KR102060412B1 - Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof - Google Patents

Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof Download PDF

Info

Publication number
KR102060412B1
KR102060412B1 KR1020180014410A KR20180014410A KR102060412B1 KR 102060412 B1 KR102060412 B1 KR 102060412B1 KR 1020180014410 A KR1020180014410 A KR 1020180014410A KR 20180014410 A KR20180014410 A KR 20180014410A KR 102060412 B1 KR102060412 B1 KR 102060412B1
Authority
KR
South Korea
Prior art keywords
compound
formula
compounds
ome
represented
Prior art date
Application number
KR1020180014410A
Other languages
Korean (ko)
Other versions
KR20190094819A (en
Inventor
전종갑
다모다르 콩가라
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020180014410A priority Critical patent/KR102060412B1/en
Publication of KR20190094819A publication Critical patent/KR20190094819A/en
Application granted granted Critical
Publication of KR102060412B1 publication Critical patent/KR102060412B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명자들은 공지된 포르툴라카논 유도체 (화합물 1 및 2)를 비롯하여 Portulaca oleracea L (POL)로부터 분리된 천연 호모이소플라보노이드 (±)-포르툴라카논 A-C (화합물 4,8,9) 및 과 그 유도체들 (화합물 3, 5 및 7)을 합성하였다. LPS로 유도된 RAW 264.7 대식세포에서 NO 생성을 억제하는 능력을 항염증 활성의 지표로 평가하였다. 시험된 모든 화합물은 명확한 세포독성을 나타내지 않았으며, RAW 264.7 대식세포에서 농도 의존적으로 NO 생성을 억제하였다. 화합물 3 (10μM에서 97.2% 저해; IC50 = 1.26μM)은 화합물 1 (10μM에서 91.4% 저해; IC50 = 1.75μM) 및 화합물 7 (10μM에서 83.0% 저해; IC50 = 2.91μM)과 비교하여 상당한 억제효과를 나타냈다. 본 발명의 화합물들은 NO 생산 표적 항염증 약물 개발에 유용하다.We describe natural homoisoflavonoids (±) -portulacanone AC (compounds 4,8,9) and derivatives thereof isolated from Portulaca oleracea L (POL), including known portulacanone derivatives (compounds 1 and 2). (Compounds 3, 5 and 7) were synthesized. The ability to inhibit NO production in LPS-induced RAW 264.7 macrophages was assessed as an indicator of anti-inflammatory activity. All compounds tested showed no clear cytotoxicity and inhibited NO production in a concentration dependent manner in RAW 264.7 macrophages. Compound 3 (97.2% inhibition at 10 μM; IC50 = 1.26 μM) was significantly inhibited compared to Compound 1 (91.4% inhibition at 10 μM; IC50 = 1.75 μM) and Compound 7 (83.0% inhibition at 10 μM; IC50 = 2.91 μM) Indicated. The compounds of the present invention are useful for the development of NO producing targeted anti-inflammatory drugs.

Description

포르툴라카논 화합물과 그 유도체 합성방법 및 이를 포함하는 항염증 약학 조성물 {Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof}Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing various}

본 발명은 공지된 포르툴라카논 유도체 (화합물 1 및 2)를 비롯하여 Portulaca oleracea L (POL)로부터 분리된 천연 호모이소플라보노이드 화합물인 (±)-포르툴라카논 A-C (화합물 4,8,9) 및 그 유도체들 (화합물 3, 5 및 7)을 합성하는 방법, 그리고, 이를 포함하는 항염증 약학 조성물에 관한 것이다.The present invention relates to (±) -portulacanone AC (compounds 4,8,9) and natural homoisoflavonoid compounds isolated from Portulaca oleracea L (POL), including known portulacanone derivatives (compounds 1 and 2) and their A method of synthesizing derivatives (compounds 3, 5 and 7), and anti-inflammatory pharmaceutical compositions comprising the same.

염증은 병원체, 손상된 세포 또는 자극 물질에 의한 감염에 대한 신체 세포/조직의 기본적인 보호 반응이다(1,2). 염증은 치료 과정의 시작으로 여겨지며 급성 또는 만성 염증으로 나눌 수 있다. 하나는 감염 또는 상해에 대한 숙주의 적응성 방어 메커니즘이며 자체 제한적(self-limiting)인 반면, 다른 하나는 당뇨병, 관절염 및 암을 비롯한 다양한 질환을 유발할 수 있다. 염증 과정 동안 산화질소 (NO), 프로스타글란딘 (PG), 혈관 활성 아민 (히스타민, 세로토닌), 류코트리엔 (LT), 사이토카인 (종양 괴사 인자 및 인터루킨-1, 12)이 혈장 단백질로서 분비되거나 비만 세포, 호중구, 혈소판 및 단핵 식세포/대식세포와 같은 세포에서 분비된다. 이런 매개물질들은 세포의 특정 표적 수용체에 결합하여 혈관 투과성을 증가시키고, 평활근 수축을 촉진하며, 호중구 주화성을 촉진하고, 직접적인 효소 활성을 증가하며, 통증을 유도하고/또는 산화성 손상을 중재한다(3).Inflammation is a fundamental protective response of body cells / tissues to infection by pathogens, damaged cells or stimulants (1,2). Inflammation It is considered the beginning of the course of treatment and can be divided into acute or chronic inflammation. One is the host's adaptive defense mechanism against infection or injury and is self-limiting, while the other can cause various diseases including diabetes, arthritis and cancer. During the inflammatory process nitric oxide (NO), prostaglandins (PG), vascular active amines (histamines, serotonin), leukotriene (LT), cytokines (tumor necrosis factor and interleukin-1, 12) are secreted as plasma proteins or mast cells, Secreted by cells such as neutrophils, platelets and mononuclear phagocytes / macrophages. These mediators bind to specific target receptors in cells to increase vascular permeability, promote smooth muscle contraction, promote neutrophil chemotaxis, increase direct enzyme activity, induce pain and / or mediate oxidative damage ( 3).

산화질소는 산화질소 합성효소 (내피-NOS, 신경-NOS 및 유도-NOS)에 의해 아미노산 L-아르기닌으로부터 합성되는 중요한 신호전달분자 중 하나이다. 산화질소는 다양한 생리적 및 병리 생리학적 과정을 조절하며 NO의 농도는 염증 발생에서 결정적인 역할을 수행한다(4). 내피-NOS 및 신경-NOS에 의해 생성되는 생리학적 NO 농도가 높으면 세포 생존 및 증식이 촉진되는 반면 유도-NOS에 의해 생성되는 NO 농도가 높으면 세포주기가 정지되고 세포 사멸이 촉진된다(5). 수퍼 옥사이드와 수산화 라디칼과 같은 활성산소종과 NO의 상호 작용은 NO 농도의 감소로 이어지며, 신호전달 활성을 방해하고, 그 결과 얻어지는 활성 질소종(reactive nitrogen species)은 산화 및 질산화 스트레스 (oxidative and nitrosative stress) 반응을 증가시킬 수 있다(6). 비스테로이드성 항염증제(non-steroidal anti-inflammatory drugs), 스테로이드 및 항히스타민제는 통증, 염증 및 발열 치료에 일반적으로 선호되지만, 이 약제들은 단점이 있다. 따라서, 염증성 질환에 대한 여러 가지 치료적 개입 중에서 NO 생산 캐스케이드와의 약리학적 간섭이 유망한 전략으로 주장되고 있다. Nitric oxide is one of the important signaling molecules synthesized from the amino acid L-arginine by nitric oxide synthase (endothelium-NOS, neuro-NOS and induced-NOS). Nitric oxide regulates a variety of physiological and pathophysiological processes and the concentration of NO plays a critical role in the development of inflammation (4). High levels of physiological NO produced by endothelial-NOS and neuronal-NOS promote cell survival and proliferation, whereas high levels of NO produced by induced-NOS stop cell cycles and promote cell death (5). The interaction of NO with active oxygen species such as superoxide and hydroxyl radicals leads to a decrease in NO concentration, impedes signaling activity, and the resulting reactive nitrogen species are oxidative and nitrifying stresses. nitrosative stress response can be increased (6). Non-steroidal anti-inflammatory drugs, steroids and antihistamines are generally preferred for the treatment of pain, inflammation and fever, but these agents have disadvantages. Therefore, pharmacological interference with the NO production cascade among various therapeutic interventions for inflammatory diseases is claimed as a promising strategy.

자연적으로 발생하는 플라보노이드 화합물, 특히 호모이소플라보노이드로 알려진 플라보노이드의 서브클래스는 최근 몇 년간 큰 생물학적 잠재력을 보여 주었다(7,8). 종래 연구들은 호모이소플라보노이드의 항산화, 항염증, 항박테리아, 항곰팡이, 항바이러스, 항세포독성, 항돌연변이 및 항당뇨병 활성을 보여준다(8,9). 이 외에도 몇몇 유도체들은 효소 억제 특성을 나타냈다(10).Subclasses of naturally occurring flavonoid compounds, especially flavonoids known as homoisoflavonoids, have shown great biological potential in recent years (7,8). Previous studies show the antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, anticytotoxic, antimutagenic and antidiabetic activity of homoisoflavonoids (8, 9). In addition, some derivatives showed enzymatic inhibition properties (10).

Tan 등은 식물 포르툴라카 올레라세아 L. (Portulaca oleracea L.; POL)에서 포르툴라카논 (portulacanone) A-D (도 1)라는 4개의 호모이소플라보노이드를 분리하였으며, 포르툴라카 올레라세아 L. 식용 식물로뿐만 아니라 광범위한 질병을 완화하는 민간의약으로 사용되는 널리 분포하는 약용식물이다(11). 이 화합물들은 분리 후 SGC-7901, NCI-H460, K-562 및 SF-268을 포함하는 4종의 인간 종양세포주에 대하여 시험관 내에서 세포독성 활성을 나타내었다(11). 지금까지 포르툴라카논 A-D의 합성 및 이 화합물들과 그 유도체들의 NO 생성에 관한 어떠한 보고도 없다.Tan et al. Plant formate Tula car oleic la Seah L. (Portulaca oleracea L.; POL) formate Tula canon (portulacanone) were isolated four homo iso flavonoid called AD (Fig. 1), formate Tula car oleic la Seah L. in silver It is a widely distributed medicinal plant that is used not only as an edible plant but also as a folk medicine to alleviate a wide range of diseases (11). These compounds exhibited cytotoxic activity in vitro against four human tumor cell lines including SGC-7901, NCI-H460, K-562 and SF-268 after isolation (11). To date, there are no reports on the synthesis of fortulacanone AD and the NO production of these compounds and their derivatives.

Quintans J. Immunol Cell Biol. 1994;72:262-264. Quintans J. Immunol Cell Biol. 1994; 72: 262-264. Fullerton JN, Gilroy DW. Nat. Rev Drug Discov. 2016;15:551-567.Fullerton JN, Gilroy DW. Nat. Rev Drug Discov. 2016; 15: 551-567. Coleman JW. Clin Exp Immunol. 2002;129:4-10.Coleman JW. Clin Exp Immunol. 2002; 129: 4-10. Lyons CR. Adv Immunol. 1995;60:323-371.Lyons CR. Adv Immunol. 1995; 60: 323-371. Lundberg JON et al., Nat Med. 1997; 3:30-31.Lundberg J. et al., Nat Med. 1997; 3: 30-31. Thomas DD et al., Free Radic Biol Med. 2008;45:18-31.Thomas DD et al., Free Radic Biol Med. 2008; 45: 18-31. Andersen, ØM et al., Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, CRC Press; 2006. Andersen, ØM et al., Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, CRC Press; 2006. Lin L-G et al., Planta Med. 2014;80:1053-1066.Lin L-G et al., Planta Med. 2014; 80: 1053-1066. Abegaz BM et al., Nat Prod Commun. 2007;2:475-498.Abegaz BM et al., Nat Prod Commun. 2007; 2: 475-498. Lin LG et al., J Med Chem. 2008;51:4419-4429.Lin LG et al., J Med Chem. 2008; 51: 4419-4429. Jian Yan J et al., Phytochemistry 2012;80:37-41.Jian Yan J et al., Phytochemistry 2012; 80: 37-41. Iranshahy M et al., J Ethnopharmacol. 2017;205:158-172.Iranshahy M et al., J Ethnopharmacol. 2017; 205: 158-172. Damodar K, Kim J-K, Jun J-G. Tetrahedron Lett. 2017;58:50-53.Damodar K, Kim J-K, Jun J-G. Tetrahedron Lett. 2017; 58: 50-53. Seo YH, Damodar K, Kim J-K, Jun J-G. Bioorg Med Chem Lett. 2016;26:1521-1524.Seo YH, Damodar K, Kim J-K, Jun J-G. Bioorg Med Chem Lett. 2016; 26: 1521-1524. Kontogiorgis CA, Hadjipavlou-Litina D. Med Res Rev. 2002;22:385-418.Kontogiorgis CA, Hadjipavlou-Litina D. Med Res Rev. 2002; 22: 385-418.

본 발명은 포르툴라카논 A-C 및 그 유도체의 합성방법을 제공하려는 것을 목적으로 한다.It is an object of the present invention to provide a method for synthesizing portulacanone A-C and its derivatives.

또한, 본 발명은 포르툴라카논 A-C 및 그 유도체의 생물활성을 연구하여 유용한 약제를 제공하려는 것을 목적으로 한다.It is also an object of the present invention to provide a useful medicament by studying the bioactivity of portulacanone A-C and its derivatives.

산화질소 억제제로서 생물활성을 지닌 천연 산물 및 그 유사체의 합성과 평가에 초점을 맞춘 지속되는 연구의 일환으로 본 발명에서는 자연에서 생성되는 (±)-포르툴라카논 A-C (화합물 4, 8 및 9) 및 그 유도체들 (화합물 1-3, 5 및 7)을 합성하였다 (도 1).As part of a continuing study focused on the synthesis and evaluation of natural products and their analogs that are bioactive as nitric oxide inhibitors, the present invention includes (±) -portulacanone AC (compounds 4, 8 and 9). And derivatives thereof (compounds 1-3, 5 and 7) (FIG. 1).

포르툴라카논 또는 그 유도체 (화합물 1-9)의 합성은 상업적으로 이용 가능한 1,3,5-트리메톡시벤젠 (화합물 10)의 프리델-크라프츠 아실화 (Friedel-Crafts acylation)로 시작되었다 (도 2). 삼불화붕소다이에틸에테레이트 (boron trifluoride diethyl etherate, BF3·Et2O)의 존재하에 아세트산 무수물로 화합물 10을 처리하여 화합물 11을 수율 89%로 얻었다. 화합물 11은 AlCl3를 사용하여 선택적 오르쏘-탈메틸화 (ortho-demethylation)되어 화합물 12를 수율 87%로 얻었다. 또 다른 아세토페논 14는 화합물 13에서 얻은 것이다. 화합물 13의 아세틸화 및 후속적인 재배열로 두 단계에 걸쳐 93%의 현저한 수율로 화합물 14를 얻었다. 클로로메틸에틸에테르 (EOM-Cl), K2CO3 및 TBAI(tetrabutylammonium iodide)를 이용하여 살리실알데히드 (화합물 15)의 에톡시메틸 (EOM) 에테르로 보호기화한 화합물 16을 수율 83%로 얻었다. 다음으로, 시판중인 2-하이드록시-4-메톡시아세토페논 (화합물 17), 화합물 12 및 화합물 14를 DMF-DMA (N,N-dimethylformamide dimethyl acetal)로 축합한 후, 생성된 아미노 케톤을 산 처리하여 상응하는 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18a-18c를 각각 수율 88-91%로 얻었다. 화합물 18a-18c의 촉매를 이용한 수소화로 상응하는 크로만-4-온 (chroman-4-ones) 화합물 19a-19c를 얻었다.Synthesis of portulacanone or its derivatives (Compound 1-9) began with Friedel-Crafts acylation of commercially available 1,3,5-trimethoxybenzene (Compound 10) ( 2). Compound 11 was obtained in 89% yield by treating compound 10 with acetic anhydride in the presence of boron trifluoride diethyl etherate (BF 3 · Et 2 O). Compound 11 using AlCl 3 selective ortho-demethylated to give the compound 12 is (ortho -demethylation) in a yield of 87%. Another acetophenone 14 is obtained from compound 13. Acetylation and subsequent rearrangement of compound 13 yielded compound 14 in a significant yield of 93% over two steps. Compound 16 protected by ethoxymethyl (EOM) ether of salicylate (compound 15) using chloromethylethyl ether (EOM-Cl), K 2 CO 3 and TBAI (tetrabutylammonium iodide) was obtained in a yield of 83%. . Next, commercially available 2-hydroxy-4-methoxyacetophenone (Compound 17), Compound 12 and Compound 14 were prepared. DMF-DMA (N, N -dimethylformamide dimethyl acetal) corresponding After condensation, the resulting amino ketone to the acid treatment with 4 H-chromen-4-one (4 H -chromen-4-ones ) compound 18a-18c Were obtained in yield 88-91% respectively. Hydrogenation with a catalyst of compounds 18a-18c afforded the corresponding chroman-4-ones compounds 19a-19c.

화합물 19a-19c와 화합물 16을 얻은 다음, 우리는 알돌 응축 반응을 연구하였다. 처음에는 p-톨루엔설폰산 (pTsOH)과 벤젠을 사용하여 화합물 19b와 화합물 15 사이의 반응을 시도했는데 성공하지 못했다. 다음으로, 30-100℃에서 DMF 용매뿐만 아니라 벤젠 용매에서 염기로서 피페리딘을 사용하는 화합물 19b와 16의 응축 반응에서 화합물 20b를 낮은 수율 (20% 미만)로 얻었다. 만족스럽게, 우리는 EtOH/H2O (5/1)에서 KOH가 화합물 19b와 화합물 16의 응축에 효과적이라는 것을 확인하였다. 이어서, 화합물 19a 및 화합물 19c와 화합물 16의 반응으로 각각 화합물 20a (48%)와 화합물 20c (25%)를 얻었다. 1N HCl을 사용한 화합물 20a-20c의 탈보호기화로 화합물 1, 3 및 7을 고수율로 얻었다. 화합물 1, 3 및 7의 촉매를 이용한 수소화 반응으로 호모이소플라보노이드 화합물 2, 4 및 8을 각각 수율 86-91%로 얻었다. 마지막으로, 1.0M BCl3 (CH2Cl2 용액 내에서)를 사용하여 화합물 4, 8 및 3의 선택적 오르쏘-탈메틸화로 남은 3개의 표적 화합물 5, 9 및 6을 잘 합성하였다. 모든 최종 화합물 1-9의 구조는 스펙트럼 데이터 (1H, 13C NMR 및 MS)로 결정했다.After obtaining compounds 19a-19c and compound 16, we studied the aldol condensation reaction. At first, the reaction between compound 19b and compound 15 using p -toluenesulfonic acid ( p TsOH) and benzene was unsuccessful. Next, compound 20b was obtained in low yield (less than 20%) in the condensation reaction of compound 19b with 16 using piperidine as base in benzene solvent as well as DMF solvent at 30-100 ° C. Satisfactorily, we found that KOH in EtOH / H 2 O (5/1) was effective for condensation of compound 19b and compound 16. Subsequently, the reaction of Compound 19a, Compound 19c, and Compound 16 yielded Compound 20a (48%) and Compound 20c (25%), respectively. Deprotection of compounds 20a-20c with 1N HCl afforded compounds 1, 3 and 7 in high yield. The hydrogenation reaction using the catalysts of compounds 1, 3 and 7 gave homoisoflavonoid compounds 2, 4 and 8 in yields 86-91%, respectively. Finally, the remaining three target compounds 5, 9 and 6 were well synthesized by the selective ortho-demethylation of compounds 4, 8 and 3 using 1.0M BCl 3 (in CH 2 Cl 2 solution). The structure of all final compounds 1-9 was determined by spectral data ( 1 H, 13 C NMR and MS).

합성한 호모이소플라보노이드 (화합물 1-9)에 대하여 LPS로 유도된 RAW 264.7 대식세포에서 NO 생성을 억제하는 능력을 분석하였다. RAW 264.7 대식세포를 LPS로 처리하면 NO 생성이 유도된다는 것이 잘 알려져 있다. L-NMMA (N G-monomethyl-L-arginine)는 NO 생성을 현저히 억제한다고 보고되었다(15). 본 발명에서는 RAW 264.7 대식세포를 LPS로 유도하고, 0.1, 1, 10, 25, 50 및 100μM 농도의 화합물 1-9 및 L-NMMA를 대조군으로 사용하여 NO 생성 및 세포 생존율을 측정하였다. 그러나 25, 50 및 100μM 농도에서 화합물 1-9는 거의 동일한 수준의 활성을 보였다 (도 3). 1 내지 10μM에서 NO 생성 억제의 유의한 변화가 관찰되었다. 따라서 본 발명자들은 합성한 화합물 1-9를 1과 10μM 농도에서만 분석하였다. 대식세포로부터 나온 NO의 농도는 그리스 시약 (Griess reagent)을 사용하여 배양 상등액에 NO의 안정한 산화 생성물인 아질산염의 농도를 측정함으로써 결정하였다. The synthesized homoisoflavonoids (Compounds 1-9) were analyzed for their ability to inhibit NO production in RAW 264.7 macrophages induced by LPS. It is well known that treatment of RAW 264.7 macrophages with LPS induces NO production. L-NMMA (N G -monomethyl- L-arginine) was reported to significantly inhibit the NO production (15). In the present invention, RAW 264.7 macrophages were induced by LPS and NO production and cell viability were measured using compounds 1-9 and L-NMMA at concentrations of 0.1, 1, 10, 25, 50 and 100 μM as controls. However, at concentrations of 25, 50 and 100 μM Compounds 1-9 showed almost the same level of activity (FIG. 3). Significant changes in NO production inhibition were observed at 1-10 μM. Therefore, the present inventors analyzed the synthesized compound 1-9 only at 1 and 10 μM concentration. The concentration of NO from macrophages was determined by measuring the concentration of nitrite, a stable oxidation product of NO, in the culture supernatant using a Greases reagent.

Compound
Compound
NO Production (% inhibition)NO Production (% inhibition)
1μM1 μM 10μM 10 μM IC50 (μM)IC 50 (μM) LPSLPS 100.0 ± 0.8 (0.0)100.0 ± 0.8 (0.0) 100.0 ± 0.8 (0.0)100.0 ± 0.8 (0.0) -- 1One 71.6 ± 1.4 (28.4)***71.6 ± 1.4 (28.4) *** 8.6 ± 1.2 (91.4)***8.6 ± 1.2 (91.4) *** 1.751.75 22 90.8 ± 1.7 (9.2)*90.8 ± 1.7 (9.2) * 80.3 ± 6.5 (19.7)***80.3 ± 6.5 (19.7) *** 14.1714.17 33 61.5 ± 1.7 (38.5)***61.5 ± 1.7 (38.5) *** 2.8 ± 0.7 (97.2)***2.8 ± 0.7 (97.2) *** 1.261.26 44 102.8 ± 1.7 (-2.8)102.8 ± 1.7 (-2.8) 79.5 ± 7.3 (20.5)***79.5 ± 7.3 (20.5) *** 14.1714.17 55 97.2 ± 1.7 (2.8)97.2 ± 1.7 (2.8) 62.0 ± 2.1 (38.0)***62.0 ± 2.1 (38.0) *** 12.4212.42 66 78.9 ± 2.0 (21.1)***78.9 ± 2.0 (21.1) *** 7.5 ± 0.8 (92.5)***7.5 ± 0.8 (92.5) *** 2.092.09 77 83.8 ± 1.9 (16.2)**83.8 ± 1.9 (16.2) ** 17.0 ± 0.8 (83.0)***17.0 ± 0.8 (83.0) *** 2.912.91 88 124.6 ± 17.6 (-24.6)124.6 ± 17.6 (-24.6) 84.1 ± 2.7 (15.9)84.1 ± 2.7 (15.9) 13.4313.43 99 111.8 ± 1.3 (-11.8)*111.8 ± 1.3 (-11.8) * 65.9 ± 2.9 (34.1)***65.9 ± 2.9 (34.1) *** 12.1612.16 L-NMMAL-NMMA 112.5 ± 4.6 (-12.5)112.5 ± 4.6 (-12.5) 85.8 ± 6.4 (14.2)85.8 ± 6.4 (14.2) 16.1116.11

시험한 모든 화합물 1-9는 RAW 264.7 대식세포에서 농도 의존적으로 NO 생성을 감소시켰다 (표 1). NO 저해 백분율은 가장 높은 (10μM) 농도에서 97.2%에서 15.9%의 범위였다. 화합물 1-9 중 4개의 화합물, 즉 화합물 3 (97.2%), 화합물 6 (포르툴라카논 D) (92.5%), 화합물 1 (91.4%) 및 화합물 7 (83.0%)이 10μM에서 가장 효율적인 저해 효과를 보였다 (표 1 및 도 3). 가장 낮은 농도 (1μM)에서, 화합물 3은 여전히 RAW 264.7 대식세포에서 NO 생성 (38.5%)을 현저하게 감소시켰다. 화합물 1-9의 IC50 값을 GraphPad Prism 4.0 소프트웨어로 평가하였고, 각각 1.75, 14.17, 1.26, 14.17, 12.42, 2.09, 2.91, 13.43 및 12.16μM을 나타내었다 (표 1).All compounds 1-9 tested reduced NO production in a concentration dependent manner in RAW 264.7 macrophages (Table 1). The percentage of NO inhibition ranged from 97.2% to 15.9% at the highest (10 μM) concentration. Four of the compounds 1-9, namely Compound 3 (97.2%), Compound 6 (Fortulacanone D) (92.5%), Compound 1 (91.4%), and Compound 7 (83.0%) were most effective at 10 μM (Table 1 and Figure 3). At the lowest concentration (1 μM), compound 3 still significantly reduced NO production (38.5%) in RAW 264.7 macrophages. IC 50 values of compounds 1-9 were evaluated with GraphPad Prism 4.0 software, showing 1.75, 14.17, 1.26, 14.17, 12.42, 2.09, 2.91, 13.43 and 12.16 μM, respectively (Table 1).

CompoundCompound Proliferation effectProliferation effect 1μM1 μM 10μM10 μM 50μM50 μM 100μM100 μM Medium(MED)Medium (MED) 100.0 ± 2.4100.0 ± 2.4 100.0 ± 2.4100.0 ± 2.4 100.0 ± 2.4100.0 ± 2.4 100.0 ± 2.4100.0 ± 2.4 1One 101.8 ± 1.5101.8 ± 1.5 97.7 ± 13.397.7 ± 13.3 11.0 ± 0.1***11.0 ± 0.1 *** 11.1 ± 0.2***11.1 ± 0.2 *** 22 152.1 ± 2.4***152.1 ± 2.4 *** 118.3 ± 1.1118.3 ± 1.1 49.4 ± 3.9***49.4 ± 3.9 *** 31.5 ± 0.3***31.5 ± 0.3 *** 33 107.6 ± 12.0107.6 ± 12.0 113.6 ± 5.5113.6 ± 5.5 13.3 ± 1.6***13.3 ± 1.6 *** 11.7 ± 0.9***11.7 ± 0.9 *** 44 98.6 ± 10.598.6 ± 10.5 164.6 ± 8.3**164.6 ± 8.3 ** 55.2 ± 1.0***55.2 ± 1.0 *** 41.3 ± 1.4***41.3 ± 1.4 *** 55 97.7 ± 0.997.7 ± 0.9 81.1 ± 4.8**81.1 ± 4.8 ** 34.2 ± 2.0***34.2 ± 2.0 *** 12.5 ± 0.2***12.5 ± 0.2 *** 66 94.0 ± 4.494.0 ± 4.4 97.0 ± 4.697.0 ± 4.6 10.7 ± 0.1***10.7 ± 0.1 *** 11.0 ± 0.1***11.0 ± 0.1 *** 77 94.6 ± 3.594.6 ± 3.5 93.4 ± 2.893.4 ± 2.8 11.8 ± 0.1***11.8 ± 0.1 *** 10.9 ± 0.3***10.9 ± 0.3 *** 88 89.6 ± 2.989.6 ± 2.9 87.2 ± 3.2*87.2 ± 3.2 * 58.7 ± 2.6***58.7 ± 2.6 *** 44.0 ± 1.4***44.0 ± 1.4 *** 99 97.6 ± 5.497.6 ± 5.4 96.7 ± 2.096.7 ± 2.0 41.1 ± 5.3***41.1 ± 5.3 *** 15.5 ± 0.3***15.5 ± 0.3 ***

a결과는 n=3에 대한 평균값±SEM이다 (*P <0.05, **P <0.01 및 ***P<0.001). a Results are mean ± SEM for n = 3 ( * P <0.05, ** P <0.01 and *** P <0.001).

화합물 1-9의 NO 억제 효과가 세포 사멸로 인한 것이 아님을 확인하기 위해 RAW 264.7 대식세포에 대한 화합물의 세포 독성을 MTT 분석으로 시험하였다. 그 결과, 시험 화합물 1-9 모두 24시간 동안 10μM 농도에서 탐지할 만한 세포 독성이 관찰되지 않았고, NO 생산을 효과적으로 억제하였다 (표 2). 화합물 1-9가 50μM과 100μM에서 NO 생성에 대해 우수한 억제활성을 나타냈지만, 이는 대식세포에 대한 화합물 1-9의 세포 독성 효과 때문일 가능성이 크다 (도 3 및 표 2). 50μM 및 100μM에서의 세포 생존율은 각각 10.7-58.7% 및 10.9-44.0%의 범위에 불과했다. 웨스턴 블랏 분석을 이용하여 이 억제효과가 iNOS의 조절과 관련이 있는지를 평가하였다. 도 4에 나타낸 바와 같이, 그 결과는 NO 생산과 관련된 결과와 일치하였으며 (표 1 및 도 3), RAW 264.7 세포에서 LPS에 의해 유도된 iNOS의 단백질 발현은 화합물 1, 3, 6 및 7 처리에 의해 현저하게 억제되었다. 그러나 이들 화합물은 항존 유전자(housekeeping gene)인 β-액틴의 발현에는 영향을 미치지 않았다. 이것은 이러한 화합물 노출로 인한 iNOS의 발현 감소가 NO 생산 억제에 책임이 있음을 나타낸다. 본 발명에서는 제한된 수의 화합물, 즉 단지 9개의 화합물을 스크리닝했기 때문에, 충분한 구조-활성 관계 (SAR) 분석은 불가능하다. 그러나 다음은 주목할 만하다.: 1) 화합물 1, 3, 6 및 7이 NO의 저해에 가장 효과적이었으므로 C3와 C11 사이의 이중 결합이 결정적인 것으로 보인다. 2) 화합물 (1, 3, 6 및 7)을 포함하여 C3 및 C11 이중 결합 중에, 2개의 메톡시기 (-OMe)를 갖는 화합물 (화합물 3) 또는 하나의 메톡시기 (-OMe) 및 하나의 하이드록시기 (-OH)를 갖는 화합물 (화합물 1)이 하나의 메톡시기를 갖는 화합물 (화합물 1) 및 3개의 메톡시기를 갖는 화합물 (화합물 7)을 갖는 화합물보다 우수한 NO 억제 활성을 나타낸다. 3) 화합물 6 (포르툴라카논 D)의 강한 NO 저해 효과는 염증성 질환의 치료에서 포르툴라카 올레라세아 L. (Portulaca oleracea L.) 식물의 유용성을 지지하고 이 종의 전통적인 지시를 입증하는데 도움을 줄 수 있다.To confirm that the NO inhibitory effect of Compound 1-9 was not due to cell death, the cytotoxicity of the compound against RAW 264.7 macrophages was tested by MTT assay. As a result, no detectable cytotoxicity was observed for all of the test compounds 1-9 at a concentration of 10 μM for 24 hours, effectively inhibiting NO production (Table 2). Although Compound 1-9 showed good inhibitory activity against NO production at 50 μM and 100 μM, this is likely due to the cytotoxic effect of Compound 1-9 on macrophages (FIG. 3 and Table 2). Cell viability at 50 μM and 100 μM was only in the range of 10.7-58.7% and 10.9-44.0%, respectively. Western blot analysis was used to assess whether this inhibitory effect was associated with the regulation of iNOS. As shown in FIG. 4, the results were consistent with those associated with NO production (Table 1 and FIG. 3), and protein expression of iNOS induced by LPS in RAW 264.7 cells was not affected by Compound 1, 3, 6 and 7 treatment. Was significantly inhibited. However, these compounds did not affect the expression of β-actin, a housekeeping gene. This indicates that reduced expression of iNOS due to this compound exposure is responsible for inhibiting NO production. As the present invention screened a limited number of compounds, ie only nine compounds, sufficient structure-activity relationship (SAR) analysis is not possible. However, the following is noteworthy: 1) Since the compounds 1, 3, 6 and 7 were most effective at inhibiting NO, the double bond between C3 and C11 appears to be crucial. 2) a compound having two methoxy groups (-OMe) (compound 3) or one methoxy group (-OMe) and one hydrate in the C3 and C11 double bonds including compounds (1, 3, 6 and 7) Compounds having a hydroxy group (-OH) (Compound 1) exhibit better NO inhibitory activity than compounds having one methoxy group (Compound 1) and compounds having three methoxy groups (Compound 7). 3) help to compound 6 (PORT NO strong inhibitory effect of Tula Canon D) is in the treatment of inflammatory diseases support the usefulness of the formate Tula car plant oleic la Seah Portulaca oleracea L. (L.), and demonstrate the traditional indication of this species Can give

결론적으로, 본 발명자들은 포르툴라카 올레라세아 L. (Portulaca oleracea L.)에서 분리된 천연 호모이소플라보노이드 (±)-포르툴라카논 A-C (화합물 4,8,9), 포르툴라카논 D (화합물 6)와 그 유도체들 (화합물 3, 5 및 7)과 공지의 유도체들 (화합물 1 및 2)을 시판 화합물로부터 합성하였다. 이들 합성한 화합물에 대하여 LPS로 유도된 RAW 264.7 대식세포에서 항염증 활성의 지표로 NO 생성을 억제하는 능력을 평가하였다. 시험한 모든 화합물은 명확한 세포독성을 나타내지 않았으며, RAW 264.7 대식세포에서 농도 의존적으로 NO 생성을 억제하였다. 화합물 3 (10μM에서 억제율 97.2%; IC50 = 1.26μM), 화합물 6 (포르툴라카논 D) (10μM에서 억제율 92.5%; IC50 = 2.09μM), 화합물 1 (10μM에서 억제율 91.4%; IC50 = 1.75μM) 및 화합물 7 (10μM에서 억제율 83.0%; IC50 = 2.91μM)은 합성한 화합물 중 상당한 억제효과를 나타냈다. 이 발견은 LPS에 의해 유도된 iNOS의 발현 억제와 관련이 있다. 본 발명에서 얻은 정보는 화합물 3을 NO 생산 표적 항염증 약물 개발을 위한 선도 구조로 간주할 수 있는 기반을 제공할 수 있고, 또한 염증성 질환 치료에 민간 약용 식물로서의 포르툴라카 올레라세아 L. (Portulaca oleracea L.)의 유용성에 대한 과학적 증거를 제공할 수 있다. In conclusion, the inventors formate Tula car oleic la Seah L. (Portulaca oleracea L.) Natural flavonoid Homo isopropyl (±) away from the-formyl Tula Canon AC (compound 4,8,9), formate Tula Canon D (Compound 6) and its derivatives (compounds 3, 5 and 7) and known derivatives (compounds 1 and 2) were synthesized from commercial compounds. These synthesized compounds were evaluated for their ability to inhibit NO production as an indicator of anti-inflammatory activity in LPS-induced RAW 264.7 macrophages. All compounds tested showed no clear cytotoxicity and inhibited NO production in a concentration dependent manner in RAW 264.7 macrophages. Compound 3 (inhibition rate 97.2% at 10 μM; IC 50 = 1.26 μM), Compound 6 (portulacanone D) (inhibition rate 92.5% at 10 μM; IC 50 = 2.09 μM), compound 1 (inhibition rate 91.4% at 10 μM; IC 50 = 1.75 μM) and Compound 7 (inhibition rate 83.0% at 10 μM; IC 50 = 2.91 μM) showed a significant inhibitory effect among the synthesized compounds. This finding is related to the inhibition of expression of iNOS induced by LPS. The information obtained in the present invention may provide a basis for considering compound 3 as a leading structure for the development of NO producing targeted anti-inflammatory drugs, and also forcing the body of Fortulaca oleracea L. as a medicinal medicinal plant to treat inflammatory diseases. Scientific evidence of the usefulness of Portulaca oleracea L.

본 발명은 The present invention

(가) 화학식 12로 표시되는 화합물 17, 화합물 12 및 화합물 14를 DMF-DMA (N,N-dimethylformamide dimethyl acetal)로 축합한 후, 생성된 상응하는 아미노케톤 화합물을 각각 산 처리하여 화학식 18로 표시되는 상응하는 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18a, 18b, 18c를 각각 얻는 단계;(A) Compound 17, Compound 12 and Compound 14 represented by the formula (12) After condensation with DMF-DMA ( N, N- dimethylformamide dimethyl acetal), each of the resulting aminoketone compounds was acid treated to give the corresponding 4H -chromen-4-one ( 4H- chromen) -4-ones) obtaining compounds 18a, 18b and 18c, respectively;

(나) 상기 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18a, 18b 및 18c를 촉매 Pd/C를 이용하여 수소화하여 화학식 19로 표시되는 상응하는 크로만-4-온 (chroman-4-ones) 화합물 19a, 19b, 19c를 각각 얻는 단계;(B) the 4 H - chromen-4-one (4 H -chromen-4-ones ) compounds 18a, 18b and the corresponding chroman -4, which represented the 18c by the general formula 19 by hydrogenation using a catalyst Pd / C Obtaining -chroman-4-ones compounds 19a, 19b, 19c, respectively;

(다) 상기 크로만-4-온 (chroman-4-ones) 화합물 19a, 19b, 19c에 EtOH/H2O (5/1), KOH, 화학식 16으로 표시되는 화합물 16를 가하여 응축반응하여 화학식 20으로 표시되는 상응하는 화합물 20a, 20b, 20c를 각각 얻는 단계; 및(C) Condensation reaction of the Chroman-4-ones compound 19a, 19b, 19c by adding EtOH / H 2 O (5/1), KOH, compound 16 represented by the formula (16) Obtaining the corresponding compounds 20a, 20b, and 20c represented by 20, respectively; And

(라) 1N HCl을 사용하여 상기 화합물 20a, 20b, 20c를 탈보호기화하여 화학식 1로 표시되는 상응하는 화합물 1, 3 및 7을 각각 얻는 단계;를 포함하는 호모이소플라보노이드 화합물 합성방법에 관한 것이다.(D) deprotecting the compounds 20a, 20b, and 20c using 1N HCl to obtain the corresponding compounds 1, 3, and 7 represented by Formula 1, respectively. .

<화학식 12><Formula 12>

Figure 112018012925114-pat00001
Figure 112018012925114-pat00001

(단, 화합물 17: R1, R2 = H,(Compound 17: R 1 , R 2 = H,

화합물 12: R1 = OMe, R2 = H,Compound 12: R 1 = OMe, R 2 = H,

화합물 14: R1, R2 = OMe)Compound 14: R 1 , R 2 = OMe)

<화학식 18><Formula 18>

Figure 112018012925114-pat00002
Figure 112018012925114-pat00002

(단, 화합물 18a: R1, R2 = H,(Compound 18a: R 1 , R 2 = H,

화합물 18b: R1 = OMe, R2 = H,Compound 18b: R 1 = OMe, R 2 = H,

화합물 18c: R1, R2 = OMe)Compound 18c: R 1 , R 2 = OMe)

<화학식 19><Formula 19>

Figure 112018012925114-pat00003
Figure 112018012925114-pat00003

(단, 화합물 19a: R1, R2 = H,(Compound 19a: R 1 , R 2 = H,

화합물 19b: R1 = OMe, R2 = H,Compound 19b: R 1 = OMe, R 2 = H,

화합물 19c: R1, R2 = OMe)Compound 19c: R 1 , R 2 = OMe)

<화학식 16><Formula 16>

Figure 112018012925114-pat00004
Figure 112018012925114-pat00004

<화학식 20><Formula 20>

Figure 112018012925114-pat00005
Figure 112018012925114-pat00005

(단, 화합물 20a: R1, R2 = H,(Compound 20a: R 1 , R 2 = H,

화합물 20b: R1 = OMe, R2 = H,Compound 20b: R 1 = OMe, R 2 = H,

화합물 20c: R1, R2 = OMe)Compound 20c: R 1 , R 2 = OMe)

<화학식 1><Formula 1>

Figure 112018012925114-pat00006
Figure 112018012925114-pat00006

(단, 화합물 1: R1, R2 = H,(Compound 1: R 1 , R 2 = H,

화합물 3: R1 = OMe, R2 = H,Compound 3: R 1 = OMe, R 2 = H,

화합물 7: R1, R2 = OMe)Compound 7: R 1 , R 2 = OMe)

또한, 본 발명은 상기 (라) 단계 이후 (마) 상기 화합물 1,3 및 7을 Pd/C 촉매를 이용하여 수소화 반응하여 화학식 2로 표시되는 상응하는 호모이소플라보노이드 화합물 2, 4 및 8을 각각 얻는 단계;가 더 부가되는 것을 특징으로 하는 호모이소플라보노이드 화합물 합성방법에 관한 것이다.In addition, the present invention, after the step (d) (e) hydrogenation of the compounds 1, 3 and 7 using a Pd / C catalyst to the corresponding homoisoflavonoid compounds 2, 4 and 8 represented by the formula (2), respectively It relates to a method for synthesizing a homoisoflavonoid compound, characterized in that it is further added.

<화학식 2><Formula 2>

Figure 112018012925114-pat00007
Figure 112018012925114-pat00007

(단, 화합물 2: R1, R2 = H,(Compound 2: R 1 , R 2 = H,

화합물 4: R1 = OMe, R2 = H,Compound 4: R 1 = OMe, R 2 = H,

화합물 8: R1, R2 = OMe)Compound 8: R 1 , R 2 = OMe)

또한, 본 발명은 상기 (마) 단계 이후 (바) 상기 화합물 2 및 8을 1.0M BCl3를 사용하여 CH2Cl2 내에서 선택적 오르쏘-탈메틸화 반응으로 화학식 5로 표시되는 상응하는 화합물 5 및 9를 각각 얻는 단계;가 더 부가되는 것을 특징으로 하는 호모이소플라보노이드 화합물 합성방법에 관한 것이다.In addition, the present invention is the corresponding compound 5 represented by the formula (5) by the selective ortho-demethylation reaction in CH 2 Cl 2 using (M) 1.0M BCl 3 after step (e) (bar) And 9, respectively; relates to a method for synthesizing a homoisoflavonoid compound, which is further added.

<화학식 5><Formula 5>

Figure 112018012925114-pat00008
Figure 112018012925114-pat00008

(단, 화합물 5: R1 = OH, R2 = H,(Compound 5: R 1 = OH, R 2 = H,

화합물 9: R1 = OH, R2 = OMe)Compound 9: R 1 = OH, R 2 = OMe)

또한, 본 발명은 상기 화합물 16이 클로로메틸에틸에테르, K2CO3 및 TBAI(tetrabutylammonium iodide)를 이용하여 화학식 15로 표시되는 살리실알데하이드를 에톡시메틸 보호기화하여 생성됨을 특징으로 하는 호모이소플라보노이드 화합물 합성방법에 관한 것이다.In addition, the present invention is a homoisoflavonoid, characterized in that the compound 16 is produced by the ethoxymethyl protecting group of the salicylic aldehyde represented by the formula (15) using chloromethylethyl ether, K 2 CO 3 and TBAI (tetrabutylammonium iodide) The present invention relates to a method for synthesizing a compound.

<화학식 15><Formula 15>

Figure 112018012925114-pat00009
Figure 112018012925114-pat00009

또한, 본 발명은 상기 화합물 14가 화학식 13으로 표시되는 화합물 13에 Ac2O, Et3N, CH2Cl2를 가하여 상온에서 아세틸화하는 반응 및 BF3·Et2O, AcOH를 가하여 후속적인 재배열 반응으로 생성됨을 특징으로 하는 호모이소플라보노이드 화합물 합성방법에 관한 것이다.In addition, the present invention is the reaction of the compound 14 is acetylated at room temperature by adding Ac 2 O, Et 3 N, CH 2 Cl 2 to Compound 13 represented by the formula (13) and BF 3 · Et 2 O, AcOH It relates to a method for synthesizing a homoisoflavonoid compound, characterized in that produced by the rearrangement reaction.

<화학식 13><Formula 13>

Figure 112018012925114-pat00010
Figure 112018012925114-pat00010

또한, 본 발명은 상기 화합물 12가 In addition, the present invention is the compound 12

(ㄱ) 화학식 10으로 표시되는 1,3,5-트리메톡시벤젠을 삼불화붕소다이에틸에테레이트 (boron trifluoride diethyl etherate)의 존재하에 아세트산 무수물로 처리하여 프리델-크라프츠 아실화 (Friedel-Crafts acylation) 반응으로 화학식 11로 표시되는 화합물 11을 얻는 단계; 및(A) Treating 1,3,5-trimethoxybenzene represented by the formula (10) with acetic anhydride in the presence of boron trifluoride diethyl etherate to form a Friedel-Crafts acylation (Friedel- Obtaining Compound 11 represented by Formula 11 by a crafts acylation reaction; And

(ㄴ) 상기 화합물 11에 AlCl3를 가하여 환류하여 선택적 오르쏘-탈메틸화 (ortho-demethylation) 반응으로 화합물 12를 얻는 단계;를 거쳐 생성됨을 특징으로 하는 호모이소플라보노이드 화합물 합성방법에 관한 것이다.(B) optionally ortho to reflux was added AlCl 3 to the compound 11 to obtain the demethylated compound 12 with (ortho -demethylation) reaction; relates to homo-iso flavonoid compound synthesis method which comprises generated through.

<화학식 10><Formula 10>

Figure 112018012925114-pat00011
Figure 112018012925114-pat00011

<화학식 11><Formula 11>

Figure 112018012925114-pat00012
Figure 112018012925114-pat00012

또한, 본 발명은 화학식 1로 표시되는 포르툴라카논 유도체 화합물 1, 3, 7 및 화학식 2로 표시되는 포르툴라카논 유도체 화합물 2, 포르툴라카논 A, 포르툴라카논 B, 화학식 5로 표시되는 포르툴라카논 유도체 화합물 5 및 포르툴라카논 C 중 선택된 한 가지 이상을 포함하는 항염증 약학 조성물에 관한 것이다.In addition, the present invention is the portulacanone derivative compound 1, 3, 7 and the portulacanone derivative compound 2, the portulacanone A, the portulacanone B, and the formula represented by the formula (5). It relates to an anti-inflammatory pharmaceutical composition comprising at least one selected from canon derivative compound 5 and portulancanone C.

또한, 본 발명은 특히 포르툴라카논 유도체 화합물 1, 3, 7 중 선택된 한 가지 이상을 포함하는 항염증 약학 조성물에 관한 것이다.The present invention also relates to an anti-inflammatory pharmaceutical composition, in particular comprising at least one selected from portulacanone derivative compounds 1, 3 and 7.

또한, 본 발명은 상기 포르툴라카논 유도체 화합물 1, 3, 7의 IC50 값이 1~3μM임을 특징으로 하는 항염증 약학 조성물에 관한 것이다.In addition, the present invention relates to an anti-inflammatory pharmaceutical composition, characterized in that the IC 50 value of the fortulacanone derivative compounds 1, 3 and 7 is 1 to 3 μM.

또한, 본 발명은 본 발명에서 처음으로 합성한 신규한 포르툴라카논 유도체 화합물 3, 5 및 7에 관한 것이다.The present invention also relates to novel portulacanone derivative compounds 3, 5 and 7 synthesized for the first time in the present invention.

본 발명의 합성방법에 의하면 포르툴라카 올레라세아 L. (Portulaca oleracea L.) 유래 화합물인 포르툴라카논 A-C 및 그 유도체를 높은 수율로 합성할 수 있다.According to the synthesis method of the present invention can be synthesized in the formate Tula car oleic la Seah L. (Portulaca oleracea L.) derived from the formyl compound Tula Canon AC and its derivatives in high yield.

또한, 본 발명의 방법으로 합성된 포르툴라카논 A-C 및 그 유도체들, 특히 화합물 3, 1, 7은 세포독성을 나타내지 않으며, 우수한 항염증 활성을 나타내어 염증질환의 치료제로 이용할 수 있다.In addition, portulacanone A-C and its derivatives, especially compounds 3, 1 and 7, synthesized by the method of the present invention do not exhibit cytotoxicity and exhibit excellent anti-inflammatory activity and can be used as a therapeutic agent for inflammatory diseases.

도 1은 포르툴라카논 A-D (화합물 4, 8, 9 및 6) 및 그 유도체 (화합물 1-3, 5 및 7)의 구조이다.
도 2는 본 발명의 포르툴라카논 A-D 및 그 유도체의 합성방법에 관한 반응식을 도시한 것이다. 시약 및 조건 : (a) Ac2O, BF3·Et2O, EtOAc, 상온, 4시간, 89%; (b) AlCl3, CH2Cl2, 환류, 22시간, 87%; (c) (i) Ac2O, Et3N, CH2Cl2, 상온, 6시간; (ii) BF3·Et2O, AcOH, 70℃, 2시간, 93% (2단계 전체); (d) 클로로메틸 에틸 에테르, K2CO3, TBAI (Tetrabutylammonium iodide), 아세톤, 0℃-상온, 24시간, 83%; (e) N,N-디메틸포름아마이드 다이메틸 아세탈, 벤젠, 90℃, 밤새 반응, 88-91%; (f) H2, Pd/C (10%), MeOH, 상온, 0.75-1시간, 83-87%; (g) KOH, EtOH/H2O (5/1), 25-30℃, 10-24시간, 25-48%; (h) 1N HCl, MeOH, 55℃, 1시간, 85-88%; (i) H2, Pd/C (10%), MeOH, 상온, 0.75-1시간, 86-91%; (j) 1.0 M BCl3 (in CH2Cl2), CH2Cl2, 0℃-상온, 3시간, 83-86%.
도 3은 LPS로 유도된 RAW 264.7 대식세포에서 NO 생성에 대한 호모이소플라보노이드 1-9의 억제 활성을 나타낸 그래프이다.
도 4는 iNOS 발현에 대한 화합물 1-9의 효과를 시험한 결과이다.
1 is the structure of portulacanone AD (compounds 4, 8, 9 and 6) and its derivatives (compounds 1-3, 5 and 7).
Figure 2 shows the reaction scheme for the synthesis method of the portulacanone AD and its derivatives of the present invention. Reagents and conditions: (a) Ac 2 O, BF 3 · Et 2 O, EtOAc, room temperature, 4 hours, 89%; (b) AlCl 3 , CH 2 Cl 2 , reflux, 22 h, 87%; (c) (i) Ac 2 O, Et 3 N, CH 2 Cl 2 , room temperature, 6 hours; (ii) BF 3 · Et 2 O, AcOH, 70 ° C., 2 hours, 93% (2 steps total); (d) chloromethyl ethyl ether, K 2 CO 3 , TBAI (Tetrabutylammonium iodide), acetone, 0 ° C.-room temperature, 24 h, 83%; (e) N, N -dimethylformamide dimethyl acetal, benzene, 90 ° C., overnight reaction, 88-91%; (f) H 2 , Pd / C (10%), MeOH, room temperature, 0.75-1 hour, 83-87%; (g) KOH, EtOH / H 2 O (5/1), 25-30 ° C., 10-24 hours, 25-48%; (h) 1N HCl, MeOH, 55 ° C., 1 hour, 85-88%; (i) H 2 , Pd / C (10%), MeOH, room temperature, 0.75-1 hour, 86-91%; (j) 1.0 M BCl 3 (in CH 2 Cl 2 ), CH 2 Cl 2 , 0 ° C.-room temperature, 3 hours, 83-86%.
Figure 3 is a graph showing the inhibitory activity of homoisoflavonoids 1-9 on NO production in LPS induced RAW 264.7 macrophages.
4 shows the results of testing the effect of compound 1-9 on iNOS expression.

아래에서는 구체적인 실시예를 들어 본 발명의 구성을 좀 더 자세히 설명한다. 그러나, 본 발명의 범위가 실시예의 기재에만 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.Hereinafter, the configuration of the present invention will be described in more detail with reference to specific embodiments. However, it is obvious to those skilled in the art that the scope of the present invention is not limited only to the description of the embodiments.

화학 물질 등Chemicals etc.

모든 화학 물질은 특별한 언급이 없는 한 구입한 그대로 정제하지 않고 사용하였다. 반응에 사용한 모든 용매는 질소 가스 하에서 적절한 탈수제로부터 증류되었다. 크로마토그래피에 사용한 모든 용매는 구입하여 별도의 정제 없이 바로 사용하였다. 박막 크로마토그래피 (TLC)는 DC-Plastikfolien 60, F254 (Merck,층 두께 0.2mm) 플라스틱판에 실리카젤을 입힌 플레이트를 이용하였고, UV (254nm)를 이용하여 관찰하거나 또는 p-아니스알데히드 및/또는 포스포몰리브딕산 (PMA)으로 염색하여 관찰하였다. 크로마토그래피 정제는 Kieselgel 60 (60-120mesh, Merck)을 이용하여 수행하였다. 1H-NMR 스펙트럼은 Varian Mercury-300MHz FT-NMR 및 13C에 대해서는 75MHz로 기록하였고, 화학적 이동 (δ)은 TMS에 대하여 ppm (parts per million)으로 나타내었고, 커플링 상수 (J)는 Hz로 인용하였다. 피크 분열 패턴은 s (singlet), d (doublet), t (triplet), dd (doublet of doublet) 및 m (multiplet)으로 약칭하고, CDCl3/CD3COCE3는 용매 및 내부 스탠다드로 이용하였다. 고해상도 질량 스펙트럼 전기 분무 이온화 (HRMS-ESI)는 Agilent technologies 6220 TOF LC / MS 분광기를 이용하여 기록하였다. 녹는점은 MEL-TEMP Ⅱ 장치에서 측정하고, 보정하지 않았다.All chemicals were used without purification as purchased unless otherwise noted. All solvents used in the reaction were distilled from an appropriate dehydrating agent under nitrogen gas. All solvents used for chromatography were purchased and used directly without further purification. Thin layer chromatography (TLC) was performed using a plate coated with silica gel on a DC-Plastikfolien 60, F254 (Merck, 0.2 mm thick) plastic plate, observed using UV (254 nm) or p-anisaldehyde and / or Observed by staining with phosphomolybdic acid (PMA). Chromatographic purification was performed using Kieselgel 60 (60-120mesh, Merck). 1 H-NMR spectra were recorded at 75 MHz for Varian Mercury-300 MHz FT-NMR and 13 C, chemical shifts (δ) were expressed in parts per million (ppm) for TMS, and coupling constants (J) were Hz. Quoted by. Peak cleavage patterns were abbreviated as s (singlet), d (doublet), t (triplet), dd (doublet of doublet) and m (multiplet), and CDCl 3 / CD 3 COCE 3 was used as solvent and internal standard. High resolution mass spectrum electrospray ionization (HRMS-ESI) was recorded using an Agilent technologies 6220 TOF LC / MS spectrometer. Melting points were measured on a MEL-TEMP II instrument and were not corrected.

1-(2,4,6-1- (2,4,6- 트리메톡시페닐Trimethoxyphenyl )) 에타논Ethanon {1-(2,4,6- {1- (2,4,6- TrimethoxyphenylTrimethoxyphenyl )) ethanoneethanone } (화합물 11):} (Compound 11):

1,3,5-트리메톡시벤젠 (0.84g, 5.00mmol) 및 무수 아세트산 (0.47mL, 7.50mmol)를 에틸 아세테이트 (5mL)에 혼합하고, BF3.Et2O (0.32mL, 2.50mmol)를 질소 분위기 하에서 서서히 가하였다. 반응물을 상온으로 가온하고 4시간 동안 교반하였다. 반응 완료 후, H2O (40mL)를 가하고, 15분 동안 교반한 후, 반응 혼합물을 에틸 아세테이트 (3x30mL)로 추출하였다. 혼합 유기용매층은 포화 NaHCO3 용액 (2x20mL), H2O (2x20mL), 식염수 (20mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/3-1/2)로 조화합물을 정제하여 순수한 백색 고체 화합물 (0.94g, 89%)을 얻었다. 녹는점 98-100℃ (Lit.1101-103℃); 1H NMR (300MHz, CDCl3) δ6.09 (2H, s), 3.82 (3H, s), 3.79 (6H, s), 2.46 (3H, s); 13C NMR (75MHz, CDCl3) δ201.7, 162.3, 158.4, 113.7, 90.7, 56.0, 55.6, 32.8.1,3,5-trimethoxybenzene (0.84 g, 5.00 mmol) and acetic anhydride (0.47 mL, 7.50 mmol) were mixed in ethyl acetate (5 mL) and BF 3 .Et 2 O (0.32 mL, 2.50 mmol) Was added slowly under a nitrogen atmosphere. The reaction was allowed to warm to room temperature and stirred for 4 hours. After completion of the reaction, H 2 O (40 mL) was added and stirred for 15 minutes, then the reaction mixture was extracted with ethyl acetate (3 × 30 mL). The mixed organic solvent layer was washed with saturated NaHCO 3 solution ( 2 × 20 mL), H 2 O ( 2 × 20 mL), brine (20 mL), dried over anhydrous Na 2 SO 4 , and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 2) to give a pure white solid compound (0.94 g, 89%). Melting point 98-100 ° C. (Lit. 1 101-103 ° C.); 1 H NMR (300 MHz, CDCl 3 ) δ 6.09 (2H, s), 3.82 (3H, s), 3.79 (6H, s), 2.46 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 201.7, 162.3, 158.4, 113.7, 90.7, 56.0, 55.6, 32.8.

1-(2-1- (2- 하이드록시Hydroxy -4,6--4,6- 다이메톡시페닐Dimethoxyphenyl )) 에타논Ethanon {1-(2- {1- (2- HydroxyHydroxy -4,6-dimethoxyphenyl)ethanone} (화합물 12):-4,6-dimethoxyphenyl) ethanone} (Compound 12):

화합물 11 (0.9g, 4.28mmol)을 무수 CH2Cl2 (10mL)에 넣고 교반한 용액에 질소 분위기 하에서 AlCl3 (0.71g, 5.35mmol)를 가하고, 혼합물을 22시간 동안 환류하였다. 반응 완료 후 0℃로 냉각하고 1N HCl (6mL)을 첨가하고 혼합물을 상온에서 15분 동안 교반하였다. 혼합물을 CH2Cl2 (2x50mL)로 추출하였다. 혼합 유기용매층은 H2O (2x25mL)와 식염수 (20mL)로 세척하고, 무수 Na2SO4로 건조하여 진공 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/4)로 조화합물을 정제하여 순수한 백색 고체 화합물을 얻었다 (0.72g, 87%). 녹는점 79-80℃ (문헌상 녹는점은 81-82℃); 1H NMR (300MHz, CDCl3) δ6.03 (1H, d, J=2.1Hz), 5.90 (1H, d, J= 2.1Hz), 3.84 (3H, s), 3.80 (3H, s), 2.60 (3H, s); 13C NMR (75MHz, CDCl3) δ203.1, 167.6, 166.1, 162.9, 106.1, 93.6, 90.8, 55.8, 33.2.Compound 11 (0.9 g, 4.28 mmol) with anhydrous CH 2 Cl 2 To the stirred solution was added AlCl 3 (0.71 g, 5.35 mmol) in a nitrogen atmosphere, and the mixture was refluxed for 22 hours. After the reaction was completed, the reaction mixture was cooled to 0 ° C., 1N HCl (6 mL) was added, and the mixture was stirred at room temperature for 15 minutes. CH 2 Cl 2 Extracted with (2 × 50 mL). The mixed organic solvent layer was washed with H 2 O ( 2 × 25 mL) and brine (20 mL), dried over anhydrous Na 2 SO 4 , and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1/4) to give a pure white solid compound (0.72 g, 87%). Melting point 79-80 ° C (literally, melting point is 81-82 ° C); 1 H NMR (300 MHz, CDCl 3 ) δ6.03 (1H, d, J = 2.1 Hz), 5.90 (1H, d, J = 2.1 Hz), 3.84 (3H, s), 3.80 (3H, s), 2.60 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 203.1, 167.6, 166.1, 162.9, 106.1, 93.6, 90.8, 55.8, 33.2.

1-(6-1- (6- 하이드록시Hydroxy -2,3,4--2,3,4- 트리메톡시페닐Trimethoxyphenyl )) 에타논Ethanon {1-(6- {1- (6- HydroxyHydroxy -2,3,4-trimethoxyphenyl)ethanone} (화합물 14):-2,3,4-trimethoxyphenyl) ethanone} (compound 14):

3,4,5-트리메톡시페놀 (화합물 13) (1.55g, 8.42mmol)을 무수 CH2Cl2(16mL)에 넣고 교반한 용액에 Et3N (2.36mL, 16.63mmol)를 가하고 상온에서 15분 동안 교반하였다. 무수 아세트산 (1.2mL, 12.62mmol)을 가하고 상온에서 6시간 동안 교반하였다. 반응 완료 후, CH2Cl2 (80mL)로 희석하고, 2N HCl (8mL), H2O (2x20mL), 식염수 (20mL)로 세척하고 무수 Na2SO4로 건조하여, 진공 농축하였다. 아세틸화된 무색 고체 화합물 (1.88g, 99%)을 얻고, 이를 추가 정제 없이 다음 단계에 사용하였다. 녹는점 68-70℃; 1H NMR (300MHz, CDCl3) δ 6.32(2H, s), 3.82(9H, s), 2.28(3H, s); 13C NMR (75MHz, CDCl3) δ 169.5, 153.5, 146.8, 136.0, 99.3, 61.1, 56.4, 21.4. 3,4,5-trimethoxyphenol (Compound 13 ) (1.55 g, 8.42 mmol) was added to anhydrous CH 2 Cl 2 (16 mL), and Et 3 N (2.36 mL, 16.63 mmol) was added to the stirred solution. Stir for 15 minutes. Acetic anhydride (1.2 mL, 12.62 mmol) was added and stirred at room temperature for 6 hours. After completion of reaction, CH 2 Cl 2 (80 mL), washed with 2N HCl (8 mL), H 2 O ( 2 × 20 mL), brine (20 mL), dried over anhydrous Na 2 SO 4 , and concentrated in vacuo. Acetylated colorless solid compound (1.88 g, 99%) was obtained and used in the next step without further purification. Melting point 68-70 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 6.32 (2H, s), 3.82 (9H, s), 2.28 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 169.5, 153.5, 146.8, 136.0, 99.3, 61.1, 56.4, 21.4.

상기 3,4,5-트리메톡시페닐 아세테이트 (1.88g, 8.33mmol)를 AcOH (2.2mL)에 넣고 교반한 용액에 BF3·Et2O (3.6mL, 29.16mmol)를 상온의 질소 분위기 하에서 한 방울씩 가하였다. 생성된 혼합물을 70℃에서 2시간 동안 교반하였다. 반응 완료 후 상온으로 식히고 얼음물 (5mL)을 넣고 15분 동안 교반하였다. 혼합물을 EtOAc (3x35mL)로 추출하였다. 혼합 유기용매층은 H2O(3x20mL), 식염수 (2x20mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하고, 담황색 액체 화합물 14 (1.77g, 94%)를 얻고, 추가 정제 없이 다음 단계에 사용하였다. 1H NMR (300MHz, CDCl3) δ 6.22 (1H, s), 3.98 (3H, s), 3.86 (3H, s), 3.77 (3H, s), 2.65 (3H, s); 13C NMR (75MHz, CDCl3) δ 203.3, 161.9, 160.1, 155.3, 134.8, 108.6, 96.3, 61.2, 61.1, 56.3, 32.1.The 3,4,5-trimethoxyphenyl acetate (1.88 g, 8.33 mmol) was added to AcOH (2.2 mL), and BF 3 · Et 2 O (3.6 mL, 29.16 mmol) was added to the stirred solution under a nitrogen atmosphere at room temperature. Dropwise. The resulting mixture was stirred at 70 ° C. for 2 hours. After the reaction was completed, the mixture was cooled to room temperature, ice water (5 mL) was added thereto, and the mixture was stirred for 15 minutes. The mixture was extracted with EtOAc (3x35 mL). The combined organic solvent layer was washed with H 2 O (3 × 20 mL), brine ( 2 × 20 mL), dried over anhydrous Na 2 SO 4 , concentrated in vacuo to give a pale yellow liquid compound 14 (1.77 g, 94%), and further purification. Used in the next step without. 1 H NMR (300 MHz, CDCl 3 ) δ 6.22 (1H, s), 3.98 (3H, s), 3.86 (3H, s), 3.77 (3H, s), 2.65 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 203.3, 161.9, 160.1, 155.3, 134.8, 108.6, 96.3, 61.2, 61.1, 56.3, 32.1.

2-(2-( 에톡시메톡시Ethoxymethoxy )) 벤즈알데하이드Benzaldehyde {2-( {2-( EthoxymethoxyEthoxymethoxy )) benzaldehydebenzaldehyde } (화합물 16):} (Compound 16):

살리실알데하이드 (0.53mL, 5.00mmol)를 무수 아세톤 (12mL)에 넣고 교반한 용액에 K2CO3 (1.38g, 20.00mmol)를 질소 분위기 하에서 첨가하고, 0℃로 식혔다. 20분 동안 교반한 후, 클로로메틸 에틸 에테르 (EOM-Cl) (0.56mL, 6.0mmol)를 한 방울씩 가한 다음, TBAI (tetrabutylammonium iodide) (0.2mmol, 0.1당량)의 무수 아세톤 (3.0mL) 용액을 가하였다. 생성된 혼합물을 상온으로 가온하고 24시간 동안 교반하였다. 반응 완료 후, 셀라이트® 패드로 여과하고 아세톤 (10mL)으로 세척하고, 여과액을 진공 농축하였다. 조생성물을 EtOAc (60mL)에 용해하고, H2O (3x15mL), 식염수 (15mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/10)로 조화합물을 정제하여 거의 무색 오일의 순수한 EOM-보호 알데하이드 화합물 16 (0.75g, 83%)을 얻었다. 1H NMR (300MHz, CDCl3) δ 10.47 (1H, s), 7.82 (1H, d, J= 7.5Hz), 7.52 (1H, td, J= 8.1, 2.1Hz), 7.23 (1H, d, J= 8.1Hz), 7.06 (1H, td, J= 7.5, 2.1Hz), 5.34 (2H, s), 3.77 (2H, q, J= 7.0Hz), 1.24 (3H, t, J= 7.0Hz); 13C NMR (75MHz, CDCl3) δ 189.7, 159.8, 135.9, 128.3, 125.4, 121.7, 115.1, 93.4, 65.0, 15.4.Salicylate (0.53 mL, 5.00 mmol) was added to anhydrous acetone (12 mL) and stirred in a solution of K 2 CO 3. (1.38 g, 20.00 mmol) was added under nitrogen atmosphere and cooled to 0 ° C. After stirring for 20 minutes, chloromethyl ethyl ether (EOM-Cl) (0.56 mL, 6.0 mmol) was added dropwise, followed by anhydrous acetone (3.0 mL) solution of TBAI (tetrabutylammonium iodide) (0.2 mmol, 0.1 equiv) Was added. The resulting mixture was allowed to warm to room temperature and stirred for 24 hours. After completion of the reaction, it was filtered through a pad of Celite®, washed with acetone (10 mL), and the filtrate was concentrated in vacuo. The crude product was dissolved in EtOAc (60 mL), washed with H 2 O (3 × 15 mL), brine (15 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1/10) to give pure EOM-protecting aldehyde Compound 16 (0.75 g, 83%) as an almost colorless oil. 1 H NMR (300MHz, CDCl 3 ) δ 10.47 (1H, s), 7.82 (1H, d, J = 7.5 Hz), 7.52 (1H, td, J = 8.1, 2.1 Hz), 7.23 (1H, d, J = 8.1 Hz), 7.06 (1H, td, J = 7.5, 2.1 Hz), 5.34 (2H, s), 3.77 (2H, q, J = 7.0 Hz), 1.24 (3H, t, J = 7.0 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 189.7, 159.8, 135.9, 128.3, 125.4, 121.7, 115.1, 93.4, 65.0, 15.4.

치환된 4Substituted 4 HH -- 크로멘Chromen -4-온 (44-one (4 HH -- chromenchromen -4-ones)의 일반적인 제조 방법General preparation method of -4-ones)

치환된 2-하이드록시아세토페논 (1.4mmol)을 무수 벤젠 (4mL)에 넣고 교반한 용액에 N,N-다이메틸포름아마이드 다이메틸 아세탈 (4.2mmol)을 상온, 질소 분위기 하에서 첨가하였다. 혼합물을 90℃에서 밤새 교반하였다. 반응 완료 후 0℃로 냉각하고, 포화 HCl (0.85mL)를 가하였다. 생성된 혼합물을 55℃에서 1시간 동안 교반하였다. 반응 완료 후, EtOAc (40 mL)로 희석하고, H2O (3x10mL)와 식염수 (2x15mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/1-2/1)로 조화합물을 정제하여 순수한 치환된 4H-크로멘-4-온을 얻었다.Substituted 2-hydroxyacetophenone (1.4 mmol) was added to anhydrous benzene (4 mL), and N , N -dimethylformamide dimethyl acetal (4.2 mmol) was added to the stirred solution under normal temperature and nitrogen atmosphere. The mixture was stirred at 90 ° C. overnight. After the reaction was completed, the reaction mixture was cooled to 0 ° C, and saturated HCl (0.85 mL) was added thereto. The resulting mixture was stirred at 55 ° C. for 1 hour. After completion of the reaction, diluted with EtOAc (40 mL), washed with H 2 O ( 3 × 10 mL) and brine (2 × 15 mL), dried over anhydrous Na 2 SO 4 , and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 1-2 / 1) to give pure substituted 4H -chromen-4-one.

7- 메톡시 -4 H - 크로멘 -4-온 {7- Methoxy -4 H - chromen -4-one}(화합물 18a): 수율: 91%; 담황색 고체; 녹는점 97-99℃; 1H NMR (300MHz, CDCl3) δ 8.08(1H, d, J= 8.7Hz), 7.75 (1H, d, J= 6.0Hz), 6.94 (1H, dd, J= 8.7, 2.4Hz), 6.81 (1H, d, J= 2.4Hz), 6.25 (1H, d, J= 6.0Hz), 3.89(3H, s); 13C NMR (75MHz, CDCl3) δ 177.0, 164.2, 158.4, 154.9, 127.4, 119.0, 114.7, 113.1, 100.6, 56.1. 7-methoxy -4 H - chromen-4-one {7- Methoxy -4 H - chromen -4 -one} ( compound 18a): Yield: 91%; Pale yellow solid; Melting point 97-99 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 8.08 (1H, d, J = 8.7 Hz), 7.75 (1H, d, J = 6.0 Hz), 6.94 (1H, dd, J = 8.7, 2.4 Hz), 6.81 ( 1 H, d, J = 2.4 Hz), 6.25 (1 H, d, J = 6.0 Hz), 3.89 (3 H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 177.0, 164.2, 158.4, 154.9, 127.4, 119.0, 114.7, 113.1, 100.6, 56.1.

5,7- 다이메톡시 -4 H - 크로멘 -4-온 {5,7- Dimethoxy -4 H - chromen -4-one} (화합물 18b): 수율: 90%; 담황색 고체; 녹는점 131-133℃; 1H NMR (300MHz, CDCl3) δ 7.60(1H, d, J= 6.0Hz), 6.41 (1H, d, J= 2.1Hz), 6.34 (1H, d, J= 6.0Hz), 6.17 (1H, d, J= 6.0Hz), 3.93 (3H, s), 3.87 (3H, s); 13C NMR (75MHz, CDCl3) δ 176.6, 163.9, 161.0, 160.1, 152.6, 114.6, 110.4, 96.3, 92.9, 56.6, 55.9. 5,7 -dimethoxy - 4H - chromen - 4-one {5,7- Dimethoxy - 4H - chromen- 4-one} (compound 18b): yield: 90%; Pale yellow solid; Melting point 131-133 ° C; 1 H NMR (300 MHz, CDCl 3 ) δ 7.60 (1H, d, J = 6.0 Hz), 6.41 (1H, d, J = 2.1 Hz), 6.34 (1H, d, J = 6.0 Hz), 6.17 (1H, d, J = 6.0 Hz), 3.93 (3H, s), 3.87 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 176.6, 163.9, 161.0, 160.1, 152.6, 114.6, 110.4, 96.3, 92.9, 56.6, 55.9.

5,6,7- 트리메톡시 -4 H - 크로멘 -4-온 {5,6,7- Trimethoxy -4 H - chromen -4-one} (화합물 18c): 수율: 88%; 담황색 고체; 녹는점 113-115℃; 1H NMR (300MHz, CDCl3) δ 7.63 (1H, d, J= 6.0Hz), 6.65 (1H, s), 6.16 (1H, d, J= 6.0Hz), 3.95 (3H, s), 3.93 (3H, s), 3.89 (3H, s); 13C NMR (75MHz, CDCl3) δ 176.2, 157.8, 154.8, 153.0, 152.6, 140.5, 114.1, 113.9, 96.4, 62.3, 61.7, 56.4. 5,6,7 -trimethoxy - 4H - chromen - 4-one {5,6,7- Trimethoxy - 4H - chromen- 4-one} (compound 18c): yield: 88%; Pale yellow solid; Melting point 113-115 ° C; 1 H NMR (300 MHz, CDCl 3 ) δ 7.63 (1H, d, J = 6.0 Hz), 6.65 (1H, s), 6.16 (1H, d, J = 6.0 Hz), 3.95 (3H, s), 3.93 ( 3H, s), 3.89 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 176.2, 157.8, 154.8, 153.0, 152.6, 140.5, 114.1, 113.9, 96.4, 62.3, 61.7, 56.4.

치환된 4Substituted 4 HH -- 크로멘Chromen -4-온의 수소화를 위한 일반적인 절차General Procedure for Hydrogenation of 4-ones

치환된 4H-크로멘-4-온 (1.0mmol)을 MeOH (8mL)에 넣고 교반한 용액에 10% Pd/C (치환된 4H-크로멘-4-온에 대하여 5% w/w)를 상온의 수소 분위기 하에서 가하여 혼합물을 0.75-1시간 동안 교반하였다. 반응 완료 후 셀라이트® 패드로 여과하고, MeOH (10 mL)로 세척하여 여과액을 감압하에 농축하였다. 조생성물은 컬럼 크로마토그래피 (EtOAc/Hexane = 1/3-1/2)로 정제하여 순수한 치환된 크로만-4-온을 얻었다.Substituted 4 H -chromen-4-one (1.0 mmol) in MeOH (8 mL) was added to the stirred solution and 10% Pd / C (5% w / w relative to substituted 4 H -chromen-4-one). ) Was added under a hydrogen atmosphere at room temperature, and the mixture was stirred for 0.75-1 hour. After completion of the reaction, the mixture was filtered through a Celite® pad, washed with MeOH (10 mL), and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 2) to give pure substituted chromo-4-one.

7- 메톡시크로만 -4-온 (7- Methoxychroman -4-one)(화합물 19a): 수율: 87%; 백색 고체; 녹는점 49-50℃; 1H NMR (300MHz, CDCl3) δ 7.80 (1H, d, J= 8.7Hz), 6.55 (1H, dd, J= 8.7, 2.4Hz), 6.38 (1H, d, J= 2.4Hz), 4.50 (2H, t, J= 6.3Hz), 3.82 (3H, s), 2.74 (2H, t, J= 6.3Hz); 13C NMR (75MHz, CDCl3) δ 190.4, 166.0, 163.8, 128.9, 115.4, 110.0, 100.9, 67.6, 55.8, 37.7. 7-methoxy-chroman-4-one (7- Methoxychroman -4-one) (Compound 19a): Yield: 87%; White solid; Melting point 49-50 ° C .; 1 H NMR (300MHz, CDCl 3 ) δ 7.80 (1H, d, J = 8.7 Hz), 6.55 (1H, dd, J = 8.7, 2.4 Hz), 6.38 (1H, d, J = 2.4 Hz), 4.50 ( 2H, t, J = 6.3 Hz), 3.82 (3H, s), 2.74 (2H, t, J = 6.3 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 190.4, 166.0, 163.8, 128.9, 115.4, 110.0, 100.9, 67.6, 55.8, 37.7.

5,7- 다이메톡시크로만 -4-온 (5,7- Dimethoxychroman -4-one)(화합물 19b): 수율: 83%; 백색 고체; 녹는점 92-94℃; 1H NMR (300MHz, CDCl3) δ 6.04(2H, s), 4.43 (2H, t, J= 6.3Hz), 3.87 (3H, s), 3.81 (3H, s), 2.71 (2H, t, J= 6.3Hz); 13C NMR (75MHz, CDCl3) δ 189.1, 165.7, 165.2, 162.3, 106.4, 93.4, 93.0, 67.0, 56.3, 55.7, 39.0. 5,7-dimethoxy-chroman-4-one (5,7- Dimethoxychroman -4-one) (Compound 19b): Yield: 83%; White solid; Melting point 92-94 ° C; 1 H NMR (300 MHz, CDCl 3 ) δ 6.04 (2H, s), 4.43 (2H, t, J = 6.3 Hz), 3.87 (3H, s), 3.81 (3H, s), 2.71 (2H, t, J = 6.3 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 189.1, 165.7, 165.2, 162.3, 106.4, 93.4, 93.0, 67.0, 56.3, 55.7, 39.0.

5,6,7- 트리메톡시크로만 -4-온 {5,6,7- Trimethoxychroman -4-one} (화합물 19c): 수율: 84%; 백색 고체; 녹는점 58-60℃; 1H NMR (300MHz, CDCl3) δ 6.24(1H, s), 4.43 (2H, t, J= 6.3Hz), 3.91 (3H, s), 3.87 (3H, s), 3.80 (3H, s), 2.71 (2H, t, J= 6.3Hz); 13C NMR (75MHz, CDCl3) δ 189.1, 160.0, 159.3, 154.3, 137.4, 109.7, 96.2, 67.1, 61.7, 61.5, 56.3, 38.9. 5,6,7 - Trimethoxychroman- 4-one {5,6,7- Trimethoxychroman- 4-one} (Compound 19c): yield: 84%; White solid; Melting point 58-60 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 6.24 (1H, s), 4.43 (2H, t, J = 6.3 Hz), 3.91 (3H, s), 3.87 (3H, s), 3.80 (3H, s), 2.71 (2H, t, J = 6.3 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 189.1, 160.0, 159.3, 154.3, 137.4, 109.7, 96.2, 67.1, 61.7, 61.5, 56.3, 38.9.

EOMEOM -보호기화된 Protected 호모이소플라보노이드의Of homoisoflavonoids 일반적인 제조 과정 General manufacturing process

치환된 크로만-4-온 (0.30mmol)과 EOM-보호기화 살리실알데하이드 화합물 16 (0.07g, 0.39mmol)을 EtOH/H2O (1.8mL, 5/1)에 넣고 교반한 용액에 KOH (0.05g, 0.90mmol)를 가하여 25-30℃에서 10-24시간 동안 교반하였다. 반응 완료 후, EtOH를 감압하에 제거하였다. 조생성물을 1N HCl로 중화하고, EtOAc (2x25mL)로 추출하였다. 혼합 유기용매층은 H2O (3x10mL)와 식염수 (10mL)로 세척하고 무수 Na2SO4로 건조하여 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane = 1/5-1/3)로 조화합물을 정제하여 순수한 EOM-보호 호모이소플라보노이드 화합물을 얻었다.Substituted Chromman-4-one (0.30 mmol) and EOM-protected salicyaldehyde compound 16 (0.07 g, 0.39 mmol) were added to EtOH / H 2 O (1.8 mL, 5/1) and stirred in KOH. (0.05 g, 0.90 mmol) was added and stirred at 25-30 ° C. for 10-24 hours. After the reaction was completed, EtOH was removed under reduced pressure. The crude product was neutralized with 1N HCl and extracted with EtOAc (2 × 25 mL). The mixed organic solvent layer was washed with H 2 O (3 × 10 mL) and brine (10 mL), dried over anhydrous Na 2 SO 4 , and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 5-1 / 3) to give pure EOM-protected homoisoflavonoid compounds.

( E )-3-(2-( 에톡시메톡시 ) 벤질리덴 )-7- 메톡시크로만 -4-온 {( E )-3-(2-(Ethoxymethoxy)benzylidene)-7-methoxychroman-4-one} (화합물 20a): 수율: 48%; 담황색 액체; 1H NMR (300MHz, CDCl3) δ 7.96-7.93 (2H, m), 7.35-7.30 (1H, m), 7.20 (1H, d,J= 8.7Hz), 7.04-6.98 (2H, m), 6.60 (1H, dd, J= 8.7, 2.4Hz), 6.37 (1H, d, J= 2.4Hz), 5.24 (2H, s), 5.20 (2H, d, J= 1.5Hz), 3.81 (3H, s), 3.71 (2H, q, J= 7.0Hz), 1.20 (3H, t, J= 7.0Hz); 13C NMR (75MHz, CDCl3) δ 181.1, 165.9, 163.2, 156.2, 133.2, 130.9, 130.4, 129.7, 124.5, 121.4, 116.0, 114.9, 110.4, 100.9, 93.5, 68.5, 64.8, 55.8, 15.3. (E) -3- (2- (ethoxy-methoxy) benzylidene) -7-methoxy chroman-4-one {(E) -3- (2- ( Ethoxymethoxy) benzylidene) -7-methoxychroman-4 -one} (Compound 20a): yield: 48%; Pale yellow liquid; 1 H NMR (300 MHz, CDCl 3 ) δ 7.96-7.93 (2H, m), 7.35-7.30 (1H, m), 7.20 (1H, d, J = 8.7 Hz), 7.04-6.98 (2H, m), 6.60 (1H, dd, J = 8.7, 2.4 Hz), 6.37 (1H, d, J = 2.4 Hz), 5.24 (2H, s), 5.20 (2H, d, J = 1.5 Hz), 3.81 (3H, s) , 3.71 (2H, q, J = 7.0 Hz), 1.20 (3H, t, J = 7.0 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 181.1, 165.9, 163.2, 156.2, 133.2, 130.9, 130.4, 129.7, 124.5, 121.4, 116.0, 114.9, 110.4, 100.9, 93.5, 68.5, 64.8, 55.8, 15.3.

( E )-3-(2-( 에톡시메톡시 ) 벤질리덴 )-5,7- 다이메톡시크로만 -4-온 {( E )-3-(2-(Ethoxymethoxy)benzylidene)-5,7-dimethoxychroman-4-one}(화합물 20b): 수율: 40%; 담황색 액체; 1H NMR (300MHz, CDCl3) δ 7.95 (1H, s), 7.37-7.31 (1H, m), 7.20 (1H, d,J= 8.1 Hz), 7.06-7.00 (2H, m), 6.12 (1H, s), 6.07 (1H, s), 5.26 (2H, s), 5.12 (2H, s), 3.93 (3H, s), 3.84 (3H, s), 3.73 (2H, q, J= 7.0 Hz), 1.23 (3H, t, J= 7.0 Hz); 13C NMR (75MHz, CDCl3) δ 179.8, 165.8, 165.0, 163.0, 156.1, 132.4, 132.1, 130.7, 130.4, 125.1, 121.5, 115.0, 107.5, 93.8, 93.7, 93.6, 68.1, 64.9, 56.5, 55.9, 15.4.6 ( E ) -3- (2- ( ethoxymethoxy ) benzylidene ) -5,7 -dimethoxychroman- 4-one {( E ) -3- (2- (Ethoxymethoxy) benzylidene) -5, 7-dimethoxychroman-4-one} (Compound 20b): yield: 40%; Pale yellow liquid; 1 H NMR (300MHz, CDCl 3 ) δ 7.95 (1H, s), 7.37-7.31 (1H, m), 7.20 (1H, d, J = 8.1 Hz), 7.06-7.00 (2H, m), 6.12 (1H) , s), 6.07 (1H, s), 5.26 (2H, s), 5.12 (2H, s), 3.93 (3H, s), 3.84 (3H, s), 3.73 (2H, q, J = 7.0 Hz) , 1.23 (3H, t, J = 7.0 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 179.8, 165.8, 165.0, 163.0, 156.1, 132.4, 132.1, 130.7, 130.4, 125.1, 121.5, 115.0, 107.5, 93.8, 93.7, 93.6, 68.1, 64.9, 56.5, 55.9, 15.4.6

( E )-3-(2-( 에톡시메톡시 ) 벤질리덴 )-5,6,7- 트리메톡시크로만 -4-온 {( E )-3-(2-(Ethoxymethoxy)benzylidene)-5,6,7-trimethoxychroman-4-one}(화합물 20c): 수율: 25%; 담황색 액체; 1H NMR (300MHz, CDCl3) δ 7.93 (1H, s), 7.30-7.26 (1H, m), 7.15 (1H, d, J= 8.1Hz), 7.02-6.98 (1H, m), 6.22 (1H, d, J= 7.8Hz), 6.20 (1H, s), 5.20 (2H, d, J= 1.2Hz), 5.06 (2H, s), 3.96 (3H, s), 3.83 (3H, s), 3.77 (3H, s), 3.67 (2H, q, J= 7.0Hz), 1.20 (3H, t, J= 7.0Hz). ( E ) -3- (2- ( ethoxymethoxy ) benzylidene ) -5,6,7 -trimethoxychroman- 4-one {( E ) -3- (2- (Ethoxymethoxy) benzylidene)- 5,6,7-trimethoxychroman-4-one} (Compound 20c): yield: 25%; Pale yellow liquid; 1 H NMR (300 MHz, CDCl 3 ) δ 7.93 (1H, s), 7.30-7.26 (1H, m), 7.15 (1H, d, J = 8.1 Hz), 7.02-6.98 (1H, m), 6.22 (1H , d, J = 7.8 Hz), 6.20 (1H, s), 5.20 (2H, d, J = 1.2 Hz), 5.06 (2H, s), 3.96 (3H, s), 3.83 (3H, s), 3.77 (3H, s), 3.67 (2H, q, J = 7.0 Hz), 1.20 (3H, t, J = 7.0 Hz).

EOMEOM -- 탈보호기화Deprotection Vaporization 호모이소플라보노이드Homoisoflavonoids 합성의 일반적인 절차 General procedure of synthesis

EOM-보호 호모이소플라보노이드 (0.2mmol)를 MeOH (5mL)에 넣고 교반한 용액에 상온에서 1N HCl (0.6mL)를 가하고 혼합물을 55℃에서 1시간 동안 교반하였다. 용매를 감압 하에 제거하였다. 조생성물을 EtOAc (35mL)에 용해하고 H2O (2x10mL)와 식염수 (10mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/3-1/1)로 조화합물을 정제하여 순수한 EOM-탈보호기화된 호모이소플라보노이드 화합물을 얻었다.EOM-protected homoisoflavonoids (0.2 mmol) were added to MeOH (5 mL), and 1N HCl (0.6 mL) was added to the stirred solution at room temperature, and the mixture was stirred at 55 ° C for 1 hour. The solvent was removed under reduced pressure. The crude product was dissolved in EtOAc (35 mL), washed with H 2 O ( 2 × 10 mL) and brine (10 mL), dried over anhydrous Na 2 SO 4 , and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 1) to obtain pure EOM-deprotected homoisoflavonoid compounds.

( E )-3-(2- 하이드록시벤질리덴 )-7- 메톡시크로만 -4-온 {( E )-3-(2-Hydroxybenzylidene)-7-methoxychroman-4-one}(화합물 1): 수율: 89%; 담황색 고체; 녹는점 135-137℃; 1H NMR (300MHz, CDCl3) δ 7.99 (1H, br s), 7.92 (1H, d, J= 8.7Hz), 7.27 (1H, dd, J= 8.7, 2.1Hz), 7.02-6.90 (3H, m), 6.81 (1H, s), 6.58 (1H, dd, J= 8.7, 2.4Hz), 6.34 (1H, d, J= 2.1Hz), 5.19 (2H, d, J= 1.5Hz) 3.82 (3H, s); 13C NMR (75MHz, CDCl3) δ 181.9, 166.3, 163.6, 155.4, 133.4, 131.2, 131.1, 130.3, 129.9, 122.0, 120.3, 116.7, 115.8, 110.7, 100.9, 68.5, 55.9; EI-MS m/z282(M+, base), 265, 253, 131; HRMS: Calcd for C17H14O4(M+): 282.0892, found: 282.0901. (E) -3- (2- hydroxy-benzylidene) -7-methoxy chroman-4-one {(E) -3- (2- Hydroxybenzylidene) -7-methoxychroman-4-one} ( Compound 1) : yield: 89%; Pale yellow solid; Melting point 135-137 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 7.99 (1H, br s), 7.92 (1H, d, J = 8.7 Hz), 7.27 (1H, dd, J = 8.7, 2.1 Hz), 7.02-6.90 (3H, m), 6.81 (1H, s), 6.58 (1H, dd, J = 8.7, 2.4 Hz), 6.34 (1H, d, J = 2.1 Hz), 5.19 (2H, d, J = 1.5 Hz) 3.82 (3H , s); 13 C NMR (75 MHz, CDCl 3 ) δ 181.9, 166.3, 163.6, 155.4, 133.4, 131.2, 131.1, 130.3, 129.9, 122.0, 120.3, 116.7, 115.8, 110.7, 100.9, 68.5, 55.9; EI-MS m / z 282 (M &lt; + &gt;, base), 265, 253, 131; HRMS: Calcd for C 17 H 14 O 4 (M &lt; + &gt;): 282.0892, found: 282.0901.

( E )-3-(2- 하이드록시벤질리덴 )-5,7- 다이메톡시크로만 -4-온 {( E )-3-(2-Hydroxybenzylidene)-5,7-dimethoxychroman-4-one}(화합물 3): 수율: 86%; 담황색 고체; 1H NMR (300MHz, DMSO-d6) δ 10.02 (1H, s), 7.70(1H, s), 7.23 (1H, td, J= 8.1, 1.8Hz), 7.03(1H, d, J= 6.6Hz), 6.91 (1H, d, J= 7.8Hz), 6.84(1H, t, J= 7.5Hz), 6.24 (1H, d, J= 2.1Hz), 6.16(1H, d, J= 2.1Hz), 5.11(2H, d, J= 1.5Hz), 3.81(3H, s), 3.80(3H, s); 13C NMR (75MHz, DMSO-d6) δ 177.7, 165.0, 163.8, 162.1, 156.2, 130.8, 130.7, 130.6, 130.1, 121.1, 118.7, 115.5, 106.5, 93.7, 93.4, 67.4, 55.9, 55.6; EI-MS m/z312(M+), 295, 180 (base), 131; HRMS: Calcd for C18H16O5(M+): 312.0998, found: 312.0993. (E) -3- (2- hydroxy-benzylidene) -5,7-dimethoxy-chroman-4-one {(E) -3- (2- Hydroxybenzylidene) -5,7-dimethoxychroman-4-one } (Compound 3): yield: 86%; Pale yellow solid; 1 H NMR (300MHz, DMSO-d6) δ 10.02 (1H, s), 7.70 (1H, s), 7.23 (1H, td, J = 8.1, 1.8 Hz), 7.03 (1H, d, J = 6.6 Hz) , 6.91 (1H, d, J = 7.8 Hz), 6.84 (1H, t, J = 7.5 Hz), 6.24 (1H, d, J = 2.1 Hz), 6.16 (1H, d, J = 2.1 Hz), 5.11 (2H, d, J = 1.5 Hz), 3.81 (3H, s), 3.80 (3H, s); 13 C NMR (75 MHz, DMSO-d6) δ 177.7, 165.0, 163.8, 162.1, 156.2, 130.8, 130.7, 130.6, 130.1, 121.1, 118.7, 115.5, 106.5, 93.7, 93.4, 67.4, 55.9, 55.6; EI-MS m / z 312 (M &lt; + &gt;), 295, 180 (base), 131; HRMS: Calcd for C 18 H 16 O 5 (M &lt; + &gt;): 312.0998, found: 312.0993.

( E )-3-(2- 하이드록시벤질리덴 )-5,6,7- 트리메톡시크로만 -4-온 {( E )-3-(2-Hydroxybenzylidene)-5,6,7-trimethoxychroman-4-one}(화합물 7): 수율: 85%; 담황색 고체; 1H NMR (300 MHz, CDCl3) δ 8.00 (1H, s), 7.81 (1H, br s), 7.21 (1H, t, J= 7.8 Hz), 7.00 (1H, d, J= 7.5 Hz), 6.96 (1H, d, J= 7.8 Hz), 6.86 (1H, t, J= 7.5 Hz), 6.19 (1H, s), 5.08 (2H, s), 3.96 (3H, s), 3.85 (3H, s), 3.79 (3H, s); 13C NMR (75 MHz, CDCl3) δ 180.5, 160.0, 159.5, 155.6, 154.7, 137.6, 133.4, 131.3, 131.1, 130.2, 122.0, 119.9, 116.6, 110.4, 96.3, 68.0, 61.8, 61.5, 56.3; EI-MS m/z342(M+, base), 311, 210, 166; HRMS: Calcd for C19H18O6(M+): 342.1103, found: 342.1110. (E) -3- (2- hydroxy-benzylidene) -5,6,7- trimethoxy-chroman-4-one {(E) -3- (2- Hydroxybenzylidene) -5,6,7-trimethoxychroman -4-one} (Compound 7): yield: 85%; Pale yellow solid; 1 H NMR (300 MHz, CDCl 3 ) δ 8.00 (1H, s), 7.81 (1H, br s), 7.21 (1H, t, J = 7.8 Hz), 7.00 (1H, d, J = 7.5 Hz), 6.96 (1H, d, J = 7.8 Hz), 6.86 (1H, t, J = 7.5 Hz), 6.19 (1H, s), 5.08 (2H, s), 3.96 (3H, s), 3.85 (3H, s ), 3.79 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) δ 180.5, 160.0, 159.5, 155.6, 154.7, 137.6, 133.4, 131.3, 131.1, 130.2, 122.0, 119.9, 116.6, 110.4, 96.3, 68.0, 61.8, 61.5, 56.3; EI-MS m / z 342 (M &lt; + &gt;, base), 311, 210, 166; HRMS: Calcd for C 19 H 18 O 6 (M &lt; + &gt;): 342.1103, found: 342.1110.

3-(2- 하이드록시벤질 )-7- 메톡시크로만 -4-온 {3-(2-Hydroxybenzyl) -7-methoxychroman-4-one}(화합물 2): 19a-19cs 합성에 사용된 일반적인 절차에 따라, 화합물 1 (0.04g, 0.14mmol)을 수소 (풍선) 분위기 하에서 교반하여 백색 고체 화합물 2 (0.037g, 91%)를 얻었다. 녹는점 132-134℃; 1H NMR (300MHz, CDCl3) δ 8.12 (1H, br s), 7.82(1H, d, J= 8.7Hz), 7.10 (1H, td, J= 8.1, 1.8Hz), 7.02(1H, dd, J= 7.8, 1.8Hz), 6.90(1H, dd, J= 8.1, 1.2Hz), 6.80 (1H, td, J= 7.5, 1.2Hz), 6.54(1H, dd, J= 8.7, 2.1Hz), 6.36 (1H, d, J= 2.7Hz), 4.51 (1H, dd, J= 11.4, 1.5Hz), 4.21 (1H, t, J= 10.8Hz), 3.80 (3H, s), 3.21-3.03 (2H, m), 2.87-2.79 (1H, m); 13C NMR (75MHz, CDCl3) δ195.2, 166.6, 164.1, 154.8, 131.2, 129.4, 128.5, 124.8, 120.3, 117.3, 114.2, 110.4, 100.7, 70.9, 55.9, 46.6, 27.2; EI-MS m/z284(M+), 283 (M-H), 267, 177 (base); HRMS: Calcd for C17H16O4(M+): 284.1049, found: 284.1055 3- (2-hydroxy-benzyl) -7-methoxy chroman-4-one {3- (2-Hydroxybenzyl) -7 -methoxychroman-4-one} ( Compound 2): 19a-19cs the general used in the synthesis According to the procedure, compound 1 (0.04 g, 0.14 mmol) was stirred under a hydrogen (balloon) atmosphere to obtain a white solid compound 2 (0.037 g, 91%). Melting point 132-134 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 8.12 (1H, br s), 7.82 (1H, d, J = 8.7 Hz), 7.10 (1H, td, J = 8.1, 1.8 Hz), 7.02 (1H, dd, J = 7.8, 1.8 Hz), 6.90 (1H, dd, J = 8.1, 1.2 Hz), 6.80 (1H, td, J = 7.5, 1.2 Hz), 6.54 (1H, dd, J = 8.7, 2.1 Hz), 6.36 (1H, d, J = 2.7 Hz), 4.51 (1H, dd, J = 11.4, 1.5 Hz), 4.21 (1H, t, J = 10.8 Hz), 3.80 (3H, s), 3.21-3.03 (2H m), 2.87-2.79 (1 H, m); 13 C NMR (75 MHz, CDCl 3 ) δ 195.2, 166.6, 164.1, 154.8, 131.2, 129.4, 128.5, 124.8, 120.3, 117.3, 114.2, 110.4, 100.7, 70.9, 55.9, 46.6, 27.2; EI-MS m / z 284 (M &lt; + &gt;), 283 (MH), 267, 177 (base); HRMS: Calcd for C 17 H 16 O 4 (M +): 284.1049, found: 284.1055

3-(2- 하이드록시벤질 )-5,7- 다이메톡시크로만 -4-온 {3-(2- Hydroxybenzyl )-5,7-dimethoxychroman-4-one} (화합물 4): 19a-19c 합성에 사용된 일반적인 절차에 따라, 화합물 3 (0.02g, 0.06mmol)을 수소 (풍선) 분위기 하에서 교반하여 백색 고체의 화합물 4 (0.018g, 87%)를 얻었다. 녹는점 137-139℃; 1H NMR (300MHz, CDCl3) δ 8.22 (1H, br s), 7.10(1H, td, J= 7.8, 1.8Hz), 7.01 (1H, dd, J= 7.5, 1.8Hz), 6.90 (1H, dd, J= 8.1, 1.2Hz), 6.79 (1H, td, J= 7.5, 1.2Hz), 6.01 (2H, d, J= 2.1Hz), 4.49(1H, dd, J= 11.4, 5.4Hz), 4.15 (1H, t, J= 11.4Hz), 3.85 (3H, s), 3.80 (3H,s), 3.09-2.98 (2H, m), 2.80-2.72 (1H, m); 13C NMR (75MHz, CDCl3)δ 193.8, 166.5, 165.4, 162.7, 155.0, 131.0, 128.4, 125.1, 120.2, 117.6, 105.4, 93.4, 93.1, 70.5, 56.4, 55.8, 47.8, 27.1; EI-MS m/z314(M+), 207, 181 (base), 132; HRMS: Calcd for C18H18O5(M+): 314.1154, found: 314. 1150. 3- (2-hydroxy-benzyl) -5,7-dimethoxy-chroman-4-one 3 - {(2-Hydroxybenzyl) -5,7-dimethoxychroman-4-one} (compound 4): 19a-19c According to the general procedure used for the synthesis, compound 3 (0.02 g, 0.06 mmol) was stirred under a hydrogen (balloon) atmosphere to obtain compound 4 (0.018 g, 87%) as a white solid. Melting point 137-139 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 8.22 (1H, br s), 7.10 (1H, td, J = 7.8, 1.8 Hz), 7.01 (1H, dd, J = 7.5, 1.8 Hz), 6.90 (1H, dd, J = 8.1, 1.2 Hz), 6.79 (1H, td, J = 7.5, 1.2 Hz), 6.01 (2H, d, J = 2.1 Hz), 4.49 (1H, dd, J = 11.4, 5.4 Hz), 4.15 (1H, t, J = 11.4 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.09-2.98 (2H, m), 2.80-2.72 (1H, m); 13 C NMR (75 MHz, CDCl 3 ) δ 193.8, 166.5, 165.4, 162.7, 155.0, 131.0, 128.4, 125.1, 120.2, 117.6, 105.4, 93.4, 93.1, 70.5, 56.4, 55.8, 47.8, 27.1; EI-MS m / z 314 (M &lt; + &gt;), 207, 181 (base), 132; HRMS: Calcd for C 18 H 18 O 5 (M &lt; + &gt;): 314.1154, found: 314. 1150.

3-(2- 하이드록시벤질 )-5,6,7- 트리메톡시크로만 -4-온 {3-(2-hydroxybenzyl) -5,6,7-trimethoxychroman-4-one}(화합물 8): 19a-19c 합성에 사용된 일반적인 절차에 따라, 화합물 7 (0.02g, 0.06mmol)을 수소 (풍선) 분위기 하에서 교반하여 백색 고체 화합물 8 (0.017g, 86%)을 얻었다. 녹는점 102-104℃; 1H NMR (300MHz, CDCl3) δ 8.09 (1H, br s), 7.12-7.02 (2H, m), 6.91 (1H, d, J= 8.1Hz), 6.79 (1H, t, J= 7.2Hz), 6.23 (1H, s), 4.43 (1H, dd, J= 11.4, 4.2Hz), 4.19-4.12 (1H, m), 3.91 (3H, s), 3.86 (3H, s), 3.79 (3H, s), 3.14-3.00 (2H, m), 2.78 (1H, dd, J= 13.2, 5.7Hz); 13C NMR (75MHz, CDCl3) δ193.9, 160.2, 159.9, 154.9, 154.4, 137.4, 131.1, 128.3, 124.8, 120.1, 116.9, 108.5, 96.1, 70.1, 61.8, 61.5, 56.3, 47.2, 27.4; EI-MS m/z344(M+, base), 327, 237, 210; HRMS: Calcd for C19H20O6(M+): 344.1260, found: 344.1271 3- (2-hydroxybenzyl) -5,6,7- trimethoxy-chroman-4-one {3- (2-hydroxybenzyl) -5,6,7 -trimethoxychroman-4-one} ( Compound 8) : According to the general procedure used for 19a-19c synthesis, compound 7 (0.02 g, 0.06 mmol) was stirred under a hydrogen (balloon) atmosphere to obtain a white solid compound 8 (0.017 g, 86%). Melting point 102-104 ° C; 1 H NMR (300MHz, CDCl 3 ) δ 8.09 (1H, br s), 7.12-7.02 (2H, m), 6.91 (1H, d, J = 8.1 Hz), 6.79 (1H, t, J = 7.2 Hz) , 6.23 (1H, s), 4.43 (1H, dd, J = 11.4, 4.2 Hz), 4.19-4.12 (1H, m), 3.91 (3H, s), 3.86 (3H, s), 3.79 (3H, s ), 3.14-3.00 (2H, m), 2.78 (1H, doublet of doublets, J = 13.2, 5.7 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 193.9, 160.2, 159.9, 154.9, 154.4, 137.4, 131.1, 128.3, 124.8, 120.1, 116.9, 108.5, 96.1, 70.1, 61.8, 61.5, 56.3, 47.2, 27.4; EI-MS m / z 344 (M &lt; + &gt;, base), 327, 237, 210; HRMS: Calcd for C 19 H 20 O 6 (M &lt; + &gt;): 344.1260, found: 344.1271

호모이소플라보노이드의Of homoisoflavonoids 오르쏘Ortho -- 탈메틸화를Demethylation 위한 일반적인 절차 General procedure for

호모이소플라보노이드 (0.12mmol)를 무수 CH2Cl2(4mL)에 넣고 교반한 용액에 BCl3 용액 (1.0M in CH2Cl2; 0.36mL)을 0℃, 질소 분위기 하에서 한 방울씩 가하였다. 혼합물을 0-5℃에서 1.5시간 동안 교반하였다. 반응 완료 후, H2O (5mL)를 첨가하고 15분 동안 교반한 후 CH2Cl2 (2x20mL)로 추출하였다. 혼합 유기용매층은 H2O (3x10mL)와 식염수 (2x10mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane = 1/3-1/1)로 조화합물을 정제하여 순수한 호모이소플라보노이드를 얻었다.Homoisoflavonoids (0.12 mmol) were added to anhydrous CH 2 Cl 2 (4 mL), and BCl 3 solution (1.0 M in CH 2 Cl 2 ; 0.36 mL) was added dropwise to the stirred solution under a nitrogen atmosphere at 0 ° C. The mixture was stirred at 0-5 ° C. for 1.5 h. After the reaction was completed, H 2 O (5 mL) was added and stirred for 15 minutes, followed by extraction with CH 2 Cl 2 ( 2 × 20 mL). The mixed organic solvent layer was washed with H 2 O ( 3 × 10 mL) and brine (2 × 10 mL), dried over anhydrous Na 2 SO 4 , and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 1) to obtain pure homoisoflavonoids.

5- 하이드록시 -3-(2- 하이드록시벤질 )-7- 메톡시크로만 -4-온 {5- Hydroxy -3-(2-hydroxybenzyl)-7-methoxychroman-4-one}(화합물 5): 수율: 86%; 백색 고체; 녹는점 128-130℃; 1H NMR (300MHz, CDCl3) δ 11.78 (1H, s), 7.12 (1H, td, J= 8.1, 1.8Hz), 7.06-7.01 (2H, m), 6.87-6.81 (2H, m), 6.03 (1H, d, J= 2.4 Hz), 5.96 (1H, d, J= 2.4Hz), 4.44 (1H, dd, J= 11.4, 4.5Hz), 4.17 (1H, t, J= 11.4Hz), 3.79 (3H, s), 3.17-3.07 (2H, m), 2.89-2.81 (1H, m); 13C NMR (75MHz, CDCl3) δ 199.3, 168.4, 164.4, 163.2, 154.5, 131.3, 128.6, 124.3, 120.6, 116.7, 102.8, 95.2, 94.2, 70.0, 55.9, 45.6, 27.4; EI-MS m/z300(M+), 299 (M-H), 193 (base), 165; HRMS: Calcd for C17H16O5(M+): 300.0998, found: 300.0995 5-hydroxy-3- (2-hydroxy-benzyl) -7-methoxy chroman-4-one 5-Hydroxy-3- {(2-hydroxybenzyl) -7-methoxychroman-4-one} (Compound 5) : yield: 86%; White solid; Melting point 128-130 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 11.78 (1H, s), 7.12 (1H, td, J = 8.1, 1.8 Hz), 7.06-7.01 (2H, m), 6.87-6.81 (2H, m), 6.03 (1H, d, J = 2.4 Hz), 5.96 (1H, d, J = 2.4 Hz), 4.44 (1H, dd, J = 11.4, 4.5 Hz), 4.17 (1H, t, J = 11.4 Hz), 3.79 (3H, s), 3.17-3.07 (2H, m), 2.89-2.81 (1H, m); 13 C NMR (75 MHz, CDCl 3 ) δ 199.3, 168.4, 164.4, 163.2, 154.5, 131.3, 128.6, 124.3, 120.6, 116.7, 102.8, 95.2, 94.2, 70.0, 55.9, 45.6, 27.4; EI-MS m / z 300 (M &lt; + &gt;), 299 (MH), 193 (base), 165; HRMS: Calcd for C 17 H 16 O 5 (M &lt; + &gt;): 300.0998, found: 300.0995

5- 하이드록시 -3-(2- 하이드록시벤질 )-6,7- 다이메톡시크로만 -4-온 {5-Hydroxy-3-(2-hydroxybenzyl)-6,7-dimethoxychroman-4-one}(화합물 9): 수율: 83%; 담황색 고체; 녹는점 135-137℃; 1H NMR (300MHz, CDCl3) δ 11.71 (1H, s), 7.12 (1H, t, J= 7.5Hz), 7.06 (1H, d, J= 7.5Hz), 6.98 (1H, br s), 6.87-6.81 (2H, m), 6.01(1H, s), 4.42 (1H, dd, J= 11.4, 4.2Hz), 4.21-4.14 (1H, m), 3.86 (3H, s), 3.81 (3H, s), 3.18-3.09 (2H, m), 2.87-2.79 (1H, m); 13C NMR (75MHz, CDCl3) δ 199.7, 161.3, 159.2, 155.2, 154.4, 131.3, 130.6, 128.6, 124.3, 120.7, 116.8, 102.9, 91.6, 70.2, 61.1, 56.4, 45.7, 27.3; EI-MS m/z330(M+, base), 313, 223, 152; HRMS: Calcd for C18H18O6(M+): 330.1103, found: 330.1095 5-hydroxy-3- (2-hydroxy-benzyl) -6,7-dimethoxy-chroman-4-one {5-Hydroxy-3- (2 -hydroxybenzyl) -6,7-dimethoxychroman-4-one } (Compound 9): yield: 83%; Pale yellow solid; Melting point 135-137 ° C .; 1 H NMR (300 MHz, CDCl 3 ) δ 11.71 (1H, s), 7.12 (1H, t, J = 7.5 Hz), 7.06 (1H, d, J = 7.5 Hz), 6.98 (1H, br s), 6.87 -6.81 (2H, m), 6.01 (1H, s), 4.42 (1H, dd, J = 11.4, 4.2 Hz), 4.21-4.14 (1H, m), 3.86 (3H, s), 3.81 (3H, s ), 3.18-3.09 (2H, m), 2.87-2.79 (1H, m); 13 C NMR (75 MHz, CDCl 3 ) δ 199.7, 161.3, 159.2, 155.2, 154.4, 131.3, 130.6, 128.6, 124.3, 120.7, 116.8, 102.9, 91.6, 70.2, 61.1, 56.4, 45.7, 27.3; EI-MS m / z 330 (M &lt; + &gt;, base), 313, 223, 152; HRMS: Calcd for C1 8 H 18 O 6 (M +): 330.1103, found: 330.1095

( E )-5- 하이드록시 -3-(2- 하이드록시벤질리덴 )-7- 메톡시크로만 -4-온 {( E )-5-Hydroxy-3-(2-hydroxybenzylidene)-7-methoxychroman-4-one}(화합물 6): 수율: 84%; 담황색 고체; 녹는점 172-174℃; 1HNMR (300MHz, CD3COCD3) δ 12.76 (1H, s), 9.09 (1H, br s), 8.02 (1H, s), 7.31 (1H, t, J= 7.8Hz), 7.16 (1H, d, J= 7.5Hz), 7.02 (1H, d, J= 7.8Hz), 6.42 (1H, t, J= 7.5Hz), 6.06 (1H, d, J= 2.1Hz), 5.99 (1H, d, J= 2.1Hz), 5.29 (2H, d, J= 1.8Hz), 3.86 (3H, s),; 13C NMR (75MHz, CD3COCD3) δ 186.9, 169.5, 166.6, 164.0, 157.9, 134.7, 133.0, 132.1, 130.5, 122.9, 121.1, 117.3, 104.6, 96.4, 95.1, 69.3, 57.0; EI-MS m/z298(M+), 281, 253, 131 (base); HRMS: Calcd for C17H14O5(M+): 298.0841, found: 298.0847 (E) -5- hydroxy-3- (2-hydroxy-benzylidene) -7-methoxy chroman-4-one {(E) -5-Hydroxy- 3- (2-hydroxybenzylidene) -7-methoxychroman -4-one} (Compound 6): yield: 84%; Pale yellow solid; Melting point 172-174 ° C; 1 HNMR (300 MHz, CD 3 COCD 3 ) δ 12.76 (1H, s), 9.09 (1H, br s), 8.02 (1H, s), 7.31 (1H, t, J = 7.8 Hz), 7.16 (1H, d , J = 7.5 Hz), 7.02 (1H, d, J = 7.8 Hz), 6.42 (1H, t, J = 7.5 Hz), 6.06 (1H, d, J = 2.1 Hz), 5.99 (1H, d, J = 2.1 Hz), 5.29 (2H, d, J = 1.8 Hz), 3.86 (3H, s); 13 C NMR (75 MHz, CD 3 COCD 3 ) δ 186.9, 169.5, 166.6, 164.0, 157.9, 134.7, 133.0, 132.1, 130.5, 122.9, 121.1, 117.3, 104.6, 96.4, 95.1, 69.3, 57.0; EI-MS m / z 298 (M &lt; + &gt;), 281, 253, 131 (base); HRMS: Calcd for C 17 H 14 O 5 (M &lt; + &gt;): 298.0841, found: 298.0847

시약reagent

에셔리치아 콜라이 (Escherichia Coli) 유래 지다당(LPS), DMSO (dimethylsulfoxide) 및 β-액틴 항체를 Sigma-Aldrich (St Louis, MO, USA)에서 구입하였다. DMEM (Dulbeccos modified Eagles medium), 우태혈청 (FBS), 페니실린 및 스트렙토마이신은 Hyclone (Logan, UT, USA)에서 구입하였다. Cell Titer 96®Aqueous One Solution 및 Griess 시약 시스템은 Promega (Madison, MI, USA)에서 구입하였다.Escherichia Coli-derived polysaccharide (LPS), DMSO (dimethylsulfoxide) and β-actin antibodies were purchased from Sigma-Aldrich (St Louis, MO, USA). DMEM (Dulbeccos modified Eagles medium), Fetal Bovine Serum (FBS), Penicillin and Streptomycin were purchased from Hyclone (Logan, UT, USA). Cell Titer 96® Aqueous One Solution and Griess reagent system were purchased from Promega (Madison, MI, USA).

세포배양 및 세포생존율 분석Cell Culture and Cell Viability Analysis

RAW 264.7 쥐 대식세포는 한국세포은행 (서울, 한국)에서 입수하여 10% 우태혈청, 100U/mL 페니실린 및 100㎍/mL 스트렙토마이신이 함유된 DMEM에서 37℃, 5% CO2 조건으로 배양하였다. 세포생존율에 미치는 다양한 화합물의 효과는 CellTiter 96® Aqueous One Solution Assay of cell proliferation (Promega, Madison, WI, USA)으로 시험하였는데, 이것은 생존세포를 계수하기 위하여 발색반응법을 이용한다. 이 분석법은 배양과정이 완료된 후 남아있는 생존세포 수를 측정하는데 이용하였다. RAW 264.7 세포는 96-웰의 평평한 바닥을 가진 플레이트에 2X104 세포 밀도가 되도록 놓고 각 화합물을 지시한 농도대로 각 플레이트에 가하였다. 24시간 배양 후 제조자의 지시대로 생존세포 수를 계수하였다. 이 분석방법은 테트라졸리움 화합물 MTS가 포마잔으로 환원되는 것에 기초한 것인데, 포마잔은 490㎚에서 최대 흡광도를 나타낸다. 따라서, 세포 배양액 내의 산물의 양은 490㎚에서 포마잔의 광학적 밀도로 나타내며, 이것은 직접적으로 생존세포 수와 비례한다.RAW 264.7 mouse macrophages were obtained from Korea Cell Bank (Seoul, Korea) and cultured at 37 ° C. and 5% CO 2 in DMEM containing 10% fetal bovine serum, 100 U / mL penicillin and 100 μg / mL streptomycin. The effect of various compounds on cell viability was tested by CellTiter 96® Aqueous One Solution Assay of cell proliferation (Promega, Madison, Wis., USA), which used colorimetric reactions to count viable cells. This assay was used to determine the number of viable cells remaining after the culture was completed. RAW 264.7 cells were plated in 2x10 4 plates with 96-well flat bottoms. Place to cell density and each compound was added to each plate at the indicated concentration. After 24 hours of incubation, viable cell counts were counted according to the manufacturer's instructions. This assay is based on the reduction of tetrazolium compound MTS to formazan, which shows the maximum absorbance at 490 nm. Thus, the amount of product in the cell culture is represented by the optical density of formazan at 490 nm, which is directly proportional to the number of viable cells.

NO 측정NO measurement

마우스 대식세포에 의해 생성된 NO의 양은 RAW 264.7 세포배양액 상층액에서 측정한 값으로 나타내었다. RAW 264.7 세포는 200μL의 배양배지가 든 96-웰 세포배양 플레이트에 5X104 세포 밀도가 되도록 가하고 12시간 동안 배양하였다. 세포에는 500ng/mL의 LPS와 화합물 1~10을 지시한 농도대로 넣고 18시간 동안 배양하였다. 생성된 NO의 양은 Griess reagent system (Promega)을 이용하여 제조자의 지시에 따라 측정하였다.The amount of NO produced by mouse macrophages was expressed as measured in RAW 264.7 cell culture supernatants. RAW 264.7 cells were stored in 5 × 10 4 cells in 96-well cell culture plates containing 200 μL culture medium. Cell density was added and incubated for 12 hours. The cells were put in 500ng / mL LPS and compounds 1-10 at the concentrations indicated and incubated for 18 hours. The amount of NO produced was measured according to the manufacturer's instructions using the Griess reagent system (Promega).

면역블롯팅Immunoblotting 분석 analysis

RAW 264.7 세포에서 이 화합물들이 iNOS 발현을 유도하는 능력을 알아보기 위하여 세포를 LPS 500ng/mL 존재 하에 각 화합물 10μM에 18시간 동안 노출하였다. 그 후 세포를 차가운 PBS로 세척하고, 100㎕의 세포 용균 완충액 (200mM Tris-HCl, pH 7.5, 125mM NaCl, 1% Triton X-100, 1mM MgCl2, 25mM β-글리세로포스페이트, 50mM NaF, 100μM Na3VO4, 1mM PMSF, 10㎍/ml 류펩틴 (leupeptin) 및 10㎍/ml 아프로티닌)을 각 시료에 가하였다. 단백질을 SDS (sodium dodecylsulfate)로 변성한 후 시료는 SDS-PAGE한 후 나이트로셀룰로스 막으로 전이하였다. 상온에서 5% 탈지분유를 함유하는 TBST (50mM Tris-HCl, pH 7.5, 150mM NaCl 및 0.1% tween-20) 완충액에 막을 노출하여 비특이적 결합을 저해하였다. 그 후 막은 iNOS 특이적 항체 (BD Biosciences) 및 β-액틴 특이적 항체 (Sigma)와 함께 4℃에서 밤새 배양하였다. 면역반응성 밴드는 시료를 호스래디쉬 퍼옥시데이즈-결합 이차 항체 및 증강 화학발광제 (Amersham Biosciences, Piscataway, NJ)와 함께 배양하여 탐지하였다.To determine the ability of these compounds to induce iNOS expression in RAW 264.7 cells, cells were exposed to 10 μM of each compound for 18 hours in the presence of 500 ng / mL LPS. The cells are then washed with cold PBS and 100 μl of cell lysis buffer (200 mM Tris-HCl, pH 7.5, 125 mM NaCl, 1% Triton X-100, 1 mM MgCl 2 , 25 mM β-glycerophosphate, 50 mM NaF, 100 μM Na 3 VO 4 , 1 mM PMSF, 10 μg / ml leupeptin and 10 μg / ml aprotinin) were added to each sample. After the protein was denatured with sodium dodecylsulfate (SDS), the sample was transferred to nitrocellulose membrane after SDS-PAGE. Nonspecific binding was inhibited by exposing the membrane to TBST (50 mM Tris-HCl, pH 7.5, 150 mM NaCl and 0.1% tween-20) buffer containing 5% skim milk powder at room temperature. The membrane was then incubated overnight at 4 ° C. with iNOS specific antibody (BD Biosciences) and β-actin specific antibody (Sigma). Immunoreactive bands were detected by incubating the samples with horseradish peroxidase-binding secondary antibodies and enhanced chemiluminescent agents (Amersham Biosciences, Piscataway, NJ).

도 4 설명4 Description

쥐의 대식세포에서 이 화합물들이 LPS-유도 iNOS 발현을 유도하는 능력을 알아보기 위하여 RAW 264.7 세포를 500ng/mL LPS와 각 화합물 10μM 또는 LPS 단독에 18시간 동안 노출하였다. 각 세포 용해물로부터 얻은 30㎍의 단백질을 10% SDS-PAGE로 분석하였다. 면역블롯팅은 상기와 같이 수행하였다. β-액틴을 대조군으로 사용하였다. 이미지 분석 소프트웨어를 사용하여 밴드를 정량하고, 담체-처리된 RAW 264.7 세포의 이미지와 비교한 상대 강도를 나타내었다.To determine the ability of these compounds to induce LPS-induced iNOS expression in mouse macrophages, RAW 264.7 cells were exposed to 500 ng / mL LPS and 10 μM of each compound or LPS alone for 18 hours. 30 μg of protein from each cell lysate was analyzed by 10% SDS-PAGE. Immunoblotting was performed as above. β-actin was used as a control. Bands were quantified using image analysis software and displayed relative intensity compared to images of carrier-treated RAW 264.7 cells.

Claims (12)

(가) 화학식 12로 표시되는 화합물 17, 화합물 12 또는 화합물 14에 DMF-DMA (N,N-dimethylformamide dimethyl acetal)를 가하여 90℃로 밤새 반응하여 축합한 후, 생성된 상응하는 아미노케톤 화합물을 각각 산 처리하여 화학식 18로 표시되는 상응하는 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18a, 18b 또는 18c를 각각 얻는 단계;
(나) 상기 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18a, 18b 또는 18c를 촉매 Pd/C를 이용하여 상온에서 수소화하여 화학식 19로 표시되는 상응하는 크로만-4-온 (chroman-4-ones) 화합물 19a, 19b 또는 19c를 각각 얻는 단계;
(다) 상기 크로만-4-온 (chroman-4-ones) 화합물 19a, 19b 또는 19c에 EtOH/H2O (5/1), KOH, KOH, 화학식 16으로 표시되는 화합물 16을 가하여 25-30℃로 10-24시간 응축반응하여 화학식 20으로 표시되는 상응하는 화합물 20a, 20b 또는 20c를 각각 얻는 단계; 및
(라) 1N HCl을 사용하여 상기 화합물 20a, 20b 또는 20c를 탈보호기화하여 화학식 1로 표시되는 상응하는 화합물 1, 3 또는 7을 각각 얻는 단계;를 포함하고,
상기 화합물 12는
(ㄱ) 화학식 10으로 표시되는 1,3,5-트리메톡시벤젠을 삼불화붕소다이에틸에테레이트 (boron trifluoride diethyl etherate)의 존재하에 아세트산 무수물로 처리하여 프리델-크라프츠 아실화 (Friedel-Crafts acylation) 반응으로 화학식 11로 표시되는 화합물 11을 얻는 단계; 및
(ㄴ) 상기 화합물 11에 AlCl3를 가하여 환류하여 선택적 오르쏘-탈메틸화 (ortho-demethylation) 반응으로 화합물 12를 얻는 단계;를 거쳐 생성되며,
상기 화합물 14는 화학식 13으로 표시되는 화합물 13에 Ac2O, Et3N, CH2Cl2를 가하여 상온에서 아세틸화하는 반응 및 BF3·Et2O, AcOH를 가하여 후속적인 재배열 반응으로 생성됨을 특징으로 하는 호모이소플라보노이드 화합물 합성방법.
<화학식 10>
Figure 112019083404788-pat00035

<화학식 11>
Figure 112019083404788-pat00036

<화학식 12>
Figure 112019083404788-pat00013

(단, 화합물 17: R1, R2 = H,
화합물 12: R1 = OMe, R2 = H,
화합물 14: R1, R2 = OMe)
<화학식 13>
Figure 112019083404788-pat00037

<화학식 18>
Figure 112019083404788-pat00014

(단, 화합물 18a: R1, R2 = H,
화합물 18b: R1 = OMe, R2 = H,
화합물 18c: R1, R2 = OMe)
<화학식 19>
Figure 112019083404788-pat00015

(단, 화합물 19a: R1, R2 = H,
화합물 19b: R1 = OMe, R2 = H,
화합물 19c: R1, R2 = OMe)
<화학식 16>
Figure 112019083404788-pat00016

<화학식 20>
Figure 112019083404788-pat00017

(단, 화합물 20a: R1, R2 = H,
화합물 20b: R1 = OMe, R2 = H,
화합물 20c: R1, R2 = OMe)
<화학식 1>
Figure 112019083404788-pat00018

(단, 화합물 1: R1, R2 = H,
화합물 3: R1 = OMe, R2 = H,
화합물 7: R1, R2 = OMe)
(A) Compound 17, Compound 12, or Compound 14 represented by Formula 12 DMF-DMA ( N, N- dimethylformamide dimethyl acetal) was added and reacted at 90 ° C. overnight, followed by acid treatment of the corresponding amino ketone compounds, respectively. The corresponding 4 H -chromen-4 represented by the formula (18). -one obtaining (4 H -chromen-4-ones ) compound 18a, 18b or 18c respectively;
(B) the 4 H - chromen-4-one (4 H -chromen-4-ones ) Compound 18a, 18b or 18c to a hydrogenation at normal temperatures by use of a catalyst Pd / C only the corresponding chroman of the formula 19 Obtaining -4-one (chroman-4-ones) compound 19a, 19b or 19c, respectively;
(C) 25- by adding EtOH / H 2 O (5/1), KOH, KOH, compound 16 represented by the formula (16) to the Chroman-4-one compound 19a, 19b or 19c Condensation reaction at 30 ° C. for 10-24 hours to obtain corresponding compounds 20a, 20b, or 20c represented by Formula 20, respectively; And
(D) deprotecting the compound 20a, 20b or 20c using 1N HCl to obtain corresponding compounds 1, 3 or 7 represented by Formula 1, respectively;
Compound 12 is
(A) Treating 1,3,5-trimethoxybenzene represented by the formula (10) with acetic anhydride in the presence of boron trifluoride diethyl etherate, Friedel-Crafts acylation (Friedel- Obtaining a compound 11 represented by Chemical Formula 11 by a crafts acylation reaction; And
(B) optionally ortho to reflux was added AlCl 3 to the compound 11 to obtain the demethylated compound 12 with (ortho -demethylation) reaction; is generated via a,
Compound 14 is produced by the reaction of acetylation at room temperature by adding Ac 2 O, Et 3 N, CH 2 Cl 2 to compound 13 represented by Formula 13 and subsequent rearrangement by adding BF 3 · Et 2 O, AcOH Method for synthesizing homoisoflavonoid compounds, characterized in that.
<Formula 10>
Figure 112019083404788-pat00035

<Formula 11>
Figure 112019083404788-pat00036

<Formula 12>
Figure 112019083404788-pat00013

(Compound 17: R 1 , R 2 = H,
Compound 12: R 1 = OMe, R 2 = H,
Compound 14: R 1 , R 2 = OMe)
<Formula 13>
Figure 112019083404788-pat00037

<Formula 18>
Figure 112019083404788-pat00014

(Compound 18a: R 1 , R 2 = H,
Compound 18b: R 1 = OMe, R 2 = H,
Compound 18c: R 1 , R 2 = OMe)
<Formula 19>
Figure 112019083404788-pat00015

(Compound 19a: R 1 , R 2 = H,
Compound 19b: R 1 = OMe, R 2 = H,
Compound 19c: R 1 , R 2 = OMe)
<Formula 16>
Figure 112019083404788-pat00016

<Formula 20>
Figure 112019083404788-pat00017

(Compound 20a: R 1 , R 2 = H,
Compound 20b: R 1 = OMe, R 2 = H,
Compound 20c: R 1 , R 2 = OMe)
<Formula 1>
Figure 112019083404788-pat00018

(Compound 1: R 1 , R 2 = H,
Compound 3: R 1 = OMe, R 2 = H,
Compound 7: R 1 , R 2 = OMe)
청구항 1에 있어서,
상기 (라) 단계 이후
(마) 상기 화합물 1,3 또는 7을 Pd/C 촉매를 이용하여 수소화 반응하여 화학식 2로 표시되는 상응하는 호모이소플라보노이드 화합물 2, 4 또는 8을 각각 얻는 단계;가 더 부가되는 것을 특징으로 하는 호모이소플라보노이드 화합물 합성방법.
<화학식 2>
Figure 112019083404788-pat00019

(단, 화합물 2: R1, R2 = H,
화합물 4: R1 = OMe, R2 = H,
화합물 8: R1, R2 = OMe)
The method according to claim 1,
After step (d)
(E) hydrogenating the compounds 1, 3 or 7 with a Pd / C catalyst to obtain the corresponding homoisoflavonoid compounds 2, 4 or 8, respectively represented by Formula 2; Method for synthesizing homoisoflavonoid compounds.
<Formula 2>
Figure 112019083404788-pat00019

(Compound 2: R 1 , R 2 = H,
Compound 4: R 1 = OMe, R 2 = H,
Compound 8: R 1 , R 2 = OMe)
청구항 2에 있어서,
상기 (마) 단계 이후
(바) 상기 화합물 2 또는 8을 1.0M BCl3를 사용하여 CH2Cl2 내에서 선택적 오르쏘-탈메틸화 반응으로 화학식 5로 표시되는 상응하는 화합물 5 또는 9를 각각 얻는 단계;가 더 부가되는 것을 특징으로 하는 호모이소플라보노이드 화합물 합성방법.
<화학식 5>
Figure 112019083404788-pat00020

(단, 화합물 5: R1 = OH, R2 = H,
화합물 9: R1 = OH, R2 = OMe)
The method according to claim 2,
After step (e)
(F) obtaining the corresponding compounds 5 or 9, respectively, by the selective ortho-demethylation reaction in CH 2 Cl 2 using 1.0 M BCl 3 , respectively, corresponding compounds 5 or 9; Method for synthesizing homoisoflavonoid compounds, characterized in that.
<Formula 5>
Figure 112019083404788-pat00020

(Compound 5: R 1 = OH, R 2 = H,
Compound 9: R 1 = OH, R 2 = OMe)
청구항 1에 있어서,
상기 화합물 16은 클로로메틸에틸에테르, K2CO3 및 TBAI(tetrabutylammonium iodide)를 이용하여 화학식 15로 표시되는 살리실알데하이드를 에톡시메틸 보호기화하여 생성됨을 특징으로 하는 호모이소플라보노이드 화합물 합성방법.
<화학식 15>
Figure 112018012925114-pat00021

The method according to claim 1,
The compound 16 is a method for synthesizing a homoisoflavonoid compound, characterized in that produced by the ethoxymethyl protecting group of the salicylic aldehyde represented by the formula (15) using chloromethyl ethyl ether, K 2 CO 3 and TBAI (tetrabutylammonium iodide).
<Formula 15>
Figure 112018012925114-pat00021

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180014410A 2018-02-06 2018-02-06 Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof KR102060412B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180014410A KR102060412B1 (en) 2018-02-06 2018-02-06 Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180014410A KR102060412B1 (en) 2018-02-06 2018-02-06 Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof

Publications (2)

Publication Number Publication Date
KR20190094819A KR20190094819A (en) 2019-08-14
KR102060412B1 true KR102060412B1 (en) 2019-12-30

Family

ID=67621983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180014410A KR102060412B1 (en) 2018-02-06 2018-02-06 Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof

Country Status (1)

Country Link
KR (1) KR102060412B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385884B (en) * 2022-08-23 2023-04-25 辽宁中医药大学 Extraction and separation method of neochronol in purslane and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Agric. Food Chem. 58, 4126-4131, (2010)*
Bioorganic & Medicinal Chemistry Letters 17, 6764-6769, (2007)*
Phytochemistry 80, 37-41, (2012)*

Also Published As

Publication number Publication date
KR20190094819A (en) 2019-08-14

Similar Documents

Publication Publication Date Title
Xu et al. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae
KR101997515B1 (en) Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof
US8193377B2 (en) (−)-epigallocatechin gallate derivatives for inhibiting proteasome
US20110144194A1 (en) Chromenone derivatives useful for the treatment of neurodegenerative diseases
Hu et al. Synthesis and cytotoxicity of novel chrysin derivatives
Liang et al. Synthesis and in vitro and in vivo antitumour activity study of 11-hydroxyl esterified bergenin/cinnamic acid hybrids
Saito et al. Versatile synthesis of epicatechin series procyanidin oligomers, and their antioxidant and DNA polymerase inhibitory activity
Morikawa et al. Structures of new flavonoids, erycibenins D, E, and F, and NO production inhibitors from Erycibe expansa originating in Thailand
KR102060412B1 (en) Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof
Roldán et al. Synthesis and biological evaluation of simplified pironetin analogues with modifications in the side chain and the lactone ring
Rahim et al. Microwave Assisted Efficient Synthesis of Some Flavones for Antimicrobial and ADMET Studies.
Shoaib et al. Synthetic flavonols and flavones: A future perspective as anticancer agents.
EP2984072B1 (en) Synthetic analogues of xanthohumol
CN109734759B (en) Catalpol derivative and application thereof
Al-Maqtari et al. Synthesis and characterization of heterocyclic chalcones containing halogenated thiophenes
Sauvain et al. Isolation of flavans from the amazonian shrub Faramea guianensis
US10188743B2 (en) Cytisine-linked isoflavonoid antineoplastic agents for the treatment of cancer
US20160362401A1 (en) Process for total synthesis of flavonoid compounds and isomers thereof
Choi et al. (+)-Catechin, an antioxidant principle from the leaves of Pinus densiflora that acts on 1, 1-diphenyl-2-picrylhydrazyl radical
KR101825614B1 (en) C-methylisoflavones and their derivatives and producing methods thereof
WO2008020625A1 (en) Dibenzoylmethane compound and pharmaceutical composition comprising the compound as active ingredient
KR101457638B1 (en) A pyrazolylnaphthalenol derivative, preparation method thereof and composition for anti-cancer comprising the pyrazolylnaphthalenol derivative
AU2005259327A1 (en) Substituted hydroxyacetophenon derivatives
Zhang et al. Synthesis and Antiproliferative In‐Vitro Activity of Natural Flavans and Related Compounds
Jaiswal et al. Synthesis and evaluation of novel heterocyclic chromene derivatives as antimicrobial and antioxidant agents

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant