KR102058153B1 - Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid - Google Patents

Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid Download PDF

Info

Publication number
KR102058153B1
KR102058153B1 KR1020190085536A KR20190085536A KR102058153B1 KR 102058153 B1 KR102058153 B1 KR 102058153B1 KR 1020190085536 A KR1020190085536 A KR 1020190085536A KR 20190085536 A KR20190085536 A KR 20190085536A KR 102058153 B1 KR102058153 B1 KR 102058153B1
Authority
KR
South Korea
Prior art keywords
hours
weight
tin
mixture
catalyst
Prior art date
Application number
KR1020190085536A
Other languages
Korean (ko)
Inventor
강대권
Original Assignee
강대권
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강대권 filed Critical 강대권
Priority to KR1020190085536A priority Critical patent/KR102058153B1/en
Application granted granted Critical
Publication of KR102058153B1 publication Critical patent/KR102058153B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4213Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from terephthalic acid and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention relates to a method for manufacturing polyester polyol which improves flame retardancy and strength of polyester polyol and improves production efficiency by using terephthalic acid. More specifically, the present invention relates to a method for manufacturing polyester polyol by using terephthalic acid, which comprises a first reaction step of making a mixture of 50-70 wt% of diethylene glycol (DEG), 20-30 wt% of phthalic acid (PA), and 10-20 wt% of terephthalic acid (TPA) at 160-180°C for 7-9 hours; a second reaction step of making the mixture through the first reaction react at 220-240°C for 7-9 hours; and a step of filtering the mixture through the second reaction.

Description

테레프탈산을 이용한 폴리에스터 폴리올의 제조방법 {Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid}Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid

본 발명은 테레프탈산을 사용하여 폴리에스터 폴리올의 난연성과 강도를 향상시키면서도 생산 효율이 향상된 폴리에스터 폴리올의 제조방법에 관한 것으로서, 보다 상세하게는 디에틸렌글리콜(DEG) 50~70 중량%, 프탈산(PA) 20~30 중량% 및 테레프탈산(TPA) 10~20 중량%의 혼합물을 160~180℃에서 7~9시간 동안 반응시키는 1차 반응 단계, 상기 1차 반응이 이루어진 혼합물을 220~240℃에서 7~9시간 동안 반응시키는 2차 반응 단계, 및 상기 2차 반응이 이루어진 혼합물을 여과하는 단계를 포함하는, 테레프탈산을 이용한 폴리에스터 폴리올의 제조방법에 대한 것이다.The present invention relates to a method for producing a polyester polyol with improved production efficiency while improving the flame retardancy and strength of the polyester polyol using terephthalic acid, and more specifically, 50 to 70% by weight of diethylene glycol (DEG) and phthalic acid (PA). ) A first reaction step of reacting a mixture of 20 to 30% by weight and 10 to 20% by weight of terephthalic acid (TPA) at 160 to 180 ° C. for 7 to 9 hours, and the mixture at which the first reaction is performed at 220 to 240 ° C. It relates to a secondary reaction step of reacting for ˜9 hours, and a method for producing a polyester polyol using terephthalic acid, comprising filtering the mixture made of the secondary reaction.

폴리우레탄은 이소시아네이트기를 함유하는 물질과 활성수소를 갖는 물질과의 화학반응에 의해 얻어지는 우레탄결합을 갖는 고분자 화합물로서, 원료 및 적용기술에 따라서 자동차·가구용 쿠션재, 건축물의 단열재, 접착제, 방수제, 바닥재, 인조가죽, 코팅제, 실링제 및 인조섬유 등 모든 산업분야에 널리 활용되고 있는 고분자 소재이다. Polyurethane is a high molecular compound having a urethane bond obtained by chemical reaction between an isocyanate group-containing substance and an active hydrogen-containing substance, and according to raw materials and applied technologies, cushioning materials for automobiles and furniture, insulation materials for buildings, adhesives, waterproofing agents, flooring materials, It is a polymer material widely used in all industries such as artificial leather, coating agent, sealing agent and artificial fiber.

일반적으로 폴리우레탄의 합성에 사용되는 활성수소를 갖는 물질로는 폴리올(Polyol)을 사용할 수 있고, 이러한 폴리올은 아민(Amine), 페놀(Phenol), 알코올(Alcohol), 물(H2O), 활성메틸렌화합물(Active Methylene Compound) 등을 개시제로 사용하여 제조될 수 있다.In general, polyol may be used as a material having active hydrogen used in the synthesis of polyurethane, and such polyol may be amine (Amine), phenol (Phenol), alcohol (Alcohol), water (H 2 O), or active methylene. It can be prepared using a compound (Active Methylene Compound) and the like as an initiator.

폴리올은 화학적 구조에 따라 여러 종류로 구별될 수 있으며, 이들 중 가장 일반적으로 사용되는 것으로는 폴리에스터 폴리올(polyester polyol)과 폴리에테르 폴리올(polyether polyol) 등을 들 수 있다. 특히, 폴리에스터 폴리올의 경우 일반적으로 프탈산(PA)과 글리콜을 축합반응시켜 생산하는 것이 일반적이나, 근래에는 생성되는 폴리올의 난연성과 강도를 향상시키기 위하여, 기능성 물질을 첨가하는 등 여러가지 변형된 시도가 이루어지고 있다. Polyols may be classified into various types according to chemical structures, and the most commonly used ones thereof include polyester polyols and polyether polyols. In particular, polyester polyols are generally produced by condensation reaction between phthalic acid (PA) and glycol, but in recent years, various modifications such as addition of functional materials have been made to improve the flame retardancy and strength of polyols produced. It is done.

그러나, 이러한 시도들은 폴리올의 난연성과 강도를 향상시키는 등 기능성을 부가하는 장점은 있으나, 반응 조절이 까다로워 전체적인 생산효율이 떨어지고 생성되는 폴리올의 산가 및 점도 등 품질 조절이 어렵다는 단점이 있었다. However, these attempts have the advantage of adding functionality, such as improving the flame retardancy and strength of the polyol, but has a disadvantage in that it is difficult to control the quality, such that the overall production efficiency is poor and the quality control such as acid value and viscosity of the resulting polyol is difficult.

본 발명에서는 일반적으로 사용되는 프탈산과 함께 테레프탈산을 함께 사용하여 생산되는 폴리올의 난연성과 강도 등 전체적인 물성을 향상시키되, 테레프탈산을 사용하는 경우 전체적인 반응성이 떨어지고 폴리올의 물성 조절이 어려운 단점을 극복하기 위하여, 반응 단계 및 조건이 조절된 새로운 폴리올 제조방법을 개발하였다. In the present invention, in order to improve the overall physical properties, such as flame retardancy and strength of the polyol produced by using a combination of phthalic acid and terephthalic acid in general, in order to overcome the disadvantages that the overall reactivity is poor and difficult to control the physical properties of the polyol, New polyol production methods with controlled reaction steps and conditions have been developed.

대한민국 공개특허공보 KR 10-2019-0009815 ARepublic of Korea Patent Publication KR 10-2019-0009815 A 대한민국 공개특허공보 KR 10-2018-0137938 ARepublic of Korea Patent Application Publication KR 10-2018-0137938 A

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 테레프탈산을 사용하여 제조되는 폴리올의 난연성과 강도 등 전체적인 물성을 향상시킴과 동시에 반응 조절 및 제조되는 폴리올의 물성 조절이 어려운 단점을 극복한 폴리에스터 폴리올의 제조방법을 제공하는 것을 목적으로 한다. The present invention is to solve the above problems, the polyester polyol to improve the overall physical properties such as the flame retardancy and strength of the polyol prepared using terephthalic acid and at the same time to overcome the disadvantages of difficult to control and control the physical properties of the polyol produced An object of the present invention is to provide a manufacturing method.

상기 목적을 달성하기 위하여, 본 발명은 디에틸렌글리콜(DEG) 50~70 중량%, 프탈산(PA) 20~30 중량% 및 테레프탈산(TPA) 10~20 중량%의 혼합물을 160~180℃에서 7~9시간 동안 반응시키는 1차 반응 단계, 상기 1차 반응이 이루어진 혼합물을 220~240℃에서 7~9시간 동안 반응시키는 2차 반응 단계, 및 상기 2차 반응이 이루어진 혼합물을 여과하는 단계를 포함하는, 테레프탈산을 이용한 폴리에스터 폴리올의 제조방법을 제공한다. 이때, 상기 2차 반응 단계에서 주석 촉매가 투입되는 것이 바람직하다. In order to achieve the above object, the present invention is a mixture of 50 to 70% by weight of diethylene glycol (DEG), 20 to 30% by weight of phthalic acid (PA) and 10 to 20% by weight of terephthalic acid (TPA) at 160 to 180 ℃ 7 A first reaction step of reacting for ˜9 hours, a second reaction step of reacting the mixture made with the first reaction at 220-240 ° C. for 7-9 hours, and filtering the mixture made with the secondary reaction To provide a method for producing a polyester polyol using terephthalic acid. At this time, it is preferable that the tin catalyst is added in the secondary reaction step.

본 발명에 따라 제조된 폴리에스터 폴리올은 테레프탈산을 사용하여 폴리올의 난연성과 강도 등 전체적인 물성이 향상됨과 동시에, 반응 단계 및 조건을 조절하여 전체적인 생산 효율이 향상된다. The polyester polyol prepared according to the present invention uses terephthalic acid to improve overall physical properties such as flame retardancy and strength of the polyol, and to control reaction steps and conditions, thereby improving overall production efficiency.

도 1은 본 발명의 폴리에스터 폴리올의 제조 과정을 보여주는 공정도이다.1 is a process chart showing the manufacturing process of the polyester polyol of the present invention.

이하, 본 발명의 도면 및 실시예를 참조하여 본 발명을 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.Hereinafter, with reference to the drawings and embodiments of the present invention will be described in detail. These examples are only presented by way of example only to more specifically describe the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples. .

또한, 달리 정의하지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술 분야의 숙련자에 의해 통상적으로 이해되는 바와 동일한 의미를 가지며, 상충되는 경우에는, 정의를 포함하는 본 명세서의 기재가 우선할 것이다. Also, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, and in the case of conflict, the specification including definitions The description of will prevail.

본 발명의 폴리에스터 폴리올은 프탈산 및 테레프탈산과 디에틸렌글리콜의 축합반응을 통하여 폴리에스터 폴리올을 제조하되, 축합반응이 서로 다른 온도 조건을 가지는 두 단계로 이루어지며, 두번째 단계에서 주석 촉매가 투입되는 것을 특징으로 한다. 이하 자세히 살펴본다. In the polyester polyol of the present invention, a polyester polyol is prepared through a condensation reaction of phthalic acid, terephthalic acid, and diethylene glycol, but the condensation reaction is composed of two steps having different temperature conditions, and a tin catalyst is introduced in the second step. It features. Take a closer look below.

먼저, 디에틸렌글리콜(DEG) 50~70 중량%, 프탈산(PA) 20~30 중량% 및 테레프탈산(TPA) 10~20 중량%의 원료를 투입하여 160~180℃에서 7~9시간 동안 반응시킨다. 이후, 상기 혼합물을 다시 220~240℃에서 7~9시간 동안 2차 반응시키게 되는데, 이때 폴리에스테르 폴리올의 생산율을 높이기 위하여 주석 촉매를 투입하는 것이 바람직하다. First, 50 to 70% by weight of diethylene glycol (DEG), 20 to 30% by weight of phthalic acid (PA) and 10 to 20% by weight of terephthalic acid (TPA) are added thereto, and reacted at 160 to 180 ° C for 7 to 9 hours. . Thereafter, the mixture is secondly reacted again at 220-240 ° C. for 7-9 hours, in which a tin catalyst is preferably added to increase the production rate of the polyester polyol.

이때, 상기 주석 촉매는 일반적으로 사용되는 다양한 주석 촉매가 사용될 수도 있으나, 본 발명에서는 생산 효율을 높이기 위하여, i) 금속 전구체 용액 및 말레산을 80~90℃에서 1~3시간 동안 가열 혼합하여 겔 화합물을 얻는 단계 및 ii) 상기 겔 화합물을 700~900℃에서 5~7시간 동안 소성하는 단계를 통하여 제조된 주석-아연 촉매를 사용하는 것이 바람직하다. At this time, the tin catalyst may be used a variety of commonly used tin catalyst, in the present invention, i) to increase the production efficiency, i) a gel by heating and mixing the metal precursor solution and maleic acid at 80 ~ 90 ℃ for 1 to 3 hours Obtaining the compound and ii) it is preferable to use the tin-zinc catalyst prepared through the step of calcining the gel compound at 700 ~ 900 ℃ for 5 to 7 hours.

이를 자세히 살펴보면, 먼저 금속 전구체를 용매에 녹여 금속 전구체 용액을 준비한다. 이때, 상기 금속 전구체는 주석 및 아연의 산화물, 질산화물, 황산화물이 사용될 수 있으며, 용매는 다이메틸폼아마이드, 감마 부티로락톤, N-메틸피롤리돈, 디메틸설폭사이드 및 비양성자성 용매인 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로 벤젠, 스타이렌, 다이메틸포름아마이드, 이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센, 아이소프로필알코올 등을 사용할 수 있으나 이에 한정되는 것은 아니며, 바람직한 일 실시예로 증류수를 사용할 수 있다. In detail, first, the metal precursor is dissolved in a solvent to prepare a metal precursor solution. At this time, the metal precursor may be oxides, nitrates, sulfur oxides of tin and zinc, the solvent is dimethylformamide, gamma butyrolactone, N-methylpyrrolidone, dimethyl sulfoxide and aprotic solvent Chloroethylene, trichloroethylene, chloroform, chlorobenzene, dichloro benzene, styrene, dimethylformamide, dimethyl sulfoxide, xylene, toluene, cyclohexene, isopropyl alcohol, etc. may be used, but is not limited thereto. In a preferred embodiment, distilled water may be used.

상기 준비된 금속 전구체 용액에 말레산을 혼합하여 교반하는데, 용매를 휘발시키기 위하여 일정한 온도로 가열하며, 용매가 휘발됨에 따라 겔상의 화합물이 얻어진다. 이때, 금속 전구체와 말레산의 혼합 비율은 질량비로 2:1~5:1인 것이 바람직하다. Maleic acid is mixed and stirred in the prepared metal precursor solution, and heated to a constant temperature in order to volatilize the solvent. As the solvent is volatilized, a gelled compound is obtained. At this time, it is preferable that the mixing ratio of a metal precursor and maleic acid is 2: 1-5: 1 by mass ratio.

상기 가열온도는 80~90℃인 것이 바람직하며, 가열온도가 80℃ 미만인 경우 겔상의 화합물을 얻기 위해 소요되는 시간이 길어지며, 90℃를 초과하는 경우 용매가 지나치게 휘발되어 원하는 겔상의 화합물을 얻지 못하게 된다. 가열 및 교반시간은 1~3 시간이 바람직하며, 1 시간 미만인 경우 용매의 휘발이 부족해지고, 3 시간을 초과하는 경우 용매가 지나치게 휘발되어 원하는 겔상의 화합물을 얻지 못하게 된다. The heating temperature is preferably 80 ~ 90 ℃, if the heating temperature is less than 80 ℃ the time required to obtain a gel-like compound is long, if it exceeds 90 ℃ solvent is too volatilized to obtain the desired gel compound I can't. The heating and stirring time is preferably 1 to 3 hours, and when less than 1 hour, volatilization of the solvent is insufficient, and when more than 3 hours, the solvent is excessively volatilized to obtain a desired gelled compound.

이와 같이 겔상의 화합물이 준비되면, 소성 과정을 거치게 되는데, 이 때의 소성온도는 700~900℃이고, 소성시간은 5~7 시간인 것이 바람직하다. 소성온도 및 소성시간이 상기 범위에 미치지 못하거나 초과하는 경우, 촉매 결정 구조가 충분히 생성되지 않거나 소실되어 충분한 촉매효과를 낼 수 없다. When the gel-like compound is prepared as described above, the firing process is performed. The firing temperature at this time is 700 to 900 ° C, and the firing time is preferably 5 to 7 hours. If the firing temperature and the firing time are less than or exceed the above range, the catalyst crystal structure may not be sufficiently produced or lost, resulting in insufficient catalytic effect.

이와 같이 준비된 주석-아연 촉매는 폴리올 생산을 위한 원료 혼합물 100 중량부를 기준으로 0.1~1 중량부 투입되는 것이 바람직하다. The tin-zinc catalyst prepared as described above is preferably added in an amount of 0.1 to 1 parts by weight based on 100 parts by weight of the raw material mixture for polyol production.

한편, 이와 같이 준비된 주석-아연 촉매는 그대로 사용할 수도 있으나, 바람직하게는 촉매의 효율을 더욱 높이기 위하여, 주석-아연 촉매 표면에 주석 입자가 분산된 형태로 다시 재가공하여 사용할 수 있다. Meanwhile, although the tin-zinc catalyst prepared as described above may be used as it is, preferably, in order to further increase the efficiency of the catalyst, the tin-zinc catalyst may be reworked in a form in which tin particles are dispersed on the surface of the tin-zinc catalyst.

즉, 제조된 주석-아연 촉매는 안정한 지지체(support) 역할을 하게 되고, 여기에 주석이 높은 분산도로 분산되어 지지체와 강한 상호작용을 하면서 높은 촉매 활성이 가능하게 된다. 이때, 분산되는 주석은 지지체 역할을 하는 주석-아연 촉매 100 중량부를 기준으로 1~10 중량부 첨가되는 것이 바람직하다. That is, the prepared tin-zinc catalyst serves as a stable support, and tin is dispersed therein with a high dispersion so that high catalytic activity is possible while having strong interaction with the support. At this time, the dispersed tin is preferably added 1 to 10 parts by weight based on 100 parts by weight of tin-zinc catalyst serving as a support.

구체적으로 이 과정은, iii) 만들어진 주석-아연 촉매를 주석 전구체 용액에 함침하여 50~60℃에서 2~5시간 동안 회전 증발한 후, 70~80℃에서 10~12시간 건조하는 단계, 및 iv) 수소 및 질소 분위기(수소:질소=1:1)하 800~900℃의 온도에서 5~7 시간 동안 하소(calcination)하는 단계를 통하여 이루어질 수 있다. 상기 주석 전구체 용액에 사용된 용매는 앞서 설명한 것과 동일한다. Specifically, this process, iii) by impregnating the tin-zinc catalyst prepared in the tin precursor solution for 2 to 5 hours by rotary evaporation at 50 ~ 60 ℃, then drying for 10 to 12 hours at 70 ~ 80 ℃, and iv ) Under a hydrogen and nitrogen atmosphere (hydrogen: nitrogen = 1: 1) at a temperature of 800-900 ° C. for 5-7 hours. The solvent used in the tin precursor solution is the same as described above.

한편, 상기 주석 촉매는 효율 향상을 위하여, 선택적으로 10:1~1:1(주석 촉매:비스무스 촉매)의 중량비율로 비스무스 촉매와 함께 사용될 수 있다. 상기 비스무스 촉매는 상업적으로 사용가능한 다양한 비스무스 촉매가 사용될 수 있으나, 바람직하게는 a) 산화비스무스(Bi2O3), 증류수 및 옥탄산(C8H16O2) 용액을 90℃~110℃의 온도에서 1~2시간 동안 반응시켜 촉매 제조용 조성물을 형성하는 단계, b) 상기 촉매 제조용 조성물을 감압증류하여 용매 및 반응 중 생성된 물을 제거하는 단계, 및 c) 생성물을 여과하여 비스무스염 촉매 화합물을 수득하는 단계를 통하여 제조할 수 있다. Meanwhile, the tin catalyst may be optionally used with the bismuth catalyst in a weight ratio of 10: 1 to 1: 1 (tin catalyst: bismuth catalyst) to improve efficiency. The bismuth catalyst may be used a variety of commercially available bismuth catalyst, preferably a) bismuth oxide (Bi 2 O 3 ), distilled water and octanoic acid (C 8 H 16 O 2 ) solution of 90 ℃ ~ 110 ℃ Reacting for 1 to 2 hours at a temperature to form a composition for preparing a catalyst, b) distilling the composition for preparing a catalyst under reduced pressure to remove a solvent and water generated during the reaction, and c) filtering the product to form a bismuth salt catalyst compound It can be prepared through the step of obtaining.

상기 촉매 제조용 조성물은, 조성물 총 중량을 기준으로 산화비스무스 36~44중량%, 증류수 4~6중량% 및 옥탄산 용액 50~60중량%를 포함하는 것이 바람직하다. 산화비스무스가 36중량% 미만으로, 그리고 옥탄산 용액이 50중량% 미만으로 포함될 경우 공정 수율 및 제조되는 촉매의 순도가 저하되기 때문이다. 또한, 산화비스무스가 44중량%를 초과하여, 그리고 옥탄산 용액이 60중량%를 초과하여 포함될 경우 공정 수율이나 순도 측면에서 더 이상의 효과 없이 재료비 상승만을 초래한다. 따라서, 상기 촉매 제조용 조성물은, 산화비스무스 40중량%, 증류수 5중량% 및 옥탄산 용액 55중량%를 포함하는 것이 가장 바람직하다.It is preferable that the said composition for catalyst manufacture contains 36-44 weight% of bismuth oxides, 4-6 weight% of distilled water, and 50-60 weight% of an octanoic acid solution based on the total weight of a composition. This is because when the bismuth oxide is included in less than 36% by weight and the octanoic acid solution is included in less than 50% by weight, the process yield and the purity of the catalyst to be produced are lowered. In addition, when bismuth oxide is included in excess of 44% by weight and octanoic acid solution in excess of 60% by weight, only the material cost is increased without further effect in terms of process yield or purity. Therefore, it is most preferable that the said composition for catalyst manufacture contains 40 weight% of bismuth oxide, 5 weight% of distilled water, and 55 weight% of an octanoic acid solution.

또한, 상기 촉매 제조용 조성물을 형성하는 단계는, 90~110℃의 온도에서 1~2시간 동안 수행되는 것이 바람직하다. 90℃ 미만의 온도에서 수행될 경우, 반응이 충분히 진행되지 않아 공정 수율이 저하되고 제조되는 촉매의 순도가 저하되며, 110℃를 초과하는 온도에서 수행될 경우, 반응이 너무 빠르게 진행되고 용매가 급속 증발되어 목적하는 촉매 화합물을 얻지 못하는 경우가 생긴다. 또한, 반응 시간이 1시간 미만일 경우, 반응이 충분히 진행되지 않아 공정 수율이 저하되고 제조되는 촉매의 순도가 저하되며, 2 시간을 초과할 경우 더 이상의 효과 없이 연료의 소모만을 초래하게 된다.In addition, the step of forming the composition for preparing the catalyst is preferably carried out for 1 to 2 hours at a temperature of 90 ~ 110 ℃. When carried out at a temperature below 90 ° C., the reaction does not proceed sufficiently to reduce the process yield and lower the purity of the catalyst produced, and when carried out at temperatures above 110 ° C., the reaction proceeds too fast and the solvent rapidly Evaporation may result in failure to obtain the desired catalytic compound. In addition, when the reaction time is less than 1 hour, the reaction does not proceed sufficiently, the process yield is lowered, the purity of the catalyst produced is lowered, and if it exceeds 2 hours, it causes only fuel consumption without any further effect.

이후, 상기 촉매 제조용 조성물을 감압증류하여 용매 및 반응 중 생성된 물을 제거하는 단계를 수행한다. 이때 용매 및 반응 중 생성된 물의 대부분이 제거되어 페이스트 형태의 생성물이 형성된다.Thereafter, the catalyst composition is distilled under reduced pressure to remove the solvent and water generated during the reaction. At this time, the solvent and most of the water generated during the reaction are removed to form a paste-like product.

이후, 페이스트 형태인 생성물을 여과하여 비스무스염 촉매 화합물을 수득하는 단계를 수행함으로써 최종적으로 비스무스염 촉매 화합물을 수득한다. 필요 시 여과 후 건조하는 단계를 추가로 수행할 수 있다. Thereafter, the bismuth salt catalyst compound is finally obtained by performing the step of filtering the product in the form of a paste to obtain a bismuth salt catalyst compound. If necessary, the step of drying after filtration may be further performed.

이와 같이 제조된 촉매를 투입하여 2차 반응까지 끝난 후에는 최종적으로 촉매 등을 여과하는 단계를 거친 후 최종적으로 폴리에스터폴리올 제품을 얻게 된다. After the catalyst prepared as described above is finished until the second reaction, the catalyst is finally filtered and finally a polyester polyol product is obtained.

이하, 구체적인 제조예 및 실시예를 통하여 본 발명의 구성 및 그에 따른 효과를 보다 상세히 설명하고자 한다. 그러나, 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to specific preparation examples and examples. However, this embodiment is intended to illustrate the present invention in more detail, and the scope of the present invention is not limited to these examples.

[실시예 및 비교예] [Examples and Comparative Examples]

1) (실시예 1) 주석산화물(SnO2) 30g 및 아연산화물(ZnO) 30g을 증류수에 녹여서 금속 전구체 용액을 준비하였다. 금속 전구체 용액에 말레산 20g을 첨가하고 상온에서 2시간 동안 교반한 후, 온도를 90℃로 승온시켜 교반하면서 증류수를 휘발시켰다. 이에 따라 얻어진 겔(gel) 상태의 화합물을 800℃에서 6시간 동안 소성하여 주석-아연 촉매를 수득하였다.1) (Example 1) A metal precursor solution was prepared by dissolving 30 g of tin oxide (SnO 2 ) and 30 g of zinc oxide (ZnO) in distilled water. 20 g of maleic acid was added to the metal precursor solution, followed by stirring at room temperature for 2 hours, followed by volatilization of distilled water while the temperature was raised to 90 ° C. The gel compound thus obtained was calcined at 800 ° C. for 6 hours to obtain a tin-zinc catalyst.

다음으로, 디에틸렌글리콜(DEG) 120g, 프탈산(PA) 50g 및 테레프탈산(TPA) 30g의 혼합물을 170℃에서 8시간 동안 반응시킨 후, 상기에서 제조한 촉매를 혼합물 중량 대비 0.3 중량부 투입하여 230℃에서 8시간 동안 반응시켰다. 이후, 여과과정을 거친 후 폴리에스터 폴리올을 수득하였다. Next, a mixture of 120 g of diethylene glycol (DEG), 50 g of phthalic acid (PA), and 30 g of terephthalic acid (TPA) was reacted at 170 ° C. for 8 hours, and then 0.3 part by weight of the catalyst prepared above was added to 230 parts by weight of the mixture. The reaction was carried out for 8 hours at ℃. Thereafter, a polyester polyol was obtained after filtration.

2) (실시예 2) 주석산화물(SnO2) 30g 및 아연산화물(ZnO) 30g을 증류수에 녹여서 금속 전구체 용액을 준비하였다. 금속 전구체 용액에 말레산 20g을 첨가하고 상온에서 2시간 동안 교반한 후, 온도를 90℃로 승온시켜 교반하면서 증류수를 휘발시켰다. 이에 따라 얻어진 겔(gel) 상태의 화합물을 800℃에서 6시간 동안 소성하여 주석-아연 촉매를 수득하였다. 2) Example 2 A metal precursor solution was prepared by dissolving 30 g of tin oxide (SnO 2 ) and 30 g of zinc oxide (ZnO) in distilled water. 20 g of maleic acid was added to the metal precursor solution, followed by stirring at room temperature for 2 hours, followed by volatilization of distilled water while the temperature was raised to 90 ° C. The gel compound thus obtained was calcined at 800 ° C. for 6 hours to obtain a tin-zinc catalyst.

수득된 촉매를 주석산화물(SnO2) 수용액에 함침하여 50℃에서 3시간 동안 회전 증발하고 75℃에서 10시간 건조한 후, 수소 및 질소 분위기(수소:질소=1:1)하 800℃에서 6 시간 동안 하소(calcination)하여 표면에 주석이 분산된 주석-아연 촉매를 수득하였다. The catalyst obtained was impregnated in a tin oxide (SnO 2) aqueous solution and rotary evaporated at 50 ° C. for 3 hours, dried at 75 ° C. for 10 hours, and then heated at 800 ° C. under hydrogen and nitrogen atmosphere (hydrogen: nitrogen = 1: 1) for 6 hours. Calcination gave a tin-zinc catalyst in which tin was dispersed on the surface.

다음으로, 디에틸렌글리콜(DEG) 120g, 프탈산(PA) 50g 및 테레프탈산(TPA) 30g의 혼합물을 170℃에서 8시간 동안 반응시킨 후, 상기에서 제조한 촉매를 혼합물 중량 대비 0.3 중량부 투입하여 230℃에서 8시간 동안 반응시켰다. 이후, 여과과정을 거친 후 폴리에스터 폴리올을 수득하였다. Next, a mixture of 120 g of diethylene glycol (DEG), 50 g of phthalic acid (PA), and 30 g of terephthalic acid (TPA) was reacted at 170 ° C. for 8 hours, and then 0.3 part by weight of the catalyst prepared above was added to 230 parts by weight of the mixture. The reaction was carried out for 8 hours at ℃. Thereafter, a polyester polyol was obtained after filtration.

3) (실시예 3) 실시예 2와 동일하게 동일하게 폴리에스터 폴리올을 제조하되, 비스무스 촉매를 주석-아연 촉매 100 중량부 기준으로 10 중량부 추가로 사용하였다. 3) Example 3 A polyester polyol was prepared in the same manner as in Example 2, except that 10 parts by weight of the bismuth catalyst was used based on 100 parts by weight of the tin-zinc catalyst.

상기 비스무스 촉매는 옥탄산 300g 및 톨루엔 130g을 혼합하여 옥탄산 용액을 제조하였다. 반응기에 증류수 4g 및 상기 옥탄산 용액 60g을 넣고 교반하면서 산화비스무스 36g을 천천히 투입하여 90℃에서 2시간 동안 반응시켰다. 생성물을 감압증류하여 톨루엔과 반응 중 생성된 물을 제거하고 여과하여 비스무스염 촉매 화합물(비스무스 트리스 2-에틸헥사노에이트)을 수득하였다.The bismuth catalyst was mixed with 300 g of octanoic acid and 130 g of toluene to prepare an octanoic acid solution. 4 g of distilled water and 60 g of the octanoic acid solution were added to the reactor, and 36 g of bismuth oxide was slowly added thereto while reacting at 90 ° C. for 2 hours. The product was distilled under reduced pressure to remove water produced during the reaction with toluene and filtered to obtain a bismuth salt catalyst compound (bismuth tris 2-ethylhexanoate).

4) (비교예 1) 디에틸렌글리콜(DEG) 120g, 프탈산(PA) 50g 및 테레프탈산(TPA) 30g의 혼합물을 170℃에서 8시간 동안 반응시킨 후, 시중에서 판매되는 주석 촉매인 디뷰틸주석 디라우레이트(Dibutyltin dilaurate)을 혼합물 중량 대비 0.1 중량부 투입하여 230℃에서 8시간 동안 반응시켰다. 이후, 여과과정을 거친 후 폴리에스터 폴리올을 수득하였다.(Comparative Example 1) A mixture of 120 g of diethylene glycol (DEG), 50 g of phthalic acid (PA) and 30 g of terephthalic acid (TPA) was reacted at 170 ° C. for 8 hours, followed by dibutyltin di, a commercially available tin catalyst. 0.1 parts by weight of laurate (Dibutyltin dilaurate) was added to the mixture and reacted at 230 ° C. for 8 hours. Thereafter, a polyester polyol was obtained after filtration.

5) (비교예 2) 디에틸렌글리콜(DEG) 120g, 프탈산(PA) 50g 및 테레프탈산(TPA) 30g의 혼합물을 170℃에서 8시간 동안 반응시킨 후, 시중에서 판매되는 주석 촉매인 디뷰틸주석 디라우레이트(Dibutyltin dilaurate)을 혼합물 중량 대비 0.3 중량부 투입하여 230℃에서 8시간 동안 반응시켰다. 이후, 여과과정을 거친 후 폴리에스터 폴리올을 수득하였다.(Comparative Example 2) A mixture of 120 g of diethylene glycol (DEG), 50 g of phthalic acid (PA) and 30 g of terephthalic acid (TPA) was reacted at 170 ° C. for 8 hours, followed by dibutyltin di, a commercially available tin catalyst. 0.3 parts by weight of laurate (Dibutyltin dilaurate) was added to the mixture and reacted at 230 ° C. for 8 hours. Thereafter, a polyester polyol was obtained after filtration.

<실험예>Experimental Example

상기 실시예 1~3 및 비교예 1~2에 따라 제조한 폴리에스테르 폴리올에 대한 산가 수치(mgKOH/g) 및 점도를 측정하여 폴리에스테르 폴리올의 품질을 평가하였으며, 하기 식에 따라 폴리에스테르 폴리올의 회수율을 계산한 후 하기 표에 나타내었다. (X는 PA와 TPA의 투입량이고, Y는 DEG의 투입량이며, Z는 폴리에스테르 폴리올의 생성량이다.)The quality of the polyester polyol was evaluated by measuring the acid value (mgKOH / g) and the viscosity of the polyester polyol prepared according to Examples 1 to 3 and Comparative Examples 1 and 2, and according to the following formula The recovery is calculated and shown in the table below. (X is the dosage of PA and TPA, Y is the dosage of DEG, and Z is the production of polyester polyol.)

회수율 (%)=(Z/X+Y) X 100 Recovery (%) = (Z / X + Y) X 100

Figure 112019072589544-pat00001
Figure 112019072589544-pat00001

상기 표에서 볼 수 있듯이, 실시예 1에서 3로 갈수록 폴리올의 품질이 균질하고 회수율이 증가하는 것을 확인할 수 있었다. As can be seen from the table, it was confirmed that the quality of the polyol becomes homogeneous and the recovery rate increased from 3 to Example 1.

본 명세서에서는 본 발명자들이 수행한 다양한 실시예 가운데 몇 개의 예만을 들어 설명하는 것이나 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고, 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.In the present specification, only a few examples of various embodiments performed by the present inventors are described, but the technical idea of the present invention is not limited thereto, but may be variously modified and implemented by those skilled in the art.

Claims (2)

디에틸렌글리콜(DEG) 50~70 중량%, 프탈산(PA) 20~30 중량% 및 테레프탈산(TPA) 10~20 중량%의 혼합물을 160~180℃에서 7~9시간 동안 반응시키는 1차 반응 단계; 상기 1차 반응이 이루어진 혼합물을 220~240℃에서 7~9시간 동안 반응시키는 2차 반응 단계; 및 상기 2차 반응이 이루어진 혼합물을 여과하는 단계;를 포함하며,
상기 2차 반응 단계에서, 주석-아연 촉매가 혼합물 100 중량부를 기준으로 0.1~1 중량부 투입되고,
상기 주석-아연 촉매는, i) 금속 전구체 용액 및 말레산을 80~90℃에서 1~3시간 동안 가열 혼합하여 겔 화합물을 얻는 단계; 및 ii) 상기 겔 화합물을 700~900℃에서 5~7시간 동안 소성하는 단계;를 통하여 제조되며,
상기 금속 전구체 용액은 주석 및 아연의 산화물, 질산화물 또는 황산화물을 다이메틸폼아마이드, 감마 부티로락톤, N-메틸피롤리돈, 디메틸설폭사이드, 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로 벤젠, 스타이렌, 다이메틸포름아마이드, 이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센, 아이소프로필알코올 또는 증류수에 녹여 준비되고,
상기 금속 전구체와 말레산의 혼합 비율은 2:1~5:1(질량비)인 것을 특징으로 하는 테레프탈산을 이용한 폴리에스터 폴리올의 제조방법.
First reaction step of reacting a mixture of 50 to 70% by weight of diethylene glycol (DEG), 20 to 30% by weight of phthalic acid (PA) and 10 to 20% by weight of terephthalic acid (TPA) at 160 to 180 ° C for 7 to 9 hours. ; A second reaction step of reacting the mixture in which the first reaction is performed at 220-240 ° C. for 7-9 hours; And filtering the mixture in which the secondary reaction is made.
In the second reaction step, the tin-zinc catalyst is added 0.1 to 1 parts by weight based on 100 parts by weight of the mixture,
The tin-zinc catalyst may include: i) heating and mixing the metal precursor solution and maleic acid at 80 to 90 ° C. for 1 to 3 hours to obtain a gel compound; And ii) calcining the gel compound at 700 to 900 ° C. for 5 to 7 hours.
The metal precursor solution is an oxide, nitrate or sulfur oxides of tin and zinc dimethylformamide, gamma butyrolactone, N-methylpyrrolidone, dimethylsulfoxide, dichloroethylene, trichloroethylene, chloroform, chlorobenzene, Prepared by dissolving in dichloro benzene, styrene, dimethylformamide, dimethylsulfoxide, xylene, toluene, cyclohexene, isopropyl alcohol or distilled water,
The mixing ratio of the metal precursor and maleic acid is 2: 1 to 5: 1 (mass ratio), the method for producing a polyester polyol using terephthalic acid, characterized in that.
삭제delete
KR1020190085536A 2019-07-16 2019-07-16 Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid KR102058153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190085536A KR102058153B1 (en) 2019-07-16 2019-07-16 Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190085536A KR102058153B1 (en) 2019-07-16 2019-07-16 Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid

Publications (1)

Publication Number Publication Date
KR102058153B1 true KR102058153B1 (en) 2019-12-20

Family

ID=69063124

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190085536A KR102058153B1 (en) 2019-07-16 2019-07-16 Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid

Country Status (1)

Country Link
KR (1) KR102058153B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315558A (en) 2003-04-11 2004-11-11 Kawasaki Kasei Chem Ltd Manufacturing method of polyester polyol
CN101974147A (en) * 2010-09-15 2011-02-16 旭川化学(苏州)有限公司 Polyester polyol and polyurethane resin for superfine fiber synthetic leather
JP2011099068A (en) 2009-11-09 2011-05-19 Kawasaki Kasei Chem Ltd Composition for rigid polyurethane foam and manufacturing method of rigid polyurethane foam
CN102718957A (en) 2012-06-27 2012-10-10 淄博德信联邦化学工业有限公司 Aromatic polyester polyol for preparing polyurethane foam and preparation method thereof
CN106496533A (en) 2016-10-20 2017-03-15 中国石油化工股份有限公司 The method that PEPA is prepared by PTA residues and ethylene oxide/ethylene glycol plant kettle residual liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315558A (en) 2003-04-11 2004-11-11 Kawasaki Kasei Chem Ltd Manufacturing method of polyester polyol
JP2011099068A (en) 2009-11-09 2011-05-19 Kawasaki Kasei Chem Ltd Composition for rigid polyurethane foam and manufacturing method of rigid polyurethane foam
CN101974147A (en) * 2010-09-15 2011-02-16 旭川化学(苏州)有限公司 Polyester polyol and polyurethane resin for superfine fiber synthetic leather
CN102718957A (en) 2012-06-27 2012-10-10 淄博德信联邦化学工业有限公司 Aromatic polyester polyol for preparing polyurethane foam and preparation method thereof
CN106496533A (en) 2016-10-20 2017-03-15 中国石油化工股份有限公司 The method that PEPA is prepared by PTA residues and ethylene oxide/ethylene glycol plant kettle residual liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL of THE TURKISH CHEMICAL SOCIETY CHEMISTRY, 2016, 3(3), pp. 721-730.*

Similar Documents

Publication Publication Date Title
KR101709909B1 (en) Reactive polyurethane hotmelt adhesives having excellent thermal resistance and producing method of coating textile using the same
DE10013186A1 (en) Polyisocyanates
EP0096249B1 (en) Pressure sensitive adhesive based on polymer compositions containing hydroxyl groups
CN105238014B (en) One pack system large arch dam polyurethane resin and its preparation method and application
US20200165373A1 (en) Curable organic polymer comprising at least one acylurea unit, its preparation and use
KR102058153B1 (en) Manufacturing Method Of Polyesther Polyol Using Terephthalic Acid
CN112708340A (en) Anti-sagging single-component polyurethane waterproof coating capable of being sprayed and constructed
EP1685174B1 (en) Method for the production of prepolymers containing isocyanate groups
KR102058148B1 (en) Manufacturing Method Of Polyol Mixture
CN110642718A (en) Heterogeneous catalyst for synthesizing diphenyl carbonate and preparation method thereof
CN101343348A (en) Novel polysulfide rubber and preparation thereof
WO2001025184A1 (en) Transesterification polyols for polyurethane-prepolymers with specifically regulated viscosity
CN104592469A (en) Anionic polyurethane aqueous dispersion, prepolymer monomer and preparation process thereof
CN113845640B (en) Polyether polyol for polyurethane foam plastic and preparation method and application thereof
DE2638986A1 (en) QUICKLY SET COMPOSITIONS
CN111073586A (en) Non-catalytic single-component moisture-curing polyurethane adhesive for sliding cover of automobile roof skylight and preparation method thereof
EP1765899B1 (en) Method for producing amino-functional polyurethane prepolymers
KR102340369B1 (en) Polyurea waterproofing material with excellent thermal insulation properties, and manufacturing method thereof
CN112694587B (en) Self-repairing polyurethane based on bidirectional repairing structure and preparation method and application thereof
Sankar et al. Bio-based two component (2 K) polyurethane adhesive derived from liquefied infested lodgepole pine barks
DE1912564B2 (en) Process for the production of polyurethane cement and adhesives
CN111303753B (en) Single-component exposed quick-drying polyurethane waterproof coating and preparation method thereof
CN110003839B (en) Polyurethane sealant and preparation method and application thereof
DE2912074C2 (en)
CN113403001A (en) Blocked isocyanate latent curing agent and preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant