KR101997515B1 - Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof - Google Patents

Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof Download PDF

Info

Publication number
KR101997515B1
KR101997515B1 KR1020180014403A KR20180014403A KR101997515B1 KR 101997515 B1 KR101997515 B1 KR 101997515B1 KR 1020180014403 A KR1020180014403 A KR 1020180014403A KR 20180014403 A KR20180014403 A KR 20180014403A KR 101997515 B1 KR101997515 B1 KR 101997515B1
Authority
KR
South Korea
Prior art keywords
compound
formula
nmr
cdcl
compounds
Prior art date
Application number
KR1020180014403A
Other languages
Korean (ko)
Inventor
전종갑
다모다르 콩가라
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020180014403A priority Critical patent/KR101997515B1/en
Application granted granted Critical
Publication of KR101997515B1 publication Critical patent/KR101997515B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Inventors of the present invention synthesized natural homoisoflavonoid portulacanone D (compound 6) isolated from Portulaca oleracea L (POL). An ability to inhibit NO production in LPS-induced RAW 264.7 macrophages was assessed as an indicator of anti-inflammatory activity. The tested portulacanone D did not show clear cytotoxicity and inhibited NO production in the RAW 264.7 macrophages in a concentration dependent manner. The portulacanone D exhibits 92.5% of NO production inhibition at 10 μM and has an IC50 value of 2.09 μM. The finding has additional correlation with the suppressed expression of iNOS induced by LPS. According to the information obtained from the study of the present invention, the portulacanone D can be used in the development of anti-inflammatory drugs targeting NO production.

Description

포르툴라카논 D 합성방법 및 이를 포함하는 항염증 약학 조성물 {Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof}TECHNICAL FIELD The present invention relates to a method for synthesizing a porphyran canon D and an anti-inflammatory pharmaceutical composition containing the same,

본 발명은 Portulaca oleracea L (POL)로부터 분리된 천연 호모이소플라보노이드 화합물인 포르툴라카논 D (화합물 6)를 합성하는 방법 및 이를 포함하는 항염증 약학 조성물에 관한 것이다.The present invention relates to a method for synthesizing a natural homoisoflavonoid compound, Portulaca cannon D (Compound 6), isolated from Portulaca oleracea L (POL) and an antiinflammatory pharmaceutical composition containing the same.

염증은 병원체, 손상된 세포 또는 자극 물질에 의한 감염에 대한 신체 세포/조직의 기본적인 보호 반응이다(1,2). 염증은 치료 과정의 시작으로 여겨지며 급성 또는 만성 염증으로 나눌 수 있다. 하나는 감염 또는 상해에 대한 숙주의 적응성 방어 메커니즘이며 자체 제한적(self-limiting)인 반면, 다른 하나는 당뇨병, 관절염 및 암을 비롯한 다양한 질환을 유발할 수 있다. 염증 과정 동안 산화질소 (NO), 프로스타글란딘 (PG), 혈관 활성 아민 (히스타민, 세로토닌), 류코트리엔 (LT), 사이토카인 (종양 괴사 인자 및 인터루킨-1, 12)이 혈장 단백질로서 분비되거나 비만 세포, 호중구, 혈소판 및 단핵 식세포/대식세포와 같은 세포에서 분비된다. 이런 매개물질들은 세포의 특정 표적 수용체에 결합하여 혈관 투과성을 증가시키고, 평활근 수축을 촉진하며, 호중구 주화성을 촉진하고, 직접적인 효소 활성을 증가하며, 통증을 유도하고/또는 산화성 손상을 중재한다(3).Inflammation is a basic cellular / tissue protective response to infection by pathogens, damaged cells, or stimulants (1,2). Inflammation It is thought to be the beginning of the treatment process and can be divided into acute or chronic inflammation. One is a host's adaptive defense mechanism for infection or injury and is self-limiting, while the other can cause diverse diseases including diabetes, arthritis and cancer. During the inflammation process, nitric oxide (NO), prostaglandin (PG), vasoactive amines (histamine, serotonin), leukotriene (LT), cytokines (tumor necrosis factor and interleukin- Neutrophils, platelets, and mononuclear cells / macrophages. These mediators bind to specific target receptors in cells to increase vascular permeability, promote smooth muscle contraction, promote neutrophil chemotaxis, increase direct enzymatic activity, induce pain and / or mediate oxidative damage 3).

산화질소는 산화질소 합성효소 (내피-NOS, 신경-NOS 및 유도-NOS)에 의해 아미노산 L-아르기닌으로부터 합성되는 중요한 신호전달분자 중 하나이다. 산화질소는 다양한 생리적 및 병리 생리학적 과정을 조절하며 NO의 농도는 염증 발생에서 결정적인 역할을 수행한다(4). 내피-NOS 및 신경-NOS에 의해 생성되는 생리학적 NO 농도가 높으면 세포 생존 및 증식이 촉진되는 반면 유도-NOS에 의해 생성되는 NO 농도가 높으면 세포주기가 정지되고 세포 사멸이 촉진된다(5). 수퍼 옥사이드와 수산화 라디칼과 같은 활성산소종과 NO의 상호 작용은 NO 농도의 감소로 이어지며, 신호전달 활성을 방해하고, 그 결과 얻어지는 활성 질소종(reactive nitrogen species)은 산화 및 질산화 스트레스 (oxidative and nitrosative stress) 반응을 증가시킬 수 있다(6). 비스테로이드성 항염증제(non-steroidal anti-inflammatory drugs), 스테로이드 및 항히스타민제는 통증, 염증 및 발열 치료에 일반적으로 선호되지만, 이 약제들은 단점이 있다. 따라서, 염증성 질환에 대한 여러 가지 치료적 개입 중에서 NO 생산 캐스케이드와의 약리학적 간섭이 유망한 전략으로 주장되고 있다. Nitric oxide is one of the important signaling molecules synthesized from amino acid L-arginine by nitric oxide synthase (endothelial-NOS, neuron-NOS and induced-NOS). Nitric oxide controls various physiological and pathophysiological processes, and NO concentration plays a crucial role in the development of inflammation (4). High levels of physiological NO produced by endothelial-NOS and neuro-NOS stimulate cell survival and proliferation, whereas higher levels of NO induced by induction-NOS arrest cell cycle and promote apoptosis (5). The interaction of NO with reactive oxygen species, such as superoxide and hydroxyl radicals, leads to a reduction in NO concentration, inhibits signal transduction activity, and the resulting reactive nitrogen species is oxidative and nitric oxide nitrosative stress responses (6). Non-steroidal anti-inflammatory drugs, steroids and antihistamines are generally preferred for the treatment of pain, inflammation and fever, but these drugs have disadvantages. Therefore, pharmacological intervention with NO production cascade among various therapeutic interventions for inflammatory diseases has been advocated as a promising strategy.

자연적으로 발생하는 플라보노이드 화합물, 특히 호모이소플라보노이드로 알려진 플라보노이드의 서브클래스는 최근 몇 년간 큰 생물학적 잠재력을 보여 주었다(7,8). 종래 연구들은 호모이소플라보노이드의 항산화, 항염증, 항박테리아, 항곰팡이, 항바이러스, 항세포독성, 항돌연변이 및 항당뇨병 활성을 보여준다(8,9). 이 외에도 몇몇 유도체들은 효소 억제 특성을 나타냈다(10).Naturally occurring flavonoid compounds, particularly the subclasses of flavonoids known as homoisoflavonoids, have shown great biological potential in recent years (7, 8). Previous studies have shown antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, anti-cytotoxic, antimutagenic and anti-diabetic activities of homoisoflavonoids (8,9). In addition, some derivatives exhibited enzyme inhibition properties (10).

Tan 등은 식물 포르툴라카 올레라세아 L. (Portulaca oleracea L.; POL)에서 포르툴라카논 (portulacanone) A-D (도 1)라는 4개의 호모이소플라보노이드를 분리하였으며, 포르툴라카 올레라세아 L. 식용 식물로뿐만 아니라 광범위한 질병을 완화하는 민간의약으로 사용되는 널리 분포하는 약용식물이다(11). 이 화합물들은 분리 후 SGC-7901, NCI-H460, K-562 및 SF-268을 포함하는 4종의 인간 종양세포주에 대하여 시험관 내에서 세포독성 활성을 나타내었다(11). 지금까지 포르툴라카논 A-D의 합성 및 이 화합물들과 그 유도체들의 NO 생성에 관한 어떠한 보고도 없다.Tan et al. Plant formate Tula car oleic la Seah L. (Portulaca oleracea L.; POL) formate Tula canon (portulacanone) were isolated four homo iso flavonoid called AD (Fig. 1), formate Tula car oleic la Seah L. in silver It is a widely distributed medicinal plant used as a private medicine to alleviate a wide range of diseases as well as edible plants (11). These compounds exhibited in vitro cytotoxic activity on four human tumor cell lines including SGC-7901, NCI-H460, K-562 and SF-268 after isolation (11). So far, there has been no report on the synthesis of portulaca cannon AD and NO production of these compounds and their derivatives.

Quintans J. Immunol Cell Biol. 1994;72:262-264. Quintans J. Immunol Cell Biol. 1994; 72: 262-264. Fullerton JN, Gilroy DW. Nat. Rev Drug Discov. 2016;15:551-567.Fullerton JN, Gilroy DW. Nat. Rev Drug Discov. 2016; 15: 551-567. Coleman JW. Clin Exp Immunol. 2002;129:4-10.Coleman JW. Clin Exp Immunol. 2002; 129: 4-10. Lyons CR. Adv Immunol. 1995;60:323-371.Lyons CR. Adv Immunol. 1995; 60: 323-371. Lundberg JON et al., Nat Med. 1997; 3:30-31.Lundberg JON et al., Nat Med. 1997; 3: 30-31. Thomas DD et al., Free Radic Biol Med. 2008;45:18-31.Thomas DD et al., Free Radic Biol Med. 2008; 45: 18-31. Andersen, ØM et al., Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, CRC Press; 2006. Andersen, ØM et al., Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, CRC Press; 2006. Lin L-G et al., Planta Med. 2014;80:1053-1066.Lin L-G et al., Planta Med. 2014; 80: 1053-1066. Abegaz BM et al., Nat Prod Commun. 2007;2:475-498.Abegaz BM et al., Nat Prod. Commun. 2007; 2: 475-498. Lin LG et al., J Med Chem. 2008;51:4419-4429.Lin LG et al., J Med Chem. 2008; 51: 4419-4429. Jian Yan J et al., Phytochemistry 2012;80:37-41.Jian Yan J et al., Phytochemistry 2012; 80: 37-41. Iranshahy M et al., J Ethnopharmacol. 2017;205:158-172.Iranshahy M et al., J Ethnopharmacol. 2017; 205: 158-172. Damodar K, Kim J-K, Jun J-G. Tetrahedron Lett. 2017;58:50-53.Damodar K, Kim J-K, Jun J-G. Tetrahedron Lett. 2017; 58: 50-53. Seo YH, Damodar K, Kim J-K, Jun J-G. Bioorg Med Chem Lett. 2016;26:1521-1524.Seo YH, Damodar K, Kim J-K, Jun J-G. Bioorg Med Chem Lett. 2016; 26: 1521-1524. Kontogiorgis CA, Hadjipavlou-Litina D. Med Res Rev. 2002;22:385-418.Kontogiorgisca, Hadjipavlou-Litina D. Med Res Rev. 2002; 22: 385-418.

본 발명은 포르툴라카논 D 합성방법을 제공하려는 것을 목적으로 한다.It is an object of the present invention to provide a method for synthesizing Portulaca cannon D.

또한, 본 발명은 포르툴라카논 D의 생물활성을 연구하여 유용한 약제를 제공하려는 것을 목적으로 한다.The present invention also aims to provide a useful drug by studying the biological activity of Portulaca cannon D.

산화질소 억제제로서 생물활성을 지닌 천연 산물 및 그 유사체의 합성과 평가에 초점을 맞춘 지속되는 연구의 일환으로 본 발명에서는 자연에서 생성되는 포르툴라카논 D (화합물 6)를 합성하였다 (도 2).As a continuing study focused on the synthesis and evaluation of natural products having biological activity as nitric oxide inhibitors and their analogues, the present invention synthesized naturally occurring porphylan canon D (compound 6) (Fig. 2).

포르툴라카논 또는 그 유도체 (화합물 1-9)의 합성은 상업적으로 이용 가능한 1,3,5-트리메톡시벤젠 (화합물 10)의 프리델-크라프츠 아실화 (Friedel-Crafts acylation)로 시작되었다 (도 2). 삼불화붕소다이에틸에테레이트 (boron trifluoride diethyl etherate, BF3·Et2O)의 존재하에 아세트산 무수물로 화합물 10을 처리하여 화합물 11을 수율 89%로 얻었다. 화합물 11은 AlCl3를 사용하여 선택적 오르쏘-탈메틸화 (ortho-demethylation)되어 화합물 12를 수율 87%로 얻었다. 또 다른 아세토페논 14는 화합물 13에서 얻은 것이다. 화합물 13의 아세틸화 및 후속적인 재배열로 두 단계에 걸쳐 93%의 현저한 수율로 화합물 14를 얻었다. 클로로메틸에틸에테르 (EOM-Cl), K2CO3 및 TBAI(tetrabutylammonium iodide)를 이용하여 살리실알데히드 (화합물 15)의 에톡시메틸 (EOM) 에테르로 보호기화한 화합물 16을 수율 83%로 얻었다. 다음으로, 시판중인 2-하이드록시-4-메톡시아세토페논 (화합물 17), 화합물 12 및 화합물 14를 DMF-DMA (N,N-dimethylformamide dimethyl acetal)로 축합한 후, 생성된 아미노 케톤을 산 처리하여 상응하는 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18a-18c를 각각 수율 88-91%로 얻었다. 화합물 18a-18c의 촉매를 이용한 수소화로 상응하는 크로만-4-온 (chroman-4-ones) 화합물 19a-19c를 얻었다.The synthesis of the porutulacanone or its derivatives (compounds 1-9) was initiated with the Friedel-Crafts acylation of commercially available 1,3,5-trimethoxybenzene (compound 10) 2). Compound 10 was treated with acetic anhydride in the presence of boron trifluoride diethyl etherate (BF 3 .Et 2 O) to give compound 11 in 89% yield. Compound 11 using AlCl 3 selective ortho-demethylated to give the compound 12 is (ortho -demethylation) in a yield of 87%. Another acetophenone 14 was obtained from compound 13. Compound 14 was obtained with a significant yield of 93% over two steps by acetylation of compound 13 and subsequent rearrangement. Compound 16 protected with ethoxymethyl (EOM) ether of salicylaldehyde (compound 15) was obtained in 83% yield using chloromethyl ethyl ether (EOM-Cl), K 2 CO 3 and TBAI (tetrabutylammonium iodide) . Next, commercially available 2-hydroxy-4-methoxyacetophenone (Compound 17), Compound 12 and Compound 14 DMF-DMA (N, N -dimethylformamide dimethyl acetal) corresponding After condensation, the resulting amino ketone to the acid treatment with 4 H-chromen-4-one (4 H -chromen-4-ones ) compound 18a-18c Respectively, in a yield of 88-91%. Hydrogenation with the catalyst of compounds 18a-18c gave the corresponding chroman-4-ones 19a-19c.

화합물 19a-19c와 화합물 16을 얻은 다음, 우리는 알돌 응축 반응을 연구하였다. 처음에는 p-톨루엔설폰산 (pTsOH)과 벤젠을 사용하여 화합물 19b와 화합물 15 사이의 반응을 시도했는데 성공하지 못했다. 다음으로, 30-100℃에서 DMF 용매뿐만 아니라 벤젠 용매에서 염기로서 피페리딘을 사용하는 화합물 19b와 16의 응축 반응에서 화합물 20b를 낮은 수율 (20% 미만)로 얻었다. 만족스럽게, 우리는 EtOH/H2O (5/1)에서 KOH가 화합물 19b와 화합물 16의 응축에 효과적이라는 것을 확인하였다. 이어서, 화합물 19a 및 화합물 19c와 화합물 16의 반응으로 각각 화합물 20a (48%)와 화합물 20c (25%)를 얻었다. 1N HCl을 사용한 화합물 20a-20c의 탈보호기화로 화합물 1, 3 및 7을 고수율로 얻었다. 화합물 1, 3 및 7의 촉매를 이용한 수소화 반응으로 호모이소플라보노이드 화합물 2, 4 및 8을 각각 수율 86-91%로 얻었다. 마지막으로, 1.0M BCl3 (CH2Cl2 용액 내에서)를 사용하여 화합물 4, 8 및 3의 선택적 오르쏘-탈메틸화로 남은 3개의 표적 화합물 5, 9 및 6을 잘 합성하였다. 모든 최종 화합물 1-9의 구조는 스펙트럼 데이터 (1H, 13C NMR 및 MS)로 결정했다.After obtaining compounds 19a-19c and compound 16, we studied the aldol condensation reaction. Initially, the reaction between compound 19b and compound 15 was attempted using p -toluenesulfonic acid ( p TsOH) and benzene, which was unsuccessful. Next, compound 20b was obtained in a low yield (less than 20%) in the condensation reaction of compounds 19b and 16 using piperidine as base in benzene solvent as well as DMF solvent at 30-100 ° C. Satisfactory, we have found that KOH in EtOH / H 2 O (5/1) is effective for condensation of compound 19b and compound 16. Compound 20a (48%) and compound 20c (25%) were obtained by the reaction of Compound 19a and Compound 19c with Compound 16, respectively. Compounds 1, 3 and 7 were obtained in high yield by deprotection of compounds 20a-20c using 1N HCl. Hydrogenation reaction using the catalysts of the compounds 1, 3 and 7 yielded homoisoflavonoid compounds 2, 4 and 8, respectively, in a yield of 86-91%. Finally, the three target compounds 5, 9 and 6 remaining by selective ortho-demethylation of compounds 4, 8 and 3 were synthesized well using 1.0 M BCl 3 (in CH 2 Cl 2 solution). The structure of all final compounds 1-9 was determined by spectral data ( 1 H, 13 C NMR and MS).

합성한 호모이소플라보노이드 (화합물 1-9)에 대하여 LPS로 유도된 RAW 264.7 대식세포에서 NO 생성을 억제하는 능력을 분석하였다. RAW 264.7 대식세포를 LPS로 처리하면 NO 생성이 유도된다는 것이 잘 알려져 있다. L-NMMA (N G-monomethyl-L-arginine)는 NO 생성을 현저히 억제한다고 보고되었다(15). 본 발명에서는 RAW 264.7 대식세포를 LPS로 유도하고, 0.1, 1, 10, 25, 50 및 100μM 농도의 화합물 1-9 및 L-NMMA를 대조군으로 사용하여 NO 생성 및 세포 생존율을 측정하였다. 그러나 25, 50 및 100μM 농도에서 화합물 1-9는 거의 동일한 수준의 활성을 보였다 (도 3). 1 내지 10μM에서 NO 생성 억제의 유의한 변화가 관찰되었다. 따라서 본 발명자들은 합성한 화합물 1-9를 1과 10μM 농도에서만 분석하였다. 대식세포로부터 나온 NO의 농도는 그리스 시약 (Griess reagent)을 사용하여 배양 상등액에 NO의 안정한 산화 생성물인 아질산염의 농도를 측정함으로써 결정하였다. The ability of RAW 264.7 macrophages induced by LPS to inhibit NO production on the synthesized homoiso flavonoids (Compound 1-9) was analyzed. It is well known that treatment of RAW 264.7 macrophages with LPS induces NO production. L-NMMA (N G -monomethyl- L-arginine) was reported to significantly inhibit the NO production (15). In the present invention, RAW 264.7 macrophages were induced to LPS and NO production and cell viability were measured using compounds 1-9 and L-NMMA at concentrations of 0.1, 1, 10, 25, 50 and 100 μM as a control. However, at 25, 50 and 100 μM concentrations, compound 1-9 showed almost the same level of activity (FIG. 3). A significant change in inhibition of NO production was observed at 1 to 10 μM. Therefore, the present inventors analyzed the synthesized Compound 1-9 only at concentrations of 1 and 10 μM. The concentration of NO from macrophages was determined by measuring the concentration of nitrite, a stable oxidation product of NO, in the culture supernatant using a Griess reagent.

Compound
Compound
NO Production (% inhibition)NO Production (% inhibition)
1μM1 μM 10μM 10 μM IC50 (μM)IC 50 ([mu] M) LPSLPS 100.0 ± 0.8 (0.0)100.0 + - 0.8 (0.0) 100.0 ± 0.8 (0.0)100.0 + - 0.8 (0.0) -- 1One 71.6 ± 1.4 (28.4)***71.6 ± 1.4 (28.4) *** 8.6 ± 1.2 (91.4)***8.6 ± 1.2 (91.4) *** 1.751.75 22 90.8 ± 1.7 (9.2)*90.8 + 1.7 (9.2) * 80.3 ± 6.5 (19.7)***80.3 ± 6.5 (19.7) *** 14.1714.17 33 61.5 ± 1.7 (38.5)***61.5 + 1.7 (38.5) *** 2.8 ± 0.7 (97.2)***2.8 ± 0.7 (97.2) *** 1.261.26 44 102.8 ± 1.7 (-2.8)102.8 + 1.7 (-2.8) 79.5 ± 7.3 (20.5)***79.5 + - 7.3 (20.5) *** 14.1714.17 55 97.2 ± 1.7 (2.8)97.2 + 1.7 (2.8) 62.0 ± 2.1 (38.0)***62.0 + - 2.1 (38.0) *** 12.4212.42 66 78.9 ± 2.0 (21.1)***78.9 ± 2.0 (21.1) *** 7.5 ± 0.8 (92.5)***7.5 ± 0.8 (92.5) *** 2.092.09 77 83.8 ± 1.9 (16.2)**83.8 ± 1.9 (16.2) ** 17.0 ± 0.8 (83.0)***17.0 + - 0.8 (83.0) *** 2.912.91 88 124.6 ± 17.6 (-24.6)124.6 ± 17.6 (-24.6) 84.1 ± 2.7 (15.9)84.1 ± 2.7 (15.9) 13.4313.43 99 111.8 ± 1.3 (-11.8)*111.8 ± 1.3 (-11.8) * 65.9 ± 2.9 (34.1)***65.9 ± 2.9 (34.1) *** 12.1612.16 L-NMMAL-NMMA 112.5 ± 4.6 (-12.5)112.5 + - 4.6 (-12.5) 85.8 ± 6.4 (14.2)85.8 ± 6.4 (14.2) 16.1116.11

시험한 모든 화합물 1-9는 RAW 264.7 대식세포에서 농도 의존적으로 NO 생성을 감소시켰다 (표 1). NO 저해 백분율은 가장 높은 (10μM) 농도에서 97.2%에서 15.9%의 범위였다. 화합물 1-9 중 4개의 화합물, 즉 화합물 3 (97.2%), 화합물 6 (포르툴라카논 D) (92.5%), 화합물 1 (91.4%) 및 화합물 7 (83.0%)이 10μM에서 가장 효율적인 저해 효과를 보였다 (표 1 및 도 3). 가장 낮은 농도 (1μM)에서, 화합물 3은 여전히 RAW 264.7 대식세포에서 NO 생성 (38.5%)을 현저하게 감소시켰다. 화합물 1-9의 IC50 값을 GraphPad Prism 4.0 소프트웨어로 평가하였고, 각각 1.75, 14.17, 1.26, 14.17, 12.42, 2.09, 2.91, 13.43 및 12.16μM을 나타내었다 (표 1).All tested compounds 1-9 decreased NO production in a concentration-dependent manner in RAW 264.7 macrophages (Table 1). The percent inhibition of NO ranged from 97.2% to 15.9% at the highest concentration (10 μM). The most effective inhibitory effect of 4 compounds of Compound 1-9, namely Compound 3 (97.2%), Compound 6 (Fortulacanone D) (92.5%), Compound 1 (91.4%) and Compound 7 (83.0% (Table 1 and Fig. 3). At the lowest concentration (1 μM), Compound 3 still significantly reduced NO production (38.5%) in RAW 264.7 macrophages. The IC 50 values of the compounds 1-9 were evaluated with GraphPad Prism 4.0 software and showed 1.75, 14.17, 1.26, 14.17, 12.42, 2.09, 2.91, 13.43 and 12.16 μM, respectively (Table 1).

CompoundCompound Proliferation effectProliferation effect 1μM1 μM 10μM10 μM 50μM50 μM 100μM100 μM Medium(MED)Medium (MED) 100.0 ± 2.4100.0 ± 2.4 100.0 ± 2.4100.0 ± 2.4 100.0 ± 2.4100.0 ± 2.4 100.0 ± 2.4100.0 ± 2.4 1One 101.8 ± 1.5101.8 ± 1.5 97.7 ± 13.397.7 ± 13.3 11.0 ± 0.1***11.0 ± 0.1 *** 11.1 ± 0.2***11.1 ± 0.2 *** 22 152.1 ± 2.4***152.1 ± 2.4 *** 118.3 ± 1.1118.3 ± 1.1 49.4 ± 3.9***49.4 ± 3.9 *** 31.5 ± 0.3***31.5 ± 0.3 *** 33 107.6 ± 12.0107.6 ± 12.0 113.6 ± 5.5113.6 ± 5.5 13.3 ± 1.6***13.3 ± 1.6 *** 11.7 ± 0.9***11.7 ± 0.9 *** 44 98.6 ± 10.598.6 ± 10.5 164.6 ± 8.3**164.6 8.3 ** 55.2 ± 1.0***55.2 ± 1.0 *** 41.3 ± 1.4***41.3 ± 1.4 *** 55 97.7 ± 0.997.7 ± 0.9 81.1 ± 4.8**81.1 ± 4.8 ** 34.2 ± 2.0***34.2 ± 2.0 *** 12.5 ± 0.2***12.5 ± 0.2 *** 66 94.0 ± 4.494.0 ± 4.4 97.0 ± 4.697.0 + - 4.6 10.7 ± 0.1***10.7 ± 0.1 *** 11.0 ± 0.1***11.0 ± 0.1 *** 77 94.6 ± 3.594.6 ± 3.5 93.4 ± 2.893.4 ± 2.8 11.8 ± 0.1***11.8 ± 0.1 *** 10.9 ± 0.3***10.9 ± 0.3 *** 88 89.6 ± 2.989.6 ± 2.9 87.2 ± 3.2*87.2 ± 3.2 * 58.7 ± 2.6***58.7 ± 2.6 *** 44.0 ± 1.4***44.0 ± 1.4 *** 99 97.6 ± 5.497.6 ± 5.4 96.7 ± 2.096.7 ± 2.0 41.1 ± 5.3***41.1 ± 5.3 *** 15.5 ± 0.3***15.5 ± 0.3 ***

a결과는 n=3에 대한 평균값±SEM이다 (*P <0.05, **P <0.01 및 ***P<0.001). a Results are mean ± SEM for n = 3 ( * P <0.05, ** P <0.01 and *** P <0.001).

화합물 1-9의 NO 억제 효과가 세포 사멸로 인한 것이 아님을 확인하기 위해 RAW 264.7 대식세포에 대한 화합물의 세포 독성을 MTT 분석으로 시험하였다. 그 결과, 시험 화합물 1-9 모두 24시간 동안 10μM 농도에서 탐지할 만한 세포 독성이 관찰되지 않았고, NO 생산을 효과적으로 억제하였다 (표 2). 화합물 1-9가 50μM과 100μM에서 NO 생성에 대해 우수한 억제활성을 나타냈지만, 이는 대식세포에 대한 화합물 1-9의 세포 독성 효과 때문일 가능성이 크다 (도 3 및 표 2). 50μM 및 100μM에서의 세포 생존율은 각각 10.7-58.7% 및 10.9-44.0%의 범위에 불과했다. 웨스턴 블랏 분석을 이용하여 이 억제효과가 iNOS의 조절과 관련이 있는지를 평가하였다. 도 4에 나타낸 바와 같이, 그 결과는 NO 생산과 관련된 결과와 일치하였으며 (표 1 및 도 3), RAW 264.7 세포에서 LPS에 의해 유도된 iNOS의 단백질 발현은 화합물 1, 3, 6 및 7 처리에 의해 현저하게 억제되었다. 그러나 이들 화합물은 항존 유전자(housekeeping gene)인 β-액틴의 발현에는 영향을 미치지 않았다. 이것은 이러한 화합물 노출로 인한 iNOS의 발현 감소가 NO 생산 억제에 책임이 있음을 나타낸다. 본 발명에서는 제한된 수의 화합물, 즉 단지 9개의 화합물을 스크리닝했기 때문에, 충분한 구조-활성 관계 (SAR) 분석은 불가능하다. 그러나 다음은 주목할 만하다.: 1) 화합물 1, 3, 6 및 7이 NO의 저해에 가장 효과적이었으므로 C3와 C11 사이의 이중 결합이 결정적인 것으로 보인다. 2) 화합물 (1, 3, 6 및 7)을 포함하여 C3 및 C11 이중 결합 중에, 2개의 메톡시기 (-OMe)를 갖는 화합물 (화합물 3) 또는 하나의 메톡시기 (-OMe) 및 하나의 하이드록시기 (-OH)를 갖는 화합물 (화합물 1)이 하나의 메톡시기를 갖는 화합물 (화합물 1) 및 3개의 메톡시기를 갖는 화합물 (화합물 7)을 갖는 화합물보다 우수한 NO 억제 활성을 나타낸다. 3) 화합물 6 (포르툴라카논 D)의 강한 NO 저해 효과는 염증성 질환의 치료에서 포르툴라카 올레라세아 L. (Portulaca oleracea L.) 식물의 유용성을 지지하고 이 종의 전통적인 지시를 입증하는데 도움을 줄 수 있다.To confirm that the NO inhibitory effect of compounds 1-9 was not due to apoptosis, the cytotoxicity of compounds against RAW 264.7 macrophages was examined by MTT assay. As a result, no detectable cytotoxicity was observed at a concentration of 10 μM for 24 hours in all of the test compounds 1-9, and effectively suppressed NO production (Table 2). Compounds 1-9 showed excellent inhibitory activity against NO production at 50 μM and 100 μM, but this is likely due to the cytotoxic effect of compounds 1-9 on macrophages (FIG. 3 and Table 2). Cell viability at 50 μM and 100 μM was only in the range of 10.7-58.7% and 10.9-44.0%, respectively. Western blot analysis was used to assess whether this inhibitory effect was related to the modulation of iNOS. As shown in Fig. 4, the results were in agreement with the results related to NO production (Table 1 and Fig. 3) and protein expression of LPS-induced iNOS in RAW 264.7 cells was inhibited by treatment with compounds 1, 3, 6 and 7 Lt; / RTI &gt; However, these compounds did not affect the expression of the β-actin, a housekeeping gene. This indicates that decreased expression of iNOS due to this compound exposure is responsible for inhibiting NO production. Because the present invention screened a limited number of compounds, i.e. only nine compounds, sufficient structure-activity relationship (SAR) analysis is not possible. However, the following are noteworthy: 1) Since compounds 1, 3, 6 and 7 were most effective at inhibiting NO, the double bond between C3 and C11 appears to be crucial. 2) A compound (compound 3) or one methoxy group (-OMe) having two methoxy groups (-OMe) and one hydroxymethoxy group (-OMe) in the C3 and C11 double bonds including the compounds (1,3,6 and 7) A compound having a lock time (-OH) (compound 1) exhibits an NO inhibitory activity superior to a compound having a compound having one methoxy group (compound 1) and a compound having three methoxy groups (compound 7). 3) help to compound 6 (PORT NO strong inhibitory effect of Tula Canon D) is in the treatment of inflammatory diseases support the usefulness of the formate Tula car plant oleic la Seah Portulaca oleracea L. (L.), and demonstrate the traditional indication of this species .

결론적으로, 본 발명자들은 포르툴라카 올레라세아 L. (Portulaca oleracea L.)에서 분리된 천연 호모이소플라보노이드 (±)-포르툴라카논 A-C (화합물 4,8,9), 포르툴라카논 D (화합물 6)와 그 유도체들 (화합물 3, 5 및 7)과 공지의 유도체들 (화합물 1 및 2)을 시판 화합물로부터 합성하였다. 이들 합성한 화합물에 대하여 LPS로 유도된 RAW 264.7 대식세포에서 항염증 활성의 지표로 NO 생성을 억제하는 능력을 평가하였다. 시험한 모든 화합물은 명확한 세포독성을 나타내지 않았으며, RAW 264.7 대식세포에서 농도 의존적으로 NO 생성을 억제하였다. 화합물 3 (10μM에서 억제율 97.2%; IC50 = 1.26μM), 화합물 6 (포르툴라카논 D) (10μM에서 억제율 92.5%; IC50 = 2.09μM), 화합물 1 (10μM에서 억제율 91.4%; IC50 = 1.75μM) 및 화합물 7 (10μM에서 억제율 83.0%; IC50 = 2.91μM)은 합성한 화합물 중 상당한 억제효과를 나타냈다. 이 발견은 LPS에 의해 유도된 iNOS의 발현 억제와 관련이 있다. 본 발명에서 얻은 정보는 화합물 3을 NO 생산 표적 항염증 약물 개발을 위한 선도 구조로 간주할 수 있는 기반을 제공할 수 있고, 또한 염증성 질환 치료에 민간 약용 식물로서의 포르툴라카 올레라세아 L. (Portulaca oleracea L.)의 유용성에 대한 과학적 증거를 제공할 수 있다. In conclusion, the inventors formate Tula car oleic la Seah L. (Portulaca oleracea L.) Natural flavonoid Homo isopropyl (±) away from the-formyl Tula Canon AC (compound 4,8,9), formate Tula Canon D (Compound 6) and its derivatives (compounds 3, 5 and 7) and known derivatives (compounds 1 and 2) were synthesized from commercially available compounds. The ability of these compounds to inhibit NO production as an indicator of antiinflammatory activity in RAW 264.7 macrophages induced by LPS was evaluated. All the compounds tested did not show definite cytotoxicity and inhibited NO production in a concentration dependent manner in RAW 264.7 macrophages. Compound 3 (97.2% inhibition at 10μM; IC 50 = 1.26μM), compound 6 (PORT Tula Canon D) (92.5% inhibition at 10μM; IC 50 = 2.09μM), Compound 1 (91.4% inhibition at 10μM; IC 50 = 1.75μM) and compound 7 (83.0% inhibition at 10μM; IC 50 = 2.91μM) showed a significant inhibitory effect of the synthesized compounds. This finding is related to the inhibition of LPS-induced expression of iNOS. The information obtained in the present invention can provide a basis for considering that Compound 3 can be regarded as a leading structure for the development of NO production target antiinflammatory drugs and can also be used as a medicinal plant for the treatment of inflammatory diseases such as Portulaca oleraceae L. Portulaca oleracea L. ) can provide scientific evidence for its usefulness.

본 발명은 화학식 1로 표시되는 화합물 3에 1.0M BCl3를 사용하여 선택적 오르쏘-탈메틸화 반응으로 화학식 6으로 표시되는 호모이소플라보노이드 화합물인 포르툴라카논 D를 합성하는 방법에 관한 것이다. 이하 모든 화학식은 도 2에 도시된 것을 참조한다. The present invention relates to a method for synthesizing a homoeisoplononoid compound represented by the formula (6), PORTULA CANON D, by selective ortho-demethylation using 1.0 M BCl 3 to the compound 3 represented by the formula (1). All the following chemical formulas refer to those shown in Fig.

<화학식 1>&Lt; Formula 1 >

Figure 112018012921389-pat00001
Figure 112018012921389-pat00001

(단, 화합물 3: R1 = OMe, R2 = H)(Provided that Compound 3: R 1 = OMe, R 2 = H)

<화학식 6>(6)

Figure 112018012921389-pat00002
Figure 112018012921389-pat00002

또한, 본 발명에서 상기 화합물 3은 In addition, in the present invention,

(가) 화학식 12로 표시되는 화합물 12를 DMF-DMA (N,N-dimethylformamide dimethyl acetal)로 축합한 후, 생성된 아미노 케톤을 산 처리하여 화학식 18로 표시되는 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18b를 얻는 단계;(A) Compound 12 represented by the formula (12) DMF-DMA (N, N-dimethylformamide dimethyl acetal), and the resulting amino ketone was acid-treated to obtain 4H-Chromen-4-one (4H-chromen-4-ones) compound 18b;

(나) 상기 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18b를 촉매를 이용하여 수소화하여 화학식 19로 표시되는 크로만-4-온 (chroman-4-ones) 화합물 19b를 얻는 단계;(B) the 4 H - chromen-4-one (4 H -chromen-4-ones ) of the compound 18b chroman hydrogenated by using a catalyst represented by the formula (19) 4-one (chroman-4-ones) To obtain compound 19b;

(다) 상기 크로만-4-온 (chroman-4-ones) 화합물 19b에 EtOH/H2O (5/1), KOH, 화학식 16으로 표시되는 화합물 16를 가하여 응축반응하여 화학식 20으로 표시되는 화합물 20b를 얻는 단계; 및(C) Addition of EtOH / H 2 O (5/1), KOH and the compound 16 represented by the formula (16) to the chroman-4-ones compound 19b followed by a condensation reaction, To obtain compound 20b; And

(라) 1N HCl을 사용하여 상기 화합물 20b를 탈보호기화하여 화학식 1로 표시되는 화합물 3을 얻는 단계;로 생성됨을 특징으로 한다.(D) deprotecting the compound 20b with 1N HCl to obtain the compound 3 represented by the formula (1).

<화학식 12>&Lt; Formula 12 >

Figure 112018012921389-pat00003
Figure 112018012921389-pat00003

(단, 화합물 12: R1 = OMe, R2 = H)(Compound 12: R 1 = OMe, R 2 = H)

<화학식 18>&Lt; Formula 18 >

Figure 112018012921389-pat00004
Figure 112018012921389-pat00004

(단, 화합물 18b: R1 = OMe, R2 = H)(Compound 18b: R 1 = OMe, R 2 = H)

<화학식 19>(19)

Figure 112018012921389-pat00005
Figure 112018012921389-pat00005

(단, 화합물 19b: R1 = OMe, R2 = H)(Provided that Compound 19b: R 1 = OMe, R 2 = H)

<화학식 16>&Lt; Formula 16 >

Figure 112018012921389-pat00006
Figure 112018012921389-pat00006

<화학식 20>(20)

Figure 112018012921389-pat00007
Figure 112018012921389-pat00007

(단, 화합물 20b: R1 = OMe, R2 = H)(Compound 20b: R 1 = OMe, R 2 = H)

또한, 본 발명은 화학식 6으로 표시되는 포르툴라카논 D를 포함하는 항염증 약학 조성물에 관한 것이다.The present invention also relates to an anti-inflammatory pharmaceutical composition comprising a phytulacanone D represented by the general formula (6).

본 발명의 합성방법에 의하면 포르툴라카 올레라세아 L. (Portulaca oleracea L.) 유래 화합물인 포르툴라카논 D를 높은 수율로 합성할 수 있다.According to the synthesis method of the present invention can be synthesized in the formate Tula car oleic la years old child (Portulaca oleracea L.) L.-derived compound, formate Tula Canon D in high yield.

또한, 본 발명의 방법으로 합성된 포르툴라카논 D는 세포독성을 나타내지 않으며, 우수한 항염증 활성을 나타내어 염증질환의 치료제로 이용할 수 있다.Furthermore, the phytulacanone D synthesized by the method of the present invention does not exhibit cytotoxicity and exhibits excellent anti-inflammatory activity and can be used as a therapeutic agent for inflammatory diseases.

도 1은 포르툴라카논 A-D (화합물 4, 8, 9 및 6) 및 그 유도체 (화합물 1-3, 5 및 7)의 구조이다.
도 2는 본 발명의 포르툴라카논 A-D 및 그 유도체의 합성방법에 관한 반응식을 도시한 것이다. 시약 및 조건 : (a) Ac2O, BF3·Et2O, EtOAc, 상온, 4시간, 89%; (b) AlCl3, CH2Cl2, 환류, 22시간, 87%; (c) (i) Ac2O, Et3N, CH2Cl2, 상온, 6시간; (ii) BF3·Et2O, AcOH, 70℃, 2시간, 93% (2단계 전체); (d) 클로로메틸 에틸 에테르, K2CO3, TBAI (Tetrabutylammonium iodide), 아세톤, 0℃-상온, 24시간, 83%; (e) N,N-디메틸포름아마이드 다이메틸 아세탈, 벤젠, 90℃, 밤새 반응, 88-91%; (f) H2, Pd/C (10%), MeOH, 상온, 0.75-1시간, 83-87%; (g) KOH, EtOH/H2O (5/1), 25-30℃, 10-24시간, 25-48%; (h) 1N HCl, MeOH, 55℃, 1시간, 85-88%; (i) H2, Pd/C (10%), MeOH, 상온, 0.75-1시간, 86-91%; (j) 1.0 M BCl3 (in CH2Cl2), CH2Cl2, 0℃-상온, 3시간, 83-86%.
도 3은 LPS로 유도된 RAW 264.7 대식세포에서 NO 생성에 대한 호모이소플라보노이드 1-9의 억제 활성을 나타낸 그래프이다.
도 4는 iNOS 발현에 대한 화합물 1-9의 효과를 시험한 결과이다.
Figure 1 shows the structure of Portulaca cannon AD (Compounds 4, 8, 9 and 6) and its derivatives (Compounds 1-3, 5 and 7).
Fig. 2 shows reaction schemes for the synthesis method of the present invention of portulaca cannon AD and its derivatives. Reagents and conditions: (a) Ac 2 O, BF 3 .Et 2 O, EtOAc, room temperature, 4 h, 89%; (b) AlCl 3 , CH 2 Cl 2 , reflux, 22h, 87%; (c) (i) Ac 2 O, Et 3 N, CH 2 Cl 2 , room temperature, 6 h; (ii) BF 3 .Et 2 O, AcOH, 70 ° C, 2 h, 93% (two steps overall); (d) Chloromethyl ethyl ether, K 2 CO 3 , TBAI (Tetrabutylammonium iodide), acetone, 0 ° C. - room temperature, 24 hours, 83%; (e) N, N -dimethylformamide dimethyl acetal, benzene, 90 [deg.] C overnight reaction, 88-91%; (f) H 2 , Pd / C (10%), MeOH, room temperature, 0.75-1 h, 83-87%; (g) KOH, EtOH / H 2 O (5/1), 25-30 ℃, 10-24 hours, 25-48%; (h) 1N HCl, MeOH, 55 [deg.] C, 1 h, 85-88%; (i) H 2 , Pd / C (10%), MeOH, room temperature, 0.75-1 h, 86-91%; (j) 1.0 M BCl 3 (in CH 2 Cl 2 ), CH 2 Cl 2 , 0 ° C - room temperature, 3 hours, 83-86%.
Figure 3 is a graph depicting the inhibitory activity of homoisoflavonoid 1-9 on NO production in RAW 264.7 macrophages induced by LPS.
Figure 4 shows the results of testing the effect of compounds 1-9 on iNOS expression.

아래에서는 구체적인 실시예를 들어 본 발명의 구성을 좀 더 자세히 설명한다. 그러나, 본 발명의 범위가 실시예의 기재에만 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.Hereinafter, the configuration of the present invention will be described in more detail with reference to specific embodiments. However, it is apparent to those skilled in the art that the scope of the present invention is not limited to the description of the embodiments.

화학 물질 등Chemicals

모든 화학 물질은 특별한 언급이 없는 한 구입한 그대로 정제하지 않고 사용하였다. 반응에 사용한 모든 용매는 질소 가스 하에서 적절한 탈수제로부터 증류되었다. 크로마토그래피에 사용한 모든 용매는 구입하여 별도의 정제 없이 바로 사용하였다. 박막 크로마토그래피 (TLC)는 DC-Plastikfolien 60, F254 (Merck,층 두께 0.2mm) 플라스틱판에 실리카젤을 입힌 플레이트를 이용하였고, UV (254nm)를 이용하여 관찰하거나 또는 p-아니스알데히드 및/또는 포스포몰리브딕산 (PMA)으로 염색하여 관찰하였다. 크로마토그래피 정제는 Kieselgel 60 (60-120mesh, Merck)을 이용하여 수행하였다. 1H-NMR 스펙트럼은 Varian Mercury-300MHz FT-NMR 및 13C에 대해서는 75MHz로 기록하였고, 화학적 이동 (δ)은 TMS에 대하여 ppm (parts per million)으로 나타내었고, 커플링 상수 (J)는 Hz로 인용하였다. 피크 분열 패턴은 s (singlet), d (doublet), t (triplet), dd (doublet of doublet) 및 m (multiplet)으로 약칭하고, CDCl3/CD3COCE3는 용매 및 내부 스탠다드로 이용하였다. 고해상도 질량 스펙트럼 전기 분무 이온화 (HRMS-ESI)는 Agilent technologies 6220 TOF LC / MS 분광기를 이용하여 기록하였다. 녹는점은 MEL-TEMP Ⅱ 장치에서 측정하고, 보정하지 않았다.All chemicals were used without purification as purchased unless otherwise noted. All solvents used in the reaction were distilled from the appropriate dehydrating agent under nitrogen gas. All solvents used in the chromatography were purchased and immediately used without further purification. Thin film chromatography (TLC) was carried out using a plate coated with silica gel on a DC-Plasticfolien 60, F254 (Merck, layer thickness 0.2 mm) plastic plate and observed with UV (254 nm) or with p-anisaldehyde and / And stained with phosphomolybdic acid (PMA). Chromatographic purification was performed using Kieselgel 60 (60-120 mesh, Merck). The 1 H-NMR spectra were recorded on Varian Mercury-300 MHz FT-NMR and 75 MHz for 13 C, chemical shifts (δ) were expressed in parts per million (ppm) relative to TMS, coupling constants (J) Respectively. The peak splitting pattern was abbreviated as s (singlet), d (doublet), t (triplet), dd (doublet of doublet) and m (multiplet). CDCl 3 / CD 3 COCE 3 was used as solvent and internal standard. High resolution mass spectroscopy electrospray ionization (HRMS-ESI) was recorded using an Agilent technologies 6220 TOF LC / MS spectrometer. Melting points were measured on the MEL-TEMP II apparatus and not calibrated.

1-(2,4,6-1- (2,4,6- 트리메톡시페닐Trimethoxyphenyl )) 에타논Ethanone {1-(2,4,6- {1- (2,4,6- TrimethoxyphenylTrimethoxyphenyl )) ethanoneethanone } (화합물 11):} (Compound 11):

1,3,5-트리메톡시벤젠 (0.84g, 5.00mmol) 및 무수 아세트산 (0.47mL, 7.50mmol)를 에틸 아세테이트 (5mL)에 혼합하고, BF3.Et2O (0.32mL, 2.50mmol)를 질소 분위기 하에서 서서히 가하였다. 반응물을 상온으로 가온하고 4시간 동안 교반하였다. 반응 완료 후, H2O (40mL)를 가하고, 15분 동안 교반한 후, 반응 혼합물을 에틸 아세테이트 (3x30mL)로 추출하였다. 혼합 유기용매층은 포화 NaHCO3 용액 (2x20mL), H2O (2x20mL), 식염수 (20mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/3-1/2)로 조화합물을 정제하여 순수한 백색 고체 화합물 (0.94g, 89%)을 얻었다. 녹는점 98-100℃ (Lit.1101-103℃); 1H NMR (300MHz, CDCl3) δ6.09 (2H, s), 3.82 (3H, s), 3.79 (6H, s), 2.46 (3H, s); 13C NMR (75MHz, CDCl3) δ201.7, 162.3, 158.4, 113.7, 90.7, 56.0, 55.6, 32.8.1,3,5-trimethoxy benzene (0.84g, 5.00mmol) and anhydrous acetic acid (0.47mL, 7.50mmol) were mixed in ethyl acetate (5mL), BF 3 .Et 2 O (0.32mL, 2.50mmol) Was slowly added under a nitrogen atmosphere. The reaction was warmed to room temperature and stirred for 4 hours. After completion of the reaction, H 2 O (40 mL) was added and after stirring for 15 minutes, the reaction mixture was extracted with ethyl acetate (3 x 30 mL). The combined organic solvent layers were washed with saturated NaHCO 3 solution ( 2 x 20 mL), H 2 O ( 2 x 20 mL), brine (20 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 2) to obtain a pure white solid compound (0.94 g, 89%). Melting point 98-100 ° C (Lit. 1 101-103 ° C); 1 H NMR (300 MHz, CDCl 3 )? 6.09 (2H, s), 3.82 (3H, s), 3.79 (6H, s), 2.46 (3H, s); 13 C NMR (75MHz, CDCl 3 ) δ201.7, 162.3, 158.4, 113.7, 90.7, 56.0, 55.6, 32.8.

1-(2-1- (2- 하이드록시Hydroxy -4,6--4,6- 다이메톡시페닐Dimethoxyphenyl )) 에타논Ethanone {1-(2- {1- (2- HydroxyHydroxy -4,6-dimethoxyphenyl)ethanone} (화합물 12):-4,6-dimethoxyphenyl) ethanone} (Compound 12):

화합물 11 (0.9g, 4.28mmol)을 무수 CH2Cl2 (10mL)에 넣고 교반한 용액에 질소 분위기 하에서 AlCl3 (0.71g, 5.35mmol)를 가하고, 혼합물을 22시간 동안 환류하였다. 반응 완료 후 0℃로 냉각하고 1N HCl (6mL)을 첨가하고 혼합물을 상온에서 15분 동안 교반하였다. 혼합물을 CH2Cl2 (2x50mL)로 추출하였다. 혼합 유기용매층은 H2O (2x25mL)와 식염수 (20mL)로 세척하고, 무수 Na2SO4로 건조하여 진공 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/4)로 조화합물을 정제하여 순수한 백색 고체 화합물을 얻었다 (0.72g, 87%). 녹는점 79-80℃ (문헌상 녹는점은 81-82℃); 1H NMR (300MHz, CDCl3) δ6.03 (1H, d, J=2.1Hz), 5.90 (1H, d, J= 2.1Hz), 3.84 (3H, s), 3.80 (3H, s), 2.60 (3H, s); 13C NMR (75MHz, CDCl3) δ203.1, 167.6, 166.1, 162.9, 106.1, 93.6, 90.8, 55.8, 33.2.Compound 11 (0.9 g, 4.28 mmol) was dissolved in anhydrous CH 2 Cl 2 (10 mL), and to the stirred solution was added AlCl 3 (0.71 g, 5.35 mmol) in a nitrogen atmosphere, and the mixture was refluxed for 22 hours. After completion of the reaction, the mixture was cooled to 0 ° C, 1N HCl (6 mL) was added, and the mixture was stirred at room temperature for 15 minutes. The mixture was extracted with CH 2 Cl 2 (2 x 50 mL). The combined organic solvent layers were washed with H 2 O ( 2 x 25 mL) and brine (20 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1/4) to give pure white solid compound (0.72 g, 87%). Melting point 79-80 占 폚 (literally melting point 81-82 占 폚); 1 H NMR (300MHz, CDCl 3 ) δ6.03 (1H, d, J = 2.1Hz), 5.90 (1H, d, J = 2.1Hz), 3.84 (3H, s), 3.80 (3H, s), 2.60 (3H, s); 13 C NMR (75MHz, CDCl 3 ) δ203.1, 167.6, 166.1, 162.9, 106.1, 93.6, 90.8, 55.8, 33.2.

1-(6-1- (6- 하이드록시Hydroxy -2,3,4--2,3,4- 트리메톡시페닐Trimethoxyphenyl )) 에타논Ethanone {1-(6- {1- (6- HydroxyHydroxy -2,3,4-trimethoxyphenyl)ethanone} (화합물 14):-2,3,4-trimethoxyphenyl) ethanone} (Compound 14):

3,4,5-트리메톡시페놀 (화합물 13) (1.55g, 8.42mmol)을 무수 CH2Cl2(16mL)에 넣고 교반한 용액에 Et3N (2.36mL, 16.63mmol)를 가하고 상온에서 15분 동안 교반하였다. 무수 아세트산 (1.2mL, 12.62mmol)을 가하고 상온에서 6시간 동안 교반하였다. 반응 완료 후, CH2Cl2 (80mL)로 희석하고, 2N HCl (8mL), H2O (2x20mL), 식염수 (20mL)로 세척하고 무수 Na2SO4로 건조하여, 진공 농축하였다. 아세틸화된 무색 고체 화합물 (1.88g, 99%)을 얻고, 이를 추가 정제 없이 다음 단계에 사용하였다. 녹는점 68-70℃; 1H NMR (300MHz, CDCl3) δ 6.32(2H, s), 3.82(9H, s), 2.28(3H, s); 13C NMR (75MHz, CDCl3) δ 169.5, 153.5, 146.8, 136.0, 99.3, 61.1, 56.4, 21.4. 3,4,5-trimethoxyphenol (compound13) (1.55 g, 8.42 mmol) was dissolved in anhydrous CH2Cl2(16 mL) and to the stirred solution was added Et3N (2.36 mL, 16.63 mmol) was added, and the mixture was stirred at room temperature for 15 minutes. Acetic anhydride (1.2 mL, 12.62 mmol) was added thereto, and the mixture was stirred at room temperature for 6 hours. After completion of the reaction, CH2Cl2 (80 mL), washed with 2N HCl (8 mL), H2O (2 x 20 mL), brine (20 mL), dried Na2SO4, &Lt; / RTI &gt; and concentrated in vacuo. Acetylated colorless solid compound (1.88 g, 99%) was obtained which was used in the next step without further purification. Melting point 68-70 ° C;One&Lt; 1 &gt; H NMR (300 MHz, CDCl33) [delta] 6.32 (2H, s), 3.82 (9H, s), 2.28 (3H, s);13C NMR (75 MHz, CDCl33) [delta] 169.5, 153.5, 146.8, 136.0, 99.3, 61.1, 56.4, 21.4.

상기 3,4,5-트리메톡시페닐 아세테이트 (1.88g, 8.33mmol)를 AcOH (2.2mL)에 넣고 교반한 용액에 BF3·Et2O (3.6mL, 29.16mmol)를 상온의 질소 분위기 하에서 한 방울씩 가하였다. 생성된 혼합물을 70℃에서 2시간 동안 교반하였다. 반응 완료 후 상온으로 식히고 얼음물 (5mL)을 넣고 15분 동안 교반하였다. 혼합물을 EtOAc (3x35mL)로 추출하였다. 혼합 유기용매층은 H2O(3x20mL), 식염수 (2x20mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하고, 담황색 액체 화합물 14 (1.77g, 94%)를 얻고, 추가 정제 없이 다음 단계에 사용하였다. 1H NMR (300MHz, CDCl3) δ 6.22 (1H, s), 3.98 (3H, s), 3.86 (3H, s), 3.77 (3H, s), 2.65 (3H, s); 13C NMR (75MHz, CDCl3) δ 203.3, 161.9, 160.1, 155.3, 134.8, 108.6, 96.3, 61.2, 61.1, 56.3, 32.1.BF 3揃 Et 2 O (3.6 mL, 29.16 mmol) was added to a solution of 3,4,5-trimethoxyphenylacetate (1.88 g, 8.33 mmol) in AcOH (2.2 mL) I went a drop. The resulting mixture was stirred at 70 &lt; 0 &gt; C for 2 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, ice water (5 mL) was added thereto, and the mixture was stirred for 15 minutes. The mixture was extracted with EtOAc (3 x 35 mL). The combined organic solvent layers were washed with H 2 O (3 x 20 mL), brine ( 2 x 20 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo to give a light yellow liquid compound 14 (1.77 g, 94% And used for the next step without. 1 H NMR (300 MHz, CDCl 3 )? 6.22 (1H, s), 3.98 (3H, s), 3.86 (3H, s), 3.77 (3H, s), 2.65 13 C NMR (75 MHz, CDCl 3 )? 203.3, 161.9, 160.1, 155.3, 134.8, 108.6, 96.3, 61.2, 61.1, 56.3, 32.1.

2-(2-( 에톡시메톡시Ethoxymethoxy )) 벤즈알데하이드Benzaldehyde {2-( {2-( EthoxymethoxyEthoxymethoxy )) benzaldehydebenzaldehyde } (화합물 16):} (Compound 16):

살리실알데하이드 (0.53mL, 5.00mmol)를 무수 아세톤 (12mL)에 넣고 교반한 용액에 K2CO3 (1.38g, 20.00mmol)를 질소 분위기 하에서 첨가하고, 0℃로 식혔다. 20분 동안 교반한 후, 클로로메틸 에틸 에테르 (EOM-Cl) (0.56mL, 6.0mmol)를 한 방울씩 가한 다음, TBAI (tetrabutylammonium iodide) (0.2mmol, 0.1당량)의 무수 아세톤 (3.0mL) 용액을 가하였다. 생성된 혼합물을 상온으로 가온하고 24시간 동안 교반하였다. 반응 완료 후, 셀라이트® 패드로 여과하고 아세톤 (10mL)으로 세척하고, 여과액을 진공 농축하였다. 조생성물을 EtOAc (60mL)에 용해하고, H2O (3x15mL), 식염수 (15mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/10)로 조화합물을 정제하여 거의 무색 오일의 순수한 EOM-보호 알데하이드 화합물 16 (0.75g, 83%)을 얻었다. 1H NMR (300MHz, CDCl3) δ 10.47 (1H, s), 7.82 (1H, d, J= 7.5Hz), 7.52 (1H, td, J= 8.1, 2.1Hz), 7.23 (1H, d, J= 8.1Hz), 7.06 (1H, td, J= 7.5, 2.1Hz), 5.34 (2H, s), 3.77 (2H, q, J= 7.0Hz), 1.24 (3H, t, J= 7.0Hz); 13C NMR (75MHz, CDCl3) δ 189.7, 159.8, 135.9, 128.3, 125.4, 121.7, 115.1, 93.4, 65.0, 15.4.Salicylaldehyde (0.53 mL, 5.00 mmol) was added to anhydrous acetone (12 mL) and to the stirred solution was added K 2 CO 3 (1.38 g, 20.00 mmol) was added under a nitrogen atmosphere and cooled to 0 &lt; 0 &gt; C. After stirring for 20 min, a solution of chloromethyl ethyl ether (EOM-Cl) (0.56 mL, 6.0 mmol) was added dropwise followed by the addition of a solution of tetrabutylammonium iodide (0.2 mmol, 0.1 eq.) In anhydrous acetone Were added. The resulting mixture was warmed to room temperature and stirred for 24 hours. After completion of the reaction, the reaction product was filtered through a pad of Celite®, washed with acetone (10 mL), and the filtrate was concentrated in vacuo. The crude product was dissolved in EtOAc (60 mL), washed with H 2 O (3 x 15 mL), brine (15 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1/10) to give pure EOM-protected aldehyde compound 16 (0.75 g, 83%) as a colorless oil. 1 H NMR (300MHz, CDCl 3 ) δ 10.47 (1H, s), 7.82 (1H, d, J = 7.5Hz), 7.52 (1H, td, J = 8.1, 2.1Hz), 7.23 (1H, d, J = 8.1 Hz), 7.06 (1H, td, J = 7.5, 2.1 Hz), 5.34 (2H, s), 3.77 (2H, q, J = 7.0 Hz), 1.24 (3H, t, J = 7.0 Hz); 13 C NMR (75MHz, CDCl 3 ) δ 189.7, 159.8, 135.9, 128.3, 125.4, 121.7, 115.1, 93.4, 65.0, 15.4.

치환된 4Substituted 4 HH -- 크로멘Kromen -4-온 (4(4 HH -- chromenchromen -4-ones)의 일반적인 제조 방법-4-one)

치환된 2-하이드록시아세토페논 (1.4mmol)을 무수 벤젠 (4mL)에 넣고 교반한 용액에 N,N-다이메틸포름아마이드 다이메틸 아세탈 (4.2mmol)을 상온, 질소 분위기 하에서 첨가하였다. 혼합물을 90℃에서 밤새 교반하였다. 반응 완료 후 0℃로 냉각하고, 포화 HCl (0.85mL)를 가하였다. 생성된 혼합물을 55℃에서 1시간 동안 교반하였다. 반응 완료 후, EtOAc (40 mL)로 희석하고, H2O (3x10mL)와 식염수 (2x15mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/1-2/1)로 조화합물을 정제하여 순수한 치환된 4H-크로멘-4-온을 얻었다.To the stirred solution of the substituted 2-hydroxyacetophenone (1.4 mmol) in anhydrous benzene (4 mL), N , N -dimethylformamide dimethyl acetal (4.2 mmol) was added at room temperature under a nitrogen atmosphere. The mixture was stirred at 90 &lt; 0 &gt; C overnight. After completion of the reaction, the mixture was cooled to 0 ° C and saturated HCl (0.85 mL) was added. The resulting mixture was stirred at 55 &lt; 0 &gt; C for 1 hour. After completion of the reaction, it was diluted with EtOAc (40 mL), washed with H 2 O ( 3 × 10 mL) and brine (2 × 15 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 1-2 / 1) to give pure 4H -chromen-4-one pure.

7- 메톡시 -4 H - 크로멘 -4-온 {7- Methoxy -4 H - chromen -4-one}(화합물 18a): 수율: 91%; 담황색 고체; 녹는점 97-99℃; 1H NMR (300MHz, CDCl3) δ 8.08(1H, d, J= 8.7Hz), 7.75 (1H, d, J= 6.0Hz), 6.94 (1H, dd, J= 8.7, 2.4Hz), 6.81 (1H, d, J= 2.4Hz), 6.25 (1H, d, J= 6.0Hz), 3.89(3H, s); 13C NMR (75MHz, CDCl3) δ 177.0, 164.2, 158.4, 154.9, 127.4, 119.0, 114.7, 113.1, 100.6, 56.1. 7-methoxy -4 H - chromen-4-one {7- Methoxy -4 H - chromen -4 -one} ( compound 18a): Yield: 91%; Light yellow solid; Melting point 97-99 ° C; 1 H NMR (300MHz, CDCl 3 ) δ 8.08 (1H, d, J = 8.7Hz), 7.75 (1H, d, J = 6.0Hz), 6.94 (1H, dd, J = 8.7, 2.4Hz), 6.81 ( 1H, d, J = 2.4 Hz), 6.25 (1H, d, J = 6.0 Hz), 3.89 (3H, s); 13 C NMR (75 MHz, CDCl 3 )? 177.0, 164.2, 158.4, 154.9, 127.4, 119.0, 114.7, 113.1, 100.6, 56.1.

5,7- 다이메톡시 -4 H - 크로멘 -4-온 {5,7- Dimethoxy -4 H - chromen -4-one} (화합물 18b): 수율: 90%; 담황색 고체; 녹는점 131-133℃; 1H NMR (300MHz, CDCl3) δ 7.60(1H, d, J= 6.0Hz), 6.41 (1H, d, J= 2.1Hz), 6.34 (1H, d, J= 6.0Hz), 6.17 (1H, d, J= 6.0Hz), 3.93 (3H, s), 3.87 (3H, s); 13C NMR (75MHz, CDCl3) δ 176.6, 163.9, 161.0, 160.1, 152.6, 114.6, 110.4, 96.3, 92.9, 56.6, 55.9. 5,7-dimethoxy -4 H - chromen-4-one {5,7- Dimethoxy -4 H - chromen -4 -one} ( compound 18b): Yield: 90%; Light yellow solid; Melting point 131-133 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 7.60 (1H, d, J = 6.0Hz), 6.41 (1H, d, J = 2.1Hz), 6.34 (1H, d, J = 6.0Hz), 6.17 (1H, d, J = 6.0 Hz), 3.93 (3H, s), 3.87 (3H, s); 13 C NMR (75MHz, CDCl 3 ) δ 176.6, 163.9, 161.0, 160.1, 152.6, 114.6, 110.4, 96.3, 92.9, 56.6, 55.9.

5,6,7- 트리메톡시 -4 H - 크로멘 -4-온 {5,6,7- Trimethoxy -4 H - chromen -4-one} (화합물 18c): 수율: 88%; 담황색 고체; 녹는점 113-115℃; 1H NMR (300MHz, CDCl3) δ 7.63 (1H, d, J= 6.0Hz), 6.65 (1H, s), 6.16 (1H, d, J= 6.0Hz), 3.95 (3H, s), 3.93 (3H, s), 3.89 (3H, s); 13C NMR (75MHz, CDCl3) δ 176.2, 157.8, 154.8, 153.0, 152.6, 140.5, 114.1, 113.9, 96.4, 62.3, 61.7, 56.4. 5,6,7 -trimethoxy - 4H - chromen - 4-one {5,6,7- Trimethoxy - 4H - chromen- 4-one} (Compound 18c): Yield: 88%; Light yellow solid; Melting point 113-115 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 7.63 (1H, d, J = 6.0Hz), 6.65 (1H, s), 6.16 (1H, d, J = 6.0Hz), 3.95 (3H, s), 3.93 ( 3H, s), 3.89 (3H, s); 13 C NMR (75 MHz, CDCl 3 ) 隆 176.2, 157.8, 154.8, 153.0, 152.6, 140.5, 114.1, 113.9, 96.4, 62.3, 61.7, 56.4.

치환된 4Substituted 4 HH -- 크로멘Kromen -4-온의 수소화를 위한 일반적인 절차&Lt; RTI ID = 0.0 &gt;

치환된 4H-크로멘-4-온 (1.0mmol)을 MeOH (8mL)에 넣고 교반한 용액에 10% Pd/C (치환된 4H-크로멘-4-온에 대하여 5% w/w)를 상온의 수소 분위기 하에서 가하여 혼합물을 0.75-1시간 동안 교반하였다. 반응 완료 후 셀라이트® 패드로 여과하고, MeOH (10mL)로 세척하여 여과액을 감압하에 농축하였다. 조생성물은 컬럼 크로마토그래피 (EtOAc/Hexane = 1/3-1/2)로 정제하여 순수한 치환된 크로만-4-온을 얻었다.Substituted 4 H-chromen-4-one (1.0mmol) with 10% Pd / C (substituted 4 H placed in MeOH (8mL) was added in one-against-chromen-4-one 5% w / w ) Was added under hydrogen atmosphere at room temperature and the mixture was stirred for 0.75-1 hr. After completion of the reaction, the reaction mixture was filtered through a pad of Celite®, washed with MeOH (10 mL), and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 2) to give pure substituted chroman-4-one.

7- 메톡시크로만 -4-온 (7- Methoxychroman -4-one)(화합물 19a): 수율: 87%; 백색 고체; 녹는점 49-50℃; 1H NMR (300MHz, CDCl3) δ 7.80 (1H, d, J= 8.7Hz), 6.55 (1H, dd, J= 8.7, 2.4Hz), 6.38 (1H, d, J= 2.4Hz), 4.50 (2H, t, J= 6.3Hz), 3.82 (3H, s), 2.74 (2H, t, J= 6.3Hz); 13C NMR (75MHz, CDCl3) δ 190.4, 166.0, 163.8, 128.9, 115.4, 110.0, 100.9, 67.6, 55.8, 37.7. 7-methoxy-chroman-4-one (7- Methoxychroman -4-one) (Compound 19a): Yield: 87%; White solid; Melting point 49-50 ℃; 1 H NMR (300MHz, CDCl 3 ) δ 7.80 (1H, d, J = 8.7Hz), 6.55 (1H, dd, J = 8.7, 2.4Hz), 6.38 (1H, d, J = 2.4Hz), 4.50 ( 2H, t, J = 6.3 Hz), 3.82 (3H, s), 2.74 (2H, t, J = 6.3 Hz); 13 C NMR (75 MHz, CDCl 3 ) 隆 190.4, 166.0, 163.8, 128.9, 115.4, 110.0, 100.9, 67.6, 55.8, 37.7.

5,7- 다이메톡시크로만 -4-온 (5,7- Dimethoxychroman -4-one)(화합물 19b): 수율: 83%; 백색 고체; 녹는점 92-94℃; 1H NMR (300MHz, CDCl3) δ 6.04(2H, s), 4.43 (2H, t, J= 6.3Hz), 3.87 (3H, s), 3.81 (3H, s), 2.71 (2H, t, J= 6.3Hz); 13C NMR (75MHz, CDCl3) δ 189.1, 165.7, 165.2, 162.3, 106.4, 93.4, 93.0, 67.0, 56.3, 55.7, 39.0. 5,7-dimethoxy-chroman-4-one (5,7- Dimethoxychroman -4-one) (Compound 19b): Yield: 83%; White solid; Melting point 92-94 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 6.04 (2H, s), 4.43 (2H, t, J = 6.3Hz), 3.87 (3H, s), 3.81 (3H, s), 2.71 (2H, t, J = 6.3 Hz); 13 C NMR (75 MHz, CDCl 3 ) 隆 189.1, 165.7, 165.2, 162.3, 106.4, 93.4, 93.0, 67.0, 56.3, 55.7, 39.0.

5,6,7- 트리메톡시크로만 -4-온 {5,6,7- Trimethoxychroman -4-one} (화합물 19c): 수율: 84%; 백색 고체; 녹는점 58-60℃; 1H NMR (300MHz, CDCl3) δ 6.24(1H, s), 4.43 (2H, t, J= 6.3Hz), 3.91 (3H, s), 3.87 (3H, s), 3.80 (3H, s), 2.71 (2H, t, J= 6.3Hz); 13C NMR (75MHz, CDCl3) δ 189.1, 160.0, 159.3, 154.3, 137.4, 109.7, 96.2, 67.1, 61.7, 61.5, 56.3, 38.9. 5,6,7 -trimethoxychroman -4-one {5,6,7- Trimethoxychroman- 4-one} (Compound 19c): Yield: 84%; White solid; Melting point 58-60 ° C; 1 H NMR (300MHz, CDCl 3 ) δ 6.24 (1H, s), 4.43 (2H, t, J = 6.3Hz), 3.91 (3H, s), 3.87 (3H, s), 3.80 (3H, s), 2.71 (2H, t, J = 6.3 Hz); 13 C NMR (75 MHz, CDCl 3 ) 隆 189.1, 160.0, 159.3, 154.3, 137.4, 109.7, 96.2, 67.1, 61.7, 61.5, 56.3, 38.9.

EOMEOM -보호기화된 - protected vaporized 호모이소플라보노이드의Of homoisoflavonoid 일반적인 제조 과정 General manufacturing process

치환된 크로만-4-온 (0.30mmol)과 EOM-보호기화 살리실알데하이드 화합물 16 (0.07g, 0.39mmol)을 EtOH/H2O (1.8mL, 5/1)에 넣고 교반한 용액에 KOH (0.05g, 0.90mmol)를 가하여 25-30℃에서 10-24시간 동안 교반하였다. 반응 완료 후, EtOH를 감압하에 제거하였다. 조생성물을 1N HCl로 중화하고, EtOAc (2x25mL)로 추출하였다. 혼합 유기용매층은 H2O (3x10mL)와 식염수 (10mL)로 세척하고 무수 Na2SO4로 건조하여 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane = 1/5-1/3)로 조화합물을 정제하여 순수한 EOM-보호 호모이소플라보노이드 화합물을 얻었다.To the stirred solution of the substituted chroman-4-one (0.30 mmol) and EOM-protected vaporized salicylaldehyde compound 16 (0.07 g, 0.39 mmol) in EtOH / H 2 O (1.8 mL, 5/1) (0.05 g, 0.90 mmol) was added thereto, followed by stirring at 25-30 ° C for 10-24 hours. After completion of the reaction, the EtOH was removed under reduced pressure. The crude product was neutralized with 1N HCl and extracted with EtOAc (2 x 25 mL). The combined organic solvent layers were washed with H 2 O (3 × 10 mL) and brine (10 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 5-1 / 3) to give pure EOM-protected homoisopa flavone compound.

( E )-3-(2-( 에톡시메톡시 ) 벤질리덴 )-7- 메톡시크로만 -4-온 {( E )-3-(2-(Ethoxymethoxy)benzylidene)-7-methoxychroman-4-one} (화합물 20a): 수율: 48%; 담황색 액체; 1H NMR (300MHz, CDCl3) δ 7.96-7.93 (2H, m), 7.35-7.30 (1H, m), 7.20 (1H, d,J= 8.7Hz), 7.04-6.98 (2H, m), 6.60 (1H, dd, J= 8.7, 2.4Hz), 6.37 (1H, d, J= 2.4Hz), 5.24 (2H, s), 5.20 (2H, d, J= 1.5Hz), 3.81 (3H, s), 3.71 (2H, q, J= 7.0Hz), 1.20 (3H, t, J= 7.0Hz); 13C NMR (75MHz, CDCl3) δ 181.1, 165.9, 163.2, 156.2, 133.2, 130.9, 130.4, 129.7, 124.5, 121.4, 116.0, 114.9, 110.4, 100.9, 93.5, 68.5, 64.8, 55.8, 15.3. (E) -3- (2- (ethoxy-methoxy) benzylidene) -7-methoxy chroman-4-one {(E) -3- (2- ( Ethoxymethoxy) benzylidene) -7-methoxychroman-4 -one} (Compound 20a): Yield: 48%; Light yellow liquid; 1 H NMR (300MHz, CDCl 3 ) δ 7.96-7.93 (2H, m), 7.35-7.30 (1H, m), 7.20 (1H, d, J = 8.7Hz), 7.04-6.98 (2H, m), 6.60 (1H, dd, J = 8.7 , 2.4Hz), 6.37 (1H, d, J = 2.4Hz), 5.24 (2H, s), 5.20 (2H, d, J = 1.5Hz), 3.81 (3H, s) , 3.71 (2H, q, J = 7.0 Hz), 1.20 (3H, t, J = 7.0 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 181.1, 165.9, 163.2, 156.2, 133.2, 130.9, 130.4, 129.7, 124.5, 121.4, 116.0, 114.9, 110.4, 100.9, 93.5, 68.5, 64.8, 55.8, 15.3.

( E )-3-(2-( 에톡시메톡시 ) 벤질리덴 )-5,7- 다이메톡시크로만 -4-온 {( E )-3-(2-(Ethoxymethoxy)benzylidene)-5,7-dimethoxychroman-4-one}(화합물 20b): 수율: 40%; 담황색 액체; 1H NMR (300MHz, CDCl3) δ 7.95 (1H, s), 7.37-7.31 (1H, m), 7.20 (1H, d,J= 8.1 Hz), 7.06-7.00 (2H, m), 6.12 (1H, s), 6.07 (1H, s), 5.26 (2H, s), 5.12 (2H, s), 3.93 (3H, s), 3.84 (3H, s), 3.73 (2H, q, J= 7.0 Hz), 1.23 (3H, t, J= 7.0 Hz); 13C NMR (75MHz, CDCl3) δ 179.8, 165.8, 165.0, 163.0, 156.1, 132.4, 132.1, 130.7, 130.4, 125.1, 121.5, 115.0, 107.5, 93.8, 93.7, 93.6, 68.1, 64.9, 56.5, 55.9, 15.4.6 (E) -3- (2- (methoxy-methoxy) benzylidene in) -5,7-dimethoxy-chroman-4-one {(E) -3- (2- ( Ethoxymethoxy) benzylidene) -5, 7-dimethoxychroman-4-one} (Compound 20b): Yield: 40%; Light yellow liquid; 1 H NMR (300MHz, CDCl 3 ) δ 7.95 (1H, s), 7.37-7.31 (1H, m), 7.20 (1H, d, J = 8.1 Hz), 7.06-7.00 (2H, m), 6.12 (1H , s), 6.07 (1H, s), 5.26 (2H, s), 5.12 (2H, s), 3.93 (3H, s), 3.84 (3H, s), 3.73 (2H, q, J = 7.0 Hz) , 1.23 (3H, t, J = 7.0 Hz); 13 C NMR (75MHz, CDCl 3 ) δ 179.8, 165.8, 165.0, 163.0, 156.1, 132.4, 132.1, 130.7, 130.4, 125.1, 121.5, 115.0, 107.5, 93.8, 93.7, 93.6, 68.1, 64.9, 56.5, 55.9, 15.4.6

( E )-3-(2-( 에톡시메톡시 ) 벤질리덴 )-5,6,7- 트리메톡시크로만 -4-온 {( E )-3-(2-(Ethoxymethoxy)benzylidene)-5,6,7-trimethoxychroman-4-one}(화합물 20c): 수율: 25%; 담황색 액체; 1H NMR (300MHz, CDCl3) δ 7.93 (1H, s), 7.30-7.26 (1H, m), 7.15 (1H, d, J= 8.1Hz), 7.02-6.98 (1H, m), 6.22 (1H, d, J= 7.8Hz), 6.20 (1H, s), 5.20 (2H, d, J= 1.2Hz), 5.06 (2H, s), 3.96 (3H, s), 3.83 (3H, s), 3.77 (3H, s), 3.67 (2H, q, J= 7.0Hz), 1.20 (3H, t, J= 7.0Hz). (E) -3- (2- (ethoxy-methoxy) benzylidene) -5,6,7- trimethoxy-chroman-4-one {(E) -3- (2- ( Ethoxymethoxy) benzylidene) - 5,6,7-trimethoxychroman-4-one} (Compound 20c): Yield: 25%; Light yellow liquid; 1 H NMR (300 MHz, CDCl 3 )? 7.93 (1H, s), 7.30-7.26 (1H, m), 7.15 (1H, d, J = 8.1 Hz), 7.02-6.98 (d, J = 7.8 Hz), 6.20 (1H, s), 5.20 (2H, d, J = 1.2 Hz), 5.06 (2H, s), 3.96 (3H, s), 3.67 (2H, q, J = 7.0 Hz), 1.20 (3H, t, J = 7.0 Hz).

EOMEOM -- 탈보호기화Deprotection vaporization 호모이소플라보노이드Homoisoflavonoid 합성의 일반적인 절차 General procedure of synthesis

EOM-보호 호모이소플라보노이드 (0.2mmol)를 MeOH (5mL)에 넣고 교반한 용액에 상온에서 1N HCl (0.6mL)를 가하고 혼합물을 55℃에서 1시간 동안 교반하였다. 용매를 감압 하에 제거하였다. 조생성물을 EtOAc (35mL)에 용해하고 H2O (2x10mL)와 식염수 (10mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane=1/3-1/1)로 조화합물을 정제하여 순수한 EOM-탈보호기화된 호모이소플라보노이드 화합물을 얻었다.To the stirred solution of EOM-protected homoisoflavonoid (0.2 mmol) in MeOH (5 mL) was added IN HCl (0.6 mL) at room temperature and the mixture was stirred at 55 ° C for 1 h. The solvent was removed under reduced pressure. The crude product was dissolved in EtOAc (35 mL), washed with H 2 O ( 2 × 10 mL) and brine (10 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 1) to give the pure EOM-deprotected vaporized homoiso flavonoid compound.

( E )-3-(2- 하이드록시벤질리덴 )-7- 메톡시크로만 -4-온 {( E )-3-(2-Hydroxybenzylidene)-7-methoxychroman-4-one}(화합물 1): 수율: 89%; 담황색 고체; 녹는점 135-137℃; 1H NMR (300MHz, CDCl3) δ 7.99 (1H, br s), 7.92 (1H, d, J= 8.7Hz), 7.27 (1H, dd, J= 8.7, 2.1Hz), 7.02-6.90 (3H, m), 6.81 (1H, s), 6.58 (1H, dd, J= 8.7, 2.4Hz), 6.34 (1H, d, J= 2.1Hz), 5.19 (2H, d, J= 1.5Hz) 3.82 (3H, s); 13C NMR (75MHz, CDCl3) δ 181.9, 166.3, 163.6, 155.4, 133.4, 131.2, 131.1, 130.3, 129.9, 122.0, 120.3, 116.7, 115.8, 110.7, 100.9, 68.5, 55.9; EI-MS m/z282(M+, base), 265, 253, 131; HRMS: Calcd for C17H14O4(M+): 282.0892, found: 282.0901. (E) -3- (2- hydroxy-benzylidene) -7-methoxy chroman-4-one {(E) -3- (2- Hydroxybenzylidene) -7-methoxychroman-4-one} ( Compound 1) : Yield: 89%; Light yellow solid; Melting point 135-137 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 7.99 (1H, br s), 7.92 (1H, d, J = 8.7Hz), 7.27 (1H, dd, J = 8.7, 2.1Hz), 7.02-6.90 (3H, m), 6.81 (1H, s ), 6.58 (1H, dd, J = 8.7, 2.4Hz), 6.34 (1H, d, J = 2.1Hz), 5.19 (2H, d, J = 1.5Hz) 3.82 (3H , s); 13 C NMR (75 MHz, CDCl 3 ) δ 181.9, 166.3, 163.6, 155.4, 133.4, 131.2, 131.1, 130.3, 129.9, 122.0, 120.3, 116.7, 115.8, 110.7, 100.9, 68.5, 55.9; EI-MS m / z 282 (M &lt; + &gt;, base), 265, 253, 131; HRMS: Calcd for C 17 H 14 O 4 (M +): 282.0892, found: 282.0901.

( E )-3-(2- 하이드록시벤질리덴 )-5,7- 다이메톡시크로만 -4-온 {( E )-3-(2-Hydroxybenzylidene)-5,7-dimethoxychroman-4-one}(화합물 3): 수율: 86%; 담황색 고체; 1H NMR (300MHz, DMSO-d6) δ 10.02 (1H, s), 7.70(1H, s), 7.23 (1H, td, J= 8.1, 1.8Hz), 7.03(1H, d, J= 6.6Hz), 6.91 (1H, d, J= 7.8Hz), 6.84(1H, t, J= 7.5Hz), 6.24 (1H, d, J= 2.1Hz), 6.16(1H, d, J= 2.1Hz), 5.11(2H, d, J= 1.5Hz), 3.81(3H, s), 3.80(3H, s); 13C NMR (75MHz, DMSO-d6) δ 177.7, 165.0, 163.8, 162.1, 156.2, 130.8, 130.7, 130.6, 130.1, 121.1, 118.7, 115.5, 106.5, 93.7, 93.4, 67.4, 55.9, 55.6; EI-MS m/z312(M+), 295, 180 (base), 131; HRMS: Calcd for C18H16O5(M+): 312.0998, found: 312.0993. (E) -3- (2- hydroxy-benzylidene) -5,7-dimethoxy-chroman-4-one {(E) -3- (2- Hydroxybenzylidene) -5,7-dimethoxychroman-4-one } (Compound 3): Yield: 86%; Light yellow solid; 1 H NMR (300MHz, DMSO- d6) δ 10.02 (1H, s), 7.70 (1H, s), 7.23 (1H, td, J = 8.1, 1.8Hz), 7.03 (1H, d, J = 6.6Hz) , 6.91 (1H, d, J = 7.8Hz), 6.84 (1H, t, J = 7.5Hz), 6.24 (1H, d, J = 2.1Hz), 6.16 (1H, d, J = 2.1Hz), 5.11 (2H, d, J = 1.5 Hz), 3.81 (3H, s), 3.80 (3H, s); 13 C NMR (75 MHz, DMSO-d 6)? 177.7, 165.0, 163.8, 162.1, 156.2, 130.8, 130.7, 130.6, 130.1, 121.1, 118.7, 115.5, 106.5, 93.7, 93.4, 67.4, 55.9, 55.6; EI-MS m / z 312 (M @ +), 295, 180 (base), 131; HRMS: Calcd for C 18 H 16 O 5 (M +): 312.0998, found: 312.0993.

( E )-3-(2- 하이드록시벤질리덴 )-5,6,7- 트리메톡시크로만 -4-온 {( E )-3-(2-Hydroxybenzylidene)-5,6,7-trimethoxychroman-4-one}(화합물 7): 수율: 85%; 담황색 고체; 1H NMR (300 MHz, CDCl3) δ 8.00 (1H, s), 7.81 (1H, br s), 7.21 (1H, t, J= 7.8 Hz), 7.00 (1H, d, J= 7.5 Hz), 6.96 (1H, d, J= 7.8 Hz), 6.86 (1H, t, J= 7.5 Hz), 6.19 (1H, s), 5.08 (2H, s), 3.96 (3H, s), 3.85 (3H, s), 3.79 (3H, s); 13C NMR (75 MHz, CDCl3) δ 180.5, 160.0, 159.5, 155.6, 154.7, 137.6, 133.4, 131.3, 131.1, 130.2, 122.0, 119.9, 116.6, 110.4, 96.3, 68.0, 61.8, 61.5, 56.3; EI-MS m/z342(M+, base), 311, 210, 166; HRMS: Calcd for C19H18O6(M+): 342.1103, found: 342.1110. (E) -3- (2- hydroxy-benzylidene) -5,6,7- trimethoxy-chroman-4-one {(E) -3- (2- Hydroxybenzylidene) -5,6,7-trimethoxychroman -4-one} (Compound 7): Yield: 85%; Light yellow solid; 1 H NMR (300 MHz, CDCl 3) δ 8.00 (1H, s), 7.81 (1H, br s), 7.21 (1H, t, J = 7.8 Hz), 7.00 (1H, d, J = 7.5 Hz), 6.96 (1H, d, J = 7.8 Hz), 6.86 (1H, t, J = 7.5 Hz), 6.19 (1H, s), 5.08 (2H, s), 3.96 (3H, s), 3.85 (3H, s ), 3.79 (3 H, s); 13 C NMR (75 MHz, CDCl 3 ) 隆 180.5, 160.0, 159.5, 155.6, 154.7, 137.6, 133.4, 131.3, 131.1, 130.2, 122.0, 119.9, 116.6, 110.4, 96.3, 68.0, 61.8, 61.5, 56.3; EI-MS m / z 342 (M &lt; + &gt;, base), 311, 210, 166; HRMS: Calcd for C 19 H 18 O 6 (M +): 342.1103, found: 342.1110.

3-(2- 하이드록시벤질 )-7- 메톡시크로만 -4-온 {3-(2-Hydroxybenzyl) -7-methoxychroman-4-one}(화합물 2): 19a-19cs 합성에 사용된 일반적인 절차에 따라, 화합물 1 (0.04g, 0.14mmol)을 수소 (풍선) 분위기 하에서 교반하여 백색 고체 화합물 2 (0.037g, 91%)를 얻었다. 녹는점 132-134℃; 1H NMR (300MHz, CDCl3) δ 8.12 (1H, br s), 7.82(1H, d, J= 8.7Hz), 7.10 (1H, td, J= 8.1, 1.8Hz), 7.02(1H, dd, J= 7.8, 1.8Hz), 6.90(1H, dd, J= 8.1, 1.2Hz), 6.80 (1H, td, J= 7.5, 1.2Hz), 6.54(1H, dd, J= 8.7, 2.1Hz), 6.36 (1H, d, J= 2.7Hz), 4.51 (1H, dd, J= 11.4, 1.5Hz), 4.21 (1H, t, J= 10.8Hz), 3.80 (3H, s), 3.21-3.03 (2H, m), 2.87-2.79 (1H, m); 13C NMR (75MHz, CDCl3) δ195.2, 166.6, 164.1, 154.8, 131.2, 129.4, 128.5, 124.8, 120.3, 117.3, 114.2, 110.4, 100.7, 70.9, 55.9, 46.6, 27.2; EI-MS m/z284(M+), 283 (M-H), 267, 177 (base); HRMS: Calcd for C17H16O4(M+): 284.1049, found: 284.1055 3- (2-hydroxy-benzyl) -7-methoxy chroman-4-one {3- (2-Hydroxybenzyl) -7 -methoxychroman-4-one} ( Compound 2): 19a-19cs the general used in the synthesis Following the procedure, Compound 1 (0.04 g, 0.14 mmol) was stirred under hydrogen (balloon) atmosphere to give a white solid compound 2 (0.037 g, 91%). Melting point 132-134 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 8.12 (1H, br s), 7.82 (1H, d, J = 8.7Hz), 7.10 (1H, td, J = 8.1, 1.8Hz), 7.02 (1H, dd, J = 7.8, 1.8Hz), 6.90 (1H, dd, J = 8.1, 1.2Hz), 6.80 (1H, td, J = 7.5, 1.2Hz), 6.54 (1H, dd, J = 8.7, 2.1Hz), (1H, d, J = 2.7 Hz), 4.51 (1H, dd, J = 11.4,1.5 Hz), 4.21 (1H, t, J = 10.8 Hz), 3.80 (3H, s), 3.21-3.03 , &lt; / RTI &gt; m), 2.87-2.79 (1H, m); 13 C NMR (75 MHz, CDCl 3 ) δ 195.2, 166.6, 164.1, 154.8, 131.2, 129.4, 128.5, 124.8, 120.3, 117.3, 114.2, 110.4, 100.7, 70.9, 55.9, 46.6, 27.2; EI-MS m / z 284 (M +), 283 (MH), 267, 177 (base); HRMS Calcd for C17H16O4 (M +): 284.1049, found: 284.1055

3-(2- 하이드록시벤질 )-5,7- 다이메톡시크로만 -4-온 {3-(2- Hydroxybenzyl )-5,7-dimethoxychroman-4-one} (화합물 4): 19a-19c 합성에 사용된 일반적인 절차에 따라, 화합물 3 (0.02g, 0.06mmol)을 수소 (풍선) 분위기 하에서 교반하여 백색 고체의 화합물 4 (0.018g, 87%)를 얻었다. 녹는점 137-139℃; 1H NMR (300MHz, CDCl3) δ 8.22 (1H, br s), 7.10(1H, td, J= 7.8, 1.8Hz), 7.01 (1H, dd, J= 7.5, 1.8Hz), 6.90 (1H, dd, J= 8.1, 1.2Hz), 6.79 (1H, td, J= 7.5, 1.2Hz), 6.01 (2H, d, J= 2.1Hz), 4.49(1H, dd, J= 11.4, 5.4Hz), 4.15 (1H, t, J= 11.4Hz), 3.85 (3H, s), 3.80 (3H,s), 3.09-2.98 (2H, m), 2.80-2.72 (1H, m); 13C NMR (75MHz, CDCl3)δ 193.8, 166.5, 165.4, 162.7, 155.0, 131.0, 128.4, 125.1, 120.2, 117.6, 105.4, 93.4, 93.1, 70.5, 56.4, 55.8, 47.8, 27.1; EI-MS m/z314(M+), 207, 181 (base), 132; HRMS: Calcd for C18H18O5(M+): 314.1154, found: 314. 1150. 3- (2-hydroxy-benzyl) -5,7-dimethoxy-chroman-4-one 3 - {(2-Hydroxybenzyl) -5,7-dimethoxychroman-4-one} (compound 4): 19a-19c Compound 3 (0.02 g, 0.06 mmol) was stirred under hydrogen (balloon) atmosphere according to the general procedure used for the synthesis to give compound 4 (0.018 g, 87%) as a white solid. Melting point 137-139 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 8.22 (1H, br s), 7.10 (1H, td, J = 7.8, 1.8Hz), 7.01 (1H, dd, J = 7.5, 1.8Hz), 6.90 (1H, dd, J = 8.1, 1.2Hz) , 6.79 (1H, td, J = 7.5, 1.2Hz), 6.01 (2H, d, J = 2.1Hz), 4.49 (1H, dd, J = 11.4, 5.4Hz), 4.15 (1H, t, J = 11.4 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.09-2.98 (2H, m), 2.80-2.72 (1H, m); 13 C NMR (75 MHz, CDCl 3 ) δ 193.8, 166.5, 165.4, 162.7, 155.0, 131.0, 128.4, 125.1, 120.2, 117.6, 105.4, 93.4, 93.1, 70.5, 56.4, 55.8, 47.8, 27.1; EI-MS m / z 314 (M &lt; + &gt;), 207, 181 (base), 132; HRMS: Calcd for C 18 H 18 O 5 (M +): 314.1154, found: 314. 1150.

3-(2- 하이드록시벤질 )-5,6,7- 트리메톡시크로만 -4-온 {3-(2-hydroxybenzyl) -5,6,7-trimethoxychroman-4-one}(화합물 8): 19a-19c 합성에 사용된 일반적인 절차에 따라, 화합물 7 (0.02g, 0.06mmol)을 수소 (풍선) 분위기 하에서 교반하여 백색 고체 화합물 8 (0.017g, 86%)을 얻었다. 녹는점 102-104℃; 1H NMR (300MHz, CDCl3) δ 8.09 (1H, br s), 7.12-7.02 (2H, m), 6.91 (1H, d, J= 8.1Hz), 6.79 (1H, t, J= 7.2Hz), 6.23 (1H, s), 4.43 (1H, dd, J= 11.4, 4.2Hz), 4.19-4.12 (1H, m), 3.91 (3H, s), 3.86 (3H, s), 3.79 (3H, s), 3.14-3.00 (2H, m), 2.78 (1H, dd, J= 13.2, 5.7Hz); 13C NMR (75MHz, CDCl3) δ193.9, 160.2, 159.9, 154.9, 154.4, 137.4, 131.1, 128.3, 124.8, 120.1, 116.9, 108.5, 96.1, 70.1, 61.8, 61.5, 56.3, 47.2, 27.4; EI-MS m/z344(M+, base), 327, 237, 210; HRMS: Calcd for C19H20O6(M+): 344.1260, found: 344.1271 3- (2-hydroxybenzyl) -5,6,7- trimethoxy-chroman-4-one {3- (2-hydroxybenzyl) -5,6,7 -trimethoxychroman-4-one} ( Compound 8) : 19a-19c Following the general procedure used in the synthesis, Compound 7 (0.02 g, 0.06 mmol) was stirred under hydrogen (balloon) atmosphere to give a white solid compound 8 (0.017 g, 86%). Melting point 102-104 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 8.09 (1H, br s), 7.12-7.02 (2H, m), 6.91 (1H, d, J = 8.1Hz), 6.79 (1H, t, J = 7.2Hz) , 6.23 (1H, s), 4.43 (1H, dd, J = 11.4, 4.2 Hz), 4.19-4.12 (1H, m), 3.91 (3H, s), 3.86 ), 3.14-3.00 (2H, m), 2.78 (1H, dd, J = 13.2, 5.7 Hz); 13 C NMR (75 MHz, CDCl 3 )? 193.9, 160.2, 159.9, 154.9, 154.4, 137.4, 131.1, 128.3, 124.8, 120.1, 116.9, 108.5, 96.1, 70.1, 61.8, 61.5, 56.3, 47.2, 27.4; EI-MS m / z 344 (M &lt; + &gt;, base), 327, 237, 210; HRMS: Calcd for C 19 H 20 O 6 (M +): 344.1260, found: 344.1271

호모이소플라보노이드의Of homoisoflavonoid 오르쏘Ortho -- 탈메틸화를Demethylation 위한 일반적인 절차 General procedure for

호모이소플라보노이드 (0.12mmol)를 무수 CH2Cl2(4mL)에 넣고 교반한 용액에 BCl3 용액 (1.0M in CH2Cl2; 0.36mL)을 0℃, 질소 분위기 하에서 한 방울씩 가하였다. 혼합물을 0-5℃에서 1.5시간 동안 교반하였다. 반응 완료 후, H2O (5mL)를 첨가하고 15분 동안 교반한 후 CH2Cl2 (2x20mL)로 추출하였다. 혼합 유기용매층은 H2O (3x10mL)와 식염수 (2x10mL)로 세척하고, 무수 Na2SO4로 건조하여, 진공에서 농축하였다. 컬럼 크로마토그래피 (EtOAc/Hexane = 1/3-1/1)로 조화합물을 정제하여 순수한 호모이소플라보노이드를 얻었다.BCl 3 solution (1.0 M in CH 2 Cl 2 ; 0.36 mL) was added dropwise to a solution of homoisoflavonoid (0.12 mmol) in anhydrous CH 2 Cl 2 (4 mL) at 0 ° C under nitrogen atmosphere. The mixture was stirred at &lt; RTI ID = 0.0 &gt; 0-5 C &lt; / RTI &gt; After completion of the reaction, H 2 O (5 mL) was added and stirred for 15 minutes and then extracted with CH 2 Cl 2 ( 2 × 20 mL). The combined organic solvent layers were washed with H 2 O ( 3 × 10 mL) and brine (2 × 10 mL), dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The crude compound was purified by column chromatography (EtOAc / Hexane = 1 / 3-1 / 1) to obtain pure homoiso flavonoid.

5- 하이드록시 -3-(2- 하이드록시벤질 )-7- 메톡시크로만 -4-온 {5- Hydroxy -3-(2-hydroxybenzyl)-7-methoxychroman-4-one}(화합물 5): 수율: 86%; 백색 고체; 녹는점 128-130℃; 1H NMR (300MHz, CDCl3) δ 11.78 (1H, s), 7.12 (1H, td, J= 8.1, 1.8Hz), 7.06-7.01 (2H, m), 6.87-6.81 (2H, m), 6.03 (1H, d, J= 2.4 Hz), 5.96 (1H, d, J= 2.4Hz), 4.44 (1H, dd, J= 11.4, 4.5Hz), 4.17 (1H, t, J= 11.4Hz), 3.79 (3H, s), 3.17-3.07 (2H, m), 2.89-2.81 (1H, m); 13C NMR (75MHz, CDCl3) δ 199.3, 168.4, 164.4, 163.2, 154.5, 131.3, 128.6, 124.3, 120.6, 116.7, 102.8, 95.2, 94.2, 70.0, 55.9, 45.6, 27.4; EI-MS m/z300(M+), 299 (M-H), 193 (base), 165; HRMS: Calcd for C17H16O5(M+): 300.0998, found: 300.0995 5-hydroxy-3- (2-hydroxy-benzyl) -7-methoxy chroman-4-one 5-Hydroxy-3- {(2-hydroxybenzyl) -7-methoxychroman-4-one} (Compound 5) : Yield: 86%; White solid; Melting point 128-130 캜; 1 H NMR (300MHz, CDCl 3 ) δ 11.78 (1H, s), 7.12 (1H, td, J = 8.1, 1.8Hz), 7.06-7.01 (2H, m), 6.87-6.81 (2H, m), 6.03 (1H, d, J = 2.4 Hz), 5.96 (1H, d, J = 2.4Hz), 4.44 (1H, dd, J = 11.4, 4.5Hz), 4.17 (1H, t, J = 11.4Hz), 3.79 (3H, s), 3.17-3.07 (2H, m), 2.89-2.81 (1H, m); 13 C NMR (75MHz, CDCl 3 ) δ 199.3, 168.4, 164.4, 163.2, 154.5, 131.3, 128.6, 124.3, 120.6, 116.7, 102.8, 95.2, 94.2, 70.0, 55.9, 45.6, 27.4; EI-MS m / z 300 (M @ +), 299 (MH @ +), 193 (base), 165; HRMS: Calcd for C 17 H 16 O 5 (M +): 300.0998, found: 300.0995

5- 하이드록시 -3-(2- 하이드록시벤질 )-6,7- 다이메톡시크로만 -4-온 {5-Hydroxy-3-(2-hydroxybenzyl)-6,7-dimethoxychroman-4-one}(화합물 9): 수율: 83%; 담황색 고체; 녹는점 135-137℃; 1H NMR (300MHz, CDCl3) δ 11.71 (1H, s), 7.12 (1H, t, J= 7.5Hz), 7.06 (1H, d, J= 7.5Hz), 6.98 (1H, br s), 6.87-6.81 (2H, m), 6.01(1H, s), 4.42 (1H, dd, J= 11.4, 4.2Hz), 4.21-4.14 (1H, m), 3.86 (3H, s), 3.81 (3H, s), 3.18-3.09 (2H, m), 2.87-2.79 (1H, m); 13C NMR (75MHz, CDCl3) δ 199.7, 161.3, 159.2, 155.2, 154.4, 131.3, 130.6, 128.6, 124.3, 120.7, 116.8, 102.9, 91.6, 70.2, 61.1, 56.4, 45.7, 27.3; EI-MS m/z330(M+, base), 313, 223, 152; HRMS: Calcd for C18H18O6(M+): 330.1103, found: 330.1095 5-hydroxy-3- (2-hydroxy-benzyl) -6,7-dimethoxy-chroman-4-one {5-Hydroxy-3- (2 -hydroxybenzyl) -6,7-dimethoxychroman-4-one } (Compound 9): Yield: 83%; Light yellow solid; Melting point 135-137 DEG C; 1 H NMR (300MHz, CDCl 3 ) δ 11.71 (1H, s), 7.12 (1H, t, J = 7.5Hz), 7.06 (1H, d, J = 7.5Hz), 6.98 (1H, br s), 6.87 (1H, m), 6.01 (1H, s), 4.42 (1H, dd, J = 11.4, 4.2Hz), 4.21-4.14 ), 3.18-3.09 (2H, m), 2.87-2.79 (1H, m); 13 C NMR (75 MHz, CDCl 3 ) δ 199.7, 161.3, 159.2, 155.2, 154.4, 131.3, 130.6, 128.6, 124.3, 120.7, 116.8, 102.9, 91.6, 70.2, 61.1, 56.4, 45.7, 27.3; EI-MS m / z 330 (M &lt; + &gt;, base), 313, 223, 152; HRMS: Calcd for C1 8 H 18 O 6 (M +): 330.1103, found: 330.1095

( E )-5- 하이드록시 -3-(2- 하이드록시벤질리덴 )-7- 메톡시크로만 -4-온 {( E )-5-Hydroxy-3-(2-hydroxybenzylidene)-7-methoxychroman-4-one}(화합물 6): 수율: 84%; 담황색 고체; 녹는점 172-174℃; 1HNMR (300MHz, CD3COCD3) δ 12.76 (1H, s), 9.09 (1H, br s), 8.02 (1H, s), 7.31 (1H, t, J= 7.8Hz), 7.16 (1H, d, J= 7.5Hz), 7.02 (1H, d, J= 7.8Hz), 6.42 (1H, t, J= 7.5Hz), 6.06 (1H, d, J= 2.1Hz), 5.99 (1H, d, J= 2.1Hz), 5.29 (2H, d, J= 1.8Hz), 3.86 (3H, s),; 13C NMR (75MHz, CD3COCD3) δ 186.9, 169.5, 166.6, 164.0, 157.9, 134.7, 133.0, 132.1, 130.5, 122.9, 121.1, 117.3, 104.6, 96.4, 95.1, 69.3, 57.0; EI-MS m/z298(M+), 281, 253, 131 (base); HRMS: Calcd for C17H14O5(M+): 298.0841, found: 298.0847 (E) -5- hydroxy-3- (2-hydroxy-benzylidene) -7-methoxy chroman-4-one {(E) -5-Hydroxy- 3- (2-hydroxybenzylidene) -7-methoxychroman -4-one} (Compound 6): Yield: 84%; Light yellow solid; Melting point 172-174 DEG C; 1 HNMR (300MHz, CD 3 COCD 3) δ 12.76 (1H, s), 9.09 (1H, br s), 8.02 (1H, s), 7.31 (1H, t, J = 7.8Hz), 7.16 (1H, d , J = 7.5Hz), 7.02 ( 1H, d, J = 7.8Hz), 6.42 (1H, t, J = 7.5Hz), 6.06 (1H, d, J = 2.1Hz), 5.99 (1H, d, J = 2.1 Hz), 5.29 (2H, d, J = 1.8 Hz), 3.86 (3H, s); 13 C NMR (75 MHz, CD 3 COCD 3 )? 186.9, 169.5, 166.6, 164.0, 157.9, 134.7, 133.0, 132.1, 130.5, 122.9, 121.1, 117.3, 104.6, 96.4, 95.1, 69.3, 57.0; EI-MS m / z 298 (M @ +), 281, 253, 131 (base); HRMS: Calcd for C 17 H 14 O 5 (M +): 298.0841, found: 298.0847

시약reagent

에셔리치아 콜라이 (Escherichia Coli) 유래 지다당(LPS), DMSO (dimethylsulfoxide) 및 β-액틴 항체를 Sigma-Aldrich (St Louis, MO, USA)에서 구입하였다. DMEM (Dulbeccos modified Eagles medium), 우태혈청 (FBS), 페니실린 및 스트렙토마이신은 Hyclone (Logan, UT, USA)에서 구입하였다. Cell Titer 96®Aqueous One Solution 및 Griess 시약 시스템은 Promega (Madison, MI, USA)에서 구입하였다.LPS, DMSO and β-actin antibodies from Escherichia coli were purchased from Sigma-Aldrich (St Louis, MO, USA). DMEM (Dulbeccos modified Eagles medium), fetal calf serum (FBS), penicillin and streptomycin were purchased from Hyclone (Logan, UT, USA). Cell Titer 96®Aqueous One Solution and Griess reagent system were purchased from Promega (Madison, MI, USA).

세포배양 및 세포생존율 분석Cell culture and cell survival analysis

RAW 264.7 쥐 대식세포는 한국세포은행 (서울, 한국)에서 입수하여 10% 우태혈청, 100U/mL 페니실린 및 100㎍/mL 스트렙토마이신이 함유된 DMEM에서 37℃, 5% CO2 조건으로 배양하였다. 세포생존율에 미치는 다양한 화합물의 효과는 CellTiter 96® Aqueous One Solution Assay of cell proliferation (Promega, Madison, WI, USA)으로 시험하였는데, 이것은 생존세포를 계수하기 위하여 발색반응법을 이용한다. 이 분석법은 배양과정이 완료된 후 남아있는 생존세포 수를 측정하는데 이용하였다. RAW 264.7 세포는 96-웰의 평평한 바닥을 가진 플레이트에 2X104 세포 밀도가 되도록 놓고 각 화합물을 지시한 농도대로 각 플레이트에 가하였다. 24시간 배양 후 제조자의 지시대로 생존세포 수를 계수하였다. 이 분석방법은 테트라졸리움 화합물 MTS가 포마잔으로 환원되는 것에 기초한 것인데, 포마잔은 490㎚에서 최대 흡광도를 나타낸다. 따라서, 세포 배양액 내의 산물의 양은 490㎚에서 포마잔의 광학적 밀도로 나타내며, 이것은 직접적으로 생존세포 수와 비례한다.RAW 264.7 mouse macrophages were cultured in DMEM containing 10% fetal bovine serum, 100 U / mL penicillin and 100 μg / mL streptomycin at 37 ° C. and 5% CO 2 from Korean Cell Bank (Seoul, Korea). The effect of various compounds on cell viability was tested using the CellTiter 96® Aqueous One Solution Assay of Cell Proliferation (Promega, Madison, WI, USA), which uses a color reaction to count viable cells. This assay was used to measure the number of viable cells remaining after the culture process was completed. RAW 264.7 cells were 2X10 to the plate with a flat bottom of a 96-well 4 The cell density was set so that each compound was added to each plate at the indicated concentration. After 24 hours of culture, the number of viable cells was counted as instructed by the manufacturer. This analytical method is based on the reduction of the tetrazolium compound MTS to formazan, which exhibits maximum absorbance at 490 nm. Thus, the amount of product in the cell culture fluid is represented by the optical density of formazan at 490 nm, which is directly proportional to the number of viable cells.

NO 측정NO measurement

마우스 대식세포에 의해 생성된 NO의 양은 RAW 264.7 세포배양액 상층액에서 측정한 값으로 나타내었다. RAW 264.7 세포는 200μL의 배양배지가 든 96-웰 세포배양 플레이트에 5X104 세포 밀도가 되도록 가하고 12시간 동안 배양하였다. 세포에는 500ng/mL의 LPS와 화합물 1~10을 지시한 농도대로 넣고 18시간 동안 배양하였다. 생성된 NO의 양은 Griess reagent system (Promega)을 이용하여 제조자의 지시에 따라 측정하였다.The amount of NO produced by mouse macrophages was measured in the RAW 264.7 cell culture supernatant. RAW 264.7 cells were 5X10 on the all 96-well culture medium of the cell culture plate 200μL 4 Added to the cell density and incubated for 12 hours. The cells were cultured for 18 hours at a concentration of 500 ng / mL of LPS and compound 1 to 10 as indicated. The amount of NO produced was measured using the Griess reagent system (Promega) according to the manufacturer's instructions.

면역블롯팅Immunoblotting 분석 analysis

RAW 264.7 세포에서 이 화합물들이 iNOS 발현을 유도하는 능력을 알아보기 위하여 세포를 LPS 500ng/mL 존재 하에 각 화합물 10μM에 18시간 동안 노출하였다. 그 후 세포를 차가운 PBS로 세척하고, 100㎕의 세포 용균 완충액 (200mM Tris-HCl, pH 7.5, 125mM NaCl, 1% Triton X-100, 1mM MgCl2, 25mM β-글리세로포스페이트, 50mM NaF, 100μM Na3VO4, 1mM PMSF, 10㎍/ml 류펩틴 (leupeptin) 및 10㎍/ml 아프로티닌)을 각 시료에 가하였다. 단백질을 SDS (sodium dodecylsulfate)로 변성한 후 시료는 SDS-PAGE한 후 나이트로셀룰로스 막으로 전이하였다. 상온에서 5% 탈지분유를 함유하는 TBST (50mM Tris-HCl, pH 7.5, 150mM NaCl 및 0.1% tween-20) 완충액에 막을 노출하여 비특이적 결합을 저해하였다. 그 후 막은 iNOS 특이적 항체 (BD Biosciences) 및 β-액틴 특이적 항체 (Sigma)와 함께 4℃에서 밤새 배양하였다. 면역반응성 밴드는 시료를 호스래디쉬 퍼옥시데이즈-결합 이차 항체 및 증강 화학발광제 (Amersham Biosciences, Piscataway, NJ)와 함께 배양하여 탐지하였다.To examine the ability of these compounds to induce iNOS expression in RAW 264.7 cells, cells were exposed to 10 μM of each compound for 18 hours in the presence of 500 ng / mL LPS. Cells were then washed with cold PBS and resuspended in 100 μl of cell lysis buffer (200 mM Tris-HCl, pH 7.5, 125 mM NaCl, 1% Triton X-100, 1 mM MgCl 2 , 25 mM β-glycerophosphate, 50 mM NaF, Na 3 VO 4 , 1 mM PMSF, 10 μg / ml leupeptin and 10 μg / ml aprotinin) were added to each sample. The protein was denatured with SDS (sodium dodecylsulfate), and the sample was subjected to SDS-PAGE and transferred to nitrocellulose membrane. The membrane was exposed to TBST (50 mM Tris-HCl, pH 7.5, 150 mM NaCl and 0.1% tween-20) buffer containing 5% defatted milk powder at room temperature to inhibit nonspecific binding. The membranes were then incubated overnight at 4 ° C with iNOS-specific antibodies (BD Biosciences) and beta -actin-specific antibodies (Sigma). Immunoreactive bands were detected by incubating the samples with horseradish peroxidase-conjugated secondary antibody and enhancer chemiluminescent (Amersham Biosciences, Piscataway, NJ).

도 4 설명FIG.

쥐의 대식세포에서 이 화합물들이 LPS-유도 iNOS 발현을 유도하는 능력을 알아보기 위하여 RAW 264.7 세포를 500ng/mL LPS와 각 화합물 10μM 또는 LPS 단독에 18시간 동안 노출하였다. 각 세포 용해물로부터 얻은 30㎍의 단백질을 10% SDS-PAGE로 분석하였다. 면역블롯팅은 상기와 같이 수행하였다. β-액틴을 대조군으로 사용하였다. 이미지 분석 소프트웨어를 사용하여 밴드를 정량하고, 담체-처리된 RAW 264.7 세포의 이미지와 비교한 상대 강도를 나타내었다.To determine the ability of these compounds to induce LPS-induced iNOS expression in mouse macrophages, RAW 264.7 cells were exposed to 500 ng / mL LPS and 10 μM each compound or LPS alone for 18 h. 30 μg of protein from each cell lysate was analyzed by 10% SDS-PAGE. Immunoblotting was performed as above. beta -actin was used as a control. The bands were quantified using image analysis software and displayed relative intensity as compared to images of carrier-treated RAW 264.7 cells.

Claims (3)

화학식 1로 표시되는 화합물 3에 1.0M BCl3를 사용하여 선택적 오르쏘-탈메틸화 반응으로 화학식 6으로 표시되는 포르툴라카논 D를 합성하는 방법
<화학식 1>
Figure 112018012921389-pat00008

(단, 화합물 3: R1 = OMe, R2 = H)
<화학식 6>
Figure 112018012921389-pat00009

A method of synthesizing a porphyran canon D represented by the formula 6 by selective ortho-demethylation using 1.0 M BCl 3 to the compound 3 represented by the formula (1)
&Lt; Formula 1 >
Figure 112018012921389-pat00008

(Provided that Compound 3: R 1 = OMe, R 2 = H)
(6)
Figure 112018012921389-pat00009

청구항 1에 있어서,
상기 화합물 3은
(가) 화학식 12로 표시되는 화합물 12를 DMF-DMA (N,N-dimethylformamide dimethyl acetal)로 축합한 후, 생성된 아미노 케톤을 산 처리하여 화학식 18로 표시되는 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18b를 얻는 단계;
(나) 상기 4H-크로멘-4-온 (4H-chromen-4-ones) 화합물 18b를 촉매를 이용하여 수소화하여 화학식 19로 표시되는 크로만-4-온 (chroman-4-ones) 화합물 19b를 얻는 단계;
(다) 상기 크로만-4-온 (chroman-4-ones) 화합물 19b에 EtOH/H2O (5/1), KOH, 화학식 16으로 표시되는 화합물 16를 가하여 응축반응하여 화학식 20으로 표시되는 화합물 20b를 얻는 단계; 및
(라) 1N HCl을 사용하여 상기 화합물 20b를 탈보호기화하여 화학식 1로 표시되는 화합물 3을 얻는 단계;로 생성됨을 특징으로 하는 포르툴라카논 D를 합성하는 방법.
<화학식 12>
Figure 112018012921389-pat00010

(단, 화합물 12: R1 = OMe, R2 = H)
<화학식 18>
Figure 112018012921389-pat00011

(단, 화합물 18b: R1 = OMe, R2 = H)
<화학식 19>
Figure 112018012921389-pat00012

(단, 화합물 19b: R1 = OMe, R2 = H)
<화학식 16>
Figure 112018012921389-pat00013

<화학식 20>
Figure 112018012921389-pat00014

(단, 화합물 20b: R1 = OMe, R2 = H)
The method according to claim 1,
The compound 3
(A) Compound 12 represented by the formula (12) DMF-DMA (N, N -dimethylformamide dimethyl acetal) was condensed with, 4 H by acid treatment and the resulting amino-ketone of the formula 18-chromen-4-one (4 H -chromen-4-ones ) compound 18b;
(B) the 4 H - chromen-4-one (4 H -chromen-4-ones ) of the compound 18b chroman hydrogenated by using a catalyst represented by the formula (19) 4-one (chroman-4-ones) To obtain compound 19b;
(C) Addition of EtOH / H 2 O (5/1), KOH and the compound 16 represented by the formula (16) to the chroman-4-ones compound 19b followed by a condensation reaction, To obtain compound 20b; And
(D) deprotecting the compound 20b with 1N HCl to obtain the compound 3 represented by the formula (1).
&Lt; Formula 12 >
Figure 112018012921389-pat00010

(Compound 12: R 1 = OMe, R 2 = H)
&Lt; Formula 18 >
Figure 112018012921389-pat00011

(Compound 18b: R 1 = OMe, R 2 = H)
(19)
Figure 112018012921389-pat00012

(Provided that Compound 19b: R 1 = OMe, R 2 = H)
&Lt; Formula 16 >
Figure 112018012921389-pat00013

(20)
Figure 112018012921389-pat00014

(Compound 20b: R 1 = OMe, R 2 = H)
아래 화학식 6으로 표시되는 포르툴라카논 D를 포함하는 항염증 약학 조성물.
<화학식 6>
Figure 112018012921389-pat00015
An antiinflammatory pharmaceutical composition comprising a phytulacanone D represented by the following formula (6).
(6)
Figure 112018012921389-pat00015
KR1020180014403A 2018-02-06 2018-02-06 Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof KR101997515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180014403A KR101997515B1 (en) 2018-02-06 2018-02-06 Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180014403A KR101997515B1 (en) 2018-02-06 2018-02-06 Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof

Publications (1)

Publication Number Publication Date
KR101997515B1 true KR101997515B1 (en) 2019-07-08

Family

ID=67255944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180014403A KR101997515B1 (en) 2018-02-06 2018-02-06 Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof

Country Status (1)

Country Link
KR (1) KR101997515B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111217773A (en) * 2020-03-12 2020-06-02 辽宁中医药大学 Furan ring compound in purslane and extraction and separation method and application thereof
KR20200097459A (en) * 2019-02-08 2020-08-19 부산대학교 산학협력단 A pharmaceutical composition comprising HM-chromanone which activates AMPK as an active ingredient
CN115385884A (en) * 2022-08-23 2022-11-25 辽宁中医药大学 Extraction and separation method of new chromone alcohols in purslane and application thereof

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
Abegaz BM et al., Nat Prod Commun. 2007;2:475-498.
Andersen, ØM et al., Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, CRC Press; 2006.
Biomed Research International, 2015, Article ID 925631, 1-11. *
Coleman JW. Clin Exp Immunol. 2002;129:4-10.
Damodar K, Kim J-K, Jun J-G. Tetrahedron Lett. 2017;58:50-53.
Fullerton JN, Gilroy DW. Nat. Rev Drug Discov. 2016;15:551-567.
Int. J. Mol. Sci., 13, 5628-5644, 2012. *
Iranshahy M et al., J Ethnopharmacol. 2017;205:158-172.
Jian Yan J et al., Phytochemistry 2012;80:37-41.
Kontogiorgis CA, Hadjipavlou-Litina D. Med Res Rev. 2002;22:385-418.
Lin LG et al., J Med Chem. 2008;51:4419-4429.
Lin L-G et al., Planta Med. 2014;80:1053-1066.
Lundberg JON et al., Nat Med. 1997; 3:30-31.
Lyons CR. Adv Immunol. 1995;60:323-371.
Phytochemistry, 80, 37-41, 2012. *
Quintans J. Immunol Cell Biol. 1994;72:262-264.
Seo YH, Damodar K, Kim J-K, Jun J-G. Bioorg Med Chem Lett. 2016;26:1521-1524.
Thomas DD et al., Free Radic Biol Med. 2008;45:18-31.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200097459A (en) * 2019-02-08 2020-08-19 부산대학교 산학협력단 A pharmaceutical composition comprising HM-chromanone which activates AMPK as an active ingredient
KR102210082B1 (en) 2019-02-08 2021-01-29 부산대학교 산학협력단 A pharmaceutical composition comprising HM-chromanone which activates AMPK as an active ingredient
CN111217773A (en) * 2020-03-12 2020-06-02 辽宁中医药大学 Furan ring compound in purslane and extraction and separation method and application thereof
CN111217773B (en) * 2020-03-12 2022-05-13 辽宁中医药大学 Furan ring compound in purslane and extraction and separation method and application thereof
CN115385884A (en) * 2022-08-23 2022-11-25 辽宁中医药大学 Extraction and separation method of new chromone alcohols in purslane and application thereof
CN115385884B (en) * 2022-08-23 2023-04-25 辽宁中医药大学 Extraction and separation method of neochronol in purslane and application thereof

Similar Documents

Publication Publication Date Title
KR101997515B1 (en) Synthetic method for portulacanone D and anti-inflammatory pharmaceutical compounds containing thereof
Xu et al. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae
Van Acker et al. Synthesis of novel 3, 7-substituted-2-(3 ‘, 4 ‘-dihydroxyphenyl) flavones with improved antioxidant activity
JP5265915B2 (en) (-)-Epigallocatechin gallate derivative for inhibiting proteasome
Reddy et al. Bis-chalcone analogues as potent NO production inhibitors and as cytotoxic agents
Nguyen et al. New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae
EP2112145A1 (en) Chromenone derivatives useful for the treatment of neurodegenerative diseases
Liang et al. Synthesis and in vitro and in vivo antitumour activity study of 11-hydroxyl esterified bergenin/cinnamic acid hybrids
Morikawa et al. Structures of new flavonoids, erycibenins D, E, and F, and NO production inhibitors from Erycibe expansa originating in Thailand
Roldán et al. Synthesis and biological evaluation of simplified pironetin analogues with modifications in the side chain and the lactone ring
KR102060412B1 (en) Synthetic method for portulacanone compounds and their derivatives and anti-inflammatory pharmaceutical compounds containing thereof
Shoaib et al. Synthetic flavonols and flavones: A future perspective as anticancer agents.
EP2984072B1 (en) Synthetic analogues of xanthohumol
Lizhuo et al. Synthesis, antibacterial and antifungal evaluation of rhodanine derivatives bearing quinoxalinyl imidazole moiety as ALK5 inhibitors
Sauvain et al. Isolation of flavans from the amazonian shrub Faramea guianensis
Choi et al. (+)-Catechin, an antioxidant principle from the leaves of Pinus densiflora that acts on 1, 1-diphenyl-2-picrylhydrazyl radical
WO2008020625A1 (en) Dibenzoylmethane compound and pharmaceutical composition comprising the compound as active ingredient
Rao et al. Synthesis, Characterization and Antimicrobial activity of Some Flavones
KR101825614B1 (en) C-methylisoflavones and their derivatives and producing methods thereof
WO2009049493A1 (en) Preparation of seselin and its derivatives
Ujwala et al. Synthesis and bio-activity evaluation of 2-styrylchromones
Alizadeh et al. Synthesis of some novel pyrano [2, 3-f] chromenone derivatives
Zhang et al. Synthesis and Antiproliferative In‐Vitro Activity of Natural Flavans and Related Compounds
KR101457638B1 (en) A pyrazolylnaphthalenol derivative, preparation method thereof and composition for anti-cancer comprising the pyrazolylnaphthalenol derivative
EP1322632A1 (en) N-disubstituted carbamoyloxy flavones

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant