KR102035654B1 - Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof - Google Patents

Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof Download PDF

Info

Publication number
KR102035654B1
KR102035654B1 KR1020180085151A KR20180085151A KR102035654B1 KR 102035654 B1 KR102035654 B1 KR 102035654B1 KR 1020180085151 A KR1020180085151 A KR 1020180085151A KR 20180085151 A KR20180085151 A KR 20180085151A KR 102035654 B1 KR102035654 B1 KR 102035654B1
Authority
KR
South Korea
Prior art keywords
cell line
insect cell
cactus
gene
mutant
Prior art date
Application number
KR1020180085151A
Other languages
Korean (ko)
Inventor
김성렬
최광호
권해용
김성완
박종우
유정희
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020180085151A priority Critical patent/KR102035654B1/en
Application granted granted Critical
Publication of KR102035654B1 publication Critical patent/KR102035654B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0601Invertebrate cells or tissues, e.g. insect cells; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a mutant insect cell line that produces an antimicrobial peptide or a method for producing the same. In the present invention, a cactus gene of the Bm 5 silkworm ovary cell line is cut through gene editing technology using guide RNA and Cas9 protein to induce overexpression of antimicrobial peptides such as lysozyme, moricin, lebocin 1 and the like, thereby providing a method for mass production of antimicrobial peptides in a natural state different from recombinant proteins.

Description

항균 펩타이드를 생산하는 돌연변이 곤충 세포주 또는 이의 제조방법 {Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof}Novel mutant insect cell line producing antimicrobial peptide or a preparation method

본 발명은 항균 펩타이드를 생산하는 돌연변이 곤충 세포주 또는 이의 제조방법에 관한 것이다. The present invention relates to a mutant insect cell line or a method for producing the same that produces an antimicrobial peptide.

유전자 편집 기술은 미생물의 적응면역에서 비롯된 기술이다. 박테리오파지 감염에 박테리오파지의 단편을 DNA로 기억하고 있다가 재감염 되었을 때 유전자 가위 역할을 하는 누클레아제(nuclease)인 Cas9(CRISPR associated protein 9 : RNA-guided DNA endonuclease enzyme)으로 잘라 없애는 면역 시스템에서 시작되었다.Gene editing technology originates from the adaptive immunity of microorganisms. The bacteriophage infection started with an immune system that remembers fragments of bacteriophage as DNA and then cuts it back with Cas9 (CRISPR associated protein 9: RNA-guided DNA endonuclease enzyme), a nuclease that acts as a genetic scissors when reinfected. .

이는 유전체에서도 특정 염기 서열을 가이드 RNA(guide RNA, gRNA)에 의해서 인식 가능하면 원하는 부위를 잘라 고칠 수 있는 유전자 교정 기술로 발전하였고(Woo JW et al., 2015), 불치병으로 분리되었던 유전자 이상으로 유도된 질환에서 질병의 근본원인을 치료할 수 있는 방법 또는 영구적인 유전자 돌연변이를 일으키는 형질전환 세포 또는 동물을 제조하는 방법으로 각광받고 있다.This has led to the development of genetic correction technology that can cut and fix the desired site if specific nucleotide sequences can be recognized by the guide RNA (gRNA) in the genome (Woo JW et al., 2015), and beyond the genes that have been separated into incurable diseases. BACKGROUND OF THE INVENTION Induced diseases have been spotlighted as a method of treating the root cause of a disease or a method of producing a transformed cell or animal causing permanent gene mutations.

본 발명자들은 형질전환 및 면역반응 없이 유전자 편집을 통한 돌연변이 곤충세포로부터 항균물질을 생산할 수 있는 방법에 대해 연구하던 중 칵투스(Cactus) 유전자의 돌연변이로 인해 라이소자임(lysozyme), 모리신(moricin), 레보신 1(lebocin 1) 등의 항균펩타이드가 과발현함을 확인함으로써 본 발명을 완성하였다. The inventors of the present invention have been studying a method for producing antimicrobial substances from mutant insect cells through gene editing without transformation and immune response, and due to mutations in the Cactus gene, lysozyme, moricin, The present invention was completed by confirming that overexpression of antimicrobial peptides such as lebocin 1 (lebocin 1).

대한민국 공개특허 제10-2015-0096064호 (발명의 명칭 : MDCK Ⅱ 세포의 크로모좀에서 AAVS1 위치를 인식하고 이곳에 외래 유전자를 도입하여 안정하게 발현시키는 방법, 출원인 : 서울대학교산학협력단, 공개일 : 2015년08월24일)Republic of Korea Patent Publication No. 10-2015-0096064 (Invention: Method of recognizing the AAS1 position in the chromosomes of MCDC II cells and introducing foreign genes stably here, Applicant: Seoul National University Industry-Academic Cooperation Foundation, Publication Date: Aug 24, 2015 대한민국 공개특허 제10-2001-0074351호 (발명의 명칭 : 곤충 세포주 형질전환용 발현벡터 및 이를 함유한 항세균단백질 생산용 형질전환체, 출원인 : 대한민국, 공개일 : 2001년08월04일)Republic of Korea Patent Publication No. 10-2001-0074351 (Invention: Expression vector for transforming insect cell lines and transformants for producing antibacterial protein containing the same, Applicant: Republic of Korea, published date: August 04, 2001)

PLOS ONE, 2014, 9(7), e101210. Heritable Genome Editing with CRISPR/Cas9 in the Silkworm, Bombyx mori., PLOS ONE, 2014, 9(7), e101210.PLOS ONE, 2014, 9 (7), e101210. Heritable Genome Editing with CRISPR / Cas9 in the Silkworm, Bombyx mori., PLOS ONE, 2014, 9 (7), e101210.

본 발명의 목적은 항균 펩타이드를 생산하는 돌연변이 곤충 세포주 또는 이의 제조방법을 제공하는 데에 있다. It is an object of the present invention to provide a mutant insect cell line or a method for producing the same that produces an antimicrobial peptide.

본 발명은 칵투스(Cactus) 유전자의 돌연변이로 인해 상기 유전자의 mRNA 또는 단백질 발현이 억제된 것을 특징으로 하는 돌연변이 곤충 세포주에 관한 것이다. The present invention relates to a mutant insect cell line, characterized in that the expression of mRNA or protein of the gene is inhibited due to mutation of the Cactus gene.

상기 곤충 세포주는 서열번호 2의 염기서열을 포함하는 가이드 RNA와 Cas9 단백질을 삽입하여 얻은 것을 특징으로 한다. The insect cell line is characterized in that obtained by inserting the guide RNA and Cas9 protein comprising the nucleotide sequence of SEQ ID NO: 2.

서열번호 2 : CUCACUUUAGGUAAUGCCUASEQ ID NO: CUCACUUUAGGUAAUGCCUA

상기 곤충 세포주는 라이소자임(lysozyme), 모리신(moricin) 및 레보신 1(lebocin 1)으로 이루어진 군 중에서 1종 이상 선택되는 항균 펩타이드가 과발현될 수 있다. 즉, 칵투스 유전자가 돌연변이를 일으키기 이전인 야생형 상태(wild type)와 비교하여 이들 항균 펩타이드의 발현이 증강될 수 있다. The insect cell line may be overexpressed with at least one antimicrobial peptide selected from the group consisting of lysozyme, lysine (moricin) and lebocin 1 (lebocin 1). That is, expression of these antimicrobial peptides can be enhanced compared to the wild type before the Cactus gene is mutated.

상기 돌연변이 곤충 세포주는 누에 난소 세포주일 수 있다. The mutant insect cell line may be a silkworm ovary cell line.

상기 누에 난소 세포주는 Bm 5 또는 BM-N 세포일 수 있다. The silkworm ovary cell line Bm 5 or BM-N May be a cell.

이에, 본 발명은 또한 서열번호 2의 가이드 RNA와 Cas9 단백질을 돌연변이 곤충 세포주에 삽입하여 칵투스(Cactus) 유전자가 손상된 돌연변이 곤충 세포주를 제조하는 방법에 관한 것일 수 있다. Thus, the present invention may also be directed to a method for preparing a mutant insect cell line damaged by the Cactus gene by inserting the guide RNA and Cas9 protein of SEQ ID NO: 2 into a mutant insect cell line.

서열번호 2의 가이드 RNA와 Cas9 단백질의 삽입은 200~350V에서 12~20ms 동안 전기천공법을 실시하여 수행될 수 있다. 보다 더 바람직하게는 250~350V에서 12~17ms 동안 전기천공법을 실시하여 수행될 수 있다. 가장 바람직하게는 300V에서 15ms 동안 전기청공법을 수행할 수 있다. Insertion of the guide RNA and Cas9 protein of SEQ ID NO: 2 may be performed by performing electroporation for 12-20 ms at 200 ~ 350V. Even more preferably, it may be performed by performing the electroporation for 12 to 17ms at 250 ~ 350V. Most preferably, the electrocleaning method may be performed at 300 V for 15 ms.

상기 전기청공법은 곤충 세포주를 수크로오즈 완충액에 넣어 수행되는 것이 바람직하다. The electrocleaning method is preferably carried out by putting an insect cell line in sucrose buffer.

상기 수크로오즈 완충액은 200~300 mM의 수크로오즈가 포함된 5~20 mM HEPES(N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) 완충액(pH 7.0~7.5)일 수 있다. The sucrose buffer may be 5-20 mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer containing 200-300 mM sucrose (pH 7.0-7.5).

상기 가이드 RNA와 Cas9 단백질은 1:1 내지 1:2의 중량비로 혼합되어 곤충 세포주에 삽입될 수 있다. The guide RNA and the Cas9 protein may be mixed in a weight ratio of 1: 1 to 1: 2 and inserted into an insect cell line.

본 발명은 항균 펩타이드를 생산하는 돌연변이 곤충 세포주 또는 이의 제조방법에 관한 것이다. 본 발명에서는 가이드 RNA와 Cas9 단백질을 이용한 유전자 편집 기술을 통해 Bm 5 누에 난소 세포주의 칵투스(Cactus) 유전자를 잘라내어, 라이소자임(lysozyme), 모리신(moricin), 레보신 1(lebocin 1) 등의 항균펩타이드의 과발현을 유도함으로써 재조합 단백질 등과는 다른 천연 상태의 항균펩타이드를 대량생산할 수 있는 방법을 제공한다. The present invention relates to a mutant insect cell line or a method for producing the same that produces an antimicrobial peptide. In the present invention, the Cmtus gene of Bm 5 silkworm ovary cell line is cut through a gene editing technique using guide RNA and Cas9 protein, and lysozyme, lysine (moricin), and lebocin 1 (lebocin 1), etc. By inducing overexpression of the antimicrobial peptide, it provides a method for mass production of antimicrobial peptides in a natural state different from recombinant proteins.

선행기술로서 대한민국 공개특허 제10-2015-0096064호에 Cas9/가이드 RNA를 통한 유전자 변형 방법이 개시되어 있으나 이는 포유동물 세포에서 수행된 것일 뿐이며, Wei Wei et al.의 문헌에는 누에에서의 Cas9/가이드 RNA를 통한 유전자 돌연변이 유발 방법을 제시하기는 하지만, 이 문헌에서는 억제대상 타겟 유전자로서 Bm-ok, BmKMO, BmTH 및 Bmtan의 네 가지 유전자좌를 후보로 선택하고 있어, Cactus 유전자를 억제하는 것을 통해 누에 세포 자체에서 발현되는 다양한 항균 펩타이드의 발현 증가를 유도하는 기술은 아직 확인되지 않고 있다. As a prior art, Korean Patent Publication No. 10-2015-0096064 discloses a method for genetic modification through Cas9 / guide RNA, which is only performed in mammalian cells, and Wei Wei et al. Discloses Cas9 / in silkworms. Although we propose a method of gene mutagenesis through guide RNA, this document selects four loci of Bm-ok, BmKMO, BmTH and Bmtan as candidate target genes to be suppressed, and by using silkworm inhibiting Cactus gene Techniques for inducing increased expression of various antimicrobial peptides expressed in the cells themselves have not yet been identified.

도 1은 돌연변이에 의한 누에의 체액성 면역반응 활성화 경로 변화를 나타내는 모식도이다.
도 2는 Bm 5세포의 Cactus 유전자 서열을 나타내는 그림이다.
도 3은 가이드 RNA의 Cactus 유전자 내 결합위치를 나타내는 그림이다.
도 4는 합성된 가이드 RNA(gRNA)의 DNA 주형(도 4A) 및 시험관에서 전사된 가이드 RNA(도 4B)를 나타내는 겔-전기영동 결과 사진이다.
도 5는 Cactus 기질 유전자가 삽입된 pGEM-T easy vector 플라스미드의 구조를 나타내는 그림(도 5A), 가이드 RNA 종류에 따른 DNA 절단효율을 나타내는 겔-전기영동 결과 사진(도 5B) 및 이를 수치화하여 나타낸 그래프(도 5C)를 나타낸다.
도 6은 Electroporation pulse에 따른 Bm 5 세포의 생존율을 나타내는 그래프이다.
도 7은 Electroporation pulse에 따른 F10 가이드 RNA의 돌연변이 효율을 확인하기 위한 겔-전기영동 결과 사진(도 7A) 및 이를 수치화하여 나타낸 그래프(도 7B)이다.
도 8은 완충액의 종류(도 8A) 및 Cas 9/gRNA 혼합비(도 8B)에 따른 돌연변이 유발효율을 나타낸 그래프이다.
도 9는 Cactus 돌연변이가 유발된 Bm 5세포를 확인하기 위해 T7 endonuclease I 효소를 처리하여 이형 DNA 분자의 절단 양상을 확인한 겔-전기영동 결과 사진(도 9A) 및 상기 결과를 통해 돌연변이 유발된 세포의 염기서열을 분석한 결과를 나타내는 그림이다(도 9B).
도 10은 Cactus 돌연변이 Bm 5세포에서의 Cactus, Lysozyme, Moricin, Lebocin1에 대한 유전자 발현을 RT-PCR로 확인한 겔-전기영동 결과 사진(도 10A) 및 Real-time PCR 결과를 나타내는 그래프이다(도 10B).
도 11은 Cactus 돌연변이 Bm 5 세포의 lysozyme 활성을 나타내는 그래프이다.
1 is a schematic diagram showing a change in the humoral immune response activation pathway of silkworms by mutation.
Figure 2 is a diagram showing the Cactus gene sequence of Bm 5 cells.
3 is a diagram showing the binding position in the Cactus gene of the guide RNA.
4 is a gel-electrophoresis result photograph showing the DNA template of synthesized guide RNA (gRNA) (FIG. 4A) and guide RNA transcribed in vitro (FIG. 4B).
5 is a diagram showing the structure of the pGEM-T easy vector plasmid inserted with the Cactus substrate gene (FIG. 5A), a gel-electrophoresis result photograph (FIG. 5B) showing the DNA cleavage efficiency according to the guide RNA type, and the numerical value thereof. The graph (FIG. 5C) is shown.
Figure 6 is a graph showing the survival rate of Bm 5 cells according to the electroporation pulse.
7 is a gel-electrophoresis result photograph (FIG. 7A) and a graph showing the numerical value thereof to confirm the mutation efficiency of the F10 guide RNA according to the electroporation pulse.
Figure 8 is a graph showing the mutagenesis efficiency according to the type of buffer (Fig. 8A) and Cas 9 / gRNA mixing ratio (Fig. 8B).
9 is a gel-electrophoresis result photograph (FIG. 9A) showing the cleavage pattern of heterologous DNA molecules by treating T7 endonuclease I enzyme to identify Cm mutant-induced Bm 5 cells. Fig. 9B shows the results of nucleotide sequence analysis.
10 is a graph showing gel-electrophoresis results (FIG. 10A) and real-time PCR results confirming gene expression for Cactus, Lysozyme, Moricin, and Lebocin1 in Cactus mutant Bm 5 cells by RT-PCR (FIG. 10B). ).
11 is a graph showing the lysozyme activity of Cactus mutant Bm 5 cells.

이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지도록, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다. Hereinafter, a preferred embodiment of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided to fully convey the spirit of the present invention to those skilled in the art so that the contents introduced herein are thoroughly and completely.

<실시예 1. 돌연변이 유발표적 선정 및 가이드 RNA 제조><Example 1. Mutation target selection and guide RNA production>

실시예 1-1. 표적선정 Example 1-1. Target selection

누에의 체액성 면역반응 경로에 따르면 그람양성균 및 곰팡이의 감염에 따라 Myd 88 신호전달 경로가 활성화되어 전사인자(Dorsal)의 억제인자(Cactus)의 분해가 유발되어 Dorsal이 활성화되고 핵 내부에서 항균펩타이드의 발현이 촉진된다(도 1). According to the humoral immune response pathway of silkworm, Myd 88 signaling pathway is activated by the infection of Gram-positive bacteria and fungi, which leads to degradation of transcriptional factor (Cactus), which activates Dorsal and antibacterial peptide inside the nucleus. Expression is promoted (FIG. 1).

따라서 Cactus에 돌연변이가 유발되어 기능 이상이 발생하면, 외부의 자극이 없이도 Dorsal의 자동적인 활성화가 가능할 것으로 판단되어 Cactus 유전자를 본 발명에서 타겟 유전자로 선정하였다. Therefore, when a mutation occurs in Cactus and malfunction occurs, it is determined that automatic activation of Dorsal is possible without external stimulation, so the Cactus gene was selected as a target gene in the present invention.

실시예 1-2. 표적(Cactus) 유전자 염기서열분석 Example 1-2. Target gene sequencing

Bm 5 세포에서 돌연변이 유발 표적인 Cactus(Protein ID: NP 001166191.1)의 서열을 확인하고자, NCBI에 등록된 Bombyx mori strain p50T (Dazao)의 전체유전자 서열(NW_004581774.1) 및 Cactus의 mRNA 서열(NM_001172720.1)을 바탕으로 Cactus F : 5'-TGTCAAAACATGGTTCCGTGTTC-3' 및 Cactus R 5'-CGTAAGTGGAAATTCCGAGTTTGTA-3' 서열을 가지는 PCR primer를 제작 후 누에 난소 세포주인 Bm 5 세포의 genomic DNA를 주형으로 PCR을 수행하였다. PCR을 통해 얻어진 3.3 kb의 DNA를 pGEM-T easy 벡터(Promega, Cat.No. A137A)에 클로닝 후, 벡터에 존재하는 한 쌍의 universal primer 서열을 이용하여 1차로 서열 분석하고, primer working을 통하여 3.3 kb의 유전자 서열을 분석하였다. 서열분석결과 Bm 5의 유전자 서열 중 NCBI에 등록된 Cactus 유전자의 Dazao의 염기서열(Gene ID: 100379185)과 99.62%의 유사성을 나타내었다(도 2).To identify the sequence of Cactus (Protein ID: NP 001166191.1), which is a mutagenesis target in Bm 5 cells, the full gene sequence of Bombyx mori strain p50T (Dazao) registered with NCBI (NW_004581774.1) and mRNA sequence of Cactus (NM_001172720. Based on 1), PCR primers having the sequences of Cactus F: 5'-TGTCAAAACATGGTTCCGTGTTC-3 'and Cactus R 5'-CGTAAGTGGAAATTCCGAGTTTGTA-3' were prepared, and PCR was performed using genomic DNA of Bm 5 cells, a silkworm ovary cell line, as a template. . 3.3 kb of DNA obtained by PCR was cloned into pGEM-T easy vector (Promega, Cat. No. A137A), and then sequenced first using a pair of universal primer sequences present in the vector, and then primer working. Gene sequence of 3.3 kb was analyzed. Sequencing analysis showed 99.62% similarity with Dazao base sequence (Gene ID: 100379185) of the Cactus gene registered in NCBI among the Bm 5 gene sequences (FIG. 2).

실시예 1-3. 가이드 RNA 좌위 결정Example 1-3. Guide RNA Locus Determination

Cactus 유전자 편집을 위한 및 가이드 RNA(gRNA)를 제작하고자, 동정된 Bm 5 세포의 Cactus 염기서열 중 exon 1과 exon 2의 염기서열에 존재하는 PAM 서열(NGG) 및 누에 전체유전자를 대상으로 PAM 서열에 인접한 20, 12, 및 8개의 염기에 대한 off-target 가능성을 CRISPRdirect Tool(http://crispr.dbcls.jp)을 이용하여 분석하였다. *PAM(protospacer adjacent motif : Cas9 단백질이 PAM 부위를 자르게 됨으로써, 잘려진 DNA가 스스로 회복(repair)되는 과정 중에 DNA 염기서열에 돌연변이가 일어남).PAM sequence (NGG) present in exon 1 and exon 2 nucleotide sequences of the Cactus nucleotide sequence of the identified Bm 5 cells and for the production of guide RNA (gRNA) for Cactus gene editing and PAM sequence for the silkworm whole gene Off-target possibilities for 20, 12, and 8 bases adjacent to were analyzed using the CRISPRdirect Tool (http://crispr.dbcls.jp). * PAM (protospacer adjacent motif: the Cas9 protein cuts the PAM site, resulting in mutation of the DNA sequence during the repair of the cut DNA itself).

그 결과 exon 부위에서 특이성이 높은 목표부위 6종(F3, F10, F13, R4, R10, 및 R13)을 선발하였다(표 1). 각 가이드 RNA의 유전자 내 표적부위는 도 3과 같다. As a result, six target sites with high specificity (F3, F10, F13, R4, R10, and R13) were selected at the exon site (Table 1). The target site in the gene of each guide RNA is as shown in FIG.

Cactus 유전자의 가이드 RNA 표적 부위 및 게놈 내 off-target 가능성 분석Guide RNA target site and off-target likelihood analysis of the Cactus gene

LocusLocus NoNo Target sequence
(N20NGG)
Target sequence
(N 20 NGG)
GC
(%)
GC
(%)
Possibility of off-target recognitionPossibility of off-target recognition
hit_20hit_20 hit_12hit_12 hit_8hit_8 Exon 1Exon 1 F2F2 GAGGACGAGTACGCTGATTCCGG GAGGACGAGTACGCTGATTC CGG 5555 1One 1One 219219 F10F10 GAGTGAAATCCATTACGGATAGG GAGTGAAATCCATTACGGAT AGG 4040 1One 1One 509509 F13F13 TCTACTGTTCCAACAGGACGAGG TCTACTGTTCCAACAGGACG AGG 500500 1One 1One 222222 Exon 2Exon 2 R4R4 CCTCATCAGGGTGTGCCCTGAGA CCT CATCAGGGTGTGCCCTGAGA 600600 1One 1One 182182 R10R10 CCACTGCATCTAGCGGTGATGAG CCA CTGCATCTAGCGGTGATGAG 550550 1One 1One 251251 R13R13 CCTCGGAGAGACTCCGCTACACA CCT CGGAGAGACTCCGCTACACA 600600 1One 1One 197197

실시예 1-4. 가이드 RNA 합성Example 1-4. Guide RNA Synthesis

선발된 6종의 가이드 RNA를 합성하고자, 표 2의 primer를 제작하였다. 가이드 RNA의 합성은 DNA 중합효소와 각 가이드 RNA에 해당하는 한 쌍의 primer와 universal primer와 dNTP's를 혼합하여 PCR을 수행하였다. 얻어진 PCR 산물에 NTP's와 T7 RNA 중합효소를 첨가하여 37℃에서 3시간 동안 반응하여 가이드 RNA를 합성한 후, DNase I을 처리하여 주형으로 사용된 DNA를 제거하고, RNA 정제 컬럼을 이용하여 순수한 가이드 RNA만을 정제하였다. 정제된 가이드 RNA는 2% formaldehyde-agarose 겔에 전기 영동하여 농도 및 순도를 확인하였다(도 4). 표 1의 타겟 DNA와 결합하는 가이드 RNA의 서열(표 3)을 이용하여 합성된, 실제 Cas9 단백질에 복합체를 형성할 수 있는 6종 가이드 RNA의 서열은 표 4와 같다. 각 가이드 RNA는 표적 서열에 상보적인 20개의 뉴클레오티드; 및, Cas 9 단백질과 결합하기 위한 헤어핀 구조를 이루는 72개의 뉴클레오티드인 스캐폴드 염기서열(scaffold sequence);로 구성되어 있다. 이 스캐폴드 염기서열은 Cas9과 결합가능한 다른 서열로 대체 가능하다. 표 4의 밑줄친 부분이 타겟 유전자에 결합하는 서열이다. 표 3과 표 4의 타겟 유전자는 표 1에 개시된 것과 동일하다. To synthesize six selected guide RNAs, the primers of Table 2 were prepared. The synthesis of guide RNA was performed by mixing DNA polymerase, a pair of primers corresponding to each guide RNA, a universal primer, and dNTP's. NTP's and T7 RNA polymerase were added to the obtained PCR product to react at 37 ° C. for 3 hours to synthesize guide RNA, and then treated with DNase I to remove DNA used as a template, followed by pure guide using a RNA purification column. Only RNA was purified. Purified guide RNA was electrophoresed on a 2% formaldehyde-agarose gel to confirm concentration and purity (FIG. 4). The sequences of the six guide RNAs that can form a complex to the actual Cas9 protein synthesized using the sequence of the guide RNA binding to the target DNA of Table 1 (Table 3) are shown in Table 4. Each guide RNA comprises 20 nucleotides complementary to the target sequence; And a scaffold sequence of 72 nucleotides constituting a hairpin structure for binding to Cas 9 protein. This scaffold sequencing can be replaced with another sequence capable of binding to Cas9. The underlined portion of Table 4 is the sequence that binds to the target gene. The target genes of Table 3 and Table 4 are the same as those disclosed in Table 1.

가이드 RNA 합성을 위한 primer 제작Primer for Guide RNA Synthesis


가이드 RNA

Guide RNA
Forward (5' to 3')Forward (5 'to 3') Reverse (5' to 3')Reverse (5 'to 3')
F2F2 TAATACGACTCACTATAGGAGGACGAGTACGCTGATTAATACGACTCACTATAGGAGGACGAGTACGCTGAT TTCTAGCTCTAAAACGAATCAGCGTACTCGTCCTCTTCTAGCTCTAAAACGAATCAGCGTACTCGTCCTC F10F10 TAATACGACTCACTATAGGAGTGAAATCCATTACGGTAATACGACTCACTATAGGAGTGAAATCCATTACGG TTCTAGCTCTAAAACATCCGTAATGGATTTCACTCTTCTAGCTCTAAAACATCCGTAATGGATTTCACTC F13F13 TAATACGACTCACTATAGTCTACTGTTCCAACAGGATAATACGACTCACTATAGTCTACTGTTCCAACAGGA TTCTAGCTCTAAAACCGTCCTGTTGGAACAGTAGATTCTAGCTCTAAAACCGTCCTGTTGGAACAGTAGA R4R4 TAATACGACTCACTATAGTCTCAGGGCACACCCTGATAATACGACTCACTATAGTCTCAGGGCACACCCTGA TTCTAGCTCTAAAACCATCAGGGTGTGCCCTGAGATTCTAGCTCTAAAACCATCAGGGTGTGCCCTGAGA R10R10 TAATACGACTCACTATAGCTCATCACCGCTAGATGCTAATACGACTCACTATAGCTCATCACCGCTAGATGC TTCTAGCTCTAAAACCTGCATCTAGCGGTGATGAGTTCTAGCTCTAAAACCTGCATCTAGCGGTGATGAG R13R13 TAATACGACTCACTATAGTGTGTAGCGGAGTCTCTCTAATACGACTCACTATAGTGTGTAGCGGAGTCTCTC TTCTAGCTCTAAAACCGGAGAGACTCCGCTACACATTCTAGCTCTAAAACCGGAGAGACTCCGCTACACA Universal Universal TAATACGACTCACTATAGTAATACGACTCACTATAG GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTT

타겟 유전자에 대한 가이드 RNA 서열Guide RNA Sequence for Target Gene

서열번호SEQ ID NO: 타겟 유전자Target genes 타겟 유전자에 대한 가이드 RNA 서열 (5' to 3')Guide RNA sequence for the target gene (5 'to 3') 서열번호 1SEQ ID NO: 1 F2F2 CUCCUGCUCAUGCGACUAAGCUCCUGCUCAUGCGACUAAG 서열번호 2SEQ ID NO: 2 F10F10 CUCACUUUAGGUAAUGCCUACUCACUUUAGGUAAUGCCUA 서열번호 3SEQ ID NO: 3 F13F13 AGAUGACAAGGUUGUCCUGCAGAUGACAAGGUUGUCCUGC 서열번호 4SEQ ID NO: 4 R4R4 AGAGUCCCGUGUGGGACUACAGAGUCCCGUGUGGGACUAC 서열번호 5SEQ ID NO: 5 R10R10 GAGUAGUGGCGAUCUACGUCGAGUAGUGGCGAUCUACGUC 서열번호 6SEQ ID NO: 6 R13R13 ACACAUCGCCUCAGAGAGGCACACAUCGCCUCAGAGAGGC

Cas9 복합체 제조용으로 제작된 가이드 RNA 서열Guide RNA Sequence Created for Cas9 Complex Preparation

서열번호SEQ ID NO: 타겟 유전자 Target genes 가이드 RNA 서열 (5' to 3')Guide RNA sequence (5 'to 3') 서열번호 7SEQ ID NO: 7 F2F2 CUCCUGCUCAUGCGACUAAGGUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU CUCCUGCUCAUGCGACUAAG GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU 서열번호 8SEQ ID NO: 8 F10F10 CUCACUUUAGGUAAUGCCUAGUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU CUCACUUUAGGUAAUGCCUA GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU 서열번호 9SEQ ID NO: 9 F13F13 AGAUGACAAGGUUGUCCUGCGUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU AGAUGACAAGGUUGUCCUGC GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU 서열번호 10SEQ ID NO: 10 R4R4 AGAGUCCCGUGUGGGACUACGUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU AGAGUCCCGUGUGGGACUAC GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU 서열번호 11SEQ ID NO: 11 R10R10 GAGUAGUGGCGAUCUACGUCGUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU GAGUAGUGGCGAUCUACGUC GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU 서열번호 12SEQ ID NO: 12 R13R13 ACACAUCGCCUCAGAGAGGCGUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU ACACAUCGCCUCAGAGAGGC GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCGAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCUUUU

실시예 1-5. 가이드 RNA의 활성분석Example 1-5. Activity of Guide RNA

합성된 가이드 RNA의 작동 여부를 확인하고자, 각각 750 ng의 가이드 RNA와 250 ng Cas9 nucease(Invitrogen, Cat. No. B25640)의 혼합액을 25℃에서 10분간 반응시켜 복합체를 형성시킨 후, 실시예 2-1에서 사용하였던 Cactus 유전자 서열이 삽입된 pGEM-T easy vector 플라스미드 400 ng과 37℃에서 1시간 동안 반응시키고, 1% 한천 겔에 전기 영동하여 절단효율을 분석하였다. 그 결과 F10 gRNA의 절단효율이 약 60%로 가장 높게 나타났다(도 5)(이후 실험은 F10 서열 사용). To confirm the operation of the synthesized guide RNA, each of the mixture of 750 ng guide RNA and 250 ng Cas9 nucease (Invitrogen, Cat. No. B25640) for 10 minutes at 25 ℃ to form a complex, Example 2 400 ng of the pGEM-T easy vector plasmid inserted with the Cactus gene sequence used at −1 was reacted at 37 ° C. for 1 hour, and electrophoresis was performed on 1% agar gel to analyze cutting efficiency. As a result, the cleavage efficiency of the F10 gRNA was the highest (about 60%) (FIG. 5).

<실시예 2. 돌연변이 유발 조건 확립>Example 2. Establishment of Mutagenesis Conditions

실시예 2-1. Cas9/gRNA 복합체 전달을 위한 electroporation 조건 확립 Example 2-1. Establish electroporation conditions for Cas9 / gRNA complex delivery

Bm 5 세포를 10% FBS(Gemini, Cat. No. 100-500)가 첨가된 TNM-FH 배지(Welgene, Cat. No. LM 506-01)를 이용하여 27℃에서 배양 용기의 70~80% 밀도까지 배양하고, 배양된 세포는 원심분리를 통하여 수집 후 Electroporation 완충액(Bio-rad, Cat. No. 165-2677)을 이용하여 5x105 cell/㎖의 세포액을 준비하였다. 이 실험에 사용된 Bm 5 세포 또는 이 세포와 유사한 특성을 갖는 다른 곤충 세포인 BM-N 세포는 부착성 및 부유성을 모두 갖는 세포이지만, 부착성이 보다 강한 특성이 있다. Bm 5 cells were treated with TNM-FH medium (Welgene, Cat. No. LM 506-01) to which 10% FBS (Gemini, Cat. No. 100-500) was added. After culturing to the density, the cultured cells were collected by centrifugation and prepared 5 × 10 5 cell / ml cell solution using Electroporation buffer (Bio-rad, Cat. No. 165-2677). BM 5 cells used in this experiment, or other insect cells with similar characteristics to these cells, BM-N cells, are cells that have both adhesion and suspension, but have stronger adhesion properties.

Electroporation의 전기충격에 의한 세포 생존율 분석은 Gene Pulser Xcell System (Bio-rad)과 0.4 큐벳(Bi0-rad, Cat. No. 165-2088)을 이용하여 400 ㎕의 세포액(2x105 세포)에 시험관에서 생성된 Cas9/gRNA (2.5 ㎍/ 2.5 ㎍) 복합체를 혼합 후, 100, 200, 및 300 V에서 5, 10, 15, 및 20 ms 동안의 전기충격을 가하였다. 각 반응에서 20 ㎕의 세포액(1x104 세포)을 96 well 플레이트에 옮긴 후, 10% FBS를 첨가한 TMN-FH 배지 80 ㎕와 50 ㎕의 XTT 용액(Applichem, Cat. No. A8088)을 첨가하고 27℃에서 24시간 동안 배양하며, 분광광도계를 이용하여 450 nm와 690 nm 흡광도의 차이를 측정하고, 전기충격을 가하지 않은 Bm 5 세포에 대한 백분율로 생존율을 분석하였다. 일반적으로 전기충격에서 물질전달 효율이 최대로 나타나는 세포 생존율은 20~50%이며, 분석 결과 Bm 5 세포의 생존율은 200V에서 20 ms와 300V에서 15 ms에서 약 50% 가량의 생존율을 나타내었다(도 6).Cell viability analysis by electroporation was performed in vitro in 400 μl of cell fluid (2 × 10 5 cells) using Gene Pulser Xcell System (Bio-rad) and 0.4 cuvette (Bi0-rad, Cat. No. 165-2088). The resulting Cas9 / gRNA (2.5 μg / 2.5 μg) complexes were mixed and subjected to electroshock for 5, 10, 15, and 20 ms at 100, 200, and 300 V. In each reaction, 20 μl of cell solution (1 × 10 4 cells) was transferred to a 96 well plate, followed by adding 80 μl of TMN-FH medium with 10% FBS and 50 μl of XTT solution (Applichem, Cat. No. A8088). Cultured at 27 ° C. for 24 hours, the difference between 450 nm and 690 nm absorbance was measured using a spectrophotometer, and the survival rate was analyzed as a percentage of Bm 5 cells that were not subjected to electric shock. In general, the cell survival rate with the maximum mass transfer efficiency in the electric shock is 20-50%, and the analysis shows that the survival rate of Bm 5 cells is about 50% at 20 ms at 200V and 15 ms at 300V (Fig. 6).

실시예 2-2. Cas9/gRNA에 의한 돌연변이 유발조건 최적화Example 2-2. Optimization of Mutagenic Conditions by Cas9 / gRNA

실시예 2-1과 동일한 방법으로 배양된 Bm 5 세포를 수집 후 Bio-rad사의 Electroporation 완충액 0.4㎖을 처리하여 sing cell 상태가 된 2.5x106 cell/ml의 세포액을 준비하고, 1x106 세포와 시험관에서 생성된 Cas9/gRNA (2.5 ㎍/ 2.5 ㎍) 복합체를 혼합 후, 50% 이하의 생존율이 나타나는 200V-20 ms와 300V-15 ms의 강도로 전기충격을 가하여 Cas9/gRNA 복합체의 도입을 유도하였다. After collecting the Bm 5 cells cultured in the same manner as in Example 2-1, treated with 0.4ml of Bio-rad's Electroporation buffer solution to prepare 2.5x10 6 cell / ml of the cell solution in a sing cell state, and 1x10 6 cells and test tube After mixing the Cas9 / gRNA (2.5 μg / 2.5 μg) complex generated in the above, the introduction of the Cas9 / gRNA complex was induced by applying an electric shock at the intensity of 200 V-20 ms and 300 V-15 ms, which showed a survival rate of 50% or less. .

이후 Electroporation에 의하여 Cas9/gRNA 복합체의 도입이 유도된 400 ㎕의 세포액을 6 well plate로 옮기고, 2 ml의 10 %의 FBS가 포함된 TMN-FH를 각 well에 첨가하여 48~72 시간까지 배양하였다. 배양된 Bm 5 세포로부터 genomic DNA를 추출하고, 표적부위에 대한 primer(EX1 assay F: 5'-GGTTCCGTGTTCATAAACAATTGT 와 Ex1 assay R: 5'-TTTATACATACGTGTCTCCGTCCT)를 이용하여 400~500 b.p. 크기의 PCR 산물을 얻은 후 90℃에서 5 분간 가열하고 95℃에서 85℃까지 -2℃/sec의 속도로 냉각 후 이어서 85℃에서 25℃까지 -0.1℃/sec의 속도로 냉각하여 돌연변이 DNA와 원형 DNA의 재결합을 통하여 이형 DNA 분자를 형성시켰다. 이후 부정교합 서열을 인지하고 절단하는 T7 endonuclease I 효소를 처리하여 이형 DNA분자의 절단 양상을 2% 한천 겔에 전기영동 함으로서 분석한 결과, 돌연변이 유발 효율은 300V, 15 ms에서 더 높게 나타났다(도 7). Then, 400 μl of the cell solution induced by the introduction of the Cas9 / gRNA complex by electroporation was transferred to a 6 well plate, and 2 ml of TMN-FH containing 10% of FBS was added to each well and incubated for 48 to 72 hours. . Genomic DNA was extracted from the cultured Bm 5 cells, using a primer (EX1 assay F: 5'-GGTTCCGTGTTCATAAACAATTGT and Ex1 assay R: 5'-TTTATACATACGTGTCTCCGTCCT) for the target site. After obtaining a PCR product of size, it was heated at 90 ° C. for 5 minutes, cooled at 95 ° C. to 85 ° C. at a rate of −2 ° C./sec, and then cooled at 85 ° C. to 25 ° C. at −0.1 ° C./sec. Heterologous DNA molecules were formed through recombination of circular DNA. Subsequent analysis of the cleavage pattern of heterologous DNA molecules by electrophoresis on 2% agar gel by treatment of T7 endonuclease I enzyme, which recognizes and cleaves the malocclusion sequence, revealed that the mutagenesis efficiency was higher at 300 V and 15 ms (FIG. 7). ).

Cas9/gRNA 복합체 도입에 적합한 electroporation 완충액을 결정하기 위하여 Bio-rad사의 electroporation 완충액, Sucrose 완충액(10 mM HEPES pH 7.3, 272 mM Sucrose), 및 FBS를 첨가하지 않은 TMN-FH 배지를 이용하여 세포액을 준비하고 Cas9/gRNA (2.5 ㎍/ 2.5 ㎍) 복합체와 혼합하여 300V, 15 ms 조건의 전기 충격을 가한 후 세포를 배양하여 T7 endonuclease I 분석을 수행한 결과, Sucrose 완충액에서 가장 높은 돌연변이 유발 효율이 나타났다(도 8A). Cell fluid was prepared using Bio-rad's electroporation buffer, Sucrose buffer (10 mM HEPES pH 7.3, 272 mM Sucrose), and TMN-FH medium without FBS to determine suitable electroporation buffer for introducing Cas9 / gRNA complexes. T7 endonuclease I assay was performed by mixing with Cas9 / gRNA (2.5 ㎍ / 2.5 ㎍) complex and applying an electric shock of 300 V and 15 ms, followed by T7 endonuclease I assay. 8A).

Electroporation에 적합한 Cas 9과 F10 gRNA의 농도비를 결정하기 위하여, 2.5 ㎍의 Cas 9과 F10 gRNA를 0.5에서 5 ㎍까지 농도를 달리하여 복합체를 형성시킨 후 Sucrose 완충액에 준비된 세포액과 혼합 후 300 V, 15 ms의 전기충격을 가하여 세포를 배양하여 T7 endonuclease I 분석을 수행한 결과, 5 ㎍의 gRNA를 이용하였을 때 가장 높은 효율로 돌연변이가 유발됨에 따라 Cas9 핵산 분해효소와 가이드 RNA의 최적 혼합비는 1: 2로 확인되었다(도 8B).In order to determine the concentration ratio of Cas 9 and F10 gRNA suitable for electroporation, 2.5 μg of Cas 9 and F10 gRNA were complexed at different concentrations from 0.5 to 5 μg, mixed with the cell solution prepared in Sucrose buffer, and then 300 V, 15 T7 endonuclease I analysis was performed by culturing the cells with an electric shock of ms. As a result, mutations were induced with the highest efficiency using 5 μg of gRNA. (FIG. 8B).

<실시예 3. 돌연변이 검정 및 효과>Example 3. Mutation Assay and Effect

실시예 3-1. 돌연변이 Bm 5 세포의 Cactus 유전자 서열 분석Example 3-1. Cactus Gene Sequencing of Mutant Bm 5 Cells

Cas 9/ F10 gRNA (2.5 : 5 ㎍)를 sucrose 완충액 상에서 electroporation을 통해 도입한 Bm 5 세포에 대해 돌연변이가 잘 일어났는지 T7 endonuclease I 분석을 통해 확인하였다. 돌연변이가 유발된 세포의 Genomic DNA로부터 Cactus 유전자의 표적부위에 대한 primer(Ex1 assay F and Ex1 assay R)를 이용하여 PCR을 수행했고, 이 결과물을 pJET 1.2 vector(Thermo, Cat, No. K1231)에 클로닝하였다. 이렇게 하여 얻은 클론의 플라스미드 DNA를 정제하여 염기서열을 분석하였다. Cas 9 / F10 gRNA (2.5: 5 μg) was confirmed by T7 endonuclease I analysis of mutations in Bm 5 cells introduced via electroporation on sucrose buffer. PCR was performed using primers (Ex1 assay F and Ex1 assay R) for the target site of the Cactus gene from the genomic DNA of the mutated cells, and the resultant was transferred to pJET 1.2 vector (Thermo, Cat, No. K1231). Cloned. The plasmid DNA of the clone thus obtained was purified and analyzed for nucleotide sequence.

이렇게 하여 얻은 총 40개의 클론에 대하여 염기서열을 분석한 결과 5종의 결실 돌연변이와 삽입 돌연변이 1종이 확인되었다(도 9). As a result of analyzing the base sequence of the total 40 clones thus obtained, five deletion mutations and one insertion mutation were identified (FIG. 9).

실시예 3-2. 돌연변이 Bm 5 세포의 항균펩타이드 유전자 발현 분석Example 3-2. Antimicrobial Peptide Gene Expression Analysis of Mutant Bm 5 Cells

실시예 3-1에서 다양한 형태의 돌연변이가 유발된 Bm 5 세포를 지속적으로 배양 후 세포로부터 total RNA를 추출하고, oligo dT primer를 이용하여 700 ng의 total RNA로부터 cDNA를 합성하였다. 이후 cDNA와 표 5의 primer를 이용하여 RT-PCR 및 Real-time PCR을 통해 정상 Bm 5 세포와 Cactus 돌연변이 Bm 5 세포 사이에서의 항균펩타이드 유전자 발현을 비교분석하였다. 그 결과 돌연변이 세포에서 Cactus 유전자의 발현은 야생형의 정상 세포 대비 감소한 반면, lysozyme, moricin 및 lebocin의 유전자 발현이 큰 폭으로 증가하는 것이 확인된다(도 10).In Example 3-1, after culturing Bm 5 cells inducing various types of mutations, total RNA was extracted from the cells, and cDNA was synthesized from 700 ng of total RNA using an oligo dT primer. Since cDNA The primers of Table 5 were used to compare the antimicrobial peptide gene expression between normal Bm 5 cells and Cactus mutant Bm 5 cells by RT-PCR and Real-time PCR. As a result, the expression of the Cactus gene in the mutant cells was reduced compared to the normal cells of the wild type, while it was confirmed that the gene expression of lysozyme, moricin and lebocin increased significantly (Fig. 10).

RT-PCR 및 Real-time PCR primerRT-PCR and Real-time PCR primer

GeneGene Forward primer (5' to 3')Forward primer (5 'to 3') Reverse primer (5' to 3')Reverse primer (5 'to 3') GAPDHGAPDH GCTGGAATTTCTTTGAATGAC GCTGGAATTTCTTTGAATGAC CAATGACTCTGCTGGAATAACCCAATGACTCTGCTGGAATAACC Rel ARel a TCCTGTTGCCTTAGAGAACATGTCCTGTTGCCTTAGAGAACATG GGATAAGTTTTGTTCTCCGGAGGGATAAGTTTTGTTCTCCGGAG Rel BRel b AAGCGTGGTAATAGTCGAGCAAAAGCGTGGTAATAGTCGAGCAA TTGTTGACGCAGGACACGACTTTGTTGACGCAGGACACGACT RelishRelish ATGCTAGTGAAATGGCTGGAACATGCTAGTGAAATGGCTGGAAC TGCTCCTCAGGTGTCTTATGTTTGCTCCTCAGGTGTCTTATGTT CactusCactus TGAAATCCATTACGGATAGGCTGTTGAAATCCATTACGGATAGGCTGT GTGTACGGAGGCGATGTGTA GTGTACGGAGGCGATGTGTA MoricinMoricin ATGTCTCTGGTGTCATGTAGTAATGTCTCTGGTGTCATGTAGTA TTGAAAACATCGTTGGCTGTACTTGAAAACATCGTTGGCTGTAC LysozymeLysozyme AAGACTGCAACGTTAAGTGCTCAAGACTGCAACGTTAAGTGCTC ACAGTTCTGTTTCGAGGAGATCACAGTTCTGTTTCGAGGAGATC Lebocin1Lebocin1 TTATTATCGGACGCTGTGTTTTATTATCGGACGCTGTGTT TATTATCGGACGCTGTGTT TATTATCGGACGCTGTGTT

실시예 3-3. 돌연변이 Bm 5 세포의 lysozyme 활성 분석Example 3-3. Analysis of lysozyme activity in mutant Bm 5 cells

돌연변이가 유발된 Bm 5 세포를 배양하면서 세포배양액을 수집 후 40-70% ammonium sulfate 분획을 통하여 단백질을 농축하였다. PD-10 컬럼을 이용하여 농축된 단백질로부터 염을 제거하고 동결건조 후 활성분석에 이용하였다. 형광색소가 결합된 Micrococcus lysodeikticus의 세포벽(Invitrogen, Cat. NO. E22013)을 기질로 이용하여 lysozyme의 활성을 분석한 결과 Cactus 유전자 돌연변이 세포에서는 정상 Bm 5 세포 배양액에 비하여 10배 이상 높은 lysozyme 활성을 나타내었다.After culturing the mutant-induced Bm 5 cells, the cells were collected and the protein was concentrated through 40-70% ammonium sulfate fraction. Salt was removed from the concentrated protein using a PD-10 column and used for activity analysis after lyophilization. Analysis of the activity of lysozyme using the cell wall (Invitrogen, Cat. NO.E22013) of the fluorescent dye-coupled Micrococcus lysodeikticus as a substrate showed that the Cactus gene mutant cells showed more than 10-fold higher lysozyme activity than normal Bm 5 cell culture. It was.

<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof <130> 2018-0154 <160> 12 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 1 cuccugcuca ugcgacuaag 20 <210> 2 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 2 cucacuuuag guaaugccua 20 <210> 3 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 3 agaugacaag guuguccugc 20 <210> 4 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 4 agagucccgu gugggacuac 20 <210> 5 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 5 gaguaguggc gaucuacguc 20 <210> 6 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 6 acacaucgcc ucagagaggc 20 <210> 7 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 7 cuccugcuca ugcgacuaag guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 8 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 8 cucacuuuag guaaugccua guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 9 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 9 agaugacaag guuguccugc guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 10 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 10 agagucccgu gugggacuac guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 11 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 11 gaguaguggc gaucuacguc guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 12 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 12 acacaucgcc ucagagaggc guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <110> REPUBLIC OF KOREA (MANAGEMENT: RURAL DEVELOPMENT ADMINISTRATION) <120> Novel mutant insect cell line producing antimicrobial peptide or          a preparation method <130> 2018-0154 <160> 12 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 1 cuccugcuca ugcgacuaag 20 <210> 2 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 2 cucacuuuag guaaugccua 20 <210> 3 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 3 agaugacaag guuguccugc 20 <210> 4 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 4 agagucccgu gugggacuac 20 <210> 5 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 5 gaguaguggc gaucuacguc 20 <210> 6 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 6 acacaucgcc ucagagaggc 20 <210> 7 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 7 cuccugcuca ugcgacuaag guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 8 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 8 cucacuuuag guaaugccua guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 9 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 9 agaugacaag guuguccugc guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 10 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 10 agagucccgu gugggacuac guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 11 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 11 gaguaguggc gaucuacguc guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92 <210> 12 <211> 92 <212> RNA <213> Artificial Sequence <220> <223> gRNA for Cactus <400> 12 acacaucgcc ucagagaggc guuuuagagc uaugcuguuu uggaaacaaa acagcgauag 60 caaguuaaaa uaaggcuagu ccguuaucuu uu 92

Claims (10)

칵투스(Cactus) 유전자의 돌연변이로 인해 상기 유전자의 mRNA 또는 Cactus 단백질 발현이 억제된 것을 특징으로 하며, 서열번호 2의 염기서열로 표시되는 가이드 RNA와 Cas9 단백질이 삽입된 돌연변이 곤충 세포주.
Mutation of the Cactus gene (Cactus) gene mutant insect cell line characterized in that the expression of the mRNA or Cactus protein of the gene is suppressed, and inserted into the guide RNA and Cas9 protein represented by the nucleotide sequence of SEQ ID NO: 2.
삭제delete 제1항에 있어서,
상기 곤충 세포주는 라이소자임(lysozyme), 모리신(moricin) 및 레보신 1(lebocin 1)으로 이루어진 군 중에서 1종 이상 선택되는 항균 펩타이드가 과발현되는 것을 특징으로 하는 돌연변이 곤충 세포주.
The method of claim 1,
The insect cell line is a mutant insect cell line, characterized in that the anti-expression of at least one selected from the group consisting of lysozyme (lysozyme), moricin (moricin) and lebocin 1 (lebocin 1).
제1항에 있어서,
상기 돌연변이 곤충 세포주는 누에 난소 세포주인 것을 특징으로 하는 돌연변이 곤충 세포주.
The method of claim 1,
The mutant insect cell line is a mutant insect cell line, characterized in that the silkworm ovary cell line.
제4항에 있어서,
상기 누에 난소 세포주는 Bm 5 세포인 것을 특징으로 하는 돌연변이 곤충 세포주.
The method of claim 4, wherein
The silkworm ovary cell line is a mutant insect cell line, characterized in that the Bm 5 cells.
서열번호 2의 가이드 RNA와 Cas9 단백질을 곤충 세포주에 삽입하여 칵투스(Cactus) 유전자가 손상된 돌연변이 곤충 세포주를 제조하는 방법.A method of producing a mutant insect cell line having a damaged Cactus gene by inserting a guide RNA and Cas9 protein of SEQ ID NO: 2 into an insect cell line. 제6항에 있어서,
서열번호 2의 가이드 RNA와 Cas9 단백질의 삽입은 200~350V에서 12~20ms 동안 전기천공법을 실시하여 수행되는 것을 특징으로 하는 돌연변이 곤충 세포주를 제조하는 방법.
The method of claim 6,
Insertion of the guide RNA and Cas9 protein of SEQ ID NO: 2 is a method for producing a mutant insect cell line, characterized in that performed by electroporation for 12-20 ms at 200 ~ 350V.
제7항에 있어서,
상기 전기천공법은 곤충 세포주를 수크로오즈 완충액에 넣어 수행되는 것을 특징으로 하는 돌연변이 곤충 세포주를 제조하는 방법.
The method of claim 7, wherein
The electroporation method is a method for producing a mutant insect cell line, characterized in that the insect cell line is carried in sucrose buffer.
제8항에 있어서,
상기 수크로오즈 완충액은 200~300 mM의 수크로오즈가 포함된 pH 7.0 내지 pH 7.5인 5~20 mM HEPES(N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) 완충액인 것을 특징으로 하는 돌연변이 곤충 세포주를 제조하는 방법.
The method of claim 8,
The sucrose buffer is a mutation, characterized in that 5 ~ 20 mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer of pH 7.0 to pH 7.5 containing 200 ~ 300 mM sucrose Methods of Making Insect Cell Lines.
제6항에 있어서,
상기 가이드 RNA와 Cas9 단백질은 1:1 내지 1:2의 중량비로 혼합되어 곤충 세포주에 삽입되는 것을 특징으로 하는 돌연변이 곤충 세포주를 제조하는 방법.
The method of claim 6,
The guide RNA and the Cas9 protein are mixed in a weight ratio of 1: 1 to 1: 2 is inserted into the insect cell line method for producing a mutant insect cell line.
KR1020180085151A 2018-07-23 2018-07-23 Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof KR102035654B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180085151A KR102035654B1 (en) 2018-07-23 2018-07-23 Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180085151A KR102035654B1 (en) 2018-07-23 2018-07-23 Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof

Publications (1)

Publication Number Publication Date
KR102035654B1 true KR102035654B1 (en) 2019-10-24

Family

ID=68423354

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180085151A KR102035654B1 (en) 2018-07-23 2018-07-23 Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof

Country Status (1)

Country Link
KR (1) KR102035654B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010074351A (en) 2000-01-25 2001-08-04 김강권 Expression vector for transformation of insect cell lines and transformed insect cell lines producing antibacterial protein
KR20150096064A (en) 2014-02-14 2015-08-24 서울대학교산학협력단 A method for recognizing aavs1 locus in the chromosome of mdck ii cell and stably expressing a foreign gene by introducing it therein
KR20150101478A (en) * 2012-10-23 2015-09-03 주식회사 툴젠 Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010074351A (en) 2000-01-25 2001-08-04 김강권 Expression vector for transformation of insect cell lines and transformed insect cell lines producing antibacterial protein
KR20150101478A (en) * 2012-10-23 2015-09-03 주식회사 툴젠 Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
KR20150096064A (en) 2014-02-14 2015-08-24 서울대학교산학협력단 A method for recognizing aavs1 locus in the chromosome of mdck ii cell and stably expressing a foreign gene by introducing it therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLOS ONE, 2014, 9(7), e101210. Heritable Genome Editing with CRISPR/Cas9 in the Silkworm, Bombyx mori., PLOS ONE, 2014, 9(7), e101210.

Similar Documents

Publication Publication Date Title
KR102098915B1 (en) Chimeric genome engineering molecules and methods
AU2019204375B2 (en) Method for producing genome-modified plants from plant protoplasts at high efficiency
JP2022023040A (en) Methods and compositions for increasing efficiency of increased efficiency of targeted gene modification using oligonucleotide-mediated gene repair
US5580734A (en) Method of producing a physical map contigous DNA sequences
KR102151065B1 (en) Composition and method for base editing in animal embryos
CN113728098A (en) Enzymes with RUVC domains
CN106795524A (en) Change agronomy character and its application method using guide RNA/CAS endonuclease systems
CN107406858A (en) The composition and method that adjustment type for guide RNA/CAS endonuclease complex is expressed
EP3940078A1 (en) Off-target single nucleotide variants caused by single-base editing and high-specificity off-target-free single-base gene editing tool
US20190169653A1 (en) Method for preparing gene knock-in cells
KR20170121051A (en) Method for gene editing in microalgae using RGEN RNP
CN111172191B (en) Efficient gene knockout vector and application thereof
JPH05508547A (en) Library screening method
CN110835635B (en) Plasmid construction method for promoting expression of multiple tandem sgRNAs by different promoters
CN110066824B (en) Artificial base editing system for rice
CN109321593A (en) A set of artificial gene editing system for rice
CN108603160B (en) Method for producing mutant filamentous fungus
CN115667283A (en) RNA-guided kilobase-scale genome recombination engineering
KR102035654B1 (en) Novel mutant insect cell line producing antimicrobial peptide or a preparation method thereof
CN113728097A (en) Enzymes with RUVC domains
GB2507030A (en) Algal genome modification
CN106754995B (en) Chinese bee AccCDK5 gene, AccCDK5r1 gene and application thereof
KR102482937B1 (en) Composition for gene editing of Populus alba × Populus glandulosa based on CRISPR/Cas9 ribonucleoproteins and its use
IE914397A1 (en) Library screening method
KR102551064B1 (en) Novel U6 promoter separated form grapevine and use of the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant