KR102045156B1 - 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터 - Google Patents

소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터 Download PDF

Info

Publication number
KR102045156B1
KR102045156B1 KR1020180137964A KR20180137964A KR102045156B1 KR 102045156 B1 KR102045156 B1 KR 102045156B1 KR 1020180137964 A KR1020180137964 A KR 1020180137964A KR 20180137964 A KR20180137964 A KR 20180137964A KR 102045156 B1 KR102045156 B1 KR 102045156B1
Authority
KR
South Korea
Prior art keywords
snubber
switch
diode
main
cell
Prior art date
Application number
KR1020180137964A
Other languages
English (en)
Inventor
최세완
뜨란 하이
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Priority to KR1020180137964A priority Critical patent/KR102045156B1/ko
Application granted granted Critical
Publication of KR102045156B1 publication Critical patent/KR102045156B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • H02M2001/0058
    • H02M2001/342
    • H02M2003/1586
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • Y02B70/1425
    • Y02B70/1491

Abstract

소프트 스위칭을 위한 액티브 스너버 셀은, 스너버 스위치; 메인 스위치 및 메인 다이오드의 접점에 연결되는 제1 다이오드; 상기 제1 다이오드와 병렬로 연결된 제2 및 제3 다이오드; 일단이 상기 제1 다이오드와 연결되고, 타단이 상기 제2 다이오드와 상기 스너버 스위치의 접점에 연결되는 스너버 인덕터; 및 일단이 상기 제1 다이오드와 상기 스너버 인덕터의 접점에 연결되고, 타단이 상기 제2 및 제3 다이오드의 접점에 연결되는 스너버 커패시터;를 포함할 수 있다. 이에 따라, 고전력 응용헤 필요한 인터리브드 컨버터에 쉽게 적용될 수 있고, 입력 인덕터인 메인 인덕터의 도통 손실을 줄일 수 있고, 스너버 회로의 동작 시간을 최소화할 수 있다

Description

소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터{ACTIVE SNUBBER CELL FOR SOFT-SWITCHED AND BOOST CONVERTER INCLUDING THE SAME}
본 발명은 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터에 관한 것으로서, 더욱 상세하게는 소프트 스위칭을 달성하기 위한 타이밍 문제를 제거할 수 있는 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터에 관한 것이다.
액티브 스너버 셀(ASC: Active Snubber Cell)은 일정한 스위칭 주파수로 동작하고, 전체 동작 구간 중 약간의 부분에서만 작동하기 때문에 소프트 스위칭을 달성하기 위한 방법의 하나이다.
또한, 액티브 스너버 셀은 소량의 전력만을 소비하므로 전체 컨버터 부피 중 일부만 차지하는 장점이 있다.
기존의 액티브 스너버 셀은 자기 부품 설계의 복잡성을 증가시키는 변압기 또는 커플드 인덕터를 사용하고, 이러한 액티브 스너버 셀을 적용한 ZVT(Zero-Voltage-Transition) 컨버터는 메인 스위치의 제로 전압 스위치(ZVS) 턴 온을 달성하기 위한 타이밍 구간을 갖는다.
이러한 타이밍 문제는 부하에 따라 다르며, 부하 또는 전압이 변화할 때 ZVT 컨버터의 신뢰성은 감소되고, 다른 액티브 스너버 셀을 이용하는 경우 위의 타이밍 문제를 해결할 수 있지만, 많은 부품 수와 경부하의 효율이 높지 않은 문제점이 있다.
다른 액티브 스너버 셀의 경우 인터리빙을 쉽게 구성할 수 있는 장점이 있지만, 스위치의 전압 스트레스는 출력과 스너버 커패시터 전압의 합과 같으므로 컨버터의 비용과 크기가 증가하는 문제점이 있다.
또 다른 액티브 스너버 셀이 적용된 ZVT-ZCT 컨버터는 제로 전압 스위치(ZVS) 하에서 메인 스위치가 턴 온 하고, 제로 전류 스위치(ZCS)에서 턴 오프하며 제로 전류 스위치(ZCS) 조건에서 스너버 스위치가 턴 온 및 오프 한다.
또 다른 액티브 스너버 셀 역시 컨버터의 모든 스위칭 소자가 완전히 소프트 스위칭을 달성하더라도 타이밍 문제는 턴 온 및 턴 오프 동작을 하는 모든 구간에서 나타나는 단점이 있다.
한국공개특허 제10-2010-0082084호 한국등록특허 제10-0177873호 US 6987675 B2
본 발명의 일측면은 소프트 스위칭을 달성하기 위한 타이밍 문제를 제거하고, 상수에 따른 다이오드 소자 추가로 인터리빙 기술을 쉽게 구현할 수 있으며, 부스트 컨버터에 적용되는 액티브 스너버 셀을 제공한다.
본 발명의 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 소프트 스위칭을 위한 액티브 스너버 셀은, 스너버 스위치; 메인 스위치 및 메인 다이오드의 접점에 연결되는 제1 다이오드; 상기 제1 다이오드와 병렬로 연결된 제2 및 제3 다이오드; 일단이 상기 제1 다이오드와 연결되고, 타단이 상기 제2 다이오드와 상기 스너버 스위치의 접점에 연결되는 스너버 인덕터; 및 일단이 상기 제1 다이오드와 상기 스너버 인덕터의 접점에 연결되고, 타단이 상기 제2 및 제3 다이오드의 접점에 연결되는 스너버 커패시터;를 포함한다.
상기 스너버 인덕터는, 상기 메인 다이오드가 턴 오프 되면, 상기 메인 스위치의 기생 커패시터에 저장된 에너지를 전달받아 충전되고, 상기 스너버 스위치의 제로 전류 스위치(ZCS) 턴 온 전류와 상기 메인 다이오드의 제로 전류 스위치(ZCS)턴 오프 전류를 제공할 수 있다.
상기 스너버 커패시터는, 상기 스너버 스위치가 턴 오프하면, 상기 제2 다이오드가 턴 온 하여 상기 스너버 인덕터에 흐르는 전류로부터 충전되고, 상기 스너버 커패시터가 최대 전압값으로 충전되는 경우, 상기 메인 스위치 및 스너버 스위치에 제로 전압 스위치(ZVS) 턴 오프를 제공할 수 있다.
본 발명의 다른 실시예에 따른 소프트 스위칭을 위한 액티브 스너버 셀을 포함하는 부스트 컨버터는, 스너버 스위치, 제1 다이오드, 상기 제1 다이오드와 병렬로 연결된 제2 다이오드 및 제3 다이오드, 일단이 상기 제1 다이오드와 연결되고 타단이 상기 스너버 스위치와 상기 제2 다이오드의 접점에 연결되는 스너버 인덕터 및 일단이 상기 제1 다이오드와 상기 스너버 인덕터의 접점에 연결되고 타단이 상기 제2 다이오드와 제3 다이오드의 접점에 연결되는 스너버 커패시터를 포함하는 액티브 스너버 셀; 및 상기 스너버 스위치와 연결되는 메인 스위치, 상기 제1 다이오드와 연결되는 메인 다이오드, 메인 인덕터, 상기 제3 다이오드와 상기 메인 다이오드의 접점에 연결되는 메인 커패시터를 포함하고, 상기 액티브 스너버 셀이 연결된 부스트 컨버터 회로;를 포함한다.
상기 부스트 컨버터는, 상기 스너버 스위치가 턴 온 하는 제0 모드, 상기 스너버 스위치가 제로 전류 스위치(ZCS) 턴 온 하는 제1 모드, 상기 스너버 인덕터와 상기 메인 스위치의 기생 커패시터가 공진 회로를 생성하는 제2 모드, 상기 메인 스위치가 제로 전압 스위치(ZVS) 턴 온 되고, 상기 스너버 스위치가 턴 오프되는 제3 모드, 상기 스너버 스위치는 제로 전압 스위치(ZVS) 턴 오프 하는 제4 모드, 상기 스너버 인덕터의 전류가 일정하게 감소하여 부하로 전달되는 제5 모드, 상기 메인 스위치가 턴 오프 되는 제6 모드, 상기 기생 커패시터와 상기 스너버 커패시터가 충방전되며, 상기 메인 스위치가 제로 전압 스위치(ZVS) 턴 온 하는 제7 모드를 포함할 수 있다.
상술한 본 발명의 일측면에 따르면, 메인 스위치와 스너버 스위치 모두 완전한 소프트 스위칭을 구현할 수 있고, 제로 전류 스위치(ZCS) 턴 오프로 메인 다이오드의 역회복 전류를 차단할 수 있다.
또한, 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 사용하는 부스트 컨버터는 광범위한 부하 및 전압 조건에서 소프트 스위칭을 달성할 수 있으며, 메인 스위치 및 다이오드에 추가적인 전압 및 전류 스트레스를 없앨 수 있다.
또한, 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 사용하는 부스트 컨버터는 스위칭 범위에 제한 없이 메인 스위치, 스너버 스위치 및 모든 다이오드에 대하여 소프트 스위칭을 성취할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 소프트 스위칭을 위한 액티브 스너버 셀의 개략적인 회로도이다.
도 2는 본 발명의 다른 실시예에 따른 소프트 스위칭을 위한 액티브 스너버 셀의 개략적인 회로도이다.
도 3a는 본 발명의 일 실시예에 따른 소프트 스위칭을 위한 액티브 스너버 셀을 적용한 비절연형 소프트 스위칭 부스트 컨버터의 개략적인 회로도이다.
도 3b는 도 1 및 도 2의 소프트 스위칭을 위한 액티브 스너버 셀을 다양한 부스트 컨버터 회로에 적용한 예를 나타낸 회로도이다.
도 3c는 소프트 스위칭을 위한 액티브 스너버 셀이 적용된 부스트 컨버터 회로에 다수 개의 다이오드를 인터리빙하는 예를 나타낸 회로도이다.
도 3d는 도 1 및 도 2의 소프트 스위칭을 위한 액티브 스너버 셀을 부스트 컨버터 회로에 모두 적용한 예를 나타낸 회로도이다.
도 4a는 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 적용한 부스트 컨버터 회로의 모드에 따른 전류의 흐름을 나타낸 회로도이다.
도 4b 및 도 4c는 각각 도 4a의 Mode 4, Mode 7의 등가회로를 나타낸 회로도들이다.
도 5는 도 4a의 각 모드의 시간 별 특징에 따른 전압 및 전류의 파형을 나타낸 도면이다.
도 6a 및 도 6b는 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 적용한 부스트 컨버터의 시뮬레이션 결과를 나타낸 도면들이다.
도 7a는 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 적용한 부스트 컨버터 회로의 실험에 따른 회로, 파형 및 전류값을 나타낸 도면이다.
도 7b는 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 적용한 부스트 컨버터 회로를 실험도구에 적용한 예를 나타낸 도면이다.
도 8a 내지 도 8e는 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 적용한 부스트 컨버터 회로의 실험 파형을 나타낸 도면들이다.
도 9은 광범위한 부하에서 본 발명이 제안하는 소프트 스위칭을 위한 액티브 스너버 셀을 적용한 부스트 컨버터의 효율을 나타낸 도면이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.
본 발명은 소프트 스위칭을 달성하기 위한 타이밍 문제를 제거할 수 있는 부스트 컨버터에 적용되는 액티브 스너버 셀이다.
도 1은 본 발명의 일 실시예에 따른 부스트 컨버터에 적용되는 소프트 스위칭을 위한 액티브 스너버 셀의 개략적인 회로도이다.
본 발명의 일 실시예에 따른 소프트 스위칭을 위한 액티브 스너버 셀(100, 이하 액티브 스너버 셀)은 제1 다이오드(
Figure 112018111887212-pat00001
, 110), 제2 다이오드(
Figure 112018111887212-pat00002
, 120), 제3 다이오드(
Figure 112018111887212-pat00003
, 130), 스너버 인덕터(
Figure 112018111887212-pat00004
, 140), 스너버 커패시터(
Figure 112018111887212-pat00005
, 150) 및 스너버 스위치(
Figure 112018111887212-pat00006
, 190)를 포함할 수 있다.
여기서, 액티브 스너버 셀(100)을 구성하는 제1 다이오드(
Figure 112018111887212-pat00007
, 110)는 다수 개의 다이오드(110a, 110b, ?, 110n)가 병렬을 이루어 형성될 수 있고, 스너버 스위치(
Figure 112018111887212-pat00008
, 190)는 기생 커패시터(
Figure 112018111887212-pat00009
, 180)를 포함하고 있을 수 있다.
스너버 스위치(
Figure 112018111887212-pat00010
, 190)의 일단은 제2 다이오드(
Figure 112018111887212-pat00011
, 120)와 스너버 인덕터(
Figure 112018111887212-pat00012
, 140)의 접점에 연결되어 있을 수 있고, 타단은 노드 C로 오픈되어 있을 수 있다.
제1 다이오드(
Figure 112018111887212-pat00013
, 110)의 일단은 노드 A로 오픈 되어 있을 수 있고, 타단은 스너버 인덕터(
Figure 112018111887212-pat00014
, 140)와 스너버 커패시터(
Figure 112018111887212-pat00015
, 150)의 접점에 연결되어 있을 수 있고, 제2 다이오드(
Figure 112018111887212-pat00016
, 120)와 제3 다이오드(
Figure 112018111887212-pat00017
, 130)는 제1 다이오드(
Figure 112018111887212-pat00018
, 110)와 병렬로 연결되어 있을 수 있다.
여기서, 제2 다이오드(
Figure 112018111887212-pat00019
, 120)와 제3 다이오드(
Figure 112018111887212-pat00020
, 130)는 직렬로 연결되어 있을 수 있고, 제3 다이오드(
Figure 112018111887212-pat00021
, 120)의 타단은 노드 B로 오픈되어 있을 수 있다.
스너버 인덕터(
Figure 112018111887212-pat00022
, 140)의 일단은 제1 다이오드(
Figure 112018111887212-pat00023
, 110)와 연결되어 있을 수 있고, 타단은 제2 다이오드(
Figure 112018111887212-pat00024
, 120)와 스너버 스위치(
Figure 112018111887212-pat00025
, 190)의 접점에 연결되어 있을 수 있다.
스너버 커패시터(
Figure 112018111887212-pat00026
, 150)의 일단은 제1 다이오드(
Figure 112018111887212-pat00027
, 110)와 스너버 인덕터(
Figure 112018111887212-pat00028
, 140)의 접점에 연결되어 있을 수 있고, 타단은 제2 다이오드(
Figure 112018111887212-pat00029
, 120) 및 제3 다이오드(
Figure 112018111887212-pat00030
, 130)의 접점에 연결되어 있을 수 있다.
도 2를 통해 본 발명의 다른 실시예에 따른 액티브 스너버 셀(100)의 회로를 설명하기로 한다.
도 2을 참조하면, 본 발명이 제안하는 액티브 스너버 셀(100)은 제1 다이오드(
Figure 112018111887212-pat00031
, 110), 제2 다이오드(
Figure 112018111887212-pat00032
, 120), 제3 다이오드(
Figure 112018111887212-pat00033
, 130), 스너버 인덕터(
Figure 112018111887212-pat00034
, 140), 스너버 커패시터(
Figure 112018111887212-pat00035
, 150) 및 스너버 스위치(
Figure 112018111887212-pat00036
, 190)를 포함할 수 있다.
본 발명이 제안하는 액티브 스너버 셀(100)의 구성 요소 중 하나인 스너버 스위치(
Figure 112018111887212-pat00037
, 190)의 일단은 노드 C로 오픈되어 있을 수 있고, 타단은 제2 다이오드(
Figure 112018111887212-pat00038
, 120)와 스너버 인덕터(
Figure 112018111887212-pat00039
, 140)의 접점에 연결되어 있을 수 있다.
제1 다이오드(
Figure 112018111887212-pat00040
, 110)는 제2 다이오드(
Figure 112018111887212-pat00041
, 120), 제3 다이오드(
Figure 112018111887212-pat00042
, 130)는 병렬로 연결되어 있을 수 있고, 제2 다이오드(
Figure 112018111887212-pat00043
, 120)와 제3 다이오드(
Figure 112018111887212-pat00044
, 130)는 직렬로 연결되어 있을 수 있다.
제1 다이오드(
Figure 112018111887212-pat00045
, 110)의 일단은 스너버 인덕터(
Figure 112018111887212-pat00046
, 140)와 스너버 커패시터(
Figure 112018111887212-pat00047
, 150)의 접점에 연결되어 있을 수 있고, 타단은 노드 A로 오픈되어 있을 수 있다.
제2 다이오드(
Figure 112018111887212-pat00048
, 120)의 일단은 스너버 스위치(
Figure 112018111887212-pat00049
, 190)와 스너버 인덕터(
Figure 112018111887212-pat00050
, 140)의 접점에 연결되어 있을 수 있고, 타단은 제3 다이오드(
Figure 112018111887212-pat00051
, 130)와 스너버 커패시터(
Figure 112018111887212-pat00052
, 150)의 접점에 연결되어 있을 수 있다.
제3 다이오드(
Figure 112018111887212-pat00053
, 130)의 일단은 제2 다이오드(
Figure 112018111887212-pat00054
, 120)와 스너버 커패시터(
Figure 112018111887212-pat00055
, 150)의 접점에 연결되어 있을 수 있고, 타단은 노드 B로 오픈되어 있을 수 있다.
스너버 인덕터(
Figure 112018111887212-pat00056
, 140)의 일단은 스너버 스위치(
Figure 112018111887212-pat00057
, 190)와 제2 다이오드(
Figure 112018111887212-pat00058
, 120)의 접점에 연결되어 있을 수 있고, 타단은 제1 다이오드(
Figure 112018111887212-pat00059
, 110)와 스너버 커패시터(
Figure 112018111887212-pat00060
, 150)의 접점에 연결되어 있을 수 있다.
스너버 커패시터(
Figure 112018111887212-pat00061
, 150)의 일단은 제2 다이오드(
Figure 112018111887212-pat00062
, 120)와 제3 다이오드(
Figure 112018111887212-pat00063
, 130)의 접점에 연결되어 있을 수 있고, 타단은 스너버 인덕터(
Figure 112018111887212-pat00064
, 140)와 제1 다이오드(
Figure 112018111887212-pat00065
, 110)의 접점에 연결되어 있을 수 있다.
이로부터, 본 발명이 제안하는 액티브 스너버 셀(100)은 부스트 컨버터 회로를 사용하는 모든 반도체 장치의 소프트 스위칭을 완벽하게 제공할 수 있고, 다양한 DC-DC 컨버터 회로에 적용할 수 있는 것을 확인할 수 있다.
이하에서는, 도 3a 내지 도 9를 참조하여 본 발명의 일 실시예에 따른 액티브 스너버 셀을 적용한 비절연형 소프트 스위칭 부스트 컨버터의 회로와 실험 파형에 대해 설명하기로 한다.
후술하는 도 3a 내지 도 10에서는 본 발명의 일 실시예에 따라 설명하기 위해 하나의 부스트 컨버터 회로와 연결되는 것으로 한정지었으나 이는 실시예에 따른 예시일 뿐, 실제 본 발명이 제안하는 액티브 스너버 셀(100)은 보다 다양한 컨버터 회로에 적용될 수 있다.
도 3a는 본 발명의 일 실시예에 따른 액티브 스너버 셀을 적용한 비절연형 소프트 스위칭 부스트 컨버터의 개략적인 회로도이다.
본 발명이 제안하는 액티브 스너버 셀(100)은 3개의 노드인 노드 A, 노드 B 및 노드 C를 통해 부스트 컨버터에 연결될 수 있다.
본 발명이 제안하는 액티브 스너버 셀(100)의 노드 A는 부스트 컨버터 회로(1000)의 메인 스위치(
Figure 112018111887212-pat00066
, 1090), 메인 인덕터(L, 1040) 및 메인 다이오드(D, 1010)의 접점에 연결될 수 있다.
또한, 노드 B는 메인 다이오드(D, 1010)와 메인 커패시터(
Figure 112018111887212-pat00067
, 1050)의 접점에 연결될 수 있고, 노드 C는 메인 스위치(
Figure 112018111887212-pat00068
, 1090)와 스너버 스위치(
Figure 112018111887212-pat00069
, 190)의 접점에 연결될 수 있다.
부스트 컨버터 회로(1000)를 구성하고 있는 소자 중 하나인 메인 스위치(
Figure 112018111887212-pat00070
, 1090)의 일단은 메인 인덕터(L, 1040)와 제1 다이오드(
Figure 112018111887212-pat00071
, 110)의 접점에 연결될 수 있고, 타단은 스너버 스위치(
Figure 112018111887212-pat00072
, 190)와 연결될 수 있다.
부스트 컨버터 회로(1000)의 메인 다이오드(D, 1010)의 일단은 제1 다이오드(
Figure 112018111887212-pat00073
, 110)와 연결될 수 있고, 타단은 제3 다이오드(
Figure 112018111887212-pat00074
, 130)와 출력부하(
Figure 112018111887212-pat00075
, 1030)의 접점에 연결될 수 있다.
부스트 컨버터 회로(1000)의 메인 커패시터(
Figure 112018111887212-pat00076
, 1050)의 일단은 제3 다이오드(
Figure 112018111887212-pat00077
, 130)와 메인 다이오드(D, 1010)의 접점에 연결될 수 있고, 타단은 스너버 스위치(
Figure 112018111887212-pat00078
, 190)와 출력부하(
Figure 112018111887212-pat00079
, 1030)의 접점에 연결될 수 있다.
도 3a의 본 발명이 제안하는 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 정상 상태 동작을 분석하기 위해 메인 커패시터(
Figure 112018111887212-pat00080
, 1050)와 메인 인덕터(L, 1040)는 출력 전압과 입력 전류를 일정하게 유지할 만큼 크다고 가정할 수 있다.
이러한 가정에 따라 본 발명이 제안하는 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 동작은 8개의 모드로 분할될 수 있다. 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 8개 모드는 후술하는 도 4a 내지 도 6b를 통해 설명하기로 한다.
도 3b는 도 1 및 도 2의 액티브 스너버 셀을 다양한 컨버터 회로에 적용한 예를 나타낸 회로도이다.
도 3b의 다양한 컨버터 회로에 적용된 액티브 스너버 셀인 cell
Figure 112018111887212-pat00081
는 도 1의 액티브 스너버 셀(100)을 의미할 수 있고, cell Ⅱ는 도 2의 액티브 스너버 셀(103)을 의미할 수 있다.
여기서, 본 발명이 제안하는 액티브 스너버 셀(100, 103)을 적용할 수 있는 컨버터 회로는 BOOST CONVERTER, SEPIC CONVERTER, BUCK CONVERTER, BUCK_BOOST CONVERTER 및 CUK CONVERTER 등의 모든 컨버터 회로를 의미할 수 있다.
도 3b를 참조하면, BOOST CONVERTER 및 SEPIC CONVERTER에는 도 1의 액티브 스너버 셀(100)을 적용한 예를 확인할 수 있고, SEPIC CONVERTER, BUCK CONVERTER, BUCK_BOOST CONVERTER 및 CUK CONVERTER에는 도 2의 액티브 스너버 셀을 적용한 예(103)를 확인할 수 있다.
회로 cell
Figure 112018111887212-pat00082
과 cell Ⅱ는 적용하기 위한 컨버터 회로의 구성에 따라 선택하여 적용할 수 있다.
도 3c는 소프트 스위칭을 위한 액티브 스너버 셀이 적용된 부스트 컨버터 회로에 다수 개의 다이오드를 인터리빙하는 예를 나타낸 회로도이다.
도 3c를 참조하면, 부스트 컨버터 회로(1000)에 적용된 액티브 스너버 셀(100)의 제1 다이오드(
Figure 112018111887212-pat00083
, 110)에 다수 개의 다이오드를 병렬로 연결할 수 있는 것을 확인할 수 있다.
이와 같이, 본 발명이 제안하는 액티브 스너버 셀(100)은 n(여기서, n은 자연수)상 인터리빙 적용 시 n(여기서, n은 자연수)개의 다이오드만 요구되므로 적은 소자로 인터리빙 응용이 가능하다는 장점이 있다.
도 3d는 도 1 및 도 2의 소프트 스위칭을 위한 액티브 스너버 셀을 부스트 컨버터 회로에 모두 적용한 예를 나타낸 회로도이다.도 3d를 참조하면, 도 1의 액티브 스너버 셀(100)과 도 2의 액티브 스너버 셀(103)은 하나의 부스트 컨버터 회로(1000)에 모두 적용될 수 있는 것을 확인할 수 있다.
여기서, 도 1의 액티브 스너버 셀(100)의 노드
Figure 112018111887212-pat00084
는 제1 메인 스위치(
Figure 112018111887212-pat00085
, 1090)와 메인 인덕터(L, 1040)의 접점에 연결될 수 있고, 노드
Figure 112018111887212-pat00086
는 제2 메인 스위치(
Figure 112018111887212-pat00087
, 1090)와 출력부하(
Figure 112018111887212-pat00088
, 1030)의 접점에 연결될 수 있고, 노드
Figure 112018111887212-pat00089
는 제1 메인 스위치(
Figure 112018111887212-pat00090
, 1090)와 출력부하(
Figure 112018111887212-pat00091
, 1030)의 접점에 연결될 수 있다.
도 2의 액티브 스너버 셀(103)의 노드
Figure 112018111887212-pat00092
는 메인 인덕터(L, 1040)와 제2 메인 스위치(
Figure 112018111887212-pat00093
, 1090)의 접점에 연결될 수 있고, 노드
Figure 112018111887212-pat00094
는 제1 메인 스위치(
Figure 112018111887212-pat00095
, 1090)와 출력부하(
Figure 112018111887212-pat00096
, 1030)의 접점에 연결될 수 있고, 노드
Figure 112018111887212-pat00097
는 제2 메인 스위치(
Figure 112018111887212-pat00098
, 1090)와 출력부하(
Figure 112018111887212-pat00099
, 1030)의 접점에 연결될 수 있다.
도 4a 내지 도 6b를 참조하여 액티브 스너버 셀이 적용된 부스트 컨버터 회로의 8개 모드를 구체적으로 설명하기로 한다.
도 4a 및 도 5는 본 발명이 제안하는 액티브 스너버 셀을 적용한 소프트 스위칭 부스트 컨버터 회로의 모드에 따른 전류의 흐름을 나타낸 회로도 및 파형을 나타낸 도면이다.
액티브 스너버 셀(100)을 적용한 부스트 컨버터 회로(1000)의 동작은 8개의 모드로 분할될 수 있고, 하나의 모드에서 다음 모드로 넘어가는 동작을 시간(
Figure 112018111887212-pat00100
)으로 구분할 수 있다.
메인 스위치(
Figure 112018111887212-pat00101
, 1090)가 턴 오프 되어 있을 수 있고, 메인 다이오드(D, 1010)가 턴 온 되어 있다고 가정하면 메인 인덕터(L, 1040)가 출력부하(
Figure 112018111887212-pat00102
, 1030)로 에너지를 방전하는 것을 제0 모드(Mode 0,
Figure 112018111887212-pat00103
~
Figure 112018111887212-pat00104
)으로 정의할 수 있다. 이는 기존의 부스트 컨버터 회로의 스위치 오프 상태 동작과 같은 것을 확인할 수 있다.
제0 모드(Mode 0)는 t=
Figure 112018111887212-pat00105
에서 스너버 스위치(
Figure 112018111887212-pat00106
, 190)가 턴 온 하며 종료될 수 있다.
Figure 112018111887212-pat00107
에서 스너버 스위치(
Figure 112018111887212-pat00108
, 190)가 턴 온 되고, 제1 다이오드(
Figure 112018111887212-pat00109
, 110)는 도통될 수 있는 것을 제1 모드(Mode 1,
Figure 112018111887212-pat00110
~
Figure 112018111887212-pat00111
)로 정의할 수 있다. 이때, 스너버 스위치(
Figure 112018111887212-pat00112
, 190)를 통과하는 전류의 기울기는 [수학식 1]에 의해 결정될 수 있고, 0A에서부터 서서히 증가할 수 있다.
Figure 112018111887212-pat00113
이에 따라 스너버 스위치(
Figure 112018111887212-pat00114
, 190)는 제로 전류 스위치(ZCS) 턴 온 할 수 있고, 스너버 인덕터(
Figure 112018111887212-pat00115
, 140)에 흐르는 전류(
Figure 112018111887212-pat00116
)가 임계값(
Figure 112018111887212-pat00117
)에 도달하면 메인 다이오드(D, 1010)가 제로 전류 스위치(ZCS) 턴 오프 되면서 다음 모드로 넘어갈 수 있다.
메인 다이오드(D, 1010)가 턴 오프 되면 스너버 인덕터(
Figure 112018111887212-pat00118
, 140)와 메인 스위치(
Figure 112018111887212-pat00119
, 1090)의 기생 커패시터(
Figure 112018111887212-pat00120
, 1080)가 공진 회로를 생성하는 것을 제2 모드(Mode 2,
Figure 112018111887212-pat00121
~
Figure 112018111887212-pat00122
)로 정의할 수 있다.
제2 모드(Mode 2,
Figure 112018111887212-pat00123
~
Figure 112018111887212-pat00124
)에서는 기생 커패시터(
Figure 112018111887212-pat00125
, 1080)에 저장된 모든 에너지가 스너버 인덕터(
Figure 112018111887212-pat00126
, 140)로 전달될 수 있고, 스너버 인덕터(
Figure 112018111887212-pat00127
, 140)의 전류가
Figure 112018111887212-pat00128
까지 충전되는 동안 메인 스위치(
Figure 112018111887212-pat00129
, 1090)의 전압은 0V로 방전될 수 있다.
여기서, 스너버 인덕터(
Figure 112018111887212-pat00130
, 140)에 흐르는 전류(
Figure 112018111887212-pat00131
)는 [수학식 2]를 이용하여 산출할 수 있고, 스너버 인덕터(
Figure 112018111887212-pat00132
, 140)의 피크전류(
Figure 112018111887212-pat00133
)는 [수학식 3]을 이용하여 산출할 수 있다.
또한, 기생 커패시터(
Figure 112018111887212-pat00134
, 1080)의 전압(
Figure 112018111887212-pat00135
)은 [수학식 4]를 이용하여 산출할 수 있다.
Figure 112018111887212-pat00136
Figure 112018111887212-pat00137
Figure 112018111887212-pat00138
여기서,
Figure 112018111887212-pat00139
Figure 112018111887212-pat00140
으로 정의할 수 있다.
제2 모드(Mode 2,
Figure 112018111887212-pat00141
~
Figure 112018111887212-pat00142
)는 메인 스위치(
Figure 112018111887212-pat00143
, 1090)의 기생 커패시터(
Figure 112018111887212-pat00144
, 1080)가 완전이 0V로 방전되면서 종료될 수 있다.
메인 스위치(
Figure 112018111887212-pat00145
, 1090)의 기생 커패시터(
Figure 112018111887212-pat00146
, 1080)의 전압이 0V로 방전된 후, 메인 스위치(
Figure 112018111887212-pat00147
, 1090)의 바디 다이오드가 도통되어 스너버 인덕터(
Figure 112018111887212-pat00148
, 140)와 메인 스위치(
Figure 112018111887212-pat00149
, 1090)의 전압이 0V로 클램프되는 것을 제3 모드(Mode 3,
Figure 112018111887212-pat00150
~
Figure 112018111887212-pat00151
)로 정의할 수 있다.
제3 모드(Mode 3,
Figure 112018111887212-pat00152
~
Figure 112018111887212-pat00153
)의 스너버 인덕터(
Figure 112018111887212-pat00154
, 140)를 통과하는 전류는 일정할 수 있고, 메인 스위치(
Figure 112018111887212-pat00155
, 1090)는 제로 전압 스위치(ZVS) 턴 온 할 수 있다. 이때, 메인 스위치(
Figure 112018111887212-pat00156
, 1090)의 바디 다이오드를 통한 전류는 [수학식 5]을 이용하여 산출될 수 있다.
Figure 112018111887212-pat00157
제3 모드(Mode 3,
Figure 112018111887212-pat00158
~
Figure 112018111887212-pat00159
)는
Figure 112018111887212-pat00160
에서 스너버 스위치(
Figure 112018111887212-pat00161
, 190)가 턴 오프 되면서 종료될 수 있다.
스너버 스위치(
Figure 112018111887212-pat00162
, 190)가 턴 오프 하기 전 스너버 인덕터(
Figure 112018111887212-pat00163
, 140)에 흐르는 전류(
Figure 112018111887212-pat00164
)는 피크전류(
Figure 112018111887212-pat00165
)와 같아질 수 있고, 스너버 커패시터(
Figure 112018111887212-pat00166
, 150)의 전압(
Figure 112018111887212-pat00167
)은 0V일 수 있고, 제2 다이오드(
Figure 112018111887212-pat00168
, 120)와 제3 다이오드(
Figure 112018111887212-pat00169
, 130)는 턴 오프 하는 것을 제4 모드(Mode 4,
Figure 112018111887212-pat00170
~
Figure 112018111887212-pat00171
)로 정의할 수 있다.
Figure 112018111887212-pat00172
에서 스너버 스위치(
Figure 112018111887212-pat00173
, 190)가 턴 오프 하고, 제2 다이오드(
Figure 112018111887212-pat00174
, 120)가 턴 온 하여 스너버 인덕터(
Figure 112018111887212-pat00175
, 140)에 흐르던 전류(
Figure 112018111887212-pat00176
)는 스너버 커패시터(
Figure 112018111887212-pat00177
, 150)를 충전시킬 수 있다.
또한, 스너버 인덕터(
Figure 112018111887212-pat00178
, 140)에 흐르던 전류(
Figure 112018111887212-pat00179
)의 일부는 스너버 스위치(
Figure 112018111887212-pat00180
, 190)의 기생 커패시터(
Figure 112018111887212-pat00181
, 1080)를 충전할 수 있고, 제4 모드(Mode 4,
Figure 112018111887212-pat00182
~
Figure 112018111887212-pat00183
)의 등가회로는 도 4b를 참조하여 확인할 수 있다.
도 4b를 참조하여 스너버 인덕터(
Figure 112018111887212-pat00184
, 140)에 흐르는 전류(
Figure 112018111887212-pat00185
)를 산출하기 위한 [수학식 6], 스너버 스위치(
Figure 112018111887212-pat00186
, 190)의 전압(
Figure 112018111887212-pat00187
)을 산출하기 위한 [수학식 7]을 도출해 낼 수 있다.
Figure 112018111887212-pat00188
제4 모드(Mode 4,
Figure 112018111887212-pat00189
~
Figure 112018111887212-pat00190
)에 따르면, 스너버 전압은 스너버 스위치(
Figure 112018111887212-pat00191
, 190)가 꺼진 후 0V부터 기울기를 가지며 서서히 증가할 수 있고, 스너버 스위치(
Figure 112018111887212-pat00192
, 190)의 전압(
Figure 112018111887212-pat00193
)은 [수학식 7]을 이용하여 산출할 수 있다.
Figure 112018111887212-pat00194
여기서,
Figure 112018111887212-pat00195
Figure 112018111887212-pat00196
로 정의할 수 있다.
제4 모드(Mode 4,
Figure 112018111887212-pat00197
~
Figure 112018111887212-pat00198
)는 스너버 커패시터(
Figure 112018111887212-pat00199
, 150)의 전압(
Figure 112018111887212-pat00200
)이 출력전압(
Figure 112018111887212-pat00201
)으로 충전될 때 종료될 수 있고, 스너버 스위치(
Figure 112018111887212-pat00202
, 190)는 제로 전압 스위치(ZVS) 턴 오프 할 수 있다.
스너버 커패시터(
Figure 112018111887212-pat00203
, 150)의 전압(
Figure 112018111887212-pat00204
)이 출력전압(
Figure 112018111887212-pat00205
)이 된 후, 제3 다이오드(
Figure 112018111887212-pat00206
, 130)가 턴 온 하면 스너버 인덕터(
Figure 112018111887212-pat00207
, 140)에 출력전압(
Figure 112018111887212-pat00208
)의 역전압이 인가되어 전류가 일정하게 감소되는 것을 제5 모드(Mode 5,
Figure 112018111887212-pat00209
~
Figure 112018111887212-pat00210
)로 정의할 수 있다.
따라서, 스너버 인덕터(
Figure 112018111887212-pat00211
, 140)의 나머지 에너지는 출력부하(
Figure 112018111887212-pat00212
, 1030)로 전달될 수 있다.
제5 모드(Mode 5,
Figure 112018111887212-pat00213
~
Figure 112018111887212-pat00214
)가 끝나면 제1 다이오드, 제2 다이오드 및 제3 다이오드는 제로 전류 스위치(ZCS) 턴 오프 할 수 있고, 제5 모드(Mode 5,
Figure 112018111887212-pat00215
~
Figure 112018111887212-pat00216
) 구간 동안 스너버 스위치(
Figure 112018111887212-pat00217
, 190)의 전류의 기울기는 [수학식 8]과 같이 정의할 수 있다.
Figure 112018111887212-pat00218
입력 전압은 메인 인덕터(L, 1040)를 충전할 수 있고, 메인 커패시터(
Figure 112018111887212-pat00219
, 1050)는 출력부하(
Figure 112018111887212-pat00220
, 1030)를 충전시키는 것을 제6 모드(Mode 6,
Figure 112018111887212-pat00221
~
Figure 112018111887212-pat00222
)라고 정의할 수 있다.
제6 모드(Mode 6,
Figure 112018111887212-pat00223
~
Figure 112018111887212-pat00224
)는
Figure 112018111887212-pat00225
에서 메인 스위치(
Figure 112018111887212-pat00226
, 1090)가 턴 오프 되면서 종료될 수 있고, 기존 부스트 컨버터의 스위치 온 상태 동작과 같을 수 있다.
제6 모드(Mode 6,
Figure 112018111887212-pat00227
~
Figure 112018111887212-pat00228
)에서 메인 스위치(
Figure 112018111887212-pat00229
, 1090)가 턴 오프 하기 전 메인 스위치(
Figure 112018111887212-pat00230
, 1090)의 기생 커패시터(
Figure 112018111887212-pat00231
, 1080)의 전압(
Figure 112018111887212-pat00232
)이 0V, 스너버 커패시터(
Figure 112018111887212-pat00233
, 150)의 전압(
Figure 112018111887212-pat00234
)이 0V일 수 있다.
Figure 112018111887212-pat00235
에서 메인 스위치(
Figure 112018111887212-pat00236
, 1090)는 턴 오프 할 수 있고, 제1 다이오드(
Figure 112018111887212-pat00237
, 110) 및 제3 다이오드(
Figure 112018111887212-pat00238
, 130)는 턴 온 될 수 있다.
메인 스위치(
Figure 112018111887212-pat00239
, 1090)의 기생 커패시터(
Figure 112018111887212-pat00240
, 1080)와 스너버 커패시터(
Figure 112018111887212-pat00241
, 150)는 동시에 충전 및 방전될 수 있고, 이에 따라 메인 스위치가 제로 전압 스위치(ZVS) 턴 오프 하는 것을 제7 모드(Mode 7,
Figure 112018111887212-pat00242
~
Figure 112018111887212-pat00243
)로 정의할 수 있다.
제7 모드(Mode 7,
Figure 112018111887212-pat00244
~
Figure 112018111887212-pat00245
)에서 제1 다이오드(
Figure 112018111887212-pat00246
, 110) 및 제3 다이오드(
Figure 112018111887212-pat00247
, 130)가 턴 오프 하더라고 전류의 기울기는 높아지지만, 출력부하(
Figure 112018111887212-pat00248
, 1030)의 전압에서 메인 스위치(
Figure 112018111887212-pat00249
, 1090)의 기생 커패시터(
Figure 112018111887212-pat00250
, 1080)의 전압을 뺀 값은 역방향 전압이 도출되므로, 역회복 손실이 제거될 수 있다.
스너버 커패시터(
Figure 112018111887212-pat00251
, 150)의 전압(
Figure 112018111887212-pat00252
)과 메인 스위치(
Figure 112018111887212-pat00253
, 1090)의 전압(
Figure 112018111887212-pat00254
)은 [수학식 9] 및 [수학식 10]을 이용하여 산출할 수 있고, 제7 모드(Mode 7,
Figure 112018111887212-pat00255
~
Figure 112018111887212-pat00256
)의 등가회로는 도 4c를 참조하여 확인할 수 있다.
Figure 112018111887212-pat00257
Figure 112018111887212-pat00258
제7 모드(Mode 7,
Figure 112018111887212-pat00259
~
Figure 112018111887212-pat00260
)가 끝나면, 메인 스위치(
Figure 112018111887212-pat00261
, 1090)의 전압(
Figure 112018111887212-pat00262
)은
Figure 112018111887212-pat00263
로 감소하고, 제1 다이오드(
Figure 112018111887212-pat00264
, 110) 및 제3 다이오드(
Figure 112018111887212-pat00265
, 130)는 턴 오프 할 수 있다.
제7 모드(Mode 7,
Figure 112018111887212-pat00266
~
Figure 112018111887212-pat00267
) 이후, 제1 다이오드(
Figure 112018111887212-pat00268
, 110)와 제3 다이오드(
Figure 112018111887212-pat00269
, 130)의 역회복 전류는 메인 다이오드(D, 1010)를 통해 출력부하(
Figure 112018111887212-pat00270
, 1030)로 흐를 수 있고, 액티브 스너버 셀(100)은 작동을 멈추고, 메인 다이오드(D, 1010)가 턴 온 될 수 있다.
따라서, 제7 모드(Mode 7,
Figure 112018111887212-pat00271
~
Figure 112018111887212-pat00272
)가 종료된 부스트 컨버터 회로(1000)는 제0 모드(Mode 0,
Figure 112018111887212-pat00273
~
Figure 112018111887212-pat00274
)와 동일한 일반적인 부스트 컨버터 오프 상태로 작동할 수 있다.
여기서, 본 발명이 제안하는 액티브 스너버 셀(100)의 스너버 인덕터(
Figure 112018111887212-pat00275
, 140)는 스너버 스위치(
Figure 112018111887212-pat00276
, 190)의 제로 전류 스위치(ZCS) 턴 온 전류와 메인 다이오드(D, 1010)의 제로 전류 스위치(ZCS) 턴 오프 전류를 제공할 수 있고, [수학식 11]을 이용하여 산출할 수 있다.
Figure 112018111887212-pat00277
제1 모드(Mode 1,
Figure 112018111887212-pat00278
~
Figure 112018111887212-pat00279
)에 따르면, 스너버 인덕터(
Figure 112018111887212-pat00280
, 140)의 인덕턴스 값은 입력 전류 및 제1 모드(Mode 1,
Figure 112018111887212-pat00281
~
Figure 112018111887212-pat00282
)의 지속시간인 상승시간(
Figure 112018111887212-pat00283
)에 대한 [수학식 12]를 이용하여 산출할 수 있다.
Figure 112018111887212-pat00284
또한, 제2 모드(Mode 2,
Figure 112018111887212-pat00285
~
Figure 112018111887212-pat00286
)의 공진 구간의 시간은 [수학식 13]을 이용하여 산출될 수 있다.
Figure 112018111887212-pat00287
즉, 메인 스위치(
Figure 112018111887212-pat00288
, 1090)의 제로 전압 스위치(ZVS) 턴 온을 달성하기 위해 스너버 스위치(
Figure 112018111887212-pat00289
, 190)가 메인 스위치(
Figure 112018111887212-pat00290
, 1090)에서 턴 온까지 지속되는 시간(
Figure 112018111887212-pat00291
)이
Figure 112018111887212-pat00292
에서
Figure 112018111887212-pat00293
까지의 지속시간인 최소 지연시간(
Figure 112018111887212-pat00294
)보다 커야 한다.
또한, 본 발명이 제안하는 액티브 스너버 셀(100)의 스너버 커패시터(
Figure 112018111887212-pat00295
, 150)는 메인 스위치(
Figure 112018111887212-pat00296
, 1090) 및 스너버 스위치(
Figure 112018111887212-pat00297
, 190)에 제로 전압 스위치(ZVS) 턴 오프를 제공할 수 있다.
제시된 동작 원리에 따르면, 스너버 스위치(
Figure 112018111887212-pat00298
, 190)는 모든 경우에서 제로 전압 스위치(ZVS) 턴 오프를 달성할 수 있으나, 메인 스위치(
Figure 112018111887212-pat00299
, 1090)는 스너버 커패시터(
Figure 112018111887212-pat00300
, 150)가 제4 모드(Mode 4,
Figure 112018111887212-pat00301
~
Figure 112018111887212-pat00302
)에서
Figure 112018111887212-pat00303
로 충전되는 경우에만 제로 전압 스위치(ZVS) 턴 오프를 달성할 수 있다.
이는 스너버 인덕터(
Figure 112018111887212-pat00304
, 140)에 저장된 에너지가 스너버 커패시터(
Figure 112018111887212-pat00305
, 150)를
Figure 112018111887212-pat00306
까지 충전할 수 있을 정도로 커야 하는 것을 의미할 수 있고, 스너버 인덕터(
Figure 112018111887212-pat00307
, 140)에 저장된 에너지의 최소값은 [수학식 14]을 이용하여 산출할 수 있다.
Figure 112018111887212-pat00308
또한, 스너버 커패시터(
Figure 112018111887212-pat00309
, 150)는 제7 모드(Mode 7,
Figure 112018111887212-pat00310
~
Figure 112018111887212-pat00311
)에서는 스너버 스위치(
Figure 112018111887212-pat00312
, 190)가 제로 전류 스위치(ZCS) 턴 온 하면, 스너버 스위치(
Figure 112018111887212-pat00313
, 190)가 턴 온 하기 전에
Figure 112018111887212-pat00314
에서 0V로 방전되어야 하는 것을 의미할 수 있다.
제7 모드(Mode 7,
Figure 112018111887212-pat00315
~
Figure 112018111887212-pat00316
)의 방전 전류는
Figure 112018111887212-pat00317
이고, 최대 지속 시간은
Figure 112018111887212-pat00318
에서
Figure 112018111887212-pat00319
까지이며, 이는 [수학식 15]를 이용하여 산출할 수 있고, 이 경우의 스너버 커패시터(
Figure 112018111887212-pat00320
, 150)의 최대 커패시턴스는 [수학식 16]을 이용하여 결정될 수 있다.
Figure 112018111887212-pat00321
Figure 112018111887212-pat00322
본 발명이 제안하는 액티브 스너버 셀(100)을 이용한 실험에서
Figure 112018111887212-pat00323
은 게이트 드라이버의 성능, 스너버 스위치 및 메인 스위치의 특성, 입력 전류 및 메인 다이오드의 역회복 특성에 따라서 결정될 수 있다.
그 후, 스너버 인덕터(
Figure 112018111887212-pat00324
, 140)의 인덕턴스 값은 [수학식 11]를 이용하여 산출될 수 있고, 스너버 커패시터(
Figure 112018111887212-pat00325
, 150)의 커패시턴스 값은 식 [수학식 16] 또는 [수학식 17] 중 작은 값으로 결정될 수 있다.
Figure 112018111887212-pat00326
도 6a 및 도 6b는 본 발명이 제안하는 액티브 스너버 셀을 적용한 소프트 스위칭 부스트 컨버터의 시뮬레이션 결과를 나타낸 도면들이다.
도 6a 및 도 6b를 참조하여, 본 발명이 제안하는 액티브 스너버 셀(100)을 적용한 부스트 컨버터 회로의 시뮬레이션 파형을 설명하기로 한다.
도 6a의 (a) 및 (b)는 메인 스위치(
Figure 112018111887212-pat00327
, 1090)의 전압과 전류의 파형을 나타낸 것을 확인할 수 있다. 이로부터, (a)와 (b)에 도시된 파형을 통하여 메인 스위치(
Figure 112018111887212-pat00328
, 1090)가 제로 전압 스위치(ZVS) 턴 온과 제로 전압 스위치(ZVS) 턴 오프를 성취하는 것을 확인할 수 있다.
도 6a의 (c) 및 (d)는 스너버 스위치(
Figure 112018111887212-pat00329
, 190)의 전압과 전류의 파형을 나타낸 것을 활인할 수 있다. 이로부터, (c)와 (d)에 도시된 파형을 통하여 스너버 스위치(
Figure 112018111887212-pat00330
, 190)가 제로 전류 스위치(ZCS) 턴 온과 제로 전류 스위치(ZCS) 턴 오프를 성취하는 것을 확인할 수 있다.
도 6a의 (e)는 메인 다이오드(D, 1010)의 전압과 전류의 파형을 나타낸 것을 확인할 수 있다. 이로부터, 메인 다이오드(D, 1010)의 제로 전류 스위치(ZCS) 턴 오프를 성취하는 것을 확인할 수 있다.
도 6a의 (f)는 제2 다이오드(
Figure 112018111887212-pat00331
, 120)의 전압과 전류의 파형을 나타낸 것을 확인할 수 있다. 이로부터 제2 다이오드(
Figure 112018111887212-pat00332
, 120)는 제로 전압 스위치(ZVS) 턴 온하고, 제로 전류 스위치(ZCS) 턴 오프를 성취하는 것을 확인할 수 있다.
도 6a의 (g)는 제1 다이오드(
Figure 112018111887212-pat00333
, 110)의 전압과 전류의 파형을 나타낸 것을 확인할 수 있다. 이로부터, 제1 다이오드(
Figure 112018111887212-pat00334
, 110)는 제로 전압 스위치(ZVS) 턴 온 하고, 턴 오프를 성취하는 것을 확인할 수 있다.
도 6a의 (h)는 제3 다이오드(
Figure 112018111887212-pat00335
, 130)의 전압과 전류의 파형을 나타낸 것을 확인할 수 있다. 이로부터, 제3 다이오드(
Figure 112018111887212-pat00336
, 130)는 제로 전류 스위치(ZCS) 턴 오프 하고, 제로 전압 스위치(ZVS) 턴 온 및 턴 오프를 성취하는 것을 확인할 수 있다.
도 6b는 본 발명이 제안하는 액티브 스너버 셀(100)의 이론과 신뢰성을 검증하기 위해 입력 전압을 100V, 출력 전압을 250V, 초기 전력은 1Kw의 액티브 스너버 셀(100)을 부스트 컨버터 회로(1000)에 적용하여 시뮬레이션 및 실험을 진행한 결과를 나타낸 도면이다.
여기서, 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 스위칭 주파수는 100kHz,
Figure 112018111887212-pat00337
,
Figure 112018111887212-pat00338
,
Figure 112018111887212-pat00339
, L=500
Figure 112018111887212-pat00340
로 설정될 수 있다.
도 6b의 (a)는 메인 스위치(
Figure 112018111887212-pat00341
, 1090) 및 스너버 스위치(
Figure 112018111887212-pat00342
, 190)의 게이팅 신호를 나타낸 파형임을 확인할 수 있고, (b)는 전류 전압 스위치(ZVS) 턴 온 및 턴 오프 하는 메인 스위치(
Figure 112018111887212-pat00343
, 1090)의 소프트 스위칭 특성을 나타낸 파형임을 확인할 수 있다.
(c)는 스너버 스위치(
Figure 112018111887212-pat00344
, 190)의 제로 전류 스위치(ZCS) 턴 온 및 제로 전압 스위치(ZVS) 턴 오프를 성취하는 것을 나타낸 파형임을 확인할 수 있고, (d)는 제로 전류 스위치(ZCS) 턴 오프 하는 메인 다이오드(D, 1010)의 스위칭 특성을 나타낸 파형임을 확인할 수 있다.
(e)는 스너버 인덕터(
Figure 112018111887212-pat00345
, 140) 전류 및 입력 전류는 실험 결과와 비교하기 위한 참고 자료로 사용할 수 있고, (g)는 제2 다이오드(
Figure 112018111887212-pat00346
, 120)의 소프트 스위칭을 달성한 것을 나타낸 파형임을 확인할 수 있다.
(f) 및 (h)로부터 제1 다이오드(
Figure 112018111887212-pat00347
, 110) 및 제3 다이오드(
Figure 112018111887212-pat00348
, 130)는 제7 모드(Mode 7,
Figure 112018111887212-pat00349
~
Figure 112018111887212-pat00350
)에서 언급한 바와 같이 높은
Figure 112018111887212-pat00351
로 턴 오프 하더라도 제로 전압 스위치(ZVS) 턴 오프로 역회복 손실을 제거하는 것을 나타낸 파형임을 확인할 수 있다.
도 7a는 본 발명이 제안하는 액티브 스너버 셀을 적용한 소프트 스위칭 부스트 컨버터 회로의 실험에 따른 회로, 파형 및 전류값을 나타낸 도면이다.
도 7a의 본 발명이 제안하는 액티브 스너버 셀(100)을 적용한 부스트 컨버터 회로(1000)는 도 7a의 (a)와 같이 적용할 수 있다.
도 7a의 (a)의 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 실험 조건으로 초기전력(
Figure 112018111887212-pat00352
)은 1kW, 액티브 스너버 셀(100)의 스위칭 주파수(
Figure 112018111887212-pat00353
)는 100kHz, 입력 전압(
Figure 112018111887212-pat00354
)은 120V, 출력 전압(
Figure 112018111887212-pat00355
)은 300V로 설정할 수 있다.
또한, 출력 커패시터인 메인 커패시터(
Figure 112018111887212-pat00356
, 1050)의 커패시턴스 값은 300
Figure 112018111887212-pat00357
, 입력 인덕터(
Figure 112018111887212-pat00358
)인 메인 인덕터(L, 1040)의 인덕턴스 값은 500
Figure 112018111887212-pat00359
, 스너버 인덕터(
Figure 112018111887212-pat00360
, 140)의 인덕턴스 값은 15
Figure 112018111887212-pat00361
로 설정할 수 있다.
스너버 커패시터(
Figure 112018111887212-pat00362
, 150)의 커패시턴스 값은 15nF, 스너버 스위치(
Figure 112018111887212-pat00363
, 190)의 기생 커패시터(
Figure 112018111887212-pat00364
, 180)의 커패시턴스 값은 300pF, 스너버 스위치(
Figure 112018111887212-pat00365
, 190)의 시간(
Figure 112018111887212-pat00366
)은 800ns로 설정할 수 있다.
본 발명이 제안하는 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 실시예에 따른 도 7a의 실험을 위해 전술한 바와 같이 실험 조건을 제시하였으나, 입력 전압(
Figure 112018111887212-pat00367
), 출력 전압(
Figure 112018111887212-pat00368
) 등의 실험 조건은 보다 다양하게 설정될 수 있다.
전술한 조건으로부터 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 실험 결과는 (b)의 파형과 같이 나타날 수 있고, 메인 인덕터(L, 1040), 스너버 인덕터(
Figure 112018111887212-pat00369
, 140), 메인 스위치(
Figure 112018111887212-pat00370
, 1090) 및 스너버 스위치(
Figure 112018111887212-pat00371
, 190)의 실효 전류값(RMS current)과 메인 다이오드(D, 1010), 제1 내지 제3 다이오드(
Figure 112018111887212-pat00372
, 130)의 평균 전류값(Average current)은 (c)와 같이 나타날 수 있다.
도 7b는 본 발명이 제안하는 액티브 스너버 셀을 적용한 소프트 스위칭 부스트 컨버터 회로를 실험도구에 적용한 프로토 타입을 나타낸 사진이다.
도 7b의 (a)는 본 발명이 제안하는 액티브 스너버 셀(100)을 적용한 부스트 컨버터 회로(1000)를 나타낸 것을 확인할 수 있다.
도 7b의 (b) 및 (c)는 실험을 위해 사용하는 실제 기판에 각각 스너버 스위치(
Figure 112018111887212-pat00373
, 190), 스너버 커패시터(
Figure 112018111887212-pat00374
, 150), 스너버 인덕터(
Figure 112018111887212-pat00375
, 140), 제1 내지 제3 다이오드(
Figure 112018111887212-pat00376
, 130), 메인 스위치(
Figure 112018111887212-pat00377
, 1090), 메인 커패시터(
Figure 112018111887212-pat00378
, 1050), 메인 인덕터(L, 1040) 및 메인 다이오드(D, 1010)를 설계한 도면의 앞면과 뒷면인 것을 확인할 수 있다.
도 7b의 본 발명이 제안하는 액티브 스너버 셀(100)을 적용한 부스트 컨버터 회로(1000)의 실험을 진행하기 위한 실험 조건으로 초기전력(
Figure 112018111887212-pat00379
)은 1kW, 액티브 스너버 셀(100)의 스위칭 주파수(
Figure 112018111887212-pat00380
)는 100kHz, 입력 전압(
Figure 112018111887212-pat00381
)은 120V, 출력 전압(
Figure 112018111887212-pat00382
)은 300V로 설정할 수 있다.
또한, 출력 커패시터인 메인 커패시터(
Figure 112018111887212-pat00383
, 1050)의 커패시턴스 값은 30
Figure 112018111887212-pat00384
, 입력 인덕터인 메인 인덕터(L, 1040)의 인덕턴스 값은 500
Figure 112018111887212-pat00385
, 스너버 인덕터(
Figure 112018111887212-pat00386
, 140)의 인덕턴스 값은 15
Figure 112018111887212-pat00387
로 설정할 수 있다.
스너버 커패시턴스(
Figure 112018111887212-pat00388
, 150)의 커패시턴스 값은 2
Figure 112018111887212-pat00389
6.8nF, 메인 다이오드(D, 1010)의 값은 DSEI 12-06A(600V-14A), 제1 내지 제3 다이오드(
Figure 112018111887212-pat00390
, 130)는 DSEI 12-06A(600V-14A)로 설정할 수 있다.
메인 스위치(
Figure 112018111887212-pat00391
, 1090)는 FCH76N60NF(600V-46A), 스너버 스위치(
Figure 112018111887212-pat00392
, 190)는 IPW60R160C6(650V-15A)로 설정할 수 있다.
본 발명이 제안하는 액티브 스너버 셀(100)이 적용된 부스트 컨버터 회로(1000)의 실시예에 따른 도 7b의 실험을 위해 전술한 바와 같이 실험 조건을 제시하였으나, 입력 전압(
Figure 112018111887212-pat00393
), 출력 전압(
Figure 112018111887212-pat00394
) 등의 실험 조건은 보다 다양하게 설정될 수 있다.
도 8a 내지 도 8e는 도 7b의 실험 결과를 본 발명이 제안하는 액티브 스너버 셀을 적용한 소프트 스위칭 부스트 컨버터 회로의 실험 파형을 나타낸 도면들이다.
도 8a 내지 도 8e를 참조하여 도 7b의 실험 결과를 파형으로 나타낸 도면을 설명하기로 한다.
도 8a는 메인 스위치(
Figure 112018111887212-pat00395
, 1090)와 스너버 스위치(
Figure 112018111887212-pat00396
, 190)의 게이팅 신호를 나타내고 있는 것을 확인할 수 있고, 스너버 스위치(
Figure 112018111887212-pat00397
, 190)는 메인 스위치(
Figure 112018111887212-pat00398
, 1090)가 턴 온 하기 800ns 전에 턴 온 하여 메인 스위치(
Figure 112018111887212-pat00399
, 1090)가 제로 전류 스위치(ZVS) 턴 온 하도록 할 수 있다.
노이즈로 인해 스위치 전류는 직접 측정하기 어렵지만, 메인 스위치(
Figure 112018111887212-pat00400
, 1090) 및 스너버 스위치(
Figure 112018111887212-pat00401
, 190)의 소프트 스위칭 특성은 도 8b, 도 8c 및 도 8d와 같이 게이팅 신호, 드레인 전압 및 스너버 인덕터(
Figure 112018111887212-pat00402
, 140) 전류를 통해 명확하게 확인할 수 있다.
메인 스위치(
Figure 112018111887212-pat00403
, 1090)의 제로 전압 스위치(ZVS) 턴 온 및 턴 오프는 도 8b 및 도 8c를 통해 확인할 수 있고, 이를 통해 메인 스위치(
Figure 112018111887212-pat00404
, 1090)의 드레인 전압은 게이팅 신호가 인가되기 전에 0V로 방전되고, 게이팅 신호가 오프되면 0V에서 서서히 증가하는 것을 확인할 수 있다.
도 8d는 스너버 스위치(
Figure 112018111887212-pat00405
, 190)의 제로 전류 스위치(ZCS) 턴 온 및 제로 전압 스위치(ZVS) 턴 오프를 나타낼 수 있는데, 스너버 스위치(
Figure 112018111887212-pat00406
, 190)의 제로 전류 스위치(ZCS) 턴 온 전류는 스너버 인덕터(
Figure 112018111887212-pat00407
, 140) 전류로 대체될 수 있다.
여기서, 스너버 스위치(
Figure 112018111887212-pat00408
, 190)의 제로 전류 스위치(ZCS) 턴 온 전류는 스너버 인덕터(
Figure 112018111887212-pat00409
, 140) 전류로 대체되는 것은 스너버 스위치(
Figure 112018111887212-pat00410
, 190)의 턴 온 전류는 제1 모드(Mode 1,
Figure 112018111887212-pat00411
~
Figure 112018111887212-pat00412
)의 스너버 스위치(
Figure 112018111887212-pat00413
, 190)가 켜진 후 스너버 인덕터(
Figure 112018111887212-pat00414
, 140)의 상승 전류와 동일하기 때문이다.
스너버 스위치(
Figure 112018111887212-pat00415
, 190)의 제로 전압 스위치(ZVS) 턴 오프는 메인 스위치(
Figure 112018111887212-pat00416
, 1090)와 같이 스위치의 게이팅 신호 및 드레인 전압을 통해 확인할 수 있고, 출력과 스너버 커패시터(
Figure 112018111887212-pat00417
, 150)의 전압은 도 8e를 통해 확인할 수 있다.
도 9는 광범위한 부하에서 본 발명이 제안하는 액티브 스너버 셀을 적용한 소프트 스위칭 부스트 컨버터의 효율을 나타낸 도면이다.
도 9를 참조하여, 본 발명이 제안하는 액티브 스너버 셀(100)을 적용한 부스트 컨버터 회로(1000)의 효율성을 측정하여 도식화하기 위해 YOKOGAWA사의 WT3000을 이용하여 측정한 결과를 설명하기로 한다.
광범위한 부하에서 본 발명이 제안하는 액티브 스너버 셀(100)을 적용한 부스트 컨버터 회로(1000)의 피크 및 전체 효율은 97.8% 및 97.5%로 측정된 것을 확인할 수 있다.
전술한 바와 같이, 본 발명이 제안하는 액티브 스너버 셀은 고전력 응용에 필요한 인터리브드(interleaved) 컨버터에 쉽게 적용될 수 있고, 입력 인덕터인 메인 인덕터의 도통 손실을 줄일 수 있고, 스너버 회로의 동작 시간을 최소화할 수 있다.
또한, 메인 스위치를 제로 전압 스위치(ZVS) 턴 온 및 제로 전압 스위치(ZVS) 턴 오프, 메인 다이오드를 제로 전류 스위치(ZCS) 턴 오프, 스너버 스위치를 제로 전류 스위치(ZCS)턴 온 및 제로 전압 스위치(ZVS) 턴 오프 가능하게 할 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100: 소프트 스위칭을 위한 액티브 스너버 셀
110: 제1 다이오드
120: 제2 다이오드
130: 제3 다이오드
140: 스너버 인덕터
150: 스너버 커패시터
180: 스너버 스위치의 기생 커패시터
190: 스너버 스위치
1000: 부스트 컨버터 회로
1010: 메인 다이오드
1030: 출력부하
1040: 메인 인덕터
1050: 메인 커패시터
1080: 메인 스위치의 기생 커패시터
1090: 메인 스위치

Claims (5)

  1. 스너버 스위치;
    메인 스위치 및 메인 다이오드의 접점에 연결되는 제1 다이오드;
    상기 제1 다이오드와 병렬로 연결된 제2 및 제3 다이오드;
    일단이 상기 제1 다이오드와 연결되고, 타단이 상기 제2 다이오드와 상기 스너버 스위치의 접점에 연결되는 스너버 인덕터; 및
    일단이 상기 제1 다이오드와 상기 스너버 인덕터의 접점에 연결되고, 타단이 상기 제2 및 제3 다이오드의 접점에 연결되는 스너버 커패시터;를 포함하는, 소프트 스위칭을 위한 액티브 스너버 셀.
  2. 제 1 항에 있어서,
    상기 스너버 인덕터는,
    상기 메인 다이오드가 턴 오프 되면, 상기 메인 스위치의 기생 커패시터에 저장된 에너지를 전달받아 충전되고, 상기 스너버 스위치의 제로 전류 스위치(ZCS) 턴 온 전류와 상기 메인 다이오드의 제로 전류 스위치(ZCS)턴 오프 전류를 제공하는, 소프트 스위칭을 위한 액티브 스너버 셀.
  3. 제 1 항에 있어서,
    상기 스너버 커패시터는,
    상기 스너버 스위치가 턴 오프하면, 상기 제2 다이오드가 턴 온 하여 상기 스너버 인덕터에 흐르는 전류로부터 충전되고, 상기 스너버 커패시터가 최대 전압값으로 충전되는 경우, 상기 메인 스위치 및 스너버 스위치에 제로 전압 스위치(ZVS) 턴 오프를 제공하는, 소프트 스위칭을 위한 액티브 스너버 셀.
  4. 스너버 스위치, 제1 다이오드, 상기 제1 다이오드와 병렬로 연결된 제2 다이오드 및 제3 다이오드, 일단이 상기 제1 다이오드와 연결되고 타단이 상기 스너버 스위치와 상기 제2 다이오드의 접점에 연결되는 스너버 인덕터 및 일단이 상기 제1 다이오드와 상기 스너버 인덕터의 접점에 연결되고 타단이 상기 제2 다이오드와 제3 다이오드의 접점에 연결되는 스너버 커패시터를 포함하는 액티브 스너버 셀; 및
    상기 스너버 스위치와 연결되는 메인 스위치, 상기 제1 다이오드와 연결되는 메인 다이오드, 메인 인덕터, 상기 제3 다이오드와 상기 메인 다이오드의 접점에 연결되는 메인 커패시터를 포함하고, 상기 액티브 스너버 셀이 연결된 부스트 컨버터 회로;를 포함하는, 소프트 스위칭을 위한 액티브 스너버 셀을 포함하는 부스트 컨버터.
  5. 제 4 항에 있어서,
    상기 부스트 컨버터는,
    상기 스너버 스위치가 턴 온 하는 제0 모드, 상기 스너버 스위치가 제로 전류 스위치(ZCS) 턴 온 하는 제1 모드, 상기 스너버 인덕터와 상기 메인 스위치의 기생 커패시터가 공진 회로를 생성하는 제2 모드, 상기 메인 스위치가 제로 전압 스위치(ZVS) 턴 온 되고, 상기 스너버 스위치가 턴 오프되는 제3 모드, 상기 스너버 스위치는 제로 전압 스위치(ZVS) 턴 오프 하는 제4 모드, 상기 스너버 인덕터의 전류가 일정하게 감소하여 부하로 전달되는 제5 모드, 상기 메인 스위치가 턴 오프 되는 제6 모드, 상기 기생 커패시터와 상기 스너버 커패시터가 충방전되며, 상기 메인 스위치가 제로 전압 스위치(ZVS) 턴 온 하는 제7 모드를 포함하는, 소프트 스위칭을 위한 액티브 스너버 셀을 포함하는 부스트 컨버터.
KR1020180137964A 2018-11-12 2018-11-12 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터 KR102045156B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180137964A KR102045156B1 (ko) 2018-11-12 2018-11-12 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180137964A KR102045156B1 (ko) 2018-11-12 2018-11-12 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터

Publications (1)

Publication Number Publication Date
KR102045156B1 true KR102045156B1 (ko) 2019-11-14

Family

ID=68577852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180137964A KR102045156B1 (ko) 2018-11-12 2018-11-12 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터

Country Status (1)

Country Link
KR (1) KR102045156B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556038A (zh) * 2021-07-19 2021-10-26 深圳市皓文电子有限公司 高压宽范围输入的升压电路和软开关电路
WO2023013948A1 (ko) * 2021-08-02 2023-02-09 주식회사 엘지에너지솔루션 스누버 회로, 이를 포함하는 컨버터 및 배터리 충전 장치
WO2024059297A1 (en) * 2022-09-16 2024-03-21 Wayne State University A four-phase soft-switching boost converter with auxiliary switch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241072A (ja) * 1994-02-25 1995-09-12 Sanken Electric Co Ltd 昇圧型dc−dcコンバータ
KR0177873B1 (ko) 1995-12-02 1999-05-15 변승봉 순환전류 프리형 고주파 소프트 스위칭FB(Full Bridge)DC-DC컨버터
US6987675B2 (en) 2003-05-23 2006-01-17 Delta Electronics, Inc. Soft-switched power converters
KR20100082084A (ko) 2009-01-08 2010-07-16 (주)오레카 소프트 스위칭 기법을 이용한 부스트 컨버터
EP2782235A1 (en) * 2013-03-21 2014-09-24 Mitsubishi Electric R&D Centre Europe B.V. Converter composed of at least a first and a second switches and a snubber circuit which protects the second switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241072A (ja) * 1994-02-25 1995-09-12 Sanken Electric Co Ltd 昇圧型dc−dcコンバータ
KR0177873B1 (ko) 1995-12-02 1999-05-15 변승봉 순환전류 프리형 고주파 소프트 스위칭FB(Full Bridge)DC-DC컨버터
US6987675B2 (en) 2003-05-23 2006-01-17 Delta Electronics, Inc. Soft-switched power converters
KR20100082084A (ko) 2009-01-08 2010-07-16 (주)오레카 소프트 스위칭 기법을 이용한 부스트 컨버터
EP2782235A1 (en) * 2013-03-21 2014-09-24 Mitsubishi Electric R&D Centre Europe B.V. Converter composed of at least a first and a second switches and a snubber circuit which protects the second switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hacy Bodur et al., A New ZVT-PWM DC-DC converter, IEEE Trans. on Power Electronics, vo.17, no.1, pp.40-47, January 2002. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556038A (zh) * 2021-07-19 2021-10-26 深圳市皓文电子有限公司 高压宽范围输入的升压电路和软开关电路
CN113556038B (zh) * 2021-07-19 2022-02-15 深圳市皓文电子有限公司 高压宽范围输入的升压电路和软开关电路
WO2023013948A1 (ko) * 2021-08-02 2023-02-09 주식회사 엘지에너지솔루션 스누버 회로, 이를 포함하는 컨버터 및 배터리 충전 장치
WO2024059297A1 (en) * 2022-09-16 2024-03-21 Wayne State University A four-phase soft-switching boost converter with auxiliary switch

Similar Documents

Publication Publication Date Title
Lee et al. High step-up soft-switched converters using voltage multiplier cells
KR102045156B1 (ko) 소프트 스위칭을 위한 액티브 스너버 셀 및 이를 포함하는 부스트 컨버터
Bodur et al. An improved ZCT-PWM DC-DC converter for high-power and frequency applications
KR101349906B1 (ko) 전압 클램프 승압형 부스트 컨버터
Li et al. Zero-voltage transition interleaved high step-up converter with built-in transformer
Cha et al. Highly efficient asymmetrical PWM full-bridge converter for renewable energy sources
US7880450B2 (en) Switching power supply, control circuit controlling switching power supply and control method of switching power supply
Zaoskoufis et al. Isolated ZVS-ZCS DC–DC high step-up converter with low-ripple input current
Zhao et al. High step-up boost converter with coupled inductor and switched capacitor
US11929669B2 (en) Totem-pole bridgeless power factor correction device and power supply
Siwakoti et al. Ultra-step-up DC-DC converter with integrated autotransformer and coupled inductor
Yaqoob et al. Modeling the effect of dead-time on the soft-switching characteristic of variable-frequency modulated series-resonant DAB converter
KR20090044137A (ko) 무변압기형 부스트 컨버터
Luo et al. An active clamp high step-up boost converter with a coupled inductor
Wang et al. High efficiency high step-up isolated dc-dc converter for photovoltaic applications
KR101140336B1 (ko) 절연형 벅 부스트 dc?dc 컨버터
Fani et al. Analysis and implementation of high step-up DC/DC convertor with modified super-lift technique
Gu et al. A high efficiency hybrid resonant PWM zero-voltage-switching full-bridge DC-DC converter for electric vehicle battery chargers
Rehlaender et al. Analytical modeling and design of an active clamp forward converter applied as a single-stage on-board DC-DC converter for EVs
TWI501527B (zh) 單輔助開關之交錯式高升壓比柔切式轉換器
Hwu et al. Ultrahigh step-down converter with active clamp
Wei et al. A soft-switching non-inverting buck-boost converter
KR20120010636A (ko) 부스트 컨버터
Lin et al. Soft switching isolated sepic converter with the buck-boost type of active clamp
Chi-Wa et al. Review and comparison of integrated inductive-based hybrid step-down DC-DC converter under CCM operation

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant