가 정의될 수 있다.
NR: NR Radio Access 또는 New Radio
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure 112019500129472-pat00001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure 112019500129472-pat00002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure 112019500129472-pat00003
의 시간 단위의 배수로 표현된다. 여기에서,
Figure 112019500129472-pat00004
이고,
Figure 112019500129472-pat00005
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure 112019500129472-pat00006
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure 112019500129472-pat00007
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure 112019500129472-pat00008
이전에 시작해야 한다.
뉴머롤로지
Figure 112019500129472-pat00009
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure 112019500129472-pat00010
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure 112019500129472-pat00011
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure 112019500129472-pat00012
의 연속하는 OFDM 심볼들로 구성되고,
Figure 112019500129472-pat00013
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure 112019500129472-pat00014
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure 112019500129472-pat00015
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure 112019500129472-pat00016
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure 112019500129472-pat00017
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure 112019500129472-pat00018
Figure 112019500129472-pat00019
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure 112019500129472-pat00020
서브캐리어들로 구성되고, 하나의 서브프레임이 14·2μ OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure 112019500129472-pat00021
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure 112019500129472-pat00022
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure 112019500129472-pat00023
이다. 상기
Figure 112019500129472-pat00024
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 4와 같이, 뉴머롤로지
Figure 112019500129472-pat00025
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure 112019500129472-pat00026
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure 112019500129472-pat00027
에 의해 고유적으로 식별된다. 여기에서,
Figure 112019500129472-pat00028
는 주파수 영역 상의 인덱스이고,
Figure 112019500129472-pat00029
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure 112019500129472-pat00030
이 이용된다. 여기에서,
Figure 112019500129472-pat00031
이다.
뉴머롤로지
Figure 112019500129472-pat00032
및 안테나 포트 p에 대한 자원 요소
Figure 112019500129472-pat00033
는 복소 값(complex value)
Figure 112019500129472-pat00034
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure 112019500129472-pat00035
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure 112019500129472-pat00036
또는
Figure 112019500129472-pat00037
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure 112019500129472-pat00038
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure 112019500129472-pat00039
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure 112019500129472-pat00040
와 자원 요소들
Figure 112019500129472-pat00041
간의 관계는 수학식 1과 같이 주어진다.
Figure 112019500129472-pat00042
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure 112019500129472-pat00043
까지 번호가 매겨진다.
Self-contained 슬롯 구조
TDD 시스템에서 데이터 전송의 latency를 최소화하기 위하여 5세대 New RAT(NR)에서는 도 5와 같은 self-contained slot structure를 고려하고 있다.
즉, 도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained slot 구조의 일례를 나타낸 도이다.
도 5에서, 빗금 친 영역(510)은 하향링크 제어(downlink control) 영역을 나타내고, 검정색 부분(520)은 상향링크 제어(uplink control) 영역을 나타낸다.
아무런 표시가 없는 부분(530)은 downlink data 전송을 위해 사용될 수도 있고, uplink data 전송을 위해 사용될 수도 있다.
이러한 구조의 특징은 한 개의 slot 내에서 DL 전송과 UL 전송이 순차적으로 진행되고, 하나의 slot 내에서 DL data를 보내고, UL Ack/Nack도 송수신할 수 있다.
이와 같은 slot을 'self-contained slot'이라고 정의할 수 있다.
즉, 이러한 slot 구조를 통해서, 기지국은 데이터 전송 에러 발생시에 단말로 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 self-contained slot 구조에서, 기지국과 단말은 송신 모드에서 수신모드로 전환하는 과정 또는 수신모드에서 송신모드로 전환하는 과정을 위한 시간 간격(time gap)이 필요하다.
이를 위하여 해당 slot 구조에서, DL에서 UL로 전환되는 시점의 일부 OFDM symbol이 보호 구간(guard period, GP)로 설정된다.
캐리어 병합(Carrier Aggregation)
본 발명의 실시예들에서 고려하는 통신 환경은 멀티 캐리어(Multi-carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합(CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭(bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어(CC: Component Carrier)를 병합(aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다.) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다.) 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다.
상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합(carrier aggregation)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서, 말하는 '셀(Cell)'은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(PCell: Primary Cell) 및 세컨더리 셀(SCell: Secondary Cell)을 포함한다. P셀과 S셀은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellId는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. SCellIndex는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCellIndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다. E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling) 할 수 있다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 6의 (a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
도 6의 (b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 6의 (b)의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.
단말이 하나 이상의 S셀이 설정되면, 네트워크는 설정된 S셀(들)을 활성화(activate) 또는 비활성화(deactivate)할 수 있다. P셀은 항상 활성화된다. 네트워크는 활성/비활성(Activation/Deactivation) MAC 제어 요소(MAC control element)를 전송함으로써 S셀(들)을 활성화 또는 비활성화한다.
활성 /비활성 MAC 제어 요소는 고정된 크기를 가지고, 7개의 C 필드(C-field)와 1개의 R 필드(R-field)를 포함하는 단일의 옥텟(octet)으로 구성된다. C 필드는 각 S셀 인덱스(SCellIndex) 별로 구성되고, S셀의 활성/비활성 상태를 지시한다. C 필드 값이 '1'로 셋팅되면 해당 S셀 인덱스를 가지는 S셀의 활성화되는 것을 지시하고, '0'으로 셋팅되면 해당 S셀 인덱스를 가지는 S셀의 비활성화되는 것을 지시한다.
또한, 단말은 설정된 S셀 별로 타이머(sCellDeactivationTimer)를 유지하고, 타이머가 만료될 때 관련된 S셀을 비활성화한다. 동일한 초기 타이머 값이 타이머(sCellDeactivationTimer)의 각 인스턴스(instance)에 적용되며, RRC 시그널링에 의해 설정된다. S셀(들)이 추가될 때 또는 핸드오버 이후, 초기 S셀(들)은 비활성화 상태이다.
단말은 각 TTI에서 각각의 설정된 S셀(들)에 대하여 아래와 같은 동작을 수행한다.
- 단말이 특정 TTI(서브프레임 n)에서 S셀을 활성화하는 활성/비활성 MAC 제어 요소를 수신하면, 단말은 정해진 타이밍에 해당하는 TTI(서브프레임 n+8 또는 그 이후)에서 S셀을 활성화하고, 해당 S셀과 관련된 타이머를 (재)시작시킨다. 단말이 S셀을 활성화한다는 것은 단말이 S셀 상에서 SRS(Sounding Reference Signal) 전송, S셀을 위한 CQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indication)/PTI(Precoding Type Indicator) 보고, S셀 상에서 PDCCH 모니터링, S셀을 위한 PDCCH 모니터링과 같은 일반 S셀 동작을 적용한다는 것을 의미한다.
- 단말이 특정 TTI(서브프레임 n)에서 S셀을 비활성화하는 활성/비활성 MAC 제어 요소를 수신하거나 또는 특정 TTI(서브프레임 n) 활성화된 S셀과 관련된 타이머가 만료되면, 단말은 정해진 타이밍에 해당하는 TTI(서브프레임 n+8 또는 그 이후)에서 S셀을 비활성화하고, 해당 S셀의 타이머를 중단하며, 해당 S셀과 관련된 모든 HARQ 버퍼를 비운다(flush).
- 활성화된 S셀 상의 PDCCH가 상향링크 그랜트(uplink grant) 또는 하향링크 승인(downlink assignment)을 지시하거나, 또는 활성화된 S셀을 스케줄링하는 서빙 셀 상의 PDCCH가 활성화된 S셀을 위한 상향링크 그랜트(uplink grant) 또는 하향링크 승인(downlink assignment)을 지시하면, 단말은 해당 S셀과 관련된 타이머를 재시작한다.
- S셀이 비활성화되면, 단말은 S셀 상에서 SRS를 전송하지 않고, S셀을 위한 CQI/PMI/RI/PTI를 보고하지 않으며, S셀 상에서 UL-SCH를 전송하지 않으며, S셀 상에서 PDCCH를 모니터하지 않는다.
상술한 캐리어 병합에 대한 내용은 LTE/LTE-A 시스템을 기준으로 설명되어 있으나, 이는 설명의 편의를 위한 것일 뿐 5G NR 시스템에도 동일 또는 유사하게 확장하여 적용될 수 있음은 물론이다. 특히, 5G NR 시스템에서 고려될 수 있는 캐리어 병합 배치 시나리오들은 도 7과 같을 수 있다.
도 7은 NR 시스템에서의 캐리어 병합을 고려한 배치 시나리오들(deployment scenarios)의 예들을 나타낸다.
도 7을 참고하면, F1 및 F2는 각각 제1 주파수(또는 제1 주파수 대역, 제1 캐리어 주파수, 제1 중심 주파수)으로 설정된 셀 및 제2 주파수(또는 제2 주파수 대역, 제2 캐리어 주파수, 제2 중심 주파수)으로 설정된 셀을 의미할 수 있다.
도 7의 (a)는 제1 CA 배치 시나리오를 나타낸다. 도 7의 (a)에 나타난 것과 같이, F1 셀과 F2 셀은 동일한 위치에 존재(co-located, overlaid)할 수 있다. 이 경우, 두 개의 레이어(layer)들은 모두 충분한 커버리지(coverage)를 제공할 수 있으며, 두 개의 레이어들에서의 이동성(mobility)이 지원될 수 있다. 해당 시나리오는 F1 셀과 F2 셀이 동일한 대역(band)에 존재하는 경우를 포함할 수 있다. 해당 시나리오에서는 중첩된 F1 셀 및 F2 셀 간에는 병합(aggregation)이 가능할 것으로 기대될 수 있다.
도 7의 (b)는 제2 CA 배치 시나리오를 나타낸다. 도 7의 (b)에 나타난 것과 같이, F1 셀과 F2 셀은 동일한 위치에 존재할 수 있지만, F2 셀은 더 큰 경로 손실(path loss)로 인하여 더 작은 커버리지를 지원할 수도 있다. 이 경우, F1 셀만이 충분한 커버리지를 제공하며, F2 셀은 처리량(throughput)을 개선하기 위해 이용될 수 있다. 이 때, 이동성은 F1 셀의 커버리지에 기반하여 수행될 수 있다. 해당 시나리오는 F1 셀과 F2 셀이 다른 대역들(예: F1 셀은 {800MHz, 2GHz}, F2 셀은 {3.5GHz})에 존재하는 경우를 포함할 수 있다. 해당 시나리오에서는, 중첩된 F1 셀 및 F2 셀 간에는 병합(aggregation)이 가능할 것으로 기대될 수 있다.
도 7의 (c)는 제3 CA 배치 시나리오를 나타낸다. 도 7의 (c)에 나타난 것과 같이, F1 셀 및 F2 셀은 동일한 위치에 존재하지만, 셀 경계의 처리량을 증가시키도록 F2 셀의 안테나는 F2 셀의 경계에 연결될 수 있다. 이 경우, F1 셀은 충분한 커버리지를 제공하지만, F2 셀은 잠재적으로 더 큰 경로 손실 등에 의한 공백(hole)을 가질 수 있다. 이 때, 이동성은 F1 셀의 커버리지에 기반하여 수행될 수 있다. 해당 시나리오는 F1 셀과 F2 셀이 다른 대역들(예: F1 셀은 {800MHz, 2GHz}, F2 셀은 {3.5GHz})에 존재하는 경우를 포함할 수 있다. 해당 시나리오에서는, 동일한 기지국(eNB)의 F1 셀 및 F2 셀은 커버리지가 중첩되는 영역에서 병합(aggregation)이 가능할 것으로 기대될 수 있다.
도 7의 (d)는 제4 CA 배치 시나리오를 나타낸다. 도 7의 (d)에 나타난 것과 같이, F1 셀은 매크로 커버리지(macro coverage)를 제공하며,F2 원격 무선 헤드들(remote radio heads, RRHs)은 핫 스팟(hot spot)에서의 처리량 개선을 위해 이용될 수 있다. 이 때, 이동성은 F1 셀의 커버리지에 기반하여 수행될 수 있다. 해당 시나리오는 F1 셀 및 F2 셀이 동일한 대역(예: 1.7GHz 등)에서 DL 비-연속적인 캐리어(DL non-contiguous carrier)에 해당하는 경우 및 F1 셀과 F2 셀이 다른 대역들(예: F1 썰은 {800MHz, 2GHz}, F2 셀은 {3.5GHz})에 존재하는 경우를 모두 포함할 수 있다. 해당 시나리오에서는, F2 셀(즉, RRHs)들은 자신과 연결된(underlying) F1 셀(즉, 매크로 셀)(들)과 병합이 가능할 것으로 기대될 수 있다.
도 7의 (e)는 제5 CA 배치 시나리오를 나타낸다. 해당 시나리오는 상술한 제2 CA 배치 시나리오와 유사하지만, 캐리어 주파수 중 하나에 대한 커버리지가 확장될 수 있도록 주파수 선택형 중계기(frequency selective repeater)들이 배치될 수 있다. 해당 시나리오에서는, 동일한 기지국의 F1 셀 및 F2 셀은 커버리지가 중첩되는 영역에서 병합이 가능할 것으로 기대될 수 있다.
서로 다른 서빙 셀들에 의한 것이지만, 동일한 TTI에 대한 UL 그랜트(UL grants) 및 DL 할당(DL assignments)의 물리 계층(physical layer)에서의(예: 제어 심볼의 수, 전파(propagation) 및 배치 시나리오에 의존하는) 수신 타이밍 차이(reception timing difference)는 MAC 동작에 영향을 주지 않을 수 있다. 단말은 intra-band 비연속적 CA 및 inter-band 비연속적 CS 모두에서 병합될 CC들 중에서 30us까지의 상대 전파 지연 차이(relative propagation delay difference)를 처리할 필요가 있을 수 있다. 이는, 기지국의 시간 정렬(time alignment)이 최대 0.26us로 특정되기 때문에, 단말이 수신기에서 모니터링되는 CC들 중에서 30.26us까지의 지연 스프레드(delay spread)를 처리할 필요가 있다는 것을 의미할 수 있다. 또한, 이는, 단말이 다수의 TAG들을 갖는 inter-band CA에 대해 36.37us의 TAG들 간의 최대 상향링크 전송 타이밍 차이(maximum uplink transmission timing difference)를 처리해야 한다는 것을 의미할 수 있다.
CA가 배치되는 경우, 프레임 타이밍(frame timing) 및 SFN(System Frame Number)은 병합된 셀들에 걸쳐서 정렬될 수 있다.
이하, 본 명세서에서 제안하는 긴(long) PUCCH 상에서 다수의 UCI(uplink control information)들을 지원하기 위한 방법에 대해 관련 도면을 참고하여 살펴본다.
NR 시스템은 HARQ(Hybrid Automatic Repeat Request)-ACK(acknowledgement), SR (scheduling request), CSI (channel state information) 등의 정보를 포함하는 UCI를 전송하기 위한 물리 채널(physical channel)인 PUCCH (physical uplink control channel)를 지원할 수 있다.
여기서, PUCCH는 UCI 페이로드(payload)에 따라서 small UCI payload(e.g., 1~2-bit UCI)를 지원하는 small-payload PUCCH와 large UCI payload(e.g., more than 2 bits and up to hundreds of bits)를 지원하는 large-payload PUCCH를 포함할 수 있다.
상기 small-payload PUCCH와 상기 large-payload PUCCH는 각각 다시 short duration (e.g., 1~2-symbol duration)을 갖는 short PUCCH와 long duration (e.g., 4~14-symbol duration)을 갖는 long PUCCH를 포함할 수 있다.
여기서, Long PUCCH는 주로 medium/large UCI payload를 전송해야 하거나 또는 small UCI payload의 coverage를 개선하기 위해서 사용할 수 있다.
상기 long PUCCH 대비 추가적으로 커버리지(coverage)의 확장이 요구될 때, 동일 UCI 정보가 다수의 slot에 걸쳐서 전송되는 multi-slot long PUCCH가 지원될 수 있다.
예를 들어, 주어진 UCI payload와 code rate 하에서 coverage 확보가 불가능한 경우, 단말은 multi-slot long PUCCH를 사용하여 반복 전송에 의한 gain을 통해서 coverage를 확보할 수 있다.
Long PUCCH에 전송되는 medium/large UCI payload는 상기의 UCI 정보들 (HARQ-ACK, SR, CSI 등) 중 하나 또는 다수 개의 조합으로 구성될 수 있다.
위의 경우를 설명의 편의상 'multiple UCI on long PUCCH'로 표현하기로 한다.
즉, 본 명세서는 multiple UCI on long PUCCH를 지원하는 동작을 제안한다.
여기서, Long PUCCH에서 동시 전송되는 다수의 UCI 정보들은 예를 들어, HARQ-ACK (또는 HARQ-ACK 과 SR)과 CSI의 동시 전송일 수 있다.
이하, 본 명세서에서 제안하는 multiple UCI on long PUCCH를 지원하기 위한 세부 내용에 대해 구체적으로 살펴본다.
Multiple UCI on long PUCCH 지원을 위한 UCI 정보 파티셔닝(partitioning)
먼저, long PUCCH 상에서 다수의 UCI 지원을 위한 UCI 정보 파티셔닝(partitioning)에 대해 살펴본다.
Multiple UCI payload가 CSI report를 포함하는 경우, 단말(예: UE)에서 판단한 rank 개수 등에 의해서 payload가 가변일 수 있다.
이 경우, 기지국(예: gNB (next generation Node B))에서의 blind detection (BD)를 피하기 위해서, UE는 gNB에게 UCI payload size를 결정할 수 있는 정보(예를 들어, rank 정보 등)을 직접 또는 간접적으로 전송하도록 할 수 있다.
상기의 방법 중 하나로, UE는 전체 variable-size UCI 정보를 fixed part인 part 1 UCI 와 variable part인 part 2 UCI로 구분하여 별도로 encoding 하도록 한다.
여기서, part 1 UCI와 part 2 UCI는 각각 제 1 UCI 파트, 제 2 UCI 파트로 표현될 수도 있다.
그리고, UE는 상기 part 2 UCI의 size를 결정할 수 있는 rank 정보 등을 fixed-size part 1 UCI에 포함시켜 encoding 한 후 전송하도록 할 수 있다.
Multiple UCI on long PUCCH 지원을 위한 UCI to RE mapping
다음으로, multiple UCI on long PUCCH 지원을 위한 UCI 대 RE 매핑에 대해 살펴본다.
앞서 살핀 variable-size CSI report의 PUCCH 전송을 위해서 CSI가 fixed size part 1 CSI와 variable-size part 2 CSI로 partition되어 구성될 경우, gNB는 part 1 CSI를 성공적으로 decoding 해야만 part 2 CSI의 payload size를 파악할 수 있고, 이를 바탕으로 decoding 시도를 할 수 있다.
따라서, 상기 part 1 CSI가 decoding 순서와 성능 측면에서 part 2 CSI에 비해서 우선순위(priority)가 있다고 할 수 있다.
따라서, multiple UCI on long PUCCH를 지원하기 위해서 multiple UCI payload가 구성되는 경우, 중요도가 높은 HARQ-ACK (또는 HARQ-ACK과 SR) 정보는 part 1 CSI 와 함께 part 1 UCI를 구성하여 joint encoding 되고, part 2 UCI는 part 2 CSI만으로 구성되어 별도로 인코딩(separate encoding)될 수 있다.
상기와 같은 성능 상의 priority 등의 이유로 part 1 UCI는 우선적으로 최대한 PUCCH DMRS(demodulation reference signal)에 근접하도록 RE mapping될 수 있다.
Part 1 UCI가 상기의 방법으로 RE mapping된 후, part 2 UCI는 나머지 PUCCH 영역에 RE mapping될 수 있다.
위에서 설명하는 RE mapping 동작은 UE에 의해 수행되며, UCI를 DCI(downlink control information)으로 해석될 수 있는 경우, gNB에 의해 수행될 수도 있다.
여기서, RE mapping 동작의 기본 단위는 modulation symbol이다.
따라서, 상기의 part 1 UCI와 part 2 UCI를 구분하여 RE mapping하는 방법이 충실하게 지원되기 위해서, part 1과 part 2 UCI coded bit들이 modulation symbol 단위로 구분되어야 한다.
이를 위해서, multiple UCI on long PUCCH 지원을 위한 part 1 UCI coded bit들 및/또는 part 2 UCI coded bit들이 modulation order (Qm)의 배수로 나누어지도록 partition할 수 있다.
Part 1 UCI coded bit를 Qm의 배수가 되도록 생성하는 방법으로 다음과 같은 방법을 고려할 수 있다.
UE는 PUCCH format 별로 허용된 최대 코드 레이트(maximum code rate, Rmax)를 사전에 higher layer signaling을 통해 configure 받아서 실제 UCI 전송 시 maximum code rate 보다 작은 code rate 를 적용할 수 있다.
이 때, part 1 UCI payload size N_p1과 Rmax를 고려해서 계산한 part 1 UCI coded bit들의 size N_p1/Rmax가 Qm의 배수가 아닐 경우, 즉 (N_p1/Rmax) mod Qm ≠ 0일 경우, Qm 의 배수가 되도록 rate matching할 수 있다.
레이트 매칭(rate matching)은 channel coding 출력 buffer (e.g., circular buffer)에서 part 1 UCI coded bit를 출력할 때, part 1 UCI coded bit의 bit size가 Qm의 배수가 되도록 출력하는 동작을 의미한다.
앞서 살핀 rate matching 동작 외에 N_p1/Rmax 기준으로 생성한 part 1 UCI coded bit sequence 내에서 circular repetition 을 수행하거나, part 1 UCI coded bit sequence의 마지막 부분을 repetition 하거나, 또는, '0', '1', 또는 random number를 padding하여 최종 출력이 Qm의 배수가 되도록 할 수도 있다.
또는, part 2 UCI coded bit들의 일부 (e.g., part 2 UCI coded bit 의 처음 bit(들))을 padding bit(s)로 사용할 수도 있다.
Part 1 UCI coded bit들과 마찬가지로, Part 2 UCI coded bit들도 이와 동일한 방법으로 Qm의 배수가 되도록 구성될 수 있다. 위의 방법은 다음 단계들((1) 내지 (4))로 수행될 수 있으며, UE에 의해 수행되는 단계들이다.
(1) Configure 받은 PUCCH resource parameter들로부터 PUCCH로 전송 가능한 total UCI coded bit 수 (Nt)를 아래 수학식 2와 같이 계산한다.
Figure 112019500129472-pat00044
여기서, Nsym은 configure 받은 UCI의 전송 가능한 PUCCH symbol의 개수이며, NRB는 configure 받은 PUCCH RB의 개수, NSC는 1 RB 내 subcarrier의 개수 (e.g., NSC = 12), 그리고 Qm은 modulation order (e.g., 2 for QPSK) 이다.
(2) Part 1 UCI payload와 Rmax로부터 Nt를 초과하지 않는 범위 내에서 part 1 UCI coded bit size N_c1을 아래 수학식 3과 같이 결정한다. (N_c1은 Qm의 정수배가 되도록 설정한다.)
Figure 112019500129472-pat00045
여기서, N_p1은 part 1 UCI payload size, Rmax는 configure 받은 maximum code rate, 그리고 □ □ 는 ceiling 동작을 의미한다.
(3) Nt와 N_c1으로부터 part 2 UCI coded bit size N_c2는 수학식 4와 같이 결정된다.
Figure 112019500129472-pat00046
(4) UE는 상기의 part 1 UCI coded bit를
Figure 112019500129472-pat00047
의 배수가 되도록 생성하는 방법 (rate mating, padding 등)을 이용하여 N_c1, N_c2 에 맞추어 part 1 UCI coded bit 과 part 2 UCI coded bit 들을 각각 생성한 후, modulation (e.g., QPSK modulation)을 거쳐 RE mapping을 수행한다.
Multiple UCI on long PUCCH 지원을 위한 자원 결정 방법
다음으로, multiple UCI on long PUCCH 지원을 위한 자원 결정 방법에 대해 살펴본다.
Multiple UCI (e.g., HARQ-ACK (또는 HARQ-ACK 과 SR)과 CSI)를 동시에 전송하는 경우의 자원 결정 방법을 위해서, 다음 두 가지 경우(Case 1, Case 2)가 고려될 수 있다.
후술할 두 가지 경우에 대해서, UE는 PUCCH format 별로 허용된 maximum code rate (Rmax)를 사전에 higher layer signaling으로 configure 받아서 실제 UCI 전송 시 Rmax 보다 작은 code rate R을 적용할 수 있다.
(Case 1): Multiple UCI가 HARQ-ACK 용으로 configure된 large-payload long PUCCH로 전송되는 경우 (DCI 를 통해서 HARQ-ACK resource를 indication 받은 경우)
Case 1의 경우, UE는 다수의 PUCCH resource set을 사전에 higher layer signaling으로 configure 받은 후, 그 중 하나를 전체 UCI payload size (N_p)에 따라서 선택할 수 있다.
상기 선택된 PUCCH resource set은 다시 다수 개의 PUCCH resource들로 구성될 수 있다.
case 1의 경우, PUCCH resource set 내 PUCCH resource는 해당 HARQ-ACK bit에 대응되는 PDSCH를 scheduling 하는 DCI field 내의 HARQ-ACK resource indicator를 통해서 indication 되는 것일 수 있다.
또한, PUCCH resource set 내 PUCCH resource의 개수가 많을 경우, DCI overhead를 줄이기 위해서 implicit indication 방법 또는 DCI 와 implicit indication의 조합으로 PUCCH resource set 내의 PUCCH resource를 indication할 수 있다.
예를 들어, 암시적인 지시(implicit indication) 방법은 PDSCH scheduling DCI의 CCE index에 의해서 결정되는 값일 수 있다.
UE가 multiple UCI on long PUCCH 전송을 위해서 사용하는 RB의 개수는 전체 UCI payload size N_p와 maximum code rate Rmax에 의해서 결정하도록 할 수 있다.
이렇게 결정된 값은 상기의 PUCCH resource를 통해서 할당 받은 RB 개수와 다를 수 있다.
(Case 2): Multiple UCI가 CSI report 용으로 configure된 large-payload long PUCCH로 전송되는 경우 (DCI를 통해서 HARQ-ACK resource를 indication 받을 수 없는 경우)
Case 2의 경우, UE는 CSI report 용으로 다수의 PUCCH resource들을 사전에 higher layer signaling으로 configure 받은 후, 그 중 하나를 전체 UCI payload size (N_p)와 maximum code rate (Rmax)의 조합에 의해서 선택할 수 있다.
예를 들어, PUCCH resource i 에서 할당 받은 PUCCH 전송이 가능한 RE의 개수를 NRE,i 라고 하면, NRE,i ≥ N_p/Rmax/Qm 를 만족하는 NRE,i 값(들) 중 최소값 NRE,i,min에 대응하는 PUCCH resource가 선택될 수 있다.
이 때, (case 1)의 경우와 마찬가지로, 실제 UE가 UCI 전송을 위해서 사용하는 RB의 개수는 N_p와 Rmax에 의해서 결정될 수 있고, 이렇게 결정된 값은 PUCCH resource를 통해서 할당 받은 RB의 개수와 다를 수 있다.
Part 2 CSI가 variable-size일 경우, 상기의 방법과 같이 UE가 N_p를 기준으로 PUCCH resource 또는 PUCCH resource set을 결정하고, N_p 정보를 explicit 또는 implicit 하게 gNB에게 알려 주지 않으면, gNB가 CSI part 2의 variable size를 고려하여 과도한 PUCCH resource를 reserve 해야 하거나, 여러 가지 N_p 가능성에 대한 PUCCH resource 및/또는 PUCCH resource set 에 대해서 과도한 BD 를 수행해야 할 수 있다.
본 명세서에서 'A 및/또는 B'는 'A 또는 B 중 적어도 하나를 포함한다'와 동일한 의미로 해석될 수 있다.
이는 전체적인 resource overhead와 gNB에서의 computational complexity 및 decoding time을 증가시키는 문제가 있다.
우선 (case 1) 의 경우, N_p의 불확실성으로 인해서 gNB가 다수의 PUCCH resource set들을 가정하고, DCI의 HARQ-ACK resource indicator를 이용하여 decoding을 시도해야 한다.
gNB가 DCI를 통해서 HARQ-ACK resource indicator를 이용하더라도 gNB 입장에서 N_p가 여전히 불확실하므로, 여러 가지 RB size를 가정하고 fixed-size part 1 UCI decoding을 시도해야 한다.
PUCCH resource에서 할당 받은 RB의 수와 실제 UCI 전송을 위해서 사용한 RB의 수의 차이가 클 수 있다고 가정하면, BD의 회수는 과도하게 증가할 수 있다.
(Case 2) 의 경우, N_p의 불확실성으로 인해서 gNB가 higher layer signaling으로 configure 받은 다수의 PUCCH resource들에 대해서 여러 가지 N_p 값을 가정하여 fixed-size part 1 UCI decoding을 위한 BD를 수행해야 한다.
상기와 같은 문제점을 해결 또는 완화하기 위해서 다음과 같은 방법들이 고려될 수 있다.
(방법 1): Multiple UCI가 HARQ-ACK 용으로 configure된 large-payload long PUCCH 로 전송되는 경우 (즉, DCI 를 통해서 HARQ-ACK resource를 indication 받은 경우)
A) PUCCH resource set 결정 방법
(방법 1-A-1) UE는 fixed-size part 1 UCI (또는 part 1 CSI), 또는 fixed-size part 1 UCI (또는 part 1 CSI)와 Rmax를 기반으로, PUCCH resource set을 결정한다.
(방법 1-A-2) UE는 fixed-size part 1 UCI (또는 part 1 CSI)와 fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI), 또는 fixed-size part 1 UCI (또는 part 1 CSI)와 fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI)와 Rmax를 기반으로 PUCCH resource set을 결정한다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)는 variable-size part 2 UCI (또는 part 2 CSI)를 고려하여 part 2 UCI (또는 part 2 CSI) 가 가질 수 있는 최소값 (e.g., 0)과 최대값의 범위에서 설정 가능한 일종의 PUCCH resource set, PUCCH resource 또는 PUCCH resource 내에서 실제 UCI 전송에 사용되는 RB의 개수를 결정하기 위한 기준 값이다.
Reference part 2 UCI (또는 reference part 2 CSI) 값은 rank=1을 가정한 값이거나, 또는 part 2 UCI (또는 part 2 CSI)가 가질 수 있는 최대값 또는 최소값일 수 있다.
Reference part 2 UCI (또는 reference part 2 CSI) 값은 표준 문서에 기술되는 고정된 값이거나, RRC signaling 또는 RRC signaling과 DCI의 조합으로 configure되는 값일 수 있다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)를 기반으로 한다는 의미는 part 2 UCI (또는 part 2 CSI)를 고려하여 설정된 값이 fixed-size part 1 UCI (또는 part 1 CSI)에 선형적으로 더해지는 형태인 경우와 scale되는 형태로 곱해지는 경우를 모두 포함한다.
B) PUCCH resource 내 실제 UCI 전송에 사용되는 RB의 개수를 결정하는 방법
(방법 1-B-1) UE는 fixed-size part 1 UCI (또는 part 1 CSI)와 Rmax를 기반으로, PUCCH resource 내 실제 UCI를 전송할 RB를 결정한다.
(방법 1-B-2) UE는 fixed-size part 1 UCI (또는 part 1 CSI)와 fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI)와 Rmax를 기반으로 PUCCH resource 내 실제 UCI를 전송할 RB를 결정한다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)는 variable-size part 2 UCI (또는 part 2 CSI)를 고려하여 part 2 UCI (또는 part 2 CSI)가 가질 수 있는 최소값 (e.g., 0)과 최대값의 범위에서 설정 가능한, 일종의 PUCCH resource set, PUCCH resource 또는 PUCCH resource 내에서 실제 UCI 전송에 사용되는 RB의 개수를 결정하기 위한 기준 값이다.
Reference part 2 UCI (또는 reference part 2 CSI) 값은 rank=1을 가정한 값이거나, part 2 UCI (또는 part 2 CSI)가 가질 수 있는 최대값 또는 최소값일 수 있다.
상기 Reference part 2 UCI (또는 reference part 2 CSI) 값은 표준 문서에 기술되는 고정된 값이거나, RRC (signaling) 또는 RRC (signaling)과 DCI의 조합으로 configure 되는 값일 수 있다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)를 기반으로 한다는 의미는, part 2 UCI (또는 part 2 CSI)를 고려하여 설정된 값이 fixed-size part 1 UCI (또는 part 1 CSI)에 선형적으로 더해지는 형태인 경우와 scale 되는 형태로 곱해지는 경우를 모두 포함한다.
(방법 1-B-3) fixed-size part 1 UCI (또는 part 1 CSI)와 variable-size part 2 UCI (또는 variable-size part 2 CSI)의 최대값을 합친 bit 수의 총합, 또는 total UCI (part 1 + part 2) payload size의 최대값과 Rmax를 기반으로 PUCCH resource 내 실제 UCI를 전송할 RB를 결정한다.
또한, 상기의 방법 들을 가정하여, gNB가 BD하도록 할 수 있다.
(방법 2): Multiple UCI가 CSI report 용으로 configure된 large-payload long PUCCH로 전송되는 경우 (DCI 를 통해서 HARQ-ACK resource를 indication 받을 수 없는 경우)
PUCCH resource 결정 방법
방법 2-A-1) fixed-size part 1 UCI (또는 part 1 CSI), 또는 fixed-size part 1 UCI (또는 part 1 CSI)과 Rmax를 기반으로, PUCCH resource를 결정한다.
방법 2-A-2) fixed-size part 1 UCI (또는 part 1 CSI) fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI), 또는 fixed-size part 1 UCI (또는 part 1 CSI)와 fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI)와 Rmax를 기반으로 PUCCH resource를 결정한다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)는 variable-size part 2 UCI (또는 part 2 CSI)를 고려하여 part 2 UCI (또는 part 2 CSI)가 가질 수 있는 최소값 (e.g., 0)과 최대값의 범위에서 설정 가능한 일종의 PUCCH resource set, PUCCH resource 또는 PUCCH resource 내에서 실제 UCI 전송에 사용되는 RB의 개수를 결정하기 위한 기준 값이다.
Reference part 2 UCI (또는 reference part 2 CSI) 값은 rank=1을 가정한 값이거나, part 2 UCI (또는 part 2 CSI)가 가질 수 있는 최대값 또는 최소값일 수 있다.
Reference part 2 UCI (또는 reference part 2 CSI) 값은 표준 문서에 기술되는 고정된 값이거나, RRC (signaling) 또는 RRC (signaling)과 DCI의 조합으로 configure되는 값일 수 있다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)를 기반으로 한다는 의미는, part 2 UCI (또는 part 2 CSI)를 고려하여 설정된 값이 fixed-size part 1 UCI (또는 part 1 CSI)에 선형적으로 더해지는 형태인 경우와 scale되는 형태로 곱해지는 경우를 모두 포함한다.
PUCCH resource 내 실제 UCI 전송에 사용되는 RB의 개수를 결정하는 방법
방법 2-B-1) UE는 fixed-size part 1 UCI (또는 part 1 CSI)와 Rmax를 기반으로, PUCCH resource 내 실제 UCI를 전송할 RB를 결정한다.
방법 2-B-2) UE는 fixed-size part 1 UCI (또는 part 1 CSI)와 fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI)와 Rmax를 기반으로 PUCCH resource 내 실제 UCI를 전송할 RB를 결정한다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)라 함은, variable-size part 2 UCI (또는 part 2 CSI)를 고려하여 part 2 UCI (또는 part 2 CSI)가 가질 수 있는 최소값 (e.g., 0)과 최대값의 범위에서 설정 가능한, 일종의 PUCCH resource set, PUCCH resource, 또는 PUCCH resource 내에서 실제 UCI 전송에 사용되는 RB의 개수를 결정하기 위한 기준 값이다.
Reference part 2 UCI (또는 reference part 2 CSI) 값은 rank=1을 가정한 값이거나, part 2 UCI (또는 part 2 CSI)가 가질 수 있는 최대값 또는 최소값일 수 있다.
Reference part 2 UCI (또는 reference part 2 CSI) 값은 표준 문서에 기술되는 고정된 값이거나, RRC (signaling) 또는 RRC (signaling)과 DCI의 조합으로 configure되는 값일 수 있다.
상기의 reference part 2 UCI (또는 reference part 2 CSI)를 기반으로 한다는 의미는, part 2 UCI (또는 part 2 CSI)를 고려하여 설정된 값이 fixed-size part 1 UCI (또는 part 1 CSI)에 선형적으로 더해지는 형태인 경우와 scale되는 형태로 곱해지는 경우를 모두 포함한다.
방법 2-B-3) UE는 fixed-size part 1 UCI (또는 part 1 CSI)와 variable-size part 2 UCI (또는 variable-size part 2 CSI)의 최대값을 합친 bit 수의 총합, 또는 total UCI (part 1 + part 2) payload size 의 최대값과 Rmax를 기반으로 PUCCH resource 내 실제 UCI를 전송할 RB를 결정한다.
또한, 상기의 방법들을 가정하여, gNB 가 BD하도록 할 수 있다.
앞서 살핀 방법들에서 "fixed-size part 1 UCI (또는 part 1 CSI)와 fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI) "는 "fixed-size part 1 UCI (또는 part 1 CSI)와 fixed-size 'reference' part 2 UCI (또는 'reference' part 2 CSI)를 합친 비트 수의 총합 또는 total payload size" 를 의미할 수 있다.
그리고, 앞서 살핀 방법들에서 "UCI (또는 CSI)와 Rmax 기반으로 PUCCH resource (set) 또는 RB를 결정한다"는 의미는 좀 더 구체적으로는, "UCI (또는 CSI)와 Rmax에 기반한 coded bit 수를 전송할 수 있는 최소 RE 수로 구성된 resource (set) 또는 RB를 결정한다"는 의미일 수 있다.
상기의 방법들에서 part 1 UCI 는 HARQ-ACK 및/또는 SR을 포함할 수 있다.
또한, 상기의 방법들에서 HARQ-ACK PUCCH resource set의 경우, UCI payload size 범위 별로 실제 UCI를 전송할 RB가 설정될 수 있다.
앞서 살핀 각 실시 예 또는 각 방법은 별개로 수행될 수도 있으며, 하나 또는 그 이상의 실시 예들 또는 방법들의 조합을 통해 수행됨으로써 본 명세서에서 제안하는 방법을 구현할 수 있다.
도 8은 본 명세서에서 제안하는 방법을 수행하는 단말의 동작 방법을 나타낸 순서도이다.
즉, 도 8은 무선 통신 시스템에서 PUCCH(physical uplink control channel) 상에서 다수의 UCI(uplink control information)들을 전송하는 단말의 동작 방법을 나타낸다.
먼저, 단말은 다수의 UCI들을 전송하기 위한 PUCCH와 관련된 제 1 제어 정보를 기지국으로부터 수신한다(S810).
그리고, 상기 단말은 상기 제 1 제어 정보에 기초하여 상기 다수의 UCI들에 대한 부호화된 비트(coded bit)의 개수를 나타내는 제 1 파라미터를 결정한다(S820).
상기 제 1 제어 정보는 상기 PUCCH의 심볼 개수에 대한 정보 및 상기 PUCCH의 자원 블록(resource block, RB)의 개수에 대한 정보를 포함할 수 있다.
여기서, 상기 다수의 UCI들은 제 1 파트(part) 또는 제 2 파트 중 적어도 하나를 포함하는 CSI(channel state information)을 포함한다.
그리고, 상기 단말은 상기 제 1 파라미터 및 상기 제 1 파트의 크기 결정과 관련된 제 2 제어 정보에 기초하여 상기 제 1 파트의 크기를 결정한다(S830).
그리고, 상기 단말은 상기 다수의 UCI들을 상기 PUCCH 상에서 상기 기지국으로 전송한다(S840).
상기 제 2 제어 정보는 상기 제 1 파트의 크기를 나타내는 제 2 파라미터, 설정된 최대 코딩 레이트(maximum coding rate)를 나타내는 제 3 파라미터 및 변조 차수(modulation order)를 나타내는 제 4 파라미터를 포함할 수 있다.
상기 제 1 파트의 크기를 결정하는 구체적인 방법은 앞서 살핀 수학식 2 내지 4 및 이와 관련된 설명을 참조한다. 간략히 정리하면 아래와 같을 수 있다.
상기 제 1 파트의 크기는 상기 제 1 파라미터와 상기 제 2 제어 정보 중 최소값으로 결정된다.
보다 구체적으로, 상기 제 1 파트의 크기는
Figure 112019500129472-pat00048
제 2 파라미터 ÷ 제 3 파라미터 ÷ 제 4 파라미터×제 4 파라미터)에 의해 결정될 수 있다.
상기 제 2 제어 정보는 상기 제 2 파라미터를 상기 제 3 파라미터 및 상기 제 4 파라미터로 각각 나눈 값에 기초하여 결정되며, 보다 구체적으로, (
Figure 112019500129472-pat00049
제 2 파라미터 ÷ 제 3 파라미터 ÷ 제 4 파라미터
Figure 112019500129472-pat00050
×제 4 파라미터)에 의해 결정될 수 있다.
도 9는 본 명세서에서 제안하는 방법을 수행하는 단말의 또 다른 동작 방법을 나타낸 순서도이다.
즉, 도 9는 무선 통신 시스템에서 PUCCH 상에서 CSI(channel state information) 보고(report)를 전송하는 단말의 동작 방법을 나타낸다.
먼저, 단말은 CSI 보고를 전송하기 위한 PUCCH 자원과 관련된 정보를 기지국으로부터 수신한다(S910).
그리고, 단말은 제 1 파트 또는 제 2 파트 중 적어도 하나를 포함하는 CSI가 상기 제 2 파트를 포함하는 경우, 상기 CSI 보고가 특정 랭크(rank)임을 가정함으로써 상기 CSI 보고를 전송할 PUCCH 자원과 상기 PUCCH 자원에서의 자원 블록(resource block, RB)의 개수를 결정한다(S920).
그리고, 상기 단말은 상기 CSI 보고를 상기 PUCCH 상에서 기지국으로 전송한다(S930).
여기서, 상기 CSI 보고가 복수인 경우, 각 CSI 보고가 특정 랭크임을 가정함으로써 CSI 보고들을 전송할 PUCCH 자원과 상기 PUCCH 자원에서의 자원 블록(resource block, RB)의 개수를 결정할 수 있다.
상기 특정 랭크는 랭크-1일 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 10은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 10을 참조하면, 무선 통신 시스템은 기지국(1010)과 기지국 영역 내에 위치한 다수의 단말(1020)을 포함한다.
상기 기지국과 단말은 각각 무선 장치로 표현될 수도 있다.
기지국(1010)은 프로세서(processor, 1011), 메모리(memory, 1012) 및 RF 모듈(radio frequency module, 1013)을 포함한다. 프로세서(1011)는 앞서 도 1 내지 도 9에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈은 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말은 프로세서(1021), 메모리(1022) 및 RF 모듈(1023)을 포함한다.
프로세서는 앞서 도 1 내지 도 9에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈(1023)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1012, 1022)는 프로세서(1011, 1021) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
또한, 기지국 및/또는 단말은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 11은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도의 또 다른 예시이다.
도 11을 참조하면, 무선 통신 시스템은 기지국(1110)과 기지국 영역 내에 위치한 다수의 단말(1120)을 포함한다. 기지국은 송신 장치로, 단말은 수신 장치로 표현될 수 있으며, 그 반대도 가능하다. 기지국과 단말은 프로세서(processor, 1111,1121), 메모리(memory, 1114,1124), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 1115,1125), Tx 프로세서(1112,1122), Rx 프로세서(1113,1123), 안테나(1116,1126)를 포함한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 보다 구체적으로, DL(기지국에서 단말로의 통신)에서, 코어 네트워크로부터의 상위 계층 패킷은 프로세서(1111)에 제공된다. 프로세서는 L2 계층의 기능을 구현한다. DL에서, 프로세서는 논리 채널과 전송 채널 간의 다중화(multiplexing), 무선 자원 할당을 단말(1120)에 제공하며, 단말로의 시그널링을 담당한다. 전송(TX) 프로세서(1112)는 L1 계층 (즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 신호 처리 기능은 단말에서 FEC(forward error correction)을 용이하게 하고, 코딩 및 인터리빙(coding and interleaving)을 포함한다. 부호화 및 변조된 심볼은 병렬 스트림으로 분할되고, 각각의 스트림은 OFDM 부반송파에 매핑되고, 시간 및/또는 주파수 영역에서 기준 신호(Reference Signal, RS)와 멀티플렉싱되며, IFFT (Inverse Fast Fourier Transform)를 사용하여 함께 결합되어 시간 영역 OFDMA 심볼 스트림을 운반하는 물리적 채널을 생성한다. OFDM 스트림은 다중 공간 스트림을 생성하기 위해 공간적으로 프리코딩된다. 각각의 공간 스트림은 개별 Tx/Rx 모듈(또는 송수신기,1115)를 통해 상이한 안테나(1116)에 제공될 수 있다. 각각의 Tx/Rx 모듈은 전송을 위해 각각의 공간 스트림으로 RF 반송파를 변조할 수 있다. 단말에서, 각각의 Tx/Rx 모듈(또는 송수신기,1125)는 각 Tx/Rx 모듈의 각 안테나(1126)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 캐리어로 변조된 정보를 복원하여, 수신(RX) 프로세서(1123)에 제공한다. RX 프로세서는 layer 1의 다양한 신호 프로세싱 기능을 구현한다. RX 프로세서는 단말로 향하는 임의의 공간 스트림을 복구하기 위해 정보에 공간 프로세싱을 수행할 수 있다. 만약 다수의 공간 스트림들이 단말로 향하는 경우, 다수의 RX 프로세서들에 의해 단일 OFDMA 심볼 스트림으로 결합될 수 있다. RX 프로세서는 고속 푸리에 변환(FFT)을 사용하여 OFDMA 심볼 스트림을 시간 영역에서 주파수 영역으로 변환한다. 주파수 영역 신호는 OFDM 신호의 각각의 서브 캐리어에 대한 개별적인 OFDMA 심볼 스트림을 포함한다. 각각의 서브캐리어 상의 심볼들 및 기준 신호는 기지국에 의해 전송된 가장 가능성 있는 신호 배치 포인트들을 결정함으로써 복원되고 복조된다. 이러한 연 판정(soft decision)들은 채널 추정 값들에 기초할 수 있다. 연판정들은 물리 채널 상에서 기지국에 의해 원래 전송된 데이터 및 제어 신호를 복원하기 위해 디코딩 및 디인터리빙되다. 해당 데이터 및 제어 신호는 프로세서(1121)에 제공된다.
UL(단말에서 기지국으로의 통신)은 단말(1120)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 기지국(1110)에서 처리된다. 각각의 Tx/Rx 모듈(1125)는 각각의 안테나(1126)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(1123)에 제공한다. 프로세서(1121)는 프로그램 코드 및 데이터를 저장하는 메모리(1124)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
1010: 기지국 1020: 단말

Claims (15)

  1. 무선 통신 시스템에서 PUCCH(physical uplink control channel) 상에서 다수의 UCI(uplink control information)들을 전송하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    상기 다수의 UCI들을 전송하기 위한 PUCCH와 관련된 제 1 제어 정보를 기지국으로부터 수신하는 단계;
    상기 제 1 제어 정보에 기초하여 상기 다수의 UCI들에 대한 부호화된 비트(coded bit)의 개수를 나타내는 제 1 파라미터를 결정하는 단계,
    상기 다수의 UCI들은 제 1 파트(part)를 포함하는 CSI(channel state information)을 포함하고;
    상기 제 1 파라미터 및 상기 제 1 파트의 크기 결정과 관련된 제 2 제어 정보에 기초하여 상기 제 1 파트의 크기를 결정하는 단계; 및
    상기 다수의 UCI들을 상기 PUCCH 상에서 상기 기지국으로 전송하는 단계를 포함하되,
    상기 제 2 제어 정보는 상기 제 1 파트의 크기를 나타내는 제 2 파라미터, 설정된 최대 코딩 레이트(maximum coding rate)를 나타내는 제 3 파라미터 및 변조 차수(modulation order)를 나타내는 제 4 파라미터를 포함하며,
    상기 제 1 파트의 크기는 상기 제 1 파라미터와 상기 제 2 제어 정보 중 최소값으로 결정되는 것을 특징으로 하는 방법.
  2. 삭제
  3. 제 1항에 있어서,
    상기 제 2 제어 정보는 상기 제 2 파라미터를 상기 제 3 파라미터 및 상기 제 4 파라미터로 각각 나눈 값에 기초하여 결정되는 것을 특징으로 하는 방법.
  4. 제 3항에 있어서,
    상기 제 2 제어 정보는(
    Figure 112019500129472-pat00051
    제 2 파라미터 ÷ 제 3 파라미터 ÷ 제 4 파라미터
    Figure 112019500129472-pat00052
    ×제 4 파라미터)에 의해 결정되는 것을 특징으로 하는 방법.
  5. 제 4항에 있어서,
    상기 제 1 파트의 크기는
    Figure 112019084264659-pat00053
    제 2 파라미터 ÷ 제 3 파라미터 ÷ 제 4 파라미터×제 4 파라미터)에 의해 결정되며,
    상기 Nt는 전체 UCI 부호화된 비트(coded bit)의 수를 나타내는 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    상기 제 1 파트의 크기는 상기 제 1 파트의 페이로드(payload)의 크기인 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 제 1 제어 정보는 상기 PUCCH의 심볼 개수에 대한 정보 및 상기 PUCCH의 자원 블록(resource block, RB)의 개수에 대한 정보를 포함하는 것을 특징으로 하는 방법.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 무선 통신 시스템에서 PUCCH(physical uplink control channel) 상에서 다수의 UCI(uplink control information)들을 전송하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    상기 다수의 UCI들을 전송하기 위한 PUCCH와 관련된 제 1 제어 정보를 기지국으로부터 수신하며;
    상기 제 1 제어 정보에 기초하여 상기 다수의 UCI들에 대한 부호화된 비트(coded bit)의 개수를 나타내는 제 1 파라미터를 결정하며,
    상기 다수의 UCI들은 제 1 파트(part)를 포함하는 CSI(channel state information)을 포함하고;
    상기 제 1 파라미터 및 상기 제 1 파트의 크기 결정과 관련된 제 2 제어 정보에 기초하여 상기 제 1 파트의 크기를 결정하며; 및
    상기 다수의 UCI들을 상기 PUCCH 상에서 상기 기지국으로 전송하도록 설정되되,
    상기 제 2 제어 정보는 상기 제 1 파트의 크기를 나타내는 제 2 파라미터, 설정된 최대 코딩 레이트(maximum coding rate)를 나타내는 제 3 파라미터 및 변조 차수(modulation order)를 나타내는 제 4 파라미터를 포함하며,
    상기 제 1 파트의 크기는 상기 제 1 파라미터와 상기 제 2 제어 정보 중 최소값으로 결정되는 것을 특징으로 하는 단말.
  12. 삭제
  13. 제 11항에 있어서,
    상기 제 2 제어 정보는 상기 제 2 파라미터를 상기 제 3 파라미터 및 상기 제 4 파라미터로 각각 나눈 값에 기초하여 결정되는 것을 특징으로 하는 단말.
  14. 제 13항에 있어서,
    상기 제 2 제어 정보는 (
    Figure 112019500129472-pat00054
    제 2 파라미터 ÷ 제 3 파라미터 ÷ 제 4 파라미터
    Figure 112019500129472-pat00055
    ×제4파라미터)에 의해 결정되는 것을 특징으로 하는 단말.
  15. 제 14항에 있어서,
    상기 제 1 파트의 크기는
    Figure 112019084264659-pat00056
    제 2 파라미터 ÷ 제 3 파라미터 ÷ 제 4 파라미터×제 4 파라미터)에 의해 결정되며,
    상기 Nt는 전체 UCI 부호화된 비트(coded bit)의 수를 나타내는 것을 특징으로 하는 단말.
KR1020190004759A 2018-01-12 2019-01-14 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치 KR102067813B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862616465P 2018-01-12 2018-01-12
US62/616,465 2018-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200004459A Division KR102204665B1 (ko) 2018-01-12 2020-01-13 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20190086398A KR20190086398A (ko) 2019-07-22
KR102067813B1 true KR102067813B1 (ko) 2020-01-17

Family

ID=67219853

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020190004759A KR102067813B1 (ko) 2018-01-12 2019-01-14 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치
KR1020200004459A KR102204665B1 (ko) 2018-01-12 2020-01-13 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치
KR1020210004428A KR102348841B1 (ko) 2018-01-12 2021-01-13 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020200004459A KR102204665B1 (ko) 2018-01-12 2020-01-13 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치
KR1020210004428A KR102348841B1 (ko) 2018-01-12 2021-01-13 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치

Country Status (7)

Country Link
US (3) US10660076B2 (ko)
EP (1) EP3661106B1 (ko)
JP (1) JP7250794B2 (ko)
KR (3) KR102067813B1 (ko)
CN (1) CN111095858B (ko)
ES (1) ES2948787T3 (ko)
WO (1) WO2019139439A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169176B (zh) * 2017-02-03 2024-01-09 Oppo广东移动通信有限公司 信息传输方法、装置和存储介质
US10986613B2 (en) * 2018-01-19 2021-04-20 Qualcomm Incorporated Uplink control information (UCI) to resource element (RE) mapping
JP2020025217A (ja) * 2018-08-08 2020-02-13 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11569967B2 (en) * 2018-09-12 2023-01-31 Samsung Electronics Co., Ltd. Method and apparatus for uplink control information transmission and reception
US11172495B2 (en) * 2019-01-11 2021-11-09 Qualcomm Incorporated Collision handling
US11606175B2 (en) * 2019-07-13 2023-03-14 Qualcomm Incorporated Enhancement of physical uplink control channel (PUCCH) format
CN114599104A (zh) * 2020-12-04 2022-06-07 大唐移动通信设备有限公司 Uci复用的资源确定方法、装置及存储介质
CN114614959A (zh) * 2022-01-18 2022-06-10 锐捷网络股份有限公司 信号解调方法、装置和计算机可读存储介质及电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123304A2 (en) * 2009-04-24 2010-10-28 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
US8848649B2 (en) * 2010-07-12 2014-09-30 Lg Electronics Inc. Method for transmitting an uplink signal, and apparatus for same
US9264287B2 (en) * 2010-10-07 2016-02-16 Marvell World Trade Ltd. Encoding parameters for a wireless communication system
US8681627B2 (en) * 2010-12-07 2014-03-25 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
CN105490781B (zh) * 2011-12-21 2019-05-28 华为技术有限公司 传输控制信息的方法、用户设备和基站
US9860897B2 (en) * 2014-10-07 2018-01-02 Qualcomm Incorporated Techniques for transmitting uplink control information for a component carrier
JP6543341B2 (ja) * 2014-12-08 2019-07-10 エルジー エレクトロニクス インコーポレイティド 上りリンク制御情報を送信するための方法及びそのための装置
WO2016108666A1 (ko) * 2014-12-31 2016-07-07 엘지전자(주) 무선 통신 시스템에서 자원을 할당하기 위한 방법 및 이를 위한 장치
CN106060930B (zh) * 2015-04-09 2021-07-16 北京三星通信技术研究有限公司 一种增强载波聚合系统的harq-ack传输方法和设备
CN112615707B (zh) * 2015-06-19 2024-04-23 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
CN106257856B (zh) * 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
US10499384B2 (en) * 2015-09-17 2019-12-03 Intel IP Corporation Transmission of uplink control information in wireless systems
US10333674B2 (en) * 2016-02-26 2019-06-25 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
US10182424B2 (en) * 2016-12-16 2019-01-15 Qualcomm Incorporated Techniques and apparatuses for configuring transmission of corresponding uplink control information in new radio

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP R1-1716901*
3GPP R1-1719571*
3GPP R1-1719786*

Also Published As

Publication number Publication date
US11743900B2 (en) 2023-08-29
KR102204665B1 (ko) 2021-01-19
WO2019139439A1 (ko) 2019-07-18
KR20200007071A (ko) 2020-01-21
JP7250794B2 (ja) 2023-04-03
CN111095858A (zh) 2020-05-01
WO2019139439A9 (ko) 2019-09-12
US10660076B2 (en) 2020-05-19
US20190230648A1 (en) 2019-07-25
CN111095858B (zh) 2022-11-25
US11051286B2 (en) 2021-06-29
JP2021506181A (ja) 2021-02-18
US20210314939A1 (en) 2021-10-07
KR20210008126A (ko) 2021-01-20
EP3661106B1 (en) 2023-06-07
KR102348841B1 (ko) 2022-01-07
ES2948787T3 (es) 2023-09-19
US20200252929A1 (en) 2020-08-06
EP3661106A4 (en) 2021-04-07
KR20190086398A (ko) 2019-07-22
EP3661106A1 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
KR102058701B1 (ko) 무선 통신 시스템에서 물리 상향 링크 제어 채널 상에서 다수의 상향 링크 제어 정보를 전송하는 방법 및 이를 위한 장치
KR102067813B1 (ko) 무선 통신 시스템에서 pucch 상에서 상향링크 제어 정보를 송수신하기 위한 방법 및 이를 위한 장치
KR102042828B1 (ko) 무선 통신 시스템에서 물리 상향 링크 제어 채널 상에서 다수의 상향 링크 제어 정보를 전송하는 방법 및 이를 위한 장치
JP6316871B2 (ja) 信号送受信方法及びそのための装置
JP5926402B2 (ja) 無線通信システムにおけるアップリンク制御情報転送方法及び装置
KR101690396B1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR102231269B1 (ko) 무선 통신 시스템에서 기지국의 주파수 대역을 이용한 통신 방법 및 상기 방법을 이용하는 장치
KR20210151142A (ko) Pusch를 전송하는 방법, 사용자기기, 장치 및 저장매체, 그리고 pusch를 수신하는 방법 및 기지국
US11350395B2 (en) Method for transmitting or receiving uplink data in wireless communication system, and device therefor

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant