KR102038778B1 - The preparation method of solid catalyst for propylene polymerization - Google Patents

The preparation method of solid catalyst for propylene polymerization Download PDF

Info

Publication number
KR102038778B1
KR102038778B1 KR1020180118508A KR20180118508A KR102038778B1 KR 102038778 B1 KR102038778 B1 KR 102038778B1 KR 1020180118508 A KR1020180118508 A KR 1020180118508A KR 20180118508 A KR20180118508 A KR 20180118508A KR 102038778 B1 KR102038778 B1 KR 102038778B1
Authority
KR
South Korea
Prior art keywords
diene
dicarboxylate
adipate
solid catalyst
diethyl
Prior art date
Application number
KR1020180118508A
Other languages
Korean (ko)
Inventor
이진우
김은일
박준려
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020180118508A priority Critical patent/KR102038778B1/en
Application granted granted Critical
Publication of KR102038778B1 publication Critical patent/KR102038778B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6546Pretreating with metals or metal-containing compounds with magnesium or compounds thereof organo-magnesium compounds

Abstract

The present invention relates to a method for manufacturing a solid catalyst for propylene polymerization. More specifically, the method comprises steps of: (1) conducting a primary reaction of dialkoxy magnesium and titanium tetrachloride in the presence of an organic solvent; (2) conducting a reaction by adding two or more non-aromatic internal electron donors to an output of the step (1); and (3) conducting a secondary reaction of an output of the step (2) with titanium tetrachloride, followed by washing an output thereof. A catalyst manufactured by the method described in the present invention can provide a propylene polymer having not only high catalytic activity but also excellent stereoregularity and high hydrogen reactivity.

Description

프로필렌 중합용 고체 촉매의 제조방법{The preparation method of solid catalyst for propylene polymerization}The preparation method of solid catalyst for propylene polymerization

본 발명은 프로필렌 중합용 고체 촉매의 제조방법에 관한 것으로서, 보다 상세하게는, (1) 유기용매의 존재 하에서 디알콕시마그네슘과 사염화티타늄을 1차로 반응시키는 단계; (2) 상기 단계 (1)의 결과물에 2종 이상의 비방향족 내부전자공여체를 첨가하여 반응시키는 단계; (3) 상기 단계 (2)의 결과물을 티타늄할라이드 화합물과 2차로 반응시킨 후 결과물을 세척하는 단계로 구성되는 것을 특징으로 하는 프로필렌 중합용 고체 촉매는 높은 촉매 활성을 제공함은 물론 우수한 입체규칙성과 높은 수소반응성을 가지는 프로필렌 중합체를 제공할 수 있다.The present invention relates to a method for preparing a solid catalyst for propylene polymerization, and more particularly, (1) reacting dialkoxy magnesium and titanium tetrachloride in the presence of an organic solvent in a primary manner; (2) reacting the result of step (1) by adding two or more non-aromatic internal electron donors; (3) The solid catalyst for propylene polymerization, which comprises a step of secondly reacting the resultant of step (2) with the titanium halide compound and washing the resultant, provides high catalytic activity as well as excellent stereoregularity and high It is possible to provide a propylene polymer having hydrogen reactivity.

폴리프로필렌은 산업적으로 매우 유용한 물질인데, 특히 자동차와 전자 제품과 관련한 소재에서 다양한 용도로 널리 이용되고 있다. 폴리프로필렌의 적용이 보다 확대되기 위해서는 결정화도를 높여서 강성을 개선시키는 것이 중요하며, 이를 위해서는 프로필렌 중합용 고체 촉매가 높은 입체규칙성을 나타내도록 고안되어야 한다. Polypropylene is a very industrially useful material, and is widely used in various applications, particularly in materials related to automobiles and electronic products. In order to further expand the application of polypropylene, it is important to improve the rigidity by increasing the crystallinity. For this purpose, the solid catalyst for propylene polymerization should be designed to exhibit high stereoregularity.

상기와 같은 프로필렌 등의 올레핀류의 중합에 있어서는 마그네슘, 티타늄, 전자공여체 및 할로겐을 필수 성분으로서 함유하는 고체촉매가 알려져 있고, 이 고체촉매와 유기알루미늄 화합물 및 유기실리콘 화합물로 이루어지는 촉매계를 이용하여 올레핀류를 중합 또는 공중합시키는 방법이 많이 제안되어 왔다. 그러나, 이러한 방법은 고입체규칙성 중합체를 높은 수율로 얻기에는 충분하지 못하여 개선이 요구되고 있다.In the polymerization of olefins such as propylene, a solid catalyst containing magnesium, titanium, an electron donor and a halogen as an essential component is known, and a olefin is obtained by using a catalyst system composed of this solid catalyst and an organoaluminum compound and an organosilicon compound. Many methods have been proposed for polymerizing or copolymerizing the solvents. However, these methods are not sufficient to obtain high stereoregular polymers in high yields and improvements are needed.

프로필렌 중합용 촉매에 있어서 촉매 활성은 가장 기본적이면서도 중요한 특성 중의 하나이다. 활성이 높으면 그만큼 적은 양의 촉매를 사용할 수 있기 때문에, 제조 원가를 줄일 수 있으며, 마그네슘, 티타늄, 할로겐 등의 금속 촉매 잔사 및 촉매 주입 시 사용되는 헥산 등의 휘발성 물질의 잔류량을 감소시킬 수 있다.Catalyst activity is one of the most basic and important properties in the catalyst for propylene polymerization. If the activity is high, a small amount of the catalyst can be used, thereby reducing the production cost and reducing the residual amount of volatile substances such as metal catalyst residues such as magnesium, titanium, halogen, and hexane used for the catalyst injection.

상기와 같이 프로필렌 중합에 있어서, 촉매 활성 증가를 통해 원가를 낮추고, 입체규칙성 등의 촉매 성능을 향상시켜 중합체의 물성을 개선시키기 위하여, 내부전자공여체로서 방향족 디카르복실산의 디에스테르를 사용하는 방법이 널리 알려져 있으며, 이에 관한 특허들이 출원되었다. 미국 특허 제 4,562,173호, 미국 특허 제 4,981,930호, 한국 특허 제 0072844호 등은 그 예라고 할 수 있으며, 상기 특허들은 방향족 디알킬디에스테르 또는 방향족 모노알킬모노에스테르를 사용하여 고활성, 고입체규칙성을 발현하는 촉매 제조 방법을 소개하고 있다.As described above, in the propylene polymerization, a diester of an aromatic dicarboxylic acid is used as an internal electron donor in order to lower the cost by increasing the catalytic activity and to improve the physical properties of the polymer by improving the catalytic performance such as stereoregularity. The method is well known and patents have been filed. U.S. Patent No. 4,562,173, U.S. Patent No. 4,981,930, Korean Patent No. 0072844 and the like can be cited as examples, and these patents use an aromatic dialkyl diester or an aromatic monoalkyl monoester to form a highly active, high solid regularity. The catalyst production method which expresses is introduced.

그러나, 상기 특허들에서 사용된 것과 같은 방향족 디카르복실산의 디에스테르 화합물은 극히 적은 양으로도 인간의 생식기능 저하, 성장장애, 기형, 암 유발과 같이 인간 및 생태계에 좋지 않은 영향을 끼칠 수 있는 환경 호르몬 물질로서 알려져 있다. 따라서, 근래에 음식 포장 용기 등의 용도로 사용되는 폴리프로필렌 제조에는 내부전자공여체로서 친환경적인 물질을 사용하는 것에 대한 요구가 대두되고 있다. 또한, 상기 특허들의 방법은 고입체규칙성 중합체를 높은 수율로 얻기에는 충분하지 않아 개선이 요구된다.However, diester compounds of aromatic dicarboxylic acids, such as those used in the above patents, may have adverse effects on humans and ecosystems such as infertility, growth disorders, malformations, and cancer in humans, even in very small amounts. It is known as an environmental hormone substance. Therefore, in recent years, the production of polypropylene for use in food packaging containers, etc., there is a demand for using an environmentally friendly material as an internal electron donor. In addition, the methods of the above patents are not sufficient to obtain high stereoregular polymers in high yield and require improvement.

한편, 내부전자공여체로서 상기와 같은 알킬에스테르 외에, 비방향족성인 디에테르 물질(한국 특허 제 0491387호) 및 비방향족이면서 케톤과 에테르 작용기를 동시에 가지는 물질(한국 특허 제 0572616호)을 사용하는 촉매 제조 방법이 알려져 있다. 그러나, 이 두 방법 모두 활성과 입체규칙성 측면 모두에서 크게 개선되어야 할 여지가 있다.On the other hand, in addition to the alkyl ester as described above as an internal electron donor, a catalyst using a non-aromatic diester material (Korean Patent No. 0491387) and a non-aromatic material having both a ketone and an ether functional group (Korean Patent No. 0572616) Methods are known. However, there is room for both of these methods to be greatly improved in terms of both activity and stereoregularity.

또한, 미국 특허 제 6,048,818호에는 내부전자공여체로서 말로네이트를 사용하여 촉매를 제조하는 방법이 개시하고 있으나, 이 방법은 활성 및 입체규칙성이 상업용으로 사용하기에 적합하지 않을 정도로 낮다는 단점이 있다.In addition, US Pat. No. 6,048,818 discloses a method for preparing a catalyst using malonate as an internal electron donor, but this method has a disadvantage in that the activity and stereoregularity are low enough to be unsuitable for commercial use. .

본 발명은 상기와 같은 종래기술들의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 환경유해물질을 함유하지 않으면서, 높은 수율로 입체규칙성이 우수한 폴리프로필렌을 제조할 수 있는 프로필렌 중합용 고체 촉매의 제조 방법을 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is a solid catalyst for propylene polymerization that can produce a polypropylene excellent in stereoregularity with high yield without containing environmentally harmful substances It is to provide a method for producing.

상기와 같은 과제를 해결하기 위하여, 본 발명은 다음의 단계들을 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조 방법을 제공한다:In order to solve the above problems, the present invention provides a method for producing a solid catalyst for propylene polymerization, comprising the following steps:

(1) 유기용매의 존재 하에서 디알콕시마그네슘과 사염화티타늄을 1차로 반응시키는 단계;(1) firstly reacting dialkoxy magnesium and titanium tetrachloride in the presence of an organic solvent;

(2) 상기 단계 (1)의 결과물에 2종의 비방향족 내부전자공여체를 첨가하여 반응시키는 단계; 및(2) adding two kinds of non-aromatic internal electron donors to the resultant of step (1) and reacting them; And

(3) 상기 단계 (2)의 결과물을 사염화티타늄과 2차로 반응시키고, 결과물을 세척하는 단계.(3) reacting the resultant of step (2) with titanium tetrachloride secondly, and washing the resultant.

상기 단계 (1)에서 사용되는 유기용매로서는, 그 종류에 특별히 한정이 없고, 탄소수 6~12개의 지방족 탄화수소 및 방향족 탄화수소, 할로겐화 탄화수소 등이 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10개의 포화 지방족 또는 방향족 탄화수소, 할로겐화 탄화수소가 사용될 수 있고, 그 구체적인 예로는, 옥탄, 노난, 데칸, 톨루엔 및 크실렌, 클로로부탄, 클로로헥산, 클로로헵탄 등으로부터 선택되는 1종 이상을 단독 또는 혼합하여 사용할 수 있다.As the organic solvent used in the step (1), there is no particular limitation on the kind, and aliphatic hydrocarbons, aromatic hydrocarbons and halogenated hydrocarbons having 6 to 12 carbon atoms may be used, and more preferably saturated aliphatic having 7 to 10 carbon atoms. Or aromatic hydrocarbons, halogenated hydrocarbons may be used, and specific examples thereof may be used alone or in combination of one or more selected from octane, nonane, decane, toluene and xylene, chlorobutane, chlorohexane, chloroheptane and the like.

상기 단계 (1)에서 사용되는 디알콕시마그네슘으로는 디에톡시마그네슘이 특히 바람직하게 사용될 수 있다. 상기 디알콕시마그네슘은 금속마그네슘을 염화마그네슘과 같은 반응개시제의 존재하에서 무수 알코올과 반응시켜 얻어지는 평균입경이 10~200㎛이고, 표면이 매끄러운 구형입자로서, 상기 구형의 입자형상은 프로필렌의 중합시에도 그대로 유지되는 것이 바람직한데, 상기 평균입경이 10㎛ 미만이면 제조된 촉매의 미세입자가 증가하여 바람직하지 않고, 200㎛를 초과하면 겉보기 밀도가 작아지는 경향이 있어 바람직하지 않다.As the dialkoxy magnesium used in the step (1), diethoxy magnesium may be particularly preferably used. The dialkoxy magnesium has an average particle diameter of 10 to 200 µm obtained by reacting metal magnesium with anhydrous alcohol in the presence of a reaction initiator such as magnesium chloride, and the surface is smooth spherical particles. Although it is preferable to maintain it as it is, when the said average particle diameter is less than 10 micrometers, it is unpreferable because the fine particle of the manufactured catalyst increases, and when it exceeds 200 micrometers, the apparent density tends to become small and it is not preferable.

상기 고체촉매의 제조공정 중 단계 (1)에서의 반응은 0~30℃의 온도범위에서 디알콕시마그네슘을 유기용매에 현탁시킨 상태에서 사염화티타늄을 서서히 투입하여 수행하는 것이 바람직하다.The reaction in step (1) of the solid catalyst production process is preferably carried out by slowly adding titanium tetrachloride in a state in which the dialkoxy magnesium is suspended in an organic solvent in the temperature range of 0 ~ 30 ℃.

상기 단계 (1)에서 사염화티타늄 사용량은 디알콕시마그네슘 1몰에 대하여 0.1~10몰, 더욱 바람직하게는 0.3~2몰로 하는 것이 바람직한데, 0.1몰 미만이면 디알콕시마그네슘이 염화마그네슘으로 변화하는 반응이 원활하게 진행되지 않아서 바람직하지 않고, 10몰을 초과하면 과도하게 많은 티타늄 성분이 촉매 내에 존재하게 되므로 바람직하지 않다.The amount of titanium tetrachloride used in step (1) is preferably 0.1 to 10 moles, more preferably 0.3 to 2 moles per 1 mole of dialkoxymagnesium. If less than 0.1 mole, the reaction of dialkoxy magnesium to magnesium chloride is reduced. It is not preferable because it does not proceed smoothly, and exceeding 10 moles is not preferable because excessively many titanium components are present in the catalyst.

상기 프로필렌 중합용 고체촉매의 제조공정에 있어서, 상기 단계 (2)에서 사용되는 비방향족 내부전자공여체는 하기 일반식 (I)과 (II)으로 표시할 수 있다.In the process for producing a solid catalyst for propylene polymerization, the non-aromatic internal electron donor used in the step (2) may be represented by the following general formulas (I) and (II).

상기의 비방향족 내부전자공여체는 하기 일반식 (I)로 표시되며, 그 구체적인 예로는 디메틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(dimethyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디프로필사이클로헥사-1,4-디엔-1,2-디카복실레이트(dipropyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디이소프로필사이클로헥사-1,4-디엔-1,2-디카복실레이트 (diisopropyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(dibutyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디이소부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(diisobutyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디펜틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(dipentyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디이소펜틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(diisopentyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디헥실사이클로헥사-1,4-디엔-1,2-디카복실레이트(dihexyl cyclohexa-1,4-diene-1,2-dicarboxylate), 디옥틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(dioctyl cyclohexa-1,4-diene-1,2-dicarboxylate) 등이 있다.The non-aromatic internal electron donor is represented by the following general formula (I), and specific examples thereof include dimethyl cyclohexa-1,4-diene-1,2-dicarboxylate (dimethyl cyclohexa-1,4-diene-1 , 2-dicarboxylate), diethylcyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate), dipropylcyclohexa-1,4- Diene-1,2-dicarboxylate (dipropyl cyclohexa-1,4-diene-1,2-dicarboxylate), diisopropylcyclohexa-1,4-diene-1,2-dicarboxylate (diisopropyl cyclohexa-1) , 4-diene-1,2-dicarboxylate), dibutylcyclohexa-1,4-diene-1,2-dicarboxylate (dibutyl cyclohexa-1,4-diene-1,2-dicarboxylate), diisobutyl Diisobutyl cyclohexa-1,4-diene-1,2-dicarboxylate, dipentylcyclohexa-1,4-diene-1,2-dicarboxyl Dipentyl cyclohexa-1,4-diene-1,2-dicarboxylate, diisopentylcyclohexa-1,4-diene-1,2-dicarboxylate (Diisopentyl cyclohexa-1,4-diene-1,2-dicarboxylate), dihexylcyclohexa-1,4-diene-1,2-dicarboxylate (dihexyl cyclohexa-1,4-diene-1,2- dicarboxylate), dioctylcyclohexa-1,4-diene-1,2-dicarboxylate, and the like.

Figure 112018098107480-pat00001
‥‥‥ (I)
Figure 112018098107480-pat00001
‥‥‥ (I)

여기에서 R1 및 R2는 탄소원자 1~20개의 선형 또는 분지형 알킬기 또는 탄소원자 3~6개의 고리형 알킬기이다.Wherein R 1 and R 2 are linear or branched alkyl groups of 1 to 20 carbon atoms or cyclic alkyl groups of 3 to 6 carbon atoms.

상기의 비방향족 내부전자공여체는 하기 일반식 (II)로 표시되며, 그 구체적인 예로는 디메틸아디페이트(dimethyl adipate), 디에틸아디페이트(diethyl adipate), 디프로필아디페이트(dipropyl adipate), 디이소프로필아디페이트(diisopropyl adipate), 디부틸아디페이트(dibutyl adipate), 디이소부틸아디페이트(diisobutyl adipate), 디펜틸아디페이트(dipentyl adipate), 디이소펜틸아디페이트(diisopentyl adipate), 디헥실아디페이트(dihexyl adipate), 디옥틸아디페이트(dioctyl adipate) 등이 있다.The non-aromatic internal electron donor is represented by the following general formula (II), and specific examples thereof include dimethyl adipate, diethyl adipate, dipropyl adipate, and diiso. Diisopropyl adipate, dibutyl adipate, diisobutyl adipate, dipentyl adipate, dipentyl adipate, diisopentyl adipate, dihexyl adipate (dihexyl adipate), dioctyl adipate, and the like.

Figure 112018098107480-pat00002
‥‥‥ (II)
Figure 112018098107480-pat00002
‥‥‥ (II)

여기에서 R1 및 R2는 탄소원자 1~20개의 선형 또는 분지형 알킬기 또는 탄소원자 3~6개의 고리형 알킬기이다.Wherein R 1 and R 2 are linear or branched alkyl groups of 1 to 20 carbon atoms or cyclic alkyl groups of 3 to 6 carbon atoms.

상기 단계 (2)는 상기 단계 (1)의 결과물의 온도를 80~130℃까지 서서히 승온시키면서, 승온 과정 중에 상기 내부전자공여체를 투입하여 1~3시간 동안 반응시킴으로써, 수행되는 것이 바람직한데, 상기 온도가 80℃ 미만이거나 반응시간이 1시간 미만이면 반응이 완결되기 어렵고, 130℃를 초과하거나 반응시간이 3시간을 초과하면 부반응에 의해 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.The step (2) is preferably carried out by slowly increasing the temperature of the resultant of the step (1) to 80 ~ 130 ℃, by reacting for 1 to 3 hours by adding the internal electron donor during the temperature increase process, If the temperature is less than 80 ° C. or the reaction time is less than 1 hour, the reaction is difficult to complete. If the temperature exceeds 130 ° C. or the reaction time is more than 3 hours, side reactions may lower the polymerization activity of the resulting catalyst or the stereoregularity of the polymer. have.

상기 내부전자공여체는, 상기 승온과정 중에 투입되는 한, 그 투입온도 및 투입 횟수는 크게 제한되지 않으며, 상기 내부전자공여체의 전체 사용량은 사용된 디알콕시마그네슘 1몰에 대하여 0.1~1.0몰을 사용하는 것이 바람직한데, 상기 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있어 바람직하지 않다.As long as the internal electron donor is added during the temperature raising process, the temperature and the number of the inputs are not particularly limited, and the total amount of the internal electron donor is 0.1 to 1.0 mole based on 1 mole of dialkoxy magnesium used. It is preferable that outside the above range, the polymerization activity of the resulting catalyst or the stereoregularity of the polymer may be lowered.

상기 고체촉매의 제조공정에 있어서, 단계 (3)은, 상기 단계 (2)의 결과물과 사염화티타늄을 2차 반응시키고 세척하는 공정으로서, 80~130℃의 온도에서 수행되는 것이 바람직하다.In the solid catalyst production process, step (3) is a step of secondary reaction and washing the product of the step (2) and titanium tetrachloride, it is preferably carried out at a temperature of 80 ~ 130 ℃.

본 발명의 방법에 의하여 제조된 프로필렌 중합용 고체촉매를 사용하면, 환경유해물질을 함유하지 않으면서, 촉매 활성과 입체규칙성 그리고 수소반응성이 우수한 폴리프로필렌을 높은 수율로 생성할 수 있다.By using the solid catalyst for propylene polymerization prepared by the method of the present invention, it is possible to produce polypropylene having high catalytic activity, stereoregularity and hydrogen reactivity with high yield without containing environmentally harmful substances.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐 본 발명이 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these embodiments are for illustrative purposes only.   The invention is not limited to these examples.

[실시예]EXAMPLE

실시예 1Example 1

[고체촉매의 제조] [Production of Solid Catalyst]

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 평균입도 20㎛인 디에톡시마그네슘 20g을 투입하고 10℃로 유지하였다. 사염화티타늄 40ml를 1시간에 걸쳐 투입한 후, 반응기의 온도를 110℃까지 올려주면서 디에틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol과 디에틸아디페이트(diethyl adipate) 11.2 mmol을 주입하였다. 110℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다.150 ml of toluene and 20 g of diethoxy magnesium having an average particle size of 20 µm were added to a glass reactor equipped with a 1 liter stirrer sufficiently substituted with nitrogen, and maintained at 10 ° C. 40 ml of titanium tetrachloride was added over 1 hour, and then the temperature of the reactor was raised to 110 ° C. while diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1) was added. , 2-dicarboxylate) and 11.2 mmol of diethyl adipate were injected. After holding at 110 ° C. for 2 hours, the temperature was lowered to 90 ° C. to stop stirring, the supernatant was removed, and further washed once using the same method using 200 ml of toluene.

여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 2시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 150 ml of toluene and 50 ml of titanium tetrachloride were added thereto, and the temperature was raised to 110 ° C. and maintained for 2 hours. After completion of the aging process, the slurry mixture was washed twice with 200 ml of toluene per second, and washed five times with 200 ml each time with normal hexane at 40 ° C. to obtain a pale yellow solid catalyst component.

[폴리프로필렌 중합] [Polypropylene Polymerization]

4리터 크기의 고압용 스테인레스 반응기내에 상기의 고체촉매 10mg과 트리에틸알루미늄 6.6mmol, 디시클로펜틸디메톡시실란 0.66mmol을 투입하였다. 이어서 수소 1000ml와 액체상태의 프로필렌 2.4L를 차례로 투입한 후 온도를 70℃까지 올려서 중합을 실시하였다. 중합 개시 후 2시간이 경과하면 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 제거하였다. 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다.10 mg of the solid catalyst, 6.6 mmol of triethylaluminum, and 0.66 mmol of dicyclopentyldimethoxysilane were charged into a 4 liter high pressure stainless reactor. Subsequently, 1000 ml of hydrogen and 2.4 L of propylene in a liquid state were sequentially added, and then the temperature was raised to 70 ° C. for polymerization. After 2 hours after the start of the polymerization, the valve was opened while lowering the temperature of the reactor to room temperature to completely remove propylene in the reactor. The analysis results of the obtained propylene polymer are shown in Table 1.

여기서, 촉매활성 및 입체규칙성은 다음과 같은 방법으로 결정하였다.Here, catalytic activity and stereoregularity were determined by the following method.

1. 촉매활성(kg-PP/g-촉매) = 폴리프로필렌 생성량(kg)÷주입한 촉매양(g)1.catalytic activity (kg-PP / g-catalyst) = amount of polypropylene produced (kg) ÷ amount of catalyst injected (g)

2. 입체규칙성(X.I.): 중합체 100g 중에서, 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%2. Stereoregularity (X.I.): In 100% of the polymer, the weight% of the insoluble component precipitated by crystallization in mixed xylene

3. 수소반응성 (MFR): 중합체를 230℃로 녹인 후, 2.16kg의 추로 눌러서 10분동안 흘러내린 중량 (ISO 1133)3. Hydrogen Reactivity (MFR): The polymer was melted at 230 ° C. and then flowed for 10 minutes by pressing with a weight of 2.16 kg (ISO 1133).

실시예 2Example 2

상기 실시예 1의 [고체촉매의 제조] 단계에 있어서, 디에틸사이클로헥사-1,4 -디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol 대신에 디부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(dibutyl cyclohexa- 1,4-diene-1,2-dicarboxylate) 11.2 mmol을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고체 촉매를 제조하였다. 그 후, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다.[Preparation of a solid catalyst] of Example 1, diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 Example 1 except that 11.2 mmol of dibutyl cyclohexa-1,4-diene-1,2-dicarboxylate was used instead of mmol. In the same manner a solid catalyst was prepared. Thereafter, polypropylene polymerization was carried out in the same manner as in Example 1, and the analysis results of the obtained propylene polymer are shown in Table 1.

실시예 3Example 3

상기 실시예 1의 [고체촉매의 제조] 단계에 있어서, 디에틸사이클로헥사- 1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol 대신에 디이소부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트 (diisobutyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol 을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고체 촉매를 제조하였다. 그 후, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다. [Preparation of solid catalyst] of Example 1, diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 Example 1, except that 11.2 mmol of diisobutyl cyclohexa-1,4-diene-1,2-dicarboxylate was used instead of mmol In the same manner as the solid catalyst was prepared. Thereafter, polypropylene polymerization was carried out in the same manner as in Example 1, and the analysis results of the obtained propylene polymer are shown in Table 1.

비교예 1Comparative Example 1

상기 실시예 1의 [고체촉매의 제조] 단계에 있어서, 디에틸사이클로헥사- 1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol과 디에틸아디페이트(diethyl adipate) 11.2 mmol 대신에 디이소부틸프탈레이트(diisobutyl phthalate) 22.4 mmol 을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고체 촉매를 제조하였다. 그 후, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다.[Preparation of solid catalyst] of Example 1, diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 A solid catalyst was prepared in the same manner as in Example 1, except that 22.4 mmol of diisobutyl phthalate was used instead of 11.2 mmol of mmol and diethyl adipate. Thereafter, polypropylene polymerization was carried out in the same manner as in Example 1, and the analysis results of the obtained propylene polymer are shown in Table 1.

비교예 2Comparative Example 2

상기 실시예 1의 [고체촉매의 제조] 단계에 있어서, 디에틸사이클로헥사- 1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol과 디에틸아디페이트(diethyl adipate) 11.2 mmol 대신에 디에틸 2,3-디이소프로필숙시네이트(diethyl 2,3-diisopropylsuccinate) 22.4 mmol 을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. 그 후, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다.[Preparation of solid catalyst] of Example 1, diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 The catalyst was prepared in the same manner as in Example 1, except that 22.4 mmol of diethyl 2,3-diisopropylsuccinate was used instead of 11.2 mmol of mmol and diethyl adipate. Prepared. Thereafter, polypropylene polymerization was carried out in the same manner as in Example 1, and the analysis results of the obtained propylene polymer are shown in Table 1.

비교예 3Comparative Example 3

상기 실시예 1의 [고체촉매의 제조] 단계에 있어서, 디에틸사이클로헥사- 1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol과 디에틸아디페이트(diethyl adipate) 11.2 mmol 대신에 디에틸 9,9-비스(메톡시메틸)-9H-플루오렌(diethyl 9,9-bis(methoxymethyl)-9H-fluorene) 22.4 mmol 을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. 그 후, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다.[Preparation of solid catalyst] of Example 1, diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 22.4 mmol of diethyl 9,9-bis (methoxymethyl) -9H-fluorene instead of mmol and 11.2 mmol of diethyl adipate Except that, a catalyst was prepared in the same manner as in Example 1. Thereafter, polypropylene polymerization was carried out in the same manner as in Example 1, and the analysis results of the obtained propylene polymer are shown in Table 1.

비교예 4Comparative Example 4

상기 실시예 1의 [고체촉매의 제조] 단계에 있어서, 디에틸사이클로헥사- 1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol과 디에틸아디페이트(diethyl adipate) 11.2 mmol 대신에 디에틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2- dicarboxylate) 22.4 mmol 을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. 그 후, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다.[Preparation of solid catalyst] of Example 1, diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 22.4 mmol of diethyl cyclohexa-1,4-diene-1,2-dicarboxylate instead of mmol and diethyl adipate 11.2 mmol A catalyst was prepared in the same manner as in Example 1 except for using. Thereafter, polypropylene polymerization was carried out in the same manner as in Example 1, and the analysis results of the obtained propylene polymer are shown in Table 1.

비교예 5Comparative Example 5

상기 실시예 1의 [고체촉매의 제조] 단계에 있어서, 디에틸사이클로헥사- 1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 mmol과 디에틸아디페이트(diethyl adipate) 11.2 mmol 대신에 디에틸아디페이트(diethyl adipate) 22.4 mmol 을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. 그 후, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 얻어진 프로필렌 중합체의 분석 결과는 표 1에 나타내었다.[Preparation of solid catalyst] of Example 1, diethyl cyclohexa-1,4-diene-1,2-dicarboxylate (diethyl cyclohexa-1,4-diene-1,2-dicarboxylate) 11.2 A catalyst was prepared in the same manner as in Example 1, except that 22.4 mmol of diethyl adipate was used instead of 11.2 mmol of mmol and diethyl adipate. Thereafter, polypropylene polymerization was carried out in the same manner as in Example 1, and the analysis results of the obtained propylene polymer are shown in Table 1.

구분division 내부전자공여체Internal electron donor 활성
(kg-PP/g-촉매)
activation
(kg-PP / g-catalyst)
입체규칙성
(X.I., 중량%)
Stereoregularity
(XI, weight percent)
수소반응성
(MFR, g/10분)
Hydrogen reactivity
(MFR, g / 10 min)
실시예 1Example # 1 디에틸사이클로헥사-1,4-디엔-1,2-디카복실레이트 / 디에틸아디페이트Diethylcyclohexa-1,4-diene-1,2-dicarboxylate / diethyl adipate 7878 98.598.5 4.74.7 실시예 2Example # 2 디부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트 / 디에틸아디페이트Dibutylcyclohexa-1,4-diene-1,2-dicarboxylate / diethyl adipate 7171 98.698.6 4.54.5 실시예 3Example # 3 디이소부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트 / 디에틸아디페이트Diisobutylcyclohexa-1,4-diene-1,2-dicarboxylate / diethyl adipate 7272 98.498.4 5.15.1 비교예 1Comparative Example 1 디이소부틸프탈레이트Diisobutyl phthalate 6464 98.198.1 1.91.9 비교예 2Comparative Example 2 디에틸 2,3-디이소프로필숙시네이트Diethyl 2,3-diisopropylsuccinate 4444 98.398.3 0.40.4 비교예 3Comparative Example 3 디에틸 9,9-비스(메톡시메틸)-9H-플루오렌Diethyl 9,9-bis (methoxymethyl) -9H-fluorene 5050 98.098.0 3.43.4 비교예 4Comparative Example 4 디에틸사이클로헥사-1,4-디엔-1,2-디카복실레이트Diethylcyclohexa-1,4-diene-1,2-dicarboxylate 6565 98.298.2 2.12.1

표 1에서 나타낸 바와 같이, 본 발명에 따라 사이클로헥사-1,4-디엔-1,2-디카복실레이트(cyclohexa-1,4-diene-1,2-dicarboxylate)와 디에틸아디페이트 (diethyl adipate)인 2종의 내부전자공여체를 사용한 실시예 1 ~ 3은 방향족 디알킬에스테르 (diisobutyl phthalate), 비방향족 디알킬에스테르 (diethyl 2,3- diisopropylsuccinate) 또는 디에테르 (diethyl 9,9-bis(methoxymethyl)-9H- fluorene) 내부전자공여체를 사용한 비교예 1 ~ 3 및 디에틸사이클로헥사-1,4-디엔-1,2-디카복실레이트(diethyl cyclohexa-1,4-diene-1,2-dicarboxylate)를 단독으로 사용한 비교예 4와 비교하여 촉매 활성과 입체규칙성이 높을 뿐만 아니라 수소반응성이 크게 개선되었다.As shown in Table 1, cyclohexa-1,4-diene-1,2-dicarboxylate and diethyl adipate according to the present invention. Examples 1 to 3 using two kinds of internal electron donors, i.e., aromatic dialkyl esters (diisobutyl phthalate), non-aromatic dialkyl esters (diethyl 2,3-diisopropylsuccinate) or diethers (diethyl 9,9-bis (methoxymethyl) Comparative Examples 1 to 3 using a 9-9-fluorene internal electron donor and diethyl cyclohexa-1,4-diene-1,2-dicarboxylate Compared to Comparative Example 4 using only), not only the catalytic activity and the stereoregularity was high, but also the hydrogen reactivity was greatly improved.

Claims (4)

다음의 단계들을 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법:
(1) 유기용매의 존재 하에서 디알콕시마그네슘과 사염화티타늄을 반응시키는 단계;
(2) 상기 단계 (1)의 결과물에 하기 일반식 (I)과 (II)로 표현되는 2종의 비방향족 내부전자공여체를 반응시키는 단계;
Figure 112018098107480-pat00003
‥‥‥ (I)
Figure 112018098107480-pat00004
‥‥‥ (II)
여기에서 R1 및 R2는 탄소원자 1~20개의 선형 또는 분지형 알킬기 또는 탄소원자 3~6개의 고리형 알킬기이다.
(3) 상기 단계 (2)의 결과물을 사염화티타늄과 반응시키는 단계.

A process for preparing a solid catalyst for propylene polymerization, comprising the following steps:
(1) reacting dialkoxy magnesium and titanium tetrachloride in the presence of an organic solvent;
(2) reacting two kinds of non-aromatic internal electron donors represented by the following general formulas (I) and (II) with the result of step (1);
Figure 112018098107480-pat00003
‥‥‥ (I)
Figure 112018098107480-pat00004
‥‥‥ (II)
Wherein R 1 and R 2 are linear or branched alkyl groups of 1 to 20 carbon atoms or cyclic alkyl groups of 3 to 6 carbon atoms.
(3) reacting the product of step (2) with titanium tetrachloride.

제 1항에 있어서, 상기 디알콕시마그네슘 화합물은 디에톡시마그네슘인 것을 특징으로 하는 프로필렌 중합용 고체 촉매의 제조 방법.The process for producing a solid catalyst for propylene polymerization according to claim 1, wherein the dialkoxy magnesium compound is diethoxy magnesium. 제 1항에 있어서, 상기 일반식 (I)로 표시되는 비방향족 내부전자공여체로서, 디메틸사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디에틸사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디프로필사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디이소프로필사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디이소부틸사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디펜틸사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디이소펜틸사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디헥실사이클로헥사-1,4-디엔-1,2-디카복실레이트, 디옥틸사이클로헥사-1,4-디엔-1,2-디카복실레이트 중에서 선택되는 어느 하나 인 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법.A non-aromatic internal electron donor represented by the general formula (I) according to claim 1, wherein dimethylcyclohexa-1,4-diene-1,2-dicarboxylate, diethylcyclohexa-1,4-diene -1,2-dicarboxylate, dipropylcyclohexa-1,4-diene-1,2-dicarboxylate, diisopropylcyclohexa-1,4-diene-1,2-dicarboxylate, dibutyl Cyclohexa-1,4-diene-1,2-dicarboxylate, diisobutylcyclohexa-1,4-diene-1,2-dicarboxylate, dipentylcyclohexa-1,4-diene-1, 2-dicarboxylate, diisopentylcyclohexa-1,4-diene-1,2-dicarboxylate, dihexylcyclohexa-1,4-diene-1,2-dicarboxylate, dioctylcyclohexa- A process for producing a solid catalyst for propylene polymerization, characterized in that any one selected from 1,4-diene-1,2-dicarboxylate. 제 1항에 있어서, 상기 일반식 (II)로 표현되는 비방향족 내부전자공여체로서, 디메틸아디페이트, 디에틸아디페이트, 디프로필아디페이트, 디이소프로필아디페이트, 디부틸아디페이트, 디이소부틸아디페이트, 디펜틸아디페이트, 디이소펜틸아디페이트, 디헥실아디페이트, 디옥틸아디페이트 중에서 선택되는 어느 하나 인 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법.
A non-aromatic internal electron donor represented by the general formula (II), wherein the dimethyl adipate, diethyl adipate, dipropyl adipate, diisopropyl adipate, dibutyl adipate, diisobutyl Process for producing a solid catalyst for propylene polymerization, characterized in that any one selected from adipate, dipentyl adipate, diisopentyl adipate, dihexyl adipate, dioctyl adipate.
KR1020180118508A 2018-10-04 2018-10-04 The preparation method of solid catalyst for propylene polymerization KR102038778B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180118508A KR102038778B1 (en) 2018-10-04 2018-10-04 The preparation method of solid catalyst for propylene polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180118508A KR102038778B1 (en) 2018-10-04 2018-10-04 The preparation method of solid catalyst for propylene polymerization

Publications (1)

Publication Number Publication Date
KR102038778B1 true KR102038778B1 (en) 2019-10-30

Family

ID=68462912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180118508A KR102038778B1 (en) 2018-10-04 2018-10-04 The preparation method of solid catalyst for propylene polymerization

Country Status (1)

Country Link
KR (1) KR102038778B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295025A (en) * 1992-04-24 1993-11-09 Tosoh Corp Production of polyolefin
US6048818A (en) * 1997-06-09 2000-04-11 Montell Technology Company Bv Components and catalysts for the polymerization of olefins
KR20110080616A (en) * 2010-01-06 2011-07-13 삼성토탈 주식회사 A method for the preparation of a solid catalyst for olefin polymerization
JP2015506391A (en) * 2011-12-30 2015-03-02 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Propylene random copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295025A (en) * 1992-04-24 1993-11-09 Tosoh Corp Production of polyolefin
US6048818A (en) * 1997-06-09 2000-04-11 Montell Technology Company Bv Components and catalysts for the polymerization of olefins
KR20110080616A (en) * 2010-01-06 2011-07-13 삼성토탈 주식회사 A method for the preparation of a solid catalyst for olefin polymerization
JP2015506391A (en) * 2011-12-30 2015-03-02 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Propylene random copolymer

Similar Documents

Publication Publication Date Title
KR101207628B1 (en) A solid catalyst for olefin polymerization and a method for preparing the same
KR101930165B1 (en) A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR20110080616A (en) A method for the preparation of a solid catalyst for olefin polymerization
KR101795317B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
JP5671580B2 (en) Solid catalyst for propylene polymerization and method for producing polypropylene using the same
KR102038778B1 (en) The preparation method of solid catalyst for propylene polymerization
KR101338783B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101699590B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR102259306B1 (en) The preparation method of solid catalyst for propylene polymerization
KR101965982B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
US10479856B2 (en) Manufacturing method for propylene block copolymer
KR101171532B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR101207672B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR20120079691A (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101454516B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR20110050906A (en) A method for preparation of a solid catalyst for polymerization of propylene
JP5671625B2 (en) Solid catalyst for propylene polymerization and production method thereof
KR101447346B1 (en) A method for preparing solid catalyst for propylene polymerization, a solid catalyst prepared by the same and a method for preparation of polypropylene using the catalyst
KR101139024B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101624036B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR101169532B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR101150579B1 (en) Method for polymerization and copolymerization of propylene
KR20130086843A (en) A method for the preparation of a solid catalyst for olefin polymerization and a catalyst prepared by the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant