KR102051018B1 - Method for producing ornithine decarboxylase mutants and their applications - Google Patents

Method for producing ornithine decarboxylase mutants and their applications Download PDF

Info

Publication number
KR102051018B1
KR102051018B1 KR1020170082880A KR20170082880A KR102051018B1 KR 102051018 B1 KR102051018 B1 KR 102051018B1 KR 1020170082880 A KR1020170082880 A KR 1020170082880A KR 20170082880 A KR20170082880 A KR 20170082880A KR 102051018 B1 KR102051018 B1 KR 102051018B1
Authority
KR
South Korea
Prior art keywords
ala
asp
leu
gly
glu
Prior art date
Application number
KR1020170082880A
Other languages
Korean (ko)
Other versions
KR20190002239A (en
Inventor
김병기
홍은영
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to KR1020170082880A priority Critical patent/KR102051018B1/en
Publication of KR20190002239A publication Critical patent/KR20190002239A/en
Application granted granted Critical
Publication of KR102051018B1 publication Critical patent/KR102051018B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)

Abstract

본 발명은 오르니틴 탈탄산 효소의 변이주의 생성방법과 변이주의 특성, 상기 오르니틴 탈탄산 효소의 변이주를 암호화하는 유전자 및 이들을 이용한 푸트레신의 생산방법에 관한 것이다.
본 발명은, 푸트레신 생산성 또는 생산 효율을 증대시키고, 부반응을 억제하여, 푸트레신 정제시의 비용을 감소시키는 효과가 있다.
The present invention relates to a method for producing mutant strains of ornithine decarboxylase, the characteristics of the mutant strains, genes encoding the mutant strains of ornithine decarbonatease, and a method for producing putrescine using the same.
The present invention has the effect of increasing putrescine productivity or production efficiency, suppressing side reactions, and reducing the cost of putrescine purification.

Description

오르니틴 탈탄산 효소의 변이주 개발 방법 및 그의 응용{METHOD FOR PRODUCING ORNITHINE DECARBOXYLASE MUTANTS AND THEIR APPLICATIONS}METHOD FOR PRODUCING ORNITHINE DECARBOXYLASE MUTANTS AND THEIR APPLICATIONS}

본 발명은 오르니틴 탈탄산 효소의 변이주의 생성과 변이주의 특성, 상기 오르니틴 탈탄산 효소의 변이주를 암호화하는 유전자 및 이들을 이용한 푸트레신 합성에 관한 것이다.The present invention relates to the production of mutant strains of ornithine decarboxylase, the characteristics of the mutant strains, genes encoding the mutant strains of ornithine decarbonatease, and putrescine synthesis using them.

본 발명은 단백질 공학적 변이를 통해 개량된 락토바실러스 유래의 오르니틴 탈탄산 효소를 제공한다. 또한 본 발명의 오르니틴 탈탄산 효소의 변이주는 푸트레신 생산시 부반응으로 인한 카다버린 생산이 현저히 감소하여, 푸트레신 분리 공정의 간편화 및 이로 인한 생산 비용 절감을 제공한다.The present invention provides ornithine decarboxylase derived from Lactobacillus that is improved through protein engineering variations. In addition, the mutant strain of ornithine decarboxylase of the present invention is significantly reduced in the production of the catharine due to side reactions in the production of putrescine, thereby simplifying the putrescine separation process and thereby reducing the production cost.

석유 자원의 계속적인 고갈로 고분자 전구체를 석유자원이 아닌 바이오 물질로부터 합성하는 연구가 최근 활발히 진행되고 있다. 특히 푸트레신 (putrescine; 1,4-diamino-butane)은 고분자 전구체로의 이용뿐 아니라 화학 산업 분야에 많은 응용이 가능한 물질이다. 4,6-나일론, 의약 전구체, 계면활성제 등이 그 예이다. 현재 푸트레신은 석유자원에 의하여 연당 10,000톤 이상이 생산되고 있으나, 경제적/환경적으로 생산의 어려움이 있다. 석유 가격의 인상과 생산 과정에서 생성되는 독성물질이 그 이유이다. 그러한 한계점을 극복하기 위해, 최근 바이오 기술을 통한 푸트레신 합성에 대하여 활발한 연구가 진행되고 있다. 일례로 오르니틴으로부터 푸트레신을 합성하는 연구나, 당에서부터 세포의 생전환 기능을 이용해 푸트레신을 대량으로 생산하는 연구가 이에 해당한다. Due to the continuous depletion of petroleum resources, research is being actively conducted to synthesize polymer precursors from biomaterials rather than petroleum resources. In particular, putrescine (putrescine; 1,4-diamino-butane) is a material that can be used as a polymer precursor, as well as many applications in the chemical industry. Examples are 4,6-nylon, pharmaceutical precursors, surfactants and the like. At present, more than 10,000 tons of putrescine is produced per year by petroleum resources, but there are difficulties in production economically and environmentally. This is the reason for the increase in oil prices and the toxic substances produced during production. In order to overcome such limitations, active research on putrescine synthesis through biotechnology has recently been conducted. Examples include the synthesis of putrescine from ornithine and the production of putrescine in large quantities using the bioconversion function of sugars from cells.

오르니틴 탈탄산 효소는 PLP (pyridoxal-5'-phosphate)를 조효소로 사용하며, 오르니틴의 말단 카르복실기를 절단하여, 푸트레신을 합성한다. 종래 기술의 경우 푸트레신을 생산하기 위해, Escherichia coli 유래의 푸트레신 탈탄산 효소를 대부분 이용하였으며, 푸트레신 생산을 증가시키기 위해 숙주 세포 내에서 효소의 발현을 다양한 프로모터를 사용하여 조절하거나 푸트레신이 세포 밖으로 방출이 용이하도록 역수송체를 과발현 하거나 푸트레신을 분해하는 경로를 차단하는 등의 효소 외의 다른 부분들을 변화 시키는 대사공학적 변이를 진행하였다. 하지만 아직까지 오르니틴 탈탄산 효소가 가지고 있는 부반응 활성 (라이신을 카다버린(1,5-diamino-pentane) 으로 합성)을 줄이고 본래의 기질 활성을 유지시킨 연구는 보고된 바가 없다. Ornithine decarboxylase uses PLP (pyridoxal-5'-phosphate) as a coenzyme, and cleaves the terminal carboxyl group of ornithine to synthesize putrescine. In the prior art, most of the putrescine decarboxylase derived from Escherichia coli was used to produce putrescine, and in order to increase putrescine production, the expression of enzymes in host cells was regulated or reduced using various promoters. To facilitate the release of tresins out of the cell, metabolic changes were made to alter other parts of the enzyme, such as overexpressing the back-transporter or blocking pathways that degrade putrescine. However, no studies have yet been reported to reduce the side reaction activity of ornithine decarboxylase (synthesized with 1,5-diamino-pentane) and maintain the original substrate activity.

한국 특허 공개 10-2009-0107920Korean Patent Publication 10-2009-0107920

오르니틴에서 푸트레신으로 생전환함에 있어 문제가 되는 것을 효소의 부반응이다. 오르니틴 탈탄산 효소의 경우, 본래의 기질인 오르니틴 외에 라이신도 기질로 사용하여 카다버린을 합성하는 것으로 알려져 있다. 이러한 다양한 기질 특이성은 진화의 과정에서 사라지지 않고 남아있는 특성인 것으로 보고된다. The problem with bioconversion from ornithine to putrescine is an enzyme side reaction. In the case of ornithine decarboxylase, in addition to ornithine, which is an original substrate, lysine is also used as a substrate to synthesize cardaber. These various substrate specificities are reported to be properties that do not disappear in the course of evolution.

하지만 이러한 오르니틴 탈탄산 효소의 부반응은 상업적인 이용에 장애를 준다. 푸트레신을 정제하는 과정은 보통 증류과정을 거쳐 진행되는데, 푸트레신 (H2N(CH2)4NH2)과 카다버린 (H2N(CH2)5NH2)은 단지 하나의 탄소(-CH2-)만이 차이날 뿐, 동일한 작용기(디아민기)를 가지고 있으므로, 그 구조가 매우 비슷하다. 따라서, 종래에는, 푸트레신을 정제하는 과정에서 카다버린이라는 불순물을 제거하는데 많은 에너지를 요구하는 문제점이 있었다. However, this side reaction of ornithine decarboxylase impedes commercial use. Purification of putrescine is usually carried out by distillation. Putrescine (H 2 N (CH 2 ) 4 NH 2 ) and cardamom (H 2 N (CH 2 ) 5 NH 2 ) are only one carbon. Since only (-CH 2- ) is different and has the same functional group (diamine group), the structure is very similar. Therefore, conventionally, there is a problem in that a lot of energy is required to remove impurities called cardaber in the process of purifying putrescine.

본 발명에서는 정제과정을 고려하여, 카다버린이 생성되는 부반응을 줄이고 본래의 활성인 푸트레신 생성은 증가 혹은 유지하기 위해, 구조가 이미 밝혀진 바 있는 오르니틴 탈탄산 효소를 토대로 기질 특이성을 상업적 이용에 용이한 방향으로 증대하고자 한다.In the present invention, in consideration of the purification process, commercial use of substrate specificity based on ornithine decarboxylase, whose structure has already been identified, in order to reduce side reactions from which cardaber is produced and to increase or maintain the production of putrescine, which is originally active. To increase in an easy direction.

본 발명은, 푸트레신 생산성 또는 생산 효율을 증대시키고, 부반응을 억제하는 효과가 있다. 특히, 본 발명은 부반응 중 하나인 카다버린의 합성을 저해하는 효과가 있어, 푸트레신 정제시의 비용을 감소시키는 효과가 있다. The present invention has the effect of increasing putrescine productivity or production efficiency and suppressing side reactions. In particular, the present invention has the effect of inhibiting the synthesis of cardaberine, which is one of the side reactions, and has the effect of reducing the cost of putrescine purification.

또한, 본 발명은, 푸트레신 대량생산을 통해 고분자 전구체, 의약품, 화학 첨가제 등의 다양한 활용이 가능하다.In addition, the present invention, through the mass production of putrescine it is possible to utilize a variety of polymer precursors, pharmaceuticals, chemical additives and the like.

도 1은 본 발명에서 오르니틴을 기질로 하여 오르니틴 탈탄산 효소를 이용한 푸트레신 합성 도식도를 나타낸다. 또한 억제해야 할 오르니틴 탈탄산 효소의 부반응인 카다버린 합성 경로를 나타낸다.
도 2는 다양한 유래의 오르니틴 탈탄산 효소 활성을 확인한 것으로, 오르니틴을 기질로 사용하였을 때의 반응성 및 라이신을 기질로 사용하였을 때의 반응성(부반응)의 상대적인 활성도를 나타낸다. ODC_Lb 는 Lactobacillus (inducible)로부터, ODC_Sc 는 saccharomyces cerevisiae (inducible) 로부터, ODC_Ec는 E.coli (constitutive) 로부터, ODC_Ef 는 E.coli (inducible) 로부터 유래된다.
도 3은 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소와, 야생형 탈탄산 효소의 696 번째의 알라닌이 글루탐산으로(A696E), 야생형 탈탄산 효소의 702 번째의 발린이 글라이신으로(V702G), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로(A713L), 야생형 탈탄산 효소의 696 번째 알라닌과 713번째의 알라닌이 글루탐산과 루신으로(A696E/A713L), 야생형 탈탄산 효소의 702 번째의 발린과 713번째의 알라닌이 글라이신과 루신으로(V702G/A713L), 야생형 탈탄산 효소의 696 번째 알라닌과 702 번째의 발린과 713번째의 알라닌이 글루탐산과 글라이신과 루신으로(A696E/V702G/A713L), 야생형 탈탄산 효소의 698 번째의 글루탐산이 아스파르트산으로(E698D), 야생형 탈탄산 효소의 698 번째의 글루탐산과 713번째의 알라닌이 아스파르트산과 루신으로 치환된 변이주(E698D/A713L)를 이용하여, (가) 오르니틴 고유 활성도와 (나) 라이신 고유 활성도 각각을 정량 후 비교한 도면이다.
도 4는 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소와 야생형 오르니틴 탈탄산 효소의 698 번째의 글루탐산이 아스파르트산으로(E698D), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로(A713L), 야생형 오르니틴 탈탄산 효소의 698 번째의 글루탐산과 713번째의 알라닌이 아스파르트산과 루신으로 치환된 변이주(E698D/A713L)를 이용하여 라이신과 오르니틴에 대한 동력학적 계수를 비교한 도면이다
도 5는 다양한 조건에서 생전환 반응을 비교한 도면이다. (가) 오르니틴 기질로 푸트레신 합성을 정량하였고, 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소를 0.37 M 농도 버퍼에서 반응했을 때 (● 참조), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이주를 0.37 M 농도 버퍼에서 반응했을 때 (○ 참조), 야생형 오르니틴 탈탄산 효소를 0.1 M 농도 버퍼에서 반응했을 때 (◆ 참조), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이주를 0.1 M 농도 버퍼에서 반응했을 때 (◇ 참조)의 도면이다. (나) 라이신을 기질로 카다버린 합성을 정량하였고, 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소를 0.37 M 농도 버퍼에서 반응했을 때 (● 참조), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이주를 0.37 M 농도 버퍼에서 반응했을 때 (○ 참조), 야생형 오르니틴 탈탄산 효소를 0.1 M 농도 버퍼에서 반응했을 때 (◆ 참조), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이주를 0.1 M 농도 버퍼에서 반응했을 때 (◇ 참조)의 도면이다.
도 6은 본 발명에서 이용한 락토바실러스 유래의 오르니틴 탈탄산 효소 변이주의 아미노산 서열을 나타낸 것으로,
(a)는 야생형의 아미노산 서열 (서열번호 1),
(b)는 A696E (서열번호 1에서 696번째의 알라닌이 글루탐산으로 치환)의 아미노산 서열 (서열번호 2),
(c)는 V702G (서열번호 1에서 702번째의 발린이 글라이신으로 치환)의 아미노산 서열 (서열번호 3),
(d)는 A713L (서열번호 1에서 713번째의 알라닌이 루신으로 치환)의 아미노산 서열 (서열번호 4)
(e)는 A696E와 A713L 의 조합적 아미노산 서열 (서열번호 5),
(f)는 V702G와 A713L 조합적 아미노산 서열 (서열번호 6),
(g)는 A696E 와 V702G 와 A713L 의 조합적 아미노산 서열 (서열번호 7),
(h)는 E698D (서열번호 1에서 698번째의 글루탐산이 아스파르트산으로 치환)의 아미노산 서열 (서열번호 8),
(i)는 E698D 와 A713L의 조합적 아미노산 서열 (서열번호 9)이다.
도 7은 본 발명에서 탐색한 오르니틴 탈탄산 효소의 변이주의 DNA 서열을 나타낸 것으로,
(a)는 야생형의 DNA 서열 (서열번호 10),
(b)는 A696E 의 DNA 서열 (서열번호 11),
(c)는 V702G 의 DNA 서열 (서열번호 12),
(d)는 A713L의 DNA 서열 (서열번호 13),
(e)는 A696E와 A713L 의 조합적 DNA 서열 (서열번호 14),
(f)는 V702G 와 A713L 의 조합적 DNA 서열 (서열번호 15),
(g)는 A696E와V702G 와 A713L 의 조합적 DNA 서열 (서열번호 16),
(h)는 E698D 의 DNA 서열 (서열번호 17),
(i)는 E698D 와 A713L 의 조합적 DNA 서열 (서열번호 18) 이다.
1 is a schematic diagram of putrescine synthesis using ornithine decarboxylase using ornithine as a substrate in the present invention. It also represents the cardabourne synthesis pathway, a side reaction of ornithine decarboxylase to be inhibited.
Figure 2 confirms the activity of ornithine decarboxylase derived from a variety of, showing the relative activity of the reactivity (or side reaction) when using ornithine as a substrate and lysine as a substrate. ODC_Lb is from Lactobacillus (inducible), ODC_Sc is from saccharomyces cerevisiae (inducible), ODC_Ec is from E. coli (constitutive), and ODC_Ef is from E. coli (inducible).
Figure 3 shows purified wild type ornithine decarboxylase derived from Lactobacillus, 696th alanine of wild type decarboxylase as glutamic acid (A696E), 702th valine as glycine (V702G), wild type The 713th alanine of the decarboxylase is leucine (A713L), the 696th alanine of the wild type decarboxylase and the 713th alanine is glutamic acid and leucine (A696E / A713L), the 702th valine and 713 of the wild type decarboxylase The first alanine is glycine and leucine (V702G / A713L), the wild type decarboxylase 696th alanine, the 702th valine and the 713th alanine are glutamic acid, glycine and leucine (A696E / V702G / A713L), the wild type decarbonate The mutant strain (E698D / A713L) in which the 698th glutamic acid of the enzyme was replaced with aspartic acid (E698D), and the 698th glutamic acid of the wild type decarboxylase and the 713th alanine replaced with aspartic acid and leucine (E698D / A713L). Using a graph comparing after the determination of (a) ornithine, specific activity and (B) lysine-specific activity, respectively.
Fig. 4 shows that the 698th glutamic acid of purified Lactobacillus-derived wild type ornithine decarboxylase and wild type ornithine decarboxylase is aspartic acid (E698D), and the 713th alanine of wild type decarboxylase is leucine (A713L). The kinetic coefficients of lysine and ornithine were compared using the mutant strains (E698D / A713L) substituted with aspartic acid and leucine for 698-glutamic acid and 713-alanine of wild-type ornithine decarboxylase.
5 is a view comparing the bioconversion reaction under various conditions. (A) Putrescine synthesis was quantified by the ornithine substrate, and wild-type ornithine decarboxylase derived from purified Lactobacillus was reacted in 0.37 M concentration buffer (see q). When the mutant substituted with leucine was reacted in 0.37 M concentration buffer (see ○), when wild type ornithine decarboxylase was reacted in 0.1 M concentration buffer (see ◆), the 713th alanine of wild type decarboxylase was The mutant strain substituted with leucine is a diagram when (0.1) reacted in a 0.1 M concentration buffer. (B) When lysine was used to quantify the synthesis, and when the purified Lactobacillus-derived wild type ornithine decarboxylase was reacted in 0.37 M concentration buffer (see q), the 713th alanine of wild type decarboxylase was When mutant substituted with leucine was reacted in 0.37 M concentration buffer (see ○), wild type ornithine decarboxylase was reacted in 0.1 M concentration buffer (see ◆), 713th alanine of wild type decarboxylase was leucine It is a figure when (refer to ◇) the mutant strain substituted by the reaction in 0.1 M concentration buffer.
Figure 6 shows the amino acid sequence of ornithine decarboxylase variant strain derived from Lactobacillus used in the present invention,
(a) is the wild type amino acid sequence (SEQ ID NO: 1),
(b) shows the amino acid sequence of A696E (SEQ ID NO: 1-696 alanine substituted with glutamic acid) (SEQ ID NO: 2),
(c) shows the amino acid sequence of V702G (SEQ ID NO: 1-702 valine with glycine) (SEQ ID NO: 3),
(d) shows amino acid sequence of A713L (SEQ ID NO: 1 to 713 alanine substituted with leucine) (SEQ ID NO: 4)
(e) is the combinatorial amino acid sequence of A696E and A713L (SEQ ID NO: 5),
(f) is the V702G and A713L combinatorial amino acid sequence (SEQ ID NO: 6),
(g) is the combinatorial amino acid sequence of A696E and V702G and A713L (SEQ ID NO: 7),
(h) is the amino acid sequence of E698D (SEQ ID NOs: 198-6 glutamic acid replaced with aspartic acid) (SEQ ID NO: 8),
(i) is the combinatorial amino acid sequence of E698D and A713L (SEQ ID NO: 9).
Figure 7 shows the DNA sequence of the mutant strain of ornithine decarboxylase detected in the present invention,
(a) is the wild type DNA sequence (SEQ ID NO: 10),
(b) shows the DNA sequence of A696E (SEQ ID NO: 11),
(c) shows the DNA sequence of V702G (SEQ ID NO: 12),
(d) shows the DNA sequence of A713L (SEQ ID NO: 13),
(e) shows the combinatorial DNA sequence of A696E and A713L (SEQ ID NO: 14),
(f) shows the combinatorial DNA sequence of V702G and A713L (SEQ ID NO: 15),
(g) is the combinatorial DNA sequence of A696E and V702G and A713L (SEQ ID NO: 16),
(h) is the DNA sequence of E698D (SEQ ID NO: 17),
(i) is the combinatorial DNA sequence of E698D and A713L (SEQ ID NO: 18).

본 발명에서 사용되는 용어는 생물 생전환 업계에서 통상적으로 사용되는 것으로, 당해 기술분야의 통상의 기술자라면 그 의미를 누구나 이해할 수 있을 것이나, 본 명세서에서 간략히 설명하면 다음과 같다: The terms used in the present invention are commonly used in the biological bioconversion industry, and those skilled in the art will understand the meaning thereof, but the following description briefly describes:

(1) 오르니틴 탈탄산 효소는 오르니틴에서 카르복실기를 제거하는 효소를 의미한다. (1) Ornithine decarboxylase means an enzyme that removes carboxyl groups from ornithine.

(2) 오르니틴 탈탄산 효소 반응에 첨가되는 PLP (pyridoxal-5'-phosphate) 는 반응에 필수적으로 사용되는 효소의 조효소 이다. (2) PLP (pyridoxal-5'-phosphate) added to ornithine decarboxylase reaction is a coenzyme of an enzyme essential for the reaction.

(3) 세포추출물은 오르니틴 탈탄산 효소가 발현된 본 발명의 미생물 추출물을 의미한다. (3) The cell extract means a microbial extract of the present invention in which ornithine decarboxylase is expressed.

(4) 전세포 반응은 특정 효소를 포함하는 세포를 파쇄하여 세포 내용물을 이용하거나 또는 효소를 분리정제하지 않고 온전한 세포 전체를 이용한 반응을 의미한다. (4) Whole-cell reaction refers to a reaction using whole cell without breaking down the cell containing the specific enzyme and using the cell contents or separating and purifying the enzyme.

(5) 위치지정 돌연변이 (site saturated mutagenesis)는 유전자의 지정된 위치에 지정된 염기배열의 변화를 도입하는 것을 말한다.(5) Site saturated mutagenesis refers to the introduction of a change in the designated nucleotide sequence at a given position in a gene.

(6) 포화 변이 (saturation mutagenesis)는 유전자의 지정된 위치에 다양한 염기배열의 변화를 도입하는 것을 말한다. 포화 변이는 주형가닥에 결합하는 상보적인 서열의 프라이머 (primer)상에 변이시키고자 하는 서열대신 NNK 코돈 (codon)을 삽입하여 PCR을 통해 변이를 삽입시키는 것을 말한다. 이 때, NNK 코돈에서 N은 뉴클레오디드의 A, T, G, C를 의미하며 K는 T, G를 의미한다. (6) Saturation mutagenesis refers to the introduction of changes in various nucleotide sequences at designated positions of genes. Saturation mutation refers to inserting a mutation through PCR by inserting a NNK codon instead of a sequence to be mutated on a primer of a complementary sequence that binds to the template strand. In this case, N in the NNK codon means A, T, G, C of the nucleotides and K means T, G.

(7) 벡터는 단일가닥, 이중가닥, 원형 또는 초나선 DNA 또는 RNA로 이루어진 폴리뉴클레오티드를 의미하며, 재조합 단백질을 생산할 수 있도록 적절한 거리에 작동적으로 연결되어 있는 구성요소들을 포함할 수 있다. 이러한 구성요소에는 복제 오리진, 프로모터, 인핸서, 5?RNA 리더 서열, 리보솜 결합부위, 핵산 카세트, 종결 및 폴리아데닐화 부위, 또는 선별 가능한 표지 서식 등이 포함될 수 있으며, 상기 구성요소들은 특이적인 용도에 따라 하나 또는 그 이상이 빠질 수도 있다. 핵산 카세트는 발현할 재조합 단백질의 삽입을 위한 제한효소 부위를 포함할 수 있다. 기능적 벡터에 있어서, 핵산 카세트는 번역 개시 및 종결 부위를 포함하는 발현될 핵산 서열을 함유하며, 필요에 따라 벡터에 내에 두 종류의 카세트를 삽입할 수 있는 벡터를 사용하기도 하며 상기 언급한 기능들이 부가적으로 서열화 될 수 있다. 재조합 벡터에 삽입된 유전자는 발현용 대장균 균주 BW25113(DE3), BL21(DE3) 등을 사용할 수 있으나, 삽입된 벡터의 종류에 따라 달라질 수 있다. 이러한 벡터 및 발현 균주는 푸트레신 개발 업자라면 용이하게 선택할 수 있다. (7) A vector refers to a polynucleotide consisting of single-stranded, double-stranded, circular or ultra-stranded DNA or RNA, and may include components that are operably linked at a suitable distance to produce a recombinant protein. Such components may include replication origins, promoters, enhancers, 5-RNA leader sequences, ribosomal binding sites, nucleic acid cassettes, termination and polyadenylation sites, or selectable label formats, which may be used for specific applications. So one or more may be missing. The nucleic acid cassette may comprise restriction enzyme sites for insertion of the recombinant protein to be expressed. In a functional vector, the nucleic acid cassette contains a nucleic acid sequence to be expressed that includes a translation initiation and termination site, and may use a vector capable of inserting two kinds of cassettes into the vector, if necessary, and the functions mentioned above may be added. Can be sequenced. The gene inserted into the recombinant vector may be E. coli strain BW25113 (DE3), BL21 (DE3) for expression, but may vary depending on the type of the inserted vector. Such vectors and expression strains can be readily selected by putrescine developers.

(8) 고유 활성도 (specific activity)는 효소정제를 통해 불순물 및 다른 단백질을 제거한 순수한 단백질의 단위량당 활성을 나타내는 것으로 보통 1분간에 1 μmol의 기질 변화를 촉매하는 효소의 양을 1단위로 하여 1 mg당 단위수로 표시한다. (8) Specific activity refers to the activity per unit of pure protein from which impurities and other proteins have been removed through enzymatic purification. Usually, the amount of enzyme catalyzing 1 μmol substrate change per minute is 1 unit. It is expressed in units per mg.

(9) 동력학적 계수 (Kinetic parameter) 는 서로 다른 농도를 지닌 기질용액을 이용하여 효소의 기질 친화도 및 기질 전환 능력 수치를 나타낸다. (9) Kinetic parameters indicate the substrate affinity and substrate conversion capacity of enzymes using substrate solutions of different concentrations.

본 발명에서는, 하기의 아미노산 서열 중 어느 하나의 서열로 표시되는 오르니틴 탈탄산 효소의 변이체를 제공한다:In the present invention, a variant of ornithine decarboxylase represented by any one of the following amino acid sequences is provided:

서열번호 1 의 아미노산 서열에서, 713번째 알라닌이 소수성 아미노산 중 어느 하나로 치환된, 아미노산 서열; 또는An amino acid sequence of which the 713th alanine is substituted with any of the hydrophobic amino acids in the amino acid sequence of SEQ ID 1; or

서열번호 1 의 아미노산 서열에서, 698번째의 글루탐산이 아스파르트산으로 치환되고, 713번째 알라닌이 소수성 아미노산 중 어느 하나로 치환된, 아미노산 서열.And amino acid sequence 698 where glutamic acid is substituted with aspartic acid and 713 alanine is substituted with any one of hydrophobic amino acids.

상기 소수성 아미노산은, 페닐알라닌, 트립토판, 이소루신, 루신, 프롤린, 메티오닌, 발린, 및 알라닌 중 어느 하나의 아미노산을 의미한다. 바람직하게는, 상기 소수성 아미노산은 루신, 이소루신 또는 발린이며, 보다 바람직하게는 루신이다.The hydrophobic amino acid means an amino acid of any one of phenylalanine, tryptophan, isoleucine, leucine, proline, methionine, valine, and alanine. Preferably, the hydrophobic amino acid is leucine, isoleucine or valine, more preferably leucine.

상기 아미노산 서열은, 오르니틴 탈탄산 효소의 활성을 저하시키지 않는 범위에서 95% 이상의 상동성을 가질 수 있으며, 바람직하게는 98% 이상의 상동성, 보다 바람직하게는 99% 이상의 상동성을 가질 수 있다.The amino acid sequence may have at least 95% homology, preferably at least 98% homology, more preferably at least 99% homology, within the range of not lowering the activity of ornithine decarboxylase. .

또한 본 발명은, 오르니틴 탈탄산 효소의 변이체를 암호화하는 DNA를 제공한다. The present invention also provides a DNA encoding a variant of ornithine decarboxylase.

상기 DNA는 본 발명에서 제공하는 아미노산을 암호화하는 DNA에 해당하면 제한 없이 사용될 수 있으며, 상기 DNA를 최적화시켜 얻은 서열을 포함하고, 상기 DNA는 바람직하게, 서열번호 13 또는 18 로 표시되는 DNA 서열일 수 있다.The DNA may be used without limitation as long as it corresponds to a DNA encoding an amino acid provided in the present invention, and includes a sequence obtained by optimizing the DNA, wherein the DNA is preferably a DNA sequence represented by SEQ ID NO: 13 or 18 Can be.

또한 본 발명은 상기 DNA를 포함하는 재조합 DNA 벡터, 상기 재조합 DNA 벡터로 형질전환된 숙주세포, 및 숙주세포의 추출물을 제공한다.The present invention also provides a recombinant DNA vector containing the DNA, a host cell transformed with the recombinant DNA vector, and an extract of the host cell.

상기 벡터, 숙주세포는 당업자가 용이하게 선택할 수 있는 것이라면 제한 없이 사용할 수 있다.The vector and the host cell can be used without limitation so long as those skilled in the art can easily select.

본 발명은 상기 재조합 DNA 벡터로 형질전환된 숙주세포 및 상기 숙주세포의 추출물로 이루어진 군에서 선택되는 어느 하나를 생촉매로 사용한, 푸트레신의 생산 방법을 제공한다. The present invention provides a method for producing putrescine, using any one selected from the group consisting of a host cell transformed with the recombinant DNA vector and an extract of the host cell as a biocatalyst.

상기 생산 방법은, 기질로서 오르니틴을 사용할 수 있다. 또한, 오르니틴의 전구체가 되는 물질을 기질로 사용하여 오르니틴을 합성한 후, 이로부터 푸트레신을 생산하는 것을 포함한다. 오르니틴의 합성은, 당업자가 용이하게 선택할 수 있는 것이라면 제한 없이 사용할 수 있다.In the production method, ornithine can be used as a substrate. It also includes synthesizing ornithine using a substance that is a precursor of ornithine as a substrate and then producing putrescine therefrom. Synthesis of ornithine can be used without limitation so long as it can be easily selected by those skilled in the art.

또한, 상기 생산방법은, 필요에 따라 버퍼를 사용할 수 있다. 버퍼는 당업자에게 알려진 공지의 것을 제한 없이 사용할 수 있으며, 예를 들어, 시트레이트 완충액 (citric-sodium citrate buffer) 등을 사용할 수 있다. 또한, 버퍼의 농도는 바람직하게 0.1 M 내지 1 M, 보다 바람직하게는 0.2 M 내지 1 M, 더욱 바람직하게는 0.3 M 내지 1 M 를 사용할 수 있다. 상기 범위에서의 농도를 사용할 경우, 푸트레신의 생산을 증가시키고, 카다버린의 생산을 억제하는 효과가 있다.
In the above production method, a buffer may be used as necessary. The buffer can be used without limitation, known to those skilled in the art, for example, citric-sodium citrate buffer and the like can be used. In addition, the concentration of the buffer may be preferably 0.1 M to 1 M, more preferably 0.2 M to 1 M, even more preferably 0.3 M to 1 M. When the concentration in the above range is used, there is an effect of increasing the production of putrescine and suppressing the production of cardaber.

실시예Example

본 발명의 구체적인 방법을 실시예로서 상세히 설명하나, 본 발명의 기술적 범위가 이들 실시예에 한정되는 것은 아니다.
Although the specific method of this invention is demonstrated in detail as an Example, the technical scope of this invention is not limited to these Examples.

실시예 1. 다양한 유래의 오르니틴 탈탄산 효소의 활성 비교 수행Example 1.Comparison of Activity of Ornithine Decarboxylase from Various Origins

네 가지 유래의 오르니틴 탈탄산 효소의 반응성을 비교 하였다. 비교한 네 가지 야생형은 락토바실러스 (Lactobacillus (inducible)), 사카로마이세스 세레비제(saccharomyces cerevisiae (inducible)), 이콜라이 (E.coli (constitutive)), 이콜라이 (E.coli (inducible))로 부터 유래된다. 이에 해당하는 약어로서, ODC_Lb 는 Lactobacillus (inducible), ODC_Sc 는 saccharomyces cerevisiae (inducible), ODC_Ec는 E.coli (constitutive), ODC_Ef 는 E.coli (inducible) 로 표기된다. 해당하는 유전자를 pET24ma 벡터에 삽입 후, 대장균 BL21 (DE3)을 이용하여 0.1 mM IPTG 18 ℃ 조건에서 단백질을 발현 하였다. 이후 10% 세포 추출물을 이용하여 45 ℃ 에서 초기 반응 속도를 비교하였다. 반응성은, 기질로서 4 mM 오르니틴을 사용한 경우와 4 mM 라이신을 사용한 경우를 각각 비교하였다. 이에 대한 결과는 도 2 와 같다. The reactivity of ornithine decarboxylase from four different species was compared. The four wild types compared were from Lactobacillus (inducible), saccharomyces cerevisiae (inducible), E. coli (constitutive) and E. coli (inducible). Is derived. As an abbreviation for this, ODC_Lb is expressed as Lactobacillus (inducible), ODC_Sc as saccharomyces cerevisiae (inducible), ODC_Ec as E.coli (constitutive), and ODC_Ef as E.coli (inducible). After inserting the corresponding gene into the pET24ma vector, the E. coli BL21 (DE3) was used to express the protein under 0.1 mM IPTG 18 ℃ conditions. Since the initial reaction rate was compared at 45 ℃ using 10% cell extract. Reactivity was compared with 4 mM ornithine and 4 mM lysine as a substrate, respectively. The result is shown in FIG. 2.

도 2 에 나타낸 바와 같이, 도 2 에는 다양한 유래의 효소의 활성이 나타나 있으며, 구체적으로, 오르니틴을 기질로 사용하여 푸트레신을 생산한 활성인 오르니틴 탈탄산 효소 활성과, 라이신을 기질로 사용하여 카다버린을 생산한 라이신 탈탄산 효소 활성을 나타내었다. 도 2 의 결과를 살펴보면, 라이신 탈탄산 효소 활성은 모두 비슷하였고, 오르니틴 탈탄산 효소 활성은 락토바실러스 유래의 오르니틴 탈탄산 효소가 가장 우수하였다. 즉, 락토바실러스 유래의 오르니틴 탈탄산 효소가 오르니틴 탈탄산 효소 활성에 비하여 부반응의 생성 비율이 가장 낮아, 이를 바탕으로 변이주 제작을 수행하였다.
As shown in Fig. 2, Fig. 2 shows the activity of enzymes of various origins, specifically, ornithine decarboxylase activity which is an active product of putrescine using ornithine as a substrate, and lysine as a substrate. Showed lysine decarboxylase activity that produced cardaber. Looking at the results of Figure 2, the lysine decarboxylase activity was all similar, the ornithine decarboxylase activity was the most excellent ornithine decarboxylase derived from Lactobacillus. That is, ornithine decarboxylase derived from Lactobacillus has the lowest generation rate of side reactions compared to ornithine decarboxylase activity.

실시예 2. 오르니틴 탈탄산 효소의 변이 목적 부분의 선택Example 2 Selection of Variation Target Part of Ornithine Decarboxylase

본 발명의 락토바실러스 오르니틴 탈탄산 효소는 결정구조가 알려져 있고, 구조분석을 통하여 기질이 효소에 들어가고 나오는 터널 예측이 가능하다. 예측된 터널 부분 중, 포화 변이를 수행할 기능적 잔기 (functional residues)를 선택하기 위해서, 생물정보학의 서열정보를 이용한 다수 서열 정렬 (multiple sequence alignment)을 수행하였다. 단백질 구조 내에 특정 위치의 아미노산 잔기를 보존하고 있는 잔기는 그 단백질에 있어서 구조와 기능상 매우 중요한 역할을 하고 특히 촉매과정에 있어서 직접적인 역할을 할 가능성이 높기 때문에, 이들은 변이 잔기로서 배제하였다.
The crystal structure of the Lactobacillus ornithine decarboxylase of the present invention is known, and it is possible to predict the tunnel entering and exiting the substrate through structural analysis. In order to select functional residues to perform saturation variation among the predicted tunnel portions, multiple sequence alignments using sequence information of bioinformatics were performed. Residues that retain amino acid residues at specific positions in the protein structure are excluded as variant residues because they play a very important role in the structure and function of the protein and, in particular, are likely to play a direct role in catalysis.

실시예 3. 오르니틴 탈탄산 효소의 기능적 잔기에 대한 포화 변이 수행 및 변이주 탐색Example 3 Saturation Variation and Functional Variation of Functional Residues of Ornithine Decarboxylase

선택된 기능적 잔기들에 대해 NNK 코돈을 사용하여 포화 변이를 수행한 후, 변이주 라이브러리에 대해 스크리닝을 수행하였다. 모든 라이브러리는 1차 및 2차 스크리닝을 진행하였다. 1차 스크리닝은 오르니틴 전세포 반응을 통해 진행 되었으며 야생주와 비교했을 때, 비슷하거나 더 빠른 활성을 보이는 변이주들을 흡광도의 변화로 선택하였다. 2차 스크리닝은 라이신 전세포 반응을 통해 진행 되었고, 1차에서 선별된 변이주들에 대해, 라이신에 대한 반응성이 야생주보다 낮으면 선택하였다. 선별된 변이주에 대하여, 오르니틴 또는 라이신을 기질로 사용하였을 때의 고유 활성도를 측정하였다. Saturation mutations were performed using NNK codons for selected functional residues, followed by screening for variant strain libraries. All libraries were subjected to primary and secondary screening. The primary screening was performed through ornithine whole cell responses, and mutants with similar or faster activity were selected as changes in absorbance when compared to wild strains. Secondary screening was carried out via lysine whole cell response and was selected if the responsiveness to lysine was lower than that of wild strains for the primary strains selected. For selected mutants, intrinsic activity when ornithine or lysine was used as the substrate was measured.

구체적으로, 대장균 BL21 (DE3)에 형질전환된 오르니틴 탈탄산 효소의 야생주 및 변이주를 50 mL의 배양 부피로 인듀서인 IPTG를 이용하여 발현한 이후, Ni-NTA 컬럼을 이용하여 순수 단백질만을 정제하였다. 먼저 단백질 발현 이후, 음파 파쇄기로 세포를 파쇄하고, 원심분리 후 세포 추출액을 얻었다. 300 mM 염화나트륨이 첨가된 50 mM 포스페이트(phosphate) 완충용액 (pH8.0)으로 평형화 시킨 컬럼에 세포 추출액을 넣어 0℃ 에서 1 시간 동안 니켈 수지 (resin)와 결합을 시켰다. 이후 수지에 결합하지 못한 단백질을 흘려버리고 50 mM 이미다졸이 포함된 트리스 완충용액으로 비특이적으로 결합된 다른 단백질들을 제거하였다. 마지막으로 250 mM 이미다졸이 포함된 트리스 완충용액으로 원하는 단백질만을 용출하였다. 용출된 단백질은 이미다졸을 제거하기 위해 여과 컬럼을 이용한 탈염과정을 수행하여 최종적으로 활성 있는 단백질만을 얻었으며 브래드포드 (Bradford) 단백질 정량 키트를 사용하여 단백질량을 측정하여 동일한 양의 단백질을 사용하여 반응한 후, 고유 활성도를 측정하였다. Specifically, the wild and mutant strains of ornithine decarboxylase transformed into E. coli BL21 (DE3) were expressed using 50TG of inducer IPTG, followed by pure protein using Ni-NTA column. Purified. First, after protein expression, cells were disrupted with an acoustic wave crusher, and cell extracts were obtained after centrifugation. Cell extracts were added to a column equilibrated with 50 mM phosphate buffer (pH8.0) added with 300 mM sodium chloride, and then combined with nickel resin (resin) at 0 ° C. for 1 hour. Then, the protein that failed to bind to the resin was drained and other proteins that were not specifically bound were removed with Tris buffer containing 50 mM imidazole. Finally, only the desired protein was eluted with Tris buffer containing 250 mM imidazole. The eluted protein was desalted using a filtration column to remove imidazole, and finally only the active protein was obtained. The same amount of protein was measured using the Bradford protein quantification kit. After the reaction, the intrinsic activity was measured.

야생형과 변이주의 고유 활성도는 HPLC(High-performance liquid chromatography) 분석기법을 통해 측정하였다. 반응은 50℃ 에서 30분 내지 300분간 수행하여 세 번의 실험의 평균값으로 구하였다. 10% 내지 25%의 전환 수율을 나타냈을 때의 초기 반응속도를 측정하였다. 양이온 교환 컬럼을 사용하였고 이동상은 0.6 g/L 시트르산, 4 g/L 타르타르산, 1.4 g/L 에틸다이아민, 5% 메탄올 95% 물로 구성하였다. 사용된 pH의 버퍼 용액은 pH 5.0의 경우 시트레이트 완충액 (citric-sodium citrate buffer)를 사용하였다. 변이주와 야생주의 고유 활성도는 도 3에 나타내었다. Intrinsic activity of wild-type and mutant strains was determined by high-performance liquid chromatography (HPLC) analysis. The reaction was performed at 50 ° C. for 30 minutes to 300 minutes to obtain the average of three experiments. The initial reaction rate when the conversion yield of 10% to 25% was shown was measured. A cation exchange column was used and the mobile phase consisted of 0.6 g / L citric acid, 4 g / L tartaric acid, 1.4 g / L ethyldiamine, 5% methanol 95% water. As the pH buffer solution, citric-sodium citrate buffer was used for pH 5.0. Intrinsic activity of the mutant and wild strains is shown in FIG. 3.

도 3 에 나타나 있는 바와 같이, 도 3 은 야생형, A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D, E698D/A713L에 대한 고유 활성도를 측정한 것으로서, 상기 기능적 잔기들(A696, V702, A713, E698, A696)은 모두 터널에 위치한다. As shown in Figure 3, Figure 3 is a measure of the intrinsic activity against wild type, A696E, V702G, A713L, A696E / A713L, V702G / A713L, A696E / V702G / A713L, E698D, E698D / A713L, the functional residue (A696, V702, A713, E698, A696) are all located in the tunnel.

도 3 의 (가)는 오르니틴을 기질로 사용하였을 때의 고유 활성도를 비교한 것으로서, A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D, E698D/A713L 변이주는 야생형의 고유 활성도에 대하여 각각 19.9%, 4.3%, 89.4%, 12.8%, 4.9%, 0.1%, 75.6%, 74.4% 남아있어, 오르니틴을 기질로 사용하였을 때의 고유 활성도가 감소되는 것을 확인하였다. Figure 3 (A) is a comparison of the intrinsic activity when using ornithine as a substrate, A696E, V702G, A713L, A696E / A713L, V702G / A713L, A696E / V702G / A713L, E698D, E698D / A713L 19.9%, 4.3%, 89.4%, 12.8%, 4.9%, 0.1%, 75.6%, and 74.4% of the wild type intrinsic activity remained, indicating that intrinsic activity was reduced when ornithine was used as a substrate. .

도 3 의 (나)는 라이신을 기질로 사용하였을 때의 고유 활성도를 비교한 것으로서, A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D, E698D/A713L 변이주는 야생형의 고유 활성도에 대하여 각각 16.9%, 0.6%, 42.4%, 4.4%, 0.9%, 0.7%, 50.8%, 29.2% 의 활성이 남아있어 부반응이 억제 되는 것을 확인하였다.
Figure 3 (b) is a comparison of the intrinsic activity when using lysine as a substrate, A696E, V702G, A713L, A696E / A713L, V702G / A713L, A696E / V702G / A713L, E698D, E698D / A713L mutant strain wild type With respect to the intrinsic activity of 16.9%, 0.6%, 42.4%, 4.4%, 0.9%, 0.7%, 50.8%, 29.2% of the remaining activity was confirmed that side reactions are suppressed.

실시예 4. 오르니틴 탈탄산 효소의 기능적 잔기에 대한 동력학적 계수 확인Example 4 Identification of Kinetic Coefficients for Functional Residues of Ornithine Decarboxylase

상기 실시예 3 에서 사용된 변이주 중, 70% 이상의 오르니틴을 생산할 수 있는 변이주인 A713L, E698D, E698D/A713L의 특성을 더 면밀하게 야생형과 비교하기 위해서 동력학적 계수 (Kinetic parameter)를 다양한 농도 조건의 오르니틴과 라이신 각각을 이용하여 확인하였다. Among the mutants used in Example 3, kinetic parameters (kinetic parameters) in various concentration conditions in order to more closely compare the characteristics of the wild type A713L, E698D, E698D / A713L that can produce 70% ornithine with the wild type Was confirmed using ornithine and lysine, respectively.

구체적으로, 단백질 정제를 마친 오르니틴 탈탄산 효소의 야생주와 변이주의 동력학적 계수는 0.2 mM 내지 6 mM 농도의 오르니틴을 이용하여 확인하였고, pH의 버퍼 용액은 pH 5.0 시트레이트 완충액 (citric-sodium citrate buffer)을 사용하였다. 반응 부피는 200 ㎕에서 진행 하였다. 라이신에 대한 동력학적 계수를 확인하기 위해 0.45 mM 내지 140 mM의 라이신 농도를 사용하였고 나머지 반응 조건은 오르니틴 반응 때와 동일하다. 분석은 상기 명시된 HPLC 분석 방법을 통해 진행하였으며, 세 번의 실험의 평균값으로 구하였다. 변이주와 야생주의 동력학적 계수는 도 4에 나타내었다. Specifically, the kinetics coefficients of wild and mutant strains of ornithine decarbonatease after protein purification were confirmed using ornithine at a concentration of 0.2 mM to 6 mM, and the pH buffer solution was pH 5.0 citrate buffer (citric- sodium citrate buffer) was used. The reaction volume was run at 200 μl. Lysine concentrations from 0.45 mM to 140 mM were used to confirm the kinetic coefficient for lysine and the remaining reaction conditions were the same as for the ornithine reaction. The analysis was carried out through the HPLC analysis method specified above and was taken as the average of three experiments. Kinetic coefficients of mutant and wild strains are shown in FIG. 4.

도 4 에 나타낸 바와 같이, 야생형과 A713L의 오르니틴에 대한 k cat 값은 약 39 s-1 로 비슷하였고, 야생형에 비하여 A713L 변이주가 라이신에 대한 k cat 값이 2.16 배 낮아진 것을 확인하였다. k cat 값의 감소로 인하여 변이주가 라이신에 대한 k cat / K M 값이 1.93 배 줄어든 것을 확인하였다. 결론적으로 A713L 변이주가 오르니틴과 라이신을 구분하여 활성을 줄일 수 있는 변이주인 것을 확인하였다. E698D와 E698D/A713L 변이주 역시 라이신에 대한 k cat 값이 2.08 와 2.59 배로 각각 줄어드는 것을 확인하였다. 이러한 결과로 E698D 와 E698D/A713L 변이주의 라이신에 대한 k cat / K M 값이 1.28 와 1.67 배 감소되는 것을 확인하였다.
As shown in FIG. 4, the k cat value for ornithine of wild type and A713L was similar to about 39 s −1 , and the A713L mutant showed 2.16 times lower k cat value for lysine than the wild type. k cat / K M values for the mutant lysine due to the decrease in k cat value of the product was confirmed to be 1.93-fold decreased. In conclusion, it was confirmed that the A713L mutant is a mutant that can reduce activity by distinguishing ornithine and lysine. E698D and E698D / A713L mutants also reduced k cat values for lysine by 2.08 and 2.59 times, respectively. As a result, it was confirmed that k cat / K M values of lysine of E698D and E698D / A713L mutants were decreased by 1.28 and 1.67 times.

실시예 5. 오르니틴 탈탄산 효소의 변이주 특성 분석Example 5. Mutant strain characterization of ornithine decarboxylase

본 발명에서는 가장 높은 오르니틴 고유 활성도를 가지는 오르니틴 탈탄산 효소의 A713L 단일 아미노산 치환 변이주의 변이가 미치는 영향을 알아보기 위해, 높은 농도 51.5 g/L (0.39 M) 의 오르니틴을 기질로서 사용한 경우 (도 5 의 (가) 참조)와, 2.57 g/L (17.6 mM) 라이신을 기질로서 사용한 경우(도 5 의 (나) 참조)를 각각 진행하였다. 두 가지 기질 조건에서 반응을 진행함에 있어 알맞은 반응 조건을 잡기 위해, pH 를 적정해주는 버퍼 농도를 두 가지 조건(0.1 M 또는 0.37 M)에서 진행하였다. In the present invention, in order to examine the effect of the variation of the A713L single amino acid substitution mutant of the ornithine decarboxylase having the highest ornithine intrinsic activity, a high concentration of 51.5 g / L (0.39 M) ornithine was used as a substrate. (See Fig. 5A) and 2.57 g / L (17.6 mM) lysine were used as substrates (see Fig. 5B). In order to set the appropriate reaction conditions in the reaction under the two substrate conditions, a buffer concentration for titrating the pH was performed under two conditions (0.1 M or 0.37 M).

구체적으로, 단백질 정제를 마친 라이신 탈탄산 효소의 야생주와 변이주 0.1 mg을 반응에 사용하였다. 기질로서 0.39 M의 오르니틴 또는 17.6 mM의 라이신을 사용하였고, 버퍼로서 0.1 또는 0.37 M의 시트레이트 완충액 (citric-sodium citrate buffer)을 사용하였다 (pH 5.0). 0.1 mM PLP 조효소가 사용되었고, 반응은 50? 에서 진행되었으며, 반응 부피는 2 mL 에서 진행하였다. 이에 대한 결과는 도 5에 나타내었다. Specifically, 0.1 mg of wild and mutant strains of lysine decarboxylase after protein purification were used for the reaction. 0.39 M ornithine or 17.6 mM lysine was used as the substrate and 0.1 or 0.37 M citric-sodium citrate buffer was used as the buffer (pH 5.0). 0.1 mM PLP coenzyme was used and the reaction was 50? The reaction volume was at 2 mL. The results are shown in FIG. 5.

도 5 의 (가)는 51.5 g/L (0.39 M) 의 오르니틴을 기질로 사용한 경우로서, 오르니틴을 푸트레신으로 변환하는 반응의 경우 0.37 M의 버퍼를 사용하였을 때(도 5 의 (가)의 ● 및 ○ 참조), 4시간 이후 야생형과 A713L 변이주가 푸트레신을 각각 33.0 g/L 와 31.6 g/L를 생성하였다. 또한, 낮은 농도의 버퍼 (0.1 M) 농도를 사용하였을 때(도 5 의 (가)의 ◆ 및 ◇ 참조), 7시간 후 야생형과 A713L 변이주가 푸트레신을 20.2 g/L와 20.7 g/L를 생성하였다. 야생형과 A713L 변이주의 푸트레신 생산 능력은 비슷한 것을 확인하였고, 고농도 버퍼 (0.37 M)를 사용하는 것이 반응성에 유익한 것을 확인하였다.5A is a case where 51.5 g / L (0.39 M) of ornithine is used as a substrate, and a 0.37 M buffer is used for the reaction of converting ornithine to putrescine ( After 4 hours, wild-type and A713L mutants produced 33.0 g / L and 31.6 g / L of putrescine, respectively. In addition, when a low concentration of buffer (0.1 M) was used (see ◆ and ◇ in FIG. 5A), wild-type and A713L mutants showed 20.2 g / L and 20.7 g / L of putrescine after 7 hours. Generated. The putrescine production capacity of wild type and A713L mutant strains was similar, and it was confirmed that the use of high concentration buffer (0.37 M) is beneficial for reactivity.

도 5 의 (나)는 2.57 g/L (17.6 mM) 라이신을 기질로 사용한 경우로서, 라이신을 카다버린으로 변환하는 실험의 경우 0.37 M의 버퍼를 사용하였을 때(도 5 의 (나)의 ● 및 ○ 참조), 야생형과 A713L 변이주는 각각 0.03 g/L와 0.007 g/L 의 카다버린을 4 시간 후 생성하였다. 또한, 0.1 M의 버퍼를 사용하였을 때(도 5 의 (나)의 ◆ 및 ◇ 참조), 카다버린이 생성되는 부반응이 증가하였고, 야생형과 A713L 변이주는 7 h 후에 각각 0.59 g/L와 0.38 g/L 의 카다버린을 부반응으로 생성하였다. 이로써 변이주가 카다버린을 생성하는 부반응이 억제 되는 것을 확인하였고, 이 효과는 높은 농도의 버퍼(0.37 M) 을 사용할 때 더 두드러지는 것을 확인하였다.5 (b) shows a case where 2.57 g / L (17.6 mM) lysine was used as a substrate, and 0.37 M of buffer was used for the experiment for converting lysine into cardamom. And wild type and A713L mutant strains produced 0.03 g / L and 0.007 g / L of cadaveric after 4 hours, respectively. In addition, when 0.1 M buffer was used (see ◆ and ◇ of FIG. 5), side reactions in which cardaber was produced increased, and wild type and A713L mutants were 0.59 g / L and 0.38 g after 7 h, respectively. / L of cardinalgy was generated as a side reaction. As a result, it was confirmed that the mutant strain suppressed side reactions that produce cardaber, and this effect was more pronounced when using a high concentration of buffer (0.37 M).

<110> Seoul National University R&DB Foundation <120> METHOD FOR PRODUCING ORNITHINE DECARBOXYLASE MUTANTS AND THEIR APPLICATIONS <130> Y17KP-004 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 1 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Val Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 2 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 2 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Glu Pro Glu Ile Gln Gly Val Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 3 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 3 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Gly Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 4 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 4 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Val Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 5 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 5 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Glu Pro Glu Ile Gln Gly Val Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 6 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 6 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Gly Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 7 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 7 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Glu Pro Glu Ile Gln Gly Gly Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 8 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 8 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Asp Ile Gln Gly Val Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 9 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 9 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr 1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr 20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp 35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys 50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile 65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile 85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe 100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys 115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg 130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr 180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser 195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His 210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val 260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile 275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val 290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln 340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His 355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys 370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala 420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro 435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met 450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu 500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His 515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met 530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr 580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn 595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu 610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu 660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly 675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Asp Ile Gln Gly Val Tyr Phe 690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn 725 730 <210> 10 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.1 <400> 10 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 11 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.2 <400> 11 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgaacc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 12 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.3 <400> 12 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgggtact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 13 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.4 <400> 13 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 14 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.5 <400> 14 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgaacc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 15 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.6 <400> 15 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgggtact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 16 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.7 <400> 16 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgaacc agaaatccaa 2100 ggtgggtact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 17 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.8 <400> 17 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agatatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 18 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.9 <400> 18 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agatatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <110> Seoul National University R & DB Foundation <120> METHOD FOR PRODUCING ORNITHINE DECARBOXYLASE MUTANTS AND THEIR          APPLICATIONS <130> Y17KP-004 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 1 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Val Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 2 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 2 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Glu Pro Glu Ile Gln Gly Val Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 3 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 3 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Gly Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 4 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 4 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Val Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 5 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 5 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Glu Pro Glu Ile Gln Gly Val Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 6 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 6 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Glu Ile Gln Gly Gly Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 7 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 7 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Glu Pro Glu Ile Gln Gly Gly Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 8 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 8 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Asp Ile Gln Gly Val Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Ala Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 9 <211> 731 <212> PRT <213> Artificial Sequence <220> <223> ORNITHINE DECARBOXYLASE MUTANT <400> 9 Met Ser Ser Ser Leu Lys Ile Ala Ser Thr Gln Glu Ala Arg Gln Tyr   1 5 10 15 Phe Asp Thr Asp Arg Val Val Val Asp Ala Val Gly Ser Asp Phe Thr              20 25 30 Asp Val Gly Ala Val Ile Ala Met Asp Tyr Glu Thr Asp Val Ile Asp          35 40 45 Ala Ala Asp Ala Thr Lys Phe Gly Ile Pro Val Phe Ala Val Thr Lys      50 55 60 Asp Ala Gln Ala Ile Ser Ala Asp Glu Leu Lys Lys Ile Phe His Ile  65 70 75 80 Ile Asp Leu Glu Asn Lys Phe Asp Ala Thr Val Asn Ala Arg Glu Ile                  85 90 95 Glu Thr Ala Val Asn Asn Tyr Glu Asp Ser Ile Leu Pro Pro Phe Phe             100 105 110 Lys Ser Leu Lys Glu Tyr Val Ser Arg Gly Leu Ile Gln Phe Asp Cys         115 120 125 Pro Gly His Gln Gly Gly Gln Tyr Tyr Arg Lys His Pro Ala Gly Arg     130 135 140 Glu Phe Tyr Asp Phe Phe Gly Glu Thr Val Phe Arg Ala Asp Leu Cys 145 150 155 160 Asn Ala Asp Val Ala Leu Gly Asp Leu Leu Ile His Glu Gly Pro Ala                 165 170 175 Val Ala Ala Glu Lys His Ala Ala Arg Val Tyr Asn Ala Asp Lys Thr             180 185 190 Tyr Phe Val Leu Gly Gly Ser Ser Asn Ala Asn Asn Thr Val Thr Ser         195 200 205 Ala Leu Val Ser Asn Gly Asp Leu Val Leu Phe Asp Arg Asn Asn His     210 215 220 Lys Ser Val Tyr Asn Ser Ala Leu Ala Met Ala Gly Gly Arg Pro Val 225 230 235 240 Tyr Leu Gln Thr Asn Arg Asn Pro Tyr Gly Phe Ile Gly Gly Ile Tyr                 245 250 255 Asp Ser Asp Phe Asp Glu Lys Lys Ile Arg Glu Leu Ala Ala Lys Val             260 265 270 Asp Pro Glu Arg Ala Lys Trp Lys Arg Pro Phe Arg Leu Ala Val Ile         275 280 285 Gln Leu Gly Thr Tyr Asp Gly Thr Ile Tyr Asn Ala His Glu Val Val     290 295 300 Lys Arg Ile Gly His Leu Cys Asp Tyr Ile Glu Phe Asp Ser Ala Trp 305 310 315 320 Val Gly Tyr Glu Gln Phe Ile Pro Met Met Arg Asn Ser Ser Pro Leu                 325 330 335 Leu Ile Asp Asp Leu Gly Pro Glu Asp Pro Gly Ile Ile Val Val Gln             340 345 350 Ser Val His Lys Gln Gln Ala Gly Phe Ser Gln Thr Ser Gln Ile His         355 360 365 Lys Lys Asp Ser His Ile Lys Gly Gln Leu Arg Tyr Cys Asp His Lys     370 375 380 His Phe Asn Asn Ser Phe Asn Leu Phe Met Ser Thr Ser Pro Phe Tyr 385 390 395 400 Pro Met Tyr Ala Ala Leu Asp Val Asn Ala Ala Met Gln Glu Gly Glu                 405 410 415 Ala Gly Arg Lys Leu Trp His Asp Leu Leu Ile Thr Thr Ile Glu Ala             420 425 430 Arg Lys Lys Leu Ile Lys Ala Gly Ser Met Phe Arg Pro Phe Val Pro         435 440 445 Pro Val Val Asn Gly Lys Lys Trp Glu Asp Gly Asp Thr Glu Asp Met     450 455 460 Ala Asn Asn Ile Asp Tyr Trp Arg Phe Glu Lys Gly Ala Lys Trp His 465 470 475 480 Ala Tyr Glu Gly Tyr Gly Asp Asn Gln Tyr Tyr Val Asp Pro Asn Lys                 485 490 495 Phe Met Leu Thr Thr Pro Gly Ile Asn Pro Glu Thr Gly Asp Tyr Glu             500 505 510 Asp Phe Gly Val Pro Ala Thr Ile Val Ala Asn Tyr Leu Arg Asp His         515 520 525 Gly Ile Ile Pro Glu Lys Ser Asp Leu Asn Ser Ile Leu Phe Leu Met     530 535 540 Thr Pro Ala Glu Thr Pro Ala Lys Met Asn Asn Leu Ile Thr Gln Leu 545 550 555 560 Leu Gln Leu Gln Arg Leu Ile Glu Glu Asp Ala Pro Leu Lys Gln Val                 565 570 575 Leu Pro Ser Ile Tyr Ala Ala Asn Glu Glu Arg Tyr Asn Gly Tyr Thr             580 585 590 Ile Arg Glu Leu Cys Gln Glu Leu His Asp Phe Tyr Lys Asn Asn Asn         595 600 605 Thr Phe Thr Tyr Gln Lys Arg Leu Phe Leu Arg Glu Phe Phe Pro Glu     610 615 620 Gln Gly Met Leu Pro Tyr Glu Ala Arg Gln Glu Phe Ile Arg Asn His 625 630 635 640 Asn Lys Leu Val Pro Leu Asn Lys Ile Glu Gly Glu Ile Ala Leu Glu                 645 650 655 Gly Ala Leu Pro Tyr Pro Pro Gly Val Phe Cys Val Ala Pro Gly Glu             660 665 670 Lys Trp Ser Glu Thr Ala Val Lys Tyr Phe Thr Ile Leu Gln Asp Gly         675 680 685 Ile Asn Asn Phe Pro Gly Phe Ala Pro Asp Ile Gln Gly Val Tyr Phe     690 695 700 Lys Gln Glu Gly Asp Lys Val Val Leu Tyr Gly Glu Val Tyr Asp Ala 705 710 715 720 Glu Val Ala Lys Asn Asp Asp Arg Tyr Asn Asn                 725 730 <210> 10 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.1 <400> 10 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 11 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.2 <400> 11 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgaacc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 12 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.3 <400> 12 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgggtact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 13 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.4 <400> 13 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 14 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.5 <400> 14 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgaacc agaaatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 15 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.6 <400> 15 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agaaatccaa 2100 ggtgggtact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 16 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.7 <400> 16 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgaacc agaaatccaa 2100 ggtgggtact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 17 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.8 <400> 17 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agatatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttgctt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196 <210> 18 <211> 2196 <212> DNA <213> Artificial Sequence <220> <223> A DNA encoding a amido acid sequences of SEQ ID NO.9 <400> 18 atgagttctt ctcttaaaat tgcttcgact caagaagcgc gtcaatattt cgatactgac 60 cgcgttgttg tcgatgctgt aggctctgat tttactgatg tcggtgctgt tatcgcaatg 120 gattacgaaa cagatgtcat cgacgctgct gatgcaacta agtttggtat tcctgttttt 180 gccgtaacta aggatgccca agctatcagt gctgatgagc tgaagaagat tttccacatc 240 attgatttgg aaaacaaatt tgatgctact gttaacgctc gtgaaatcga aactgctgtt 300 aacaactacg aagacagcat tttaccacca ttcttcaagt cattgaaaga atacgttagc 360 cgtggtttaa tccaattcga ctgcccaggt caccaaggtg gtcaatacta cagaaagcac 420 ccagctggtc gtgaattcta cgacttcttc ggcgaaactg tcttccgtgc agacttatgt 480 aacgctgacg ttgccttggg tgacttgctg atccacgaag gtcctgctgt tgctgctgaa 540 aagcatgctg cacgtgttta caacgctgac aagacttact tcgttttagg tggttcttcc 600 aacgctaaca acactgtaac atctgcttta gtttctaacg gcgacttggt attgttcgac 660 cggaacaacc acaagtccgt ttacaactca gctttagcta tggctggtgg ccgtcctgtt 720 tacctccaaa caaaccgtaa cccatacggc ttcatcggtg gtatctacga cagcgacttc 780 gatgaaaaga agatccgtga actggcagct aaggttgacc cagaacgtgc taagtggaag 840 cgtccattcc gtctggctgt tatccaatta ggtacttacg atggtactat ctacaacgca 900 cacgaagttg taaagcgtat cggtcacctt tgtgattaca tcgaattcga ctctgcttgg 960 gtaggttacg aacaattcat tcctatgatg cgtaactctt caccattatt gattgatgac 1020 cttggtccag aagatcctgg tatcattgtt gttcaatcag ttcacaagca acaagccggc 1080 ttctcacaaa cttcacaaat ccacaagaag gatagccaca tcaagggtca attacgttac 1140 tgtgaccaca agcactttaa caactccttc aacttgttca tgtctacttc accattctac 1200 ccaatgtatg cagcattaga cgttaacgct gctatgcaag aaggcgaagc aggtcgcaag 1260 ttatggcatg accttctgat tactaccatt gaagctcgta agaagttgat caaggctggc 1320 tcaatgttcc gtccattcgt tccacctgtt gttaacggca agaagtggga agatggcgac 1380 actgaagata tggctaacaa cattgactac tggcgctttg aaaagggtgc taagtggcat 1440 gcttacgaag gctacggcga caaccaatac tacgttgatc caaacaagtt catgttaact 1500 acacctggta tcaacccaga aactggtgac tacgaagact tcggtgttcc agctactatc 1560 gttgctaact acttacgtga ccacggtatc atccctgaaa agtctgactt gaactctatc 1620 ttgttcttga tgactccagc tgaaactcca gctaagatga acaacctgat cactcaactt 1680 cttcaattac aacgcttgat cgaagaagat gctccattga agcaagttct tccttcaatc 1740 tacgctgcta acgaagaacg ttacaatggc tacactatcc gtgaactttg ccaagaattg 1800 cacgacttct acaagaacaa caacacgttc acataccaga agcgtctctt cttacgtgaa 1860 ttcttcccag aacaaggtat gcttccatac gaagctcgtc aagaattcat ccgcaaccac 1920 aacaagcttg ttccattgaa caagatcgaa ggcgaaatcg ccctcgaagg tgctcttcca 1980 taccctccag gagtattctg tgtagcacca ggtgaaaagt ggtcagaaac tgctgttaag 2040 tacttcacta tcttacaaga tggtatcaac aacttccctg gattcgctcc agatatccaa 2100 ggtgtatact tcaagcaaga aggcgacaag gttgttcttt acggtgaagt ttacgatgca 2160 gaagttgcta agaacgatga tcgttacaac aactaa 2196

Claims (9)

하기의 아미노산 서열 중 어느 하나의 서열로 표시되는 오르니틴 탈탄산 효소의 변이체:
서열번호 1 의 아미노산 서열에서, 713번째 알라닌이 루신으로 치환된 아미노산 서열; 또는
서열번호 1 의 아미노산 서열에서, 698번째의 글루탐산이 아스파르트산으로 치환되고, 713번째 알라닌이 루신으로 치환된 아미노산 서열.
Variants of ornithine decarboxylase represented by any one of the following amino acid sequences:
In the amino acid sequence of SEQ ID 1, the amino acid sequence of the 713th alanine substituted for leucine; or
Amino acid sequence of 698th glutamic acid with aspartic acid and 713th alanine with leucine in amino acid sequence of SEQ ID NO: 1.
삭제delete 제 1 항에 따른 오르니틴 탈탄산 효소의 변이체를 암호화하는 DNA. DNA encoding a variant of ornithine decarboxylase according to claim 1. 제 3 항에 있어서,
상기 DNA 는 서열번호 13 또는 18 로 표시되는 DNA.
The method of claim 3, wherein
DNA is represented by SEQ ID NO: 13 or 18.
제 3 항 또는 제 4 항에 따른 DNA 를 포함하는 재조합 DNA 벡터.A recombinant DNA vector comprising the DNA according to claim 3. 제 5 항에 따른 재조합 DNA 벡터로 형질전환된 숙주세포. A host cell transformed with the recombinant DNA vector according to claim 5. 제 6 항에 따른 재조합 DNA 벡터로 형질전환된 숙주세포 및 상기 숙주세포의 추출물로 이루어진 군에서 선택되는 어느 하나를 생촉매로 사용한, 푸트레신의 생산 방법.A method for producing putrescine, wherein any one selected from the group consisting of a host cell transformed with the recombinant DNA vector according to claim 6 and an extract of the host cell is used as a biocatalyst. 제 7 항에 있어서,
오르니틴으로부터 푸트레신을 생산하는, 푸트레신의 생산 방법.
The method of claim 7, wherein
A production method of putrescine, which produces putrescine from ornithine.
제 8 항에 있어서,
0.3 M 내지 1 M의 버퍼를 사용하는, 푸트레신의 생산 방법.
The method of claim 8,
A process for producing putrescine, using a buffer of 0.3 M to 1 M.
KR1020170082880A 2017-06-29 2017-06-29 Method for producing ornithine decarboxylase mutants and their applications KR102051018B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170082880A KR102051018B1 (en) 2017-06-29 2017-06-29 Method for producing ornithine decarboxylase mutants and their applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170082880A KR102051018B1 (en) 2017-06-29 2017-06-29 Method for producing ornithine decarboxylase mutants and their applications

Publications (2)

Publication Number Publication Date
KR20190002239A KR20190002239A (en) 2019-01-08
KR102051018B1 true KR102051018B1 (en) 2019-12-02

Family

ID=65021264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170082880A KR102051018B1 (en) 2017-06-29 2017-06-29 Method for producing ornithine decarboxylase mutants and their applications

Country Status (1)

Country Link
KR (1) KR102051018B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138543A1 (en) * 2018-12-27 2020-07-02 씨제이제일제당 (주) Ornithine decarboxylase mutant strain and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199898A1 (en) 2015-06-10 2016-12-15 公立大学法人 富山県立大学 Active-form mutant enzyme production method, new active-form mutant enzyme, and solubilized mutant protein production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188432B1 (en) 2008-04-10 2012-10-08 한국과학기술원 Variant Microorganism Having Putrescine Producing Ability and Method for Preparing Putrescine Using the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199898A1 (en) 2015-06-10 2016-12-15 公立大学法人 富山県立大学 Active-form mutant enzyme production method, new active-form mutant enzyme, and solubilized mutant protein production method
EP3181690A1 (en) 2015-06-10 2017-06-21 Toyama Prefectural University Active-form mutant enzyme production method, new active-form mutant enzyme, and solubilized mutant protein production method

Also Published As

Publication number Publication date
KR20190002239A (en) 2019-01-08

Similar Documents

Publication Publication Date Title
US20220307061A1 (en) Phosphinothricin dehydrogenase mutant, genetically engineered bacterium and one-pot multi-enzyme synchronous directed evolution method
EA022764B1 (en) A process for the identification and preparation of a (r)-specific omega-transaminase
KR20000071014A (en) Recombinant Haloaliphatic Dehalogenases
KR101455624B1 (en) Novel D-psicose-3-epimerase from Clostridium bolteae having production of functional rare sugar D-psicose and production method of D-psicose using thereof
US20200165639A1 (en) Methods and compositions for preparing tagatose from fructose
CN108138160B (en) Mutant development method of lysine decarboxylase and application thereof
CN110343734B (en) L-glufosinate-ammonium chemoenzymatic production method
KR102051018B1 (en) Method for producing ornithine decarboxylase mutants and their applications
EP3666894B1 (en) D type amino acid dehydrogenase
KR20180132408A (en) Psicose epimerase and method of psicose using the same
CN114032224B (en) 5-aminolevulinic acid synthetase mutant, host cell and application thereof
EP3567105A1 (en) Highly active s-cyanohydrin lyase and application thereof
CN109402188B (en) Omega-transaminase from bacillus pumilus and application of omega-transaminase in biological amination
KR101895914B1 (en) Preparation method of D-allose using a novel L-rhamnose isomerase
US8557558B2 (en) Compositions and methods of producing enterokinase in yeast
KR20200130911A (en) Changing co-factor specificity of alcohol dehydrogenase of Zymomonas mobilis by site-directed mutagenesis
Duan et al. Cloning, expression, characterization and application of atcA, atcB and atcC from Pseudomonas sp. for the production of L-cysteine
JP2517861B2 (en) Method for producing immobilized enzyme
CN112522335B (en) Method for preparing L-2-aminobutyric acid through high-temperature biotransformation
JP7445947B2 (en) Arabinose isomerase mutant
CN107201355B (en) High-stereoselectivity phenylalanine deaminase mutant and application thereof
JP6362276B2 (en) Method for deracemization of racemate of mutant amino acid oxidase and amine compound
US20160244791A1 (en) Methods and enzymes for producing hydroxymethylfurfural
WO2020138543A1 (en) Ornithine decarboxylase mutant strain and application thereof
CN117802061A (en) Amine dehydrogenase mutant and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant