KR102035536B1 - Hydrogenation catalyst of animal and vegetable oil for use as bio heavy fuel oil and its acid value and iodine reduction method - Google Patents
Hydrogenation catalyst of animal and vegetable oil for use as bio heavy fuel oil and its acid value and iodine reduction method Download PDFInfo
- Publication number
- KR102035536B1 KR102035536B1 KR1020170150844A KR20170150844A KR102035536B1 KR 102035536 B1 KR102035536 B1 KR 102035536B1 KR 1020170150844 A KR1020170150844 A KR 1020170150844A KR 20170150844 A KR20170150844 A KR 20170150844A KR 102035536 B1 KR102035536 B1 KR 102035536B1
- Authority
- KR
- South Korea
- Prior art keywords
- oil
- animal
- catalyst
- acid value
- porous support
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8906—Iron and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8913—Cobalt and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8926—Copper and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Fats And Perfumes (AREA)
Abstract
본 발명은 란터넘(La)족 반응촉진제를 담지시켜 소성한 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 촉매를 사용하여 동식물유를 수소화 반응시키는 것을 특징으로 하는 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매 및 이를 이용한 동식물유의 산가 및 요오드가 저감 방법에 관한 것으로, 란터넘(La)족 반응촉진제를 담지시켜 소성한 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 촉매를 사용함으로써, 동식물유의 수소화 반응시 산화알루미늄 다공성 지지체에 담지된 활성금속인 니켈(Ni) 및 2가 금속(M2+)의 입자를 줄여주고, 분산도를 증가시켜 반응 활성을 촉진시켜 동식물유의 산가 및 요오드가의 저감 효율이 높일 수 있는 효과가 있다. The present invention is characterized by hydrogenation of animal and vegetable oils using a catalyst calcined by supporting nickel (Ni) and divalent metals (M 2+ ) on a porous support calcined by carrying a Lanternum (La) reaction promoter. The present invention relates to a hydrogenation catalyst of animal and vegetable oil for use as bio heavy oil, and a method for reducing acid value and iodine value of animal and vegetable oil using the same, including nickel (Ni) and divalent on a porous support supported by a lanternum (La) reaction promoter. metal (M 2+) to the bearing by using a calcined catalyst, the active metal nickel (Ni) and 2 supported on the aluminum oxide porous support during plant and animal significant hydrogenation reduces the particles of the metal (M 2+), By increasing the degree of dispersion to promote the reaction activity there is an effect that the efficiency of reducing the acid value and iodine value of animal and vegetable oil.
Description
본 발명은 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매 및 이를 이용한 동식물유의 산가 및 요오드가 저감 방법에 관한 것으로, 더욱 구체적으로는 란터넘(La)족 반응촉진제를 담지시켜 소성한 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 촉매를 사용하여 동식물유를 수소화 반응시켜 산가 및 요오드가를 저감시켜 연료유 혼합용으로 사용하기 위한 것을 특징으로 하는 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매 및 이를 이용한 동식물유의 산가 및 요오드가 저감 방법에 관한 것이다.The present invention relates to a hydrogenation reaction of animal and vegetable oil for use as bio-heavy oil, and a method for reducing acid value and iodine value of animal and vegetable oil using the same, and more specifically, nickel on a porous support calcined by carrying a Lanteran (La) reaction promoter. It is used as bio heavy oil for use for fuel oil mixing by reducing acid and iodine values by hydrogenating animal and vegetable oil by using a catalyst calcined by supporting (Ni) and divalent metal (M 2+ ). The present invention relates to a hydrogenation reaction catalyst of animal and vegetable oil and an acid value and iodine value reduction method of animal and vegetable oil using the same.
최근 에너지 소비 증가에 따른 자원고갈 위기와 온실가스 배출 증가에 따른 자연 생태계 혼란으로 세계적으로 에너지원 다양화 및 온실가스 저감을 위한 신재생에너지 보급활성화 정책을 추진하고 있다. 국내에서는 2014년 1월부터 "발전용 바이오중유 시범보급사업 추진에 관한 고시(산업부고시 2014-1호)" 및 "석유 및 석유대체연료 사업법"을 근거로 2년간 발전용 바이오중유 시범보급사업을 추진하고 있다. Due to the recent crisis of resource depletion due to increased energy consumption and the disruption of natural ecosystems due to the increase in greenhouse gas emissions, the government is pursuing policies to promote renewable energy distribution to diversify energy sources and reduce greenhouse gases. In Korea, from January 2014, the biofuel pilot project for power generation has been implemented for two years based on the "Notice on Promotion of the Biofuel Pilot Project for Power Generation (Ministry of Industry Notice 2014-1)" and the "Petroleum and Petroleum Alternative Fuel Business Act". Promoting.
국내에서 시범보급 되고 있는 발전용 바이오중유란 동식물성 유지 원액이나 또는 알코올을 유지와 반응시켜 만든 지방산에스테르, 또는 그 둘을 혼합 및 제조하여 품질기준에 맞게 생산한 연료를 말한다. 캐슈넛 껍질액(Cashew nut shell liquid)과 팜 오일은 지속 가능성이 있고, HC, CO, NOx와 같은 온실가스 및 유해한 오염물질의 배출이 적기 때문에 대체 에너지로 주목받고 있다. 그러나 중유 대비 발전용 바이오중유의 물성이 달라짐에 따라 연료의 산화 및 부식특성, 분무특성, 유동특성 및 연소특성 등도 다르다. 그렇기 때문에 국내 발전용 바이오중유는 아래 [표 1]에 기재된 바와 같은 항목의 품질기준에 적합하여야 한다.Bio heavy oil for power generation, which is being piloted in Korea, refers to a fuel produced in accordance with quality standards by mixing and manufacturing fatty acid esters made by reacting animal or vegetable fat or alcohol with fat or oil. Cashew nut shell liquid and palm oil are attracting attention because of their sustainability and low emissions of greenhouse gases and harmful pollutants such as HC, CO and NO x . However, as the properties of biofuel for power generation differ from those of heavy oil, the oxidation and corrosion characteristics, spraying characteristics, flow characteristics, and combustion characteristics of fuel are also different. For this reason, domestic heavy fuel oil for power generation should meet the quality standards of the items listed in [Table 1] below.
(mg/kg) alkali
(mg / kg)
한편, 발전용 바이오중유의 대표적인 원료로는 캐슈넛 껍질액(Cashew nut shell liquid, 이하, 'CNSL'라 한다.)과 팜 오일이 있지만, 이와 같은 바이오중유의 원료는 통상적으로 산가 및 요도드가가 높다. 산가가 높으면 산도가 높아 내연기관이 쉽게 부식되거나 또는 연료유의 흐름이 원활하지 못하며, 요오드가가 높으면 산소와 쉽게 결합하여 산폐의 원인이 되기 쉽다.Representative raw materials of power generation bio heavy oil include Cashew nut shell liquid (CNSL) and palm oil. However, such raw materials of bio heavy oil generally have high acid and iodoid values. . If the acid value is high, the acidity is high, so the internal combustion engine is easily corroded, or the flow of fuel oil is not smooth. If the iodine value is high, it is easily combined with oxygen, which is likely to cause acid waste.
따라서, CNSL 오일의 경우 불포화 지방산의 함량이 높아 불포화도를 나타내는 요오드가(Iodine value, IV)가 아래 [표 2]에 기재된 바와 같이 규격 상한치보다 약 2배가량 높아 이를 개선시킬 필요가 있으며, 그리고 다른 원료인 팜 오일은 지방산 함량이 높아 산가가 아래 [표 2]에 기재된 바와 같이 규격 상한치보다 약 3~4배 정도 높으므로 CNSL 오일이나 팜 오일을 그대로 연료유에 혼합하여 사용하기에는 부적합하므로 산가 및 요오드가를 저하시기기 위한 반응처리를 하여야 한다.Therefore, in the case of CNSL oil, the iodine value (IV), which shows a high degree of unsaturated fatty acid and shows an unsaturated degree, needs to be improved about 2 times higher than the upper specification limit as shown in Table 2 below, and other Since palm oil as a raw material has a high fatty acid content and an acid value is about 3 to 4 times higher than the upper specification limit as shown in [Table 2], it is not suitable for mixing CNSL oil or palm oil with fuel oil as it is. Reaction treatment should be performed to reduce the
그리고 식물유 중에서 CNSL의 예를 들면, 주성분으로 아래 화학식 1에 도시된 바와 같이, 3-펜타디세닐 페놀(3-pentadecenyl phenol, 'cardanol'이라 함), 5-펜타디세닐 레조르시놀(5-pentadecenyl resorcinol, 'cardol'이라 함), 6-펜타디세닐 살리실산(6-pentadecenyl salicylic acid, 'anacardic acid'라 함)과 2-메틸 5-펜타디세닐 레조르시놀(2-methyl 5-pentadecenyl resorcinol, '2-methyl cardol'이라 함)이 있다. And, for example, CNSL in vegetable oil, as the main component, as shown in the following formula 1, 3-pentadicenyl phenol (3-pentadecenyl phenol, 'cardanol'), 5-pentadisenyl resorcinol (5- pentadecenyl resorcinol (called 'cardol'), 6-pentadisenyl salicylic acid (6-pentadecenyl salicylic acid, called 'anacardic acid') and 2-methyl 5-pentadisenyl resorcinol (2-methyl 5-pentadecenyl resorcinol , 2-methyl cardol).
(화학식 1)(Formula 1)
상기 화학식 1에 도시된 바와 같은 구조를 갖는 네 가지 성분의 화합물들은 아래 (화학식 2)에 도시된 바와 같은 구조를 갖는 탄소수가 15개인 탄화수소 사슬을 가지고 있는데. 이 탄화수소에는 이중결합이 존재하며, 이중결합이 없는 포화지방산은 3%에 불과하고 나머지는 이중결합이 1~3개가 있는 불포화 지방산으로 존재한다. Compounds of the four components having a structure as shown in the formula (1) has a hydrocarbon chain having 15 carbon atoms having a structure as shown in the following formula (2). There are double bonds in this hydrocarbon, with only 3% of saturated fatty acids without double bonds and the remainder being unsaturated fatty acids with one to three double bonds.
식물유 또는 동물유에서 불포화 지방산의 비율이 높아지면 요오드가가 높아지게 되는데 이는 쉽게 산화되어 전산가를 향상시키고 품질 등의 산화 생성물이 만들어져 연료흐름을 저해할 수 있기 때문에 연료로서 사용에는 문제가 된다. 그러므로 CNSL 오일의 불포화도를 나타내는 높은 요오드가를 낮추고, 저장을 위한 안정성을 높이기 위해서는 수소화 반응을 통한 불포화 지방산을 포화 지방산으로의 전환공정이 필요하므로 이에 대한 다양한 방법들이 연구 개발되고 있다.Increasing the proportion of unsaturated fatty acids in vegetable oils or animal oils increases iodine value, which is a problem for use as a fuel because it can be easily oxidized to improve the acid value and produce oxidized products such as quality and inhibit fuel flow. Therefore, in order to lower the high iodine value indicating the degree of unsaturation of CNSL oil and to increase the storage stability, various methods for the conversion of unsaturated fatty acids to saturated fatty acids through hydrogenation are required.
연료유에 혼합하기 위한 식물유 또는 동물유의 요오드가 및 산가를 낮추는 전통적인 방법으로는 촉매에 의한 수소화 반응을 통해 불포화 지방산에 포함되어 있는 이중결합을 단일결합으로 전환이 필요하다. 이 반응은 유지의 안전성을 개선시킴과 동시에 유지 중에 함유되어 있는 산소 성분도 일부 제거하여 발열량 증가가 가능하며, 오취를 제거하는 효과가 있다.Traditional methods of lowering the iodine value and acid value of vegetable or animal oil for mixing in fuel oils require the conversion of double bonds contained in unsaturated fatty acids to single bonds through catalytic hydrogenation. This reaction improves the safety of fats and oils, and also removes some of the oxygen components contained in fats and oils, thereby increasing the calorific value and removing odors.
(화학식 2)(Formula 2)
특허문헌 1은 지방 카르복실산류 또는 에스테르류를 수소화 반응시키기 위한 니켈 촉매에 관한 발명이고, 특허문헌 2는 산가 10∼200 범위의 고산가, 저품위 바이오오일을 효율적으로 바이오디젤로 전환하기 위하여 사용하는 2가 금속을 포함하는 촉매, 즉 2가 금속이온(M2+)은 Mg2 +, Ca2 +, Cu2 +, Fe2 +, Ni2 +, Co2 +, Mn2 +, 및 Zn2 + 중에서 선택된 단독 또는 2종 이상의 혼합물인 것을 특징으로 하는 균일촉매에 관한 발명이다.Patent document 1 is invention regarding the nickel catalyst for hydrogenating fatty carboxylic acids or esters, and patent document 2 is 2 used for efficiently converting high acid value and low grade bio oil of the acid value 10-200 range into biodiesel. the catalyst comprises a metal, that is a divalent metal ion (M 2+) is Mg 2 +, Ca 2 +, Cu 2 +, Fe 2 +, Ni 2 +, Co 2 +, Mn 2 +, and Zn + 2 The invention relates to a homogeneous catalyst characterized in that it is a single or a mixture of two or more selected.
그리고 특허문헌 3은 수소의 존재하에 산소-함유 유기 화합물 및 비수용성의 염소-함유 화합물을 함유하는 원료유를 다공성 무기 산화물이, 알루미늄, 규소, 지르코늄 등으로부터 선택된 2종 이상의 원소를 함유하여 구성되는 다공성 무기 산화물의 담체에 주기율표 제VIA족 및 제VIII족의 원소로부터 선택되는 2종 이상의 금속 중에서도, Ni, Co, Pt, Pd, Ru, Rh, Ir, Mo 및 W로부터 선택되는 적어도 1종 이상의 금속을 담지하고 있는 수소화 촉매를 접촉시켜 상기 산소-함유 유기 화합물의 수소화 탈산소에 의해 탄화수소유를 제조하는 방법에 관한 발명이며, 특허문헌 4는 동식물유의 수소화처리 반응을 통한 유기 상변화물질(Phase Change Material)의 제조방법에 관한 것으로, 사용 촉매는 지르코늄 산화물, 알루미늄 산화물 또는 티타늄 산화물 소재의 담체에 활성성분으로 VIB, VIIB, VIIIB, VIII, IB 또는 IIB족 금속으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 발명에 관한 것이다.Patent Document 3 discloses a raw material oil containing an oxygen-containing organic compound and a water-insoluble chlorine-containing compound in the presence of hydrogen, wherein the porous inorganic oxide contains two or more elements selected from aluminum, silicon, zirconium, and the like. At least one metal selected from Ni, Co, Pt, Pd, Ru, Rh, Ir, Mo, and W, among two or more metals selected from the elements of Groups VIA and VIII of the periodic table in the carrier of the porous inorganic oxide The invention relates to a method for producing a hydrocarbon oil by hydrogenation deoxidation of the oxygen-containing organic compound by contacting a hydrogenation catalyst supporting the above, Patent Document 4 is an organic phase change material (Phase Change) through the hydrogenation reaction of animal and vegetable oil Material), and the catalyst used is an active ingredient in a carrier made of zirconium oxide, aluminum oxide or titanium oxide. As relates to the invention, including any one or a mixture of two or more selected from the VIB, VIIB, VIIIB, VIII, IB or IIB metal group consisting of a group.
따라서, 본 발명자는 상기 특허문헌 1은 내지 4의 발명과는 달리 란터넘(La)족 금속을 담지시켜 소성한 다공성 지지체를 사용하여 동식물유를 수소화 반응시 반응 활성을 촉진시켜 동식물유의 산가 및 요오드를 효율적으로 저감시킴으로써 본 발명을 완성하게 되었다. Accordingly, the present inventors, unlike the invention of Patent Document 1 to 4, by using a porous support calcined by supporting a Lanternum (La) group metal to promote the reaction activity during the hydrogenation reaction of animal and vegetable oils, acid value and iodine of animal and vegetable oils The present invention has been completed by reducing the efficiency efficiently.
본 발명은 란터넘(La)족 반응촉진제를 담지시켜 소성한 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 촉매를 사용하여 동식물유를 수소화 반응시켜 산가 및 요오드가를 저감시켜 연료유 혼합용으로 사용하기 위한 것을 특징으로 하는 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매 및 이를 이용한 동식물유의 산가 및 요오드가 저감 방법을 제공하는 것을 과제로 한다. The present invention uses a catalyst calcined by supporting nickel (Ni) and a divalent metal (M 2+ ) on a porous support calcined by carrying a Lanternum (La) reaction promoter and calcining animal and vegetable oils to give acid and iodine It is an object of the present invention to provide a hydrogenation reaction catalyst of animal and vegetable oil for use as bio heavy oil and an acid value and an iodine value reduction method of animal and vegetable oil using the same for reducing the value and using it for fuel oil mixing.
특히 본 발명은 란터넘(La)족 금속을 담지시켜 소성한 다공성 지지체를 사용함으로써, 동식물유의 수소화 반응시 산화알루미늄 다공성 지지체에 담지시켜 소성한 니켈(Ni) 및 활성금속인 2가 금속(M2+) 입자의 크기를 줄여주고, 분산도를 증가시켜 반응 활성을 촉진시키는 것을 특징으로 하는 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매 및 이를 이용한 동식물유의 산가 및 요오드가 저감 방법을 제공하는 것을 다른 과제로 한다. In particular, the present invention uses a porous support calcined by supporting a lanthanum (La) group metal, and is a nickel (Ni) and an active metal divalent metal (M 2 ) calcined by being supported on an aluminum oxide porous support during hydrogenation of animal and vegetable oils. + ) Hydrogenation catalyst of animal and vegetable oil for use as bio heavy oil, characterized by reducing the size of particles and increasing the degree of dispersion, and the acid value and iodine of animal and vegetable oil using the same to provide a method for reducing It is a task.
상기의 과제를 달성하기 위한 본 발명은 반응촉진제를 담지시켜 소성한 산화알루미늄 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 것을 특징으로 하는 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매를 과제의 해결 수단으로 한다.The present invention for achieving the above object is used for bio heavy oil, characterized in that the calcined by carrying a nickel (Ni) and divalent metal (M 2 + ) supported on the aluminum oxide porous support calcined by supporting the reaction accelerator The hydrogenation reaction catalyst of animal and vegetable oil is used as a solution of a subject.
그리고 본 발명은 상기의 수소화 반응 촉매를 사용하여 동식물유를 수소화 반응시켜 산가 및 요오드를 저감시키는 것을 특징으로 하는 동식물유의 산가 및 요오드가 저감 방법을 과제의 다른 해결 수단으로 한다.In another aspect, the present invention provides a method for reducing acid value and iodine value of animal and vegetable oil, wherein the animal oil and iodine are reduced by hydrogenating animal and vegetable oil using the above-described hydrogenation reaction catalyst.
한편, 상기 다공성 지지체는 다공성 지지체 100 중량부에 대하여 반응촉진제 0.1~6.5 중량부, 니켈(Ni) 14.5~24.0 중량부 및 2가 금속(M2+) 6.5~16.0 중량부를 담지시키고, 상기 반응촉진제는 란터넘(La)족 금속으로, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 또는 Lu 중에서 1종 또는 그 이상을 선택하고, 상기 2가 금속(M2+)은 Fe2 +, Co2 +, Cu2 + 또는 Zn2 + 중에서 1종을 선택하는 것을 특징으로 한다. Meanwhile, the porous support carries 0.1 to 6.5 parts by weight of a reaction accelerator, 14.5 to 24.0 parts by weight of nickel (Ni), and 6.5 to 16.0 parts by weight of a divalent metal (M 2+ ), based on 100 parts by weight of the porous support. Is a lanthanum (La) group metal, and at least one selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu, and divalent metal (M 2+) is characterized by selecting from among one or Fe 2 +, Co 2 +, Cu 2 + or Zn + 2.
또한, 상기 수소화 반응은 5~80 Bar의 압력, 1~10 h-1의 공간속도 및 250~400℃의 조건에서 실시하는 것을 특징으로 한다.In addition, the hydrogenation reaction is characterized in that carried out under the conditions of 5 ~ 80 Bar pressure, 1 ~ 10 h -1 space velocity and 250 ~ 400 ℃.
또한, 상기 동식물유는 코코넛유, 옥수수유, 면실유, 땅콩류, 올리브유, 팜유, 팜액유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 어유, 우지, 돈지, 가금지방 및 이들의 지방산 또는 폐유로 이루어진 군으로부터 선택되는 1종 또는 그 이상의 혼합물인 것을 특징으로 한다.In addition, the animal and vegetable oils are coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, fish oil, tallow, lard, It is characterized in that it is one or more mixtures selected from the group consisting of poultry fats and fatty acids or waste oils thereof.
본 발명은 란터넘(La)족 반응촉진제를 담지시켜 소성한 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 촉매를 사용함으로써, 동식물유의 수소화 반응시 산화알루미늄 다공성 지지체에 담지된 활성금속인 니켈(Ni) 및 2가 금속(M2+)의 입자를 줄여주고, 분산도를 증가시켜 반응 활성을 촉진시켜 동식물유의 산가 및 요오드가의 저감 효율이 높일 수 있는 효과가 있다. The present invention uses a catalyst calcined by supporting nickel (Ni) and divalent metal (M 2+ ) on a porous support calcined by carrying a Lanternum (La) reaction promoter, thereby increasing the aluminum oxide porosity during hydrogenation of animal or vegetable oils. Reduces the particles of nickel (Ni) and divalent metals (M 2+ ), which are the active metals supported on the support, and increases the dispersion so as to promote the reaction activity, thereby increasing the acid and iodine value of animal and vegetable oils. There is.
이하, 본 발명의 바람직한 실시 예에 따른 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매 및 이를 이용한 동식물유의 산가 및 요오드가 저감 방법에 대해서 첨부된 도면을 참고로 본 발명의 기술적 구성을 이해하는데 필요한 부분만 설명하되, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위 내에서 생략될 것이라는 것을 유의하여야 한다.Hereinafter, with reference to the accompanying drawings for the hydrogenation reaction of animal and vegetable oils for use as bio heavy oil according to a preferred embodiment of the present invention, and the acid value and iodine value reduction method of animal and vegetable oil using the same parts necessary for understanding the technical configuration of the present invention It should be noted that the description of other parts will be omitted without departing from the scope of the present invention.
본 발명에 따른 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매(이하, '수소화 반응 촉매'라 한다.)는 반응촉진제를 담지시켜 소성한 산화알루미늄 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 것을 특징으로 한다.Hydrogenation catalysts of animal and vegetable oils (hereinafter, referred to as 'hydrogenation reaction catalysts') for use as bio heavy oils according to the present invention are nickel (Ni) and divalent metals (M) on an aluminum oxide porous support calcined by carrying a reaction accelerator. 2+ ) is supported and calcined.
상기 반응촉진제는 산화알루미늄 다공성 지지체에 담지시켜 소성한 니켈(Ni) 및 활성금속인 2가 금속(M2+)의 입자의 크기를 줄여주고, 분산도를 증가시켜 반응 활성을 촉진시켜 동식물유의 산가 및 요오드가의 저감 효율이 높이는 작용을 한다. The reaction accelerator reduces the size of the particles of nickel (Ni) and the active metal divalent metal (M 2+ ), which is calcined by being supported on an aluminum oxide porous support, and promotes the reaction activity by increasing the degree of dispersion to increase the acid value of animal and vegetable oils. And an effect of increasing the reduction efficiency of iodine value.
상기 반응촉진제로는 전이금속을 사용하며, 구체적으로는 란터넘(La)족 금속으로, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 또는 Lu 중에서 1종 또는 그 이상을 선택하여 사용한다. As the reaction accelerator, a transition metal is used. Specifically, a transition metal is a lanthanum (La) group metal, and La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb Alternatively, one or more selected from Lu are used.
이와 같이 산화알루미늄 다공성 지지체는 다공성 지지체 100 중량부에 반응촉진제인 란터넘(La)족 금속 0.1~6.5 중량부를 담지시킨 다음 400~500 ℃의 온도에서 2~6 시간 동안 소성시켜 제조한다. As described above, the aluminum oxide porous support is prepared by supporting 0.1 to 6.5 parts by weight of a Lanternum (La) group metal, which is a reaction promoter, in 100 parts by weight of the porous support, and then calcining at a temperature of 400 to 500 ° C. for 2 to 6 hours.
상기 다공성 지지체는 담지시키는 반응촉진제의 담지량이 상기에서 한정한 범위 미만일 경우에는 활성금속인 2가 금속(M2+)의 반응 활성이 충분하게 활성되지 않을 우려가 있고, 반응촉진제의 담지량이 상기에서 한정한 범위를 초과할 경우에는 금속 입자의 뭉침현상이 평균입도 증가로 인한 활성이 저하 될 우려가 있다. When the supported amount of the reaction promoter to support the porous support is less than the range defined above, there is a fear that the reaction activity of the divalent metal (M 2+ ), which is an active metal, may not be sufficiently activated, and the amount of the reaction promoter supported above In the case of exceeding the limited range, the aggregation of metal particles may decrease the activity due to the increase in the average particle size.
상기에서 산화알루미늄 다공성 지지체에 란터넘(La)족 금속을 담지시킨 다음 소성시 상기에서 한정한 소성 조건의 범위 미만이 될 경우에는 란터넘(La)족 금속이 산화알루미늄 다공성 지지체 내에서 균일하게 분포되어 소성되지 않을 우려가 있고, 상기에서 한정한 소성 조건의 범위를 초과할 경우에는 란터넘(La)족 금속이 다공성 지지체의 하부 쪽으로 흘러내려 다공성 지지체 내에 균일하게 분포되지 않을 우려가 있다. When the lanternum (La) group metal is supported on the aluminum oxide porous support as described above, and the calcination falls below the range of the sintering conditions defined above, the lanternum (La) group metal is uniformly distributed in the aluminum oxide porous support. There is a risk that the calcination is not carried out, and if it exceeds the range of the calcination conditions defined above, the Lanternum (La) group metal may flow down to the lower portion of the porous support and not uniformly distributed in the porous support.
그리고 상기의 방법에 의해 소성시킨 란터넘(La)족 금속 담지 다공성 지지체에 니켈(Ni)과 2가 금속(M2+)을 담지시켜 소성한다.In addition, nickel (Ni) and divalent metal (M 2+ ) are supported and baked on a lanthanum (La) group-supported porous support baked by the above method.
상기 2가 금속(M2+)은 구체적으로 Fe2 +, Co2 +, Cu2 + 또는 Zn2 + 중에서 1을 선택하는 것이 바람직하다.To the divalent metal (M 2+) is specifically selected the Fe 2 +, Co 2 +, Cu 2 + or Zn 2 + 1 from the preferred.
상기 니켈(Ni)은 불포화지방산에 수소를 첨가하여 포화지방산으로 제조하는 수소화 반응을 활성시키는 대표적인 촉매로 알려져 있고, 상기 2가 금속(M2+)은 니켈(Ni) 금속과 함께 수소화 반응을 활성시키는 작용을 한다. The nickel (Ni) is known as a representative catalyst for activating the hydrogenation reaction to produce a saturated fatty acid by adding hydrogen to unsaturated fatty acid, the divalent metal (M 2 + ) is a hydrogenation reaction with the nickel (Ni) metal. To act.
이와 같이, 니켈(Ni)과 2가 금속(M2+)을 담지시켜 소성한 다공성 지지체는 니켈 14.5~24.0 중량부, 2가 금속(M2+) 6.5~16.0 중량부를 담지시킨 다음 400~500 ℃의 온도에서 2~6 시간 동안 소성시켜 제조한다. As such, the porous support calcined by supporting nickel (Ni) and divalent metal (M 2+ ) is loaded with 14.5-24.0 parts by weight of nickel and 6.5-16.0 parts by weight of divalent metal (M 2+ ), and then 400-500 It is prepared by baking for 2 to 6 hours at a temperature of ℃.
상기에서 산화알루미늄 다공성 지지체에 니켈(Ni)과 2가 금속(M2+)을 담지시킨 다음 소성시 상기에서 한정한 소성 조건의 범위 미만이 될 경우에는 니켈(Ni)과 2가 금속(M2+)이 산화알루미늄 다공성 지지체 내에서 균일하게 분포되어 소성되지 않을 우려가 있고, 상기에서 한정한 소성 조건의 범위를 초과할 경우에는 니켈(Ni)과 2가 금속(M2+)이 다공성 지지체의 하부 쪽으로 흘러내려 다공성 지지체 내에 균일하게 분포되지 않을 우려가 있다. When nickel (Ni) and a divalent metal (M 2+ ) are supported on the aluminum oxide porous support as described above, and when firing falls below the range of the above-described firing conditions, nickel (Ni) and The divalent metal (M 2+ ) may be uniformly distributed in the aluminum oxide porous support and may not be fired. If the divalent metal (M 2+ ) is exceeded, the nickel (Ni) and the divalent metal (M 2 ) may be exceeded. + ) May flow down to the bottom of the porous support so that it is not evenly distributed in the porous support.
이와 같이, 상기에서 설명한 바와 같은 수소화 반응 촉매는 란터넘(La)족 반응촉진제를 담지시켜 소성한 다공성 지지체에 니켈(Ni) 및 2가 금속(M2+)을 담지시켜 소성한 촉매를 사용함으로써, 동식물유의 수소화 반응시 산화알루미늄 다공성 지지체에 담지된 활성금속인 니켈(Ni) 및 2가 금속(M2+)의 입자를 줄여주고, 분산도를 증가시켜 반응 활성을 촉진시켜 동식물유의 산가 및 요오드가의 저감 효율이 높일 수 있는 효과가 있다.As described above, the hydrogenation catalyst as described above uses a catalyst calcined by supporting nickel (Ni) and divalent metal (M 2+ ) on a porous support calcined by carrying a Lanternum (La) reaction promoter. During the hydrogenation of animal and vegetable oils , the particles of nickel (Ni) and divalent metals (M 2+ ), which are active metals supported on the porous support of aluminum oxide, are reduced, and the acidity and iodine of animal and vegetable oils are promoted by increasing the dispersion degree. There is an effect that the reduction efficiency can be increased.
한편, 본 발명에 따른 수소화 반응 촉매를 사용하여 동식물유를 수소화 반응시켜 산가 및 요오드를 저감시키는 방법을 구체적으로 설명하면 아래의 내용과 같다. On the other hand, using a hydrogenation catalyst according to the present invention to describe the method of reducing the acid value and iodine by hydrogenating animal and vegetable oil in detail as follows.
본 발명은 상기에서 설명한 바와 같은 수소화 반응 촉매를 사용하여 동식물유를 1~10 h-1의 공간속도(LHSV)로 반응기 내에 공급하면서 5~80 Bar의 압력 및 250~400℃의 반응조건으로 수소화 반응을 실시한다.The present invention uses the hydrogenation catalyst as described above to hydrogenate animal and vegetable oil at a pressure of 5 ~ 80 Bar and reaction conditions of 250 ~ 400 ℃ while supplying the animal and vegetable oil in the reactor at a space velocity (LHSV) of 1 ~ 10 h -1 Conduct the reaction.
상기 반응조건이 상기에서 한정한 반응조건의 범위를 벗어날 경우에는 산가 및 요오드를 저감 효율이 저하할 우려가 있다.When the reaction conditions are out of the range of the reaction conditions defined above, there is a fear that the reduction efficiency of acid value and iodine is reduced.
또한, 상기 동식물유는 코코넛유, 옥수수유, 면실유, 땅콩류, 올리브유, 팜유, 팜액유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 어유, 우지, 돈지, 가금지방 및 이들의 지방산 또는 폐유로 이루어진 군으로부터 선택되는 1종 또는 그 이상의 혼합물인 것을 특징으로 한다.In addition, the animal and vegetable oils are coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, fish oil, tallow, lard, It is characterized in that it is one or more mixtures selected from the group consisting of poultry fats and fatty acids or waste oils thereof.
이하, 본 발명에 따른 본 발명의 바람직한 실시 예에 따른 수소화 반응 촉매를 이용한 동식물유의 산가 및 요오드가 저감 방법에 대하여 아래의 실시 예를 통해 더욱 상세히 설명하고자 한다. 다만, 하기 실시 예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시 예에 의해 제한되는 것은 아니다. Hereinafter, an acid value and an iodine value reduction method of animal and vegetable oil using a hydrogenation catalyst according to a preferred embodiment of the present invention will be described in more detail with reference to the following examples. However, the following examples are only examples for describing the present invention in more detail, and the present invention is not limited to the following examples.
1. 동식물유의 수소화 반응 촉매의 제조1. Preparation of catalyst for hydrogenation of animal and vegetable oils
(촉매 1의 제조)(Production of Catalyst 1)
동식물유의 수소화 반응 촉매는 아래 [표 3] 및 [표 4]에 기재된 바와 같은 중량비로 산화알루미늄 다공성 지지체에 란터넘(La)족 금속을 담지시킨 다음 500 ℃의 온도에서 2 시간 동안 소성시켜 란터넘(La)족 금속 담지 산화알루미늄 다공성 지지체를 제조한 다음 여기에 아래 [표 3] 및 [표 4]에 기재된 바와 같은 중량비로 니켈 및 2가 금속(M2+)을 담지시킨 다음 400 ℃의 온도에서 6 시간 동안 소성시켜 동식물유의 수소화 반응 촉매를 제조하였다. Hydrogenation catalyst of animal and vegetable oil is supported by lanthanum (La) group metal support on aluminum oxide porous support in the weight ratio as described in [Table 3] and [Table 4] below and then calcined at 500 ° C. for 2 hours. A (La) group-supported aluminum oxide porous support was prepared, and then nickel and divalent metals (M 2+ ) were supported thereon in a weight ratio as described in Tables 3 and 4 below, followed by a temperature of 400 ° C. It was calcined for 6 hours at to prepare a hydrogenation catalyst of animal and vegetable oil.
(촉매 2의 제조)(Production of Catalyst 2)
동식물유의 수소화 반응 촉매는 아래 [표 5]에 기재된 바와 같은 중량비로 산화알루미늄 다공성 지지체에 란터넘(La)족 금속을 담지시킨 다음 400 ℃의 온도에서 6 시간 동안 소성시켜 란터넘(La)족 금속 담지 산화알루미늄 다공성 지지체를 제조한 다음 여기에 아래 [표 5]에 기재된 바와 같은 중량비로 니켈 및 2가 금속(M2+)을 담지시킨 다음 500 ℃의 온도에서 2 시간 동안 소성시켜 동식물유의 수소화 반응 촉매를 제조하였다. The hydrogenation reaction of animal and vegetable oil is carried out by supporting a lanthanum (La) group metal on an aluminum oxide porous support at a weight ratio as shown in [Table 5] below, and then firing at a temperature of 400 ° C. for 6 hours to lanternum (La) group metal. A supported aluminum oxide porous support was prepared, and then nickel and divalent metals (M 2+ ) were supported at a weight ratio as shown in Table 5 below, and then calcined at a temperature of 500 ° C. for 2 hours to hydrogenate animal and vegetable oils. Catalyst was prepared.
(촉매 3의 제조) (Production of Catalyst 3)
동식물유의 수소화 반응 촉매는 아래 [표 3]에 기재된 바와 같은 중량비로 산화알루미늄 다공성 지지체에 니켈 및 2가 금속(M2+)을 담지시킨 다음 400 ℃의 온도에서 6 시간 동안 소성시켜 동식물유의 수소화 반응 촉매를 제조하였다. The hydrogenation reaction of animal and vegetable oils is carried out by supporting nickel and divalent metals (M 2+ ) on an aluminum oxide porous support in a weight ratio as shown in the following [Table 3], and then calcining for 6 hours at a temperature of 400 ° C. Catalyst was prepared.
(촉매 4의 제조) (Production of Catalyst 4)
동식물유의 수소화 반응 촉매는 아래 [표 3] 내지 [표 5]에 기재된 바와 같은 중량비로 산화알루미늄 다공성 지지체에 니켈을 담지시킨 다음 400 ℃의 온도에서 6 시간 동안 소성시켜 동식물유의 수소화 반응 촉매를 제조하였다. Hydrogenation catalyst of animal and vegetable oil was supported on aluminum porous support by weight ratio as described in [Table 3] to [Table 5] below and then calcined at 400 ° C. for 6 hours to prepare a hydrogenation catalyst of animal and vegetable oil. .
2. 동식물유의 수소화 반응 처리2. Hydrogenation treatment of animal and vegetable oils
상기 1의 방법에 의해 제조한 동식물유의 수소화 반응 촉매 1 내지 4를 사용하여 아래 [표 3] 내지 [표 5]에 기재된 바와 같이, 동식물유를 1~10 h-1의 공간속도(LHSV)로 반응기 내에 공급하면서 5~80 Bar의 압력 및 250~400℃의 반응조건으로 3시간 동안 동식물유를 수소화 반응시켰다.
Using the hydrogenation reaction catalysts 1 to 4 of animal and vegetable oils prepared by the method of 1 above, as shown in Tables 3 to 5 below, animal and vegetable oils have a space velocity (LHSV) of 1 to 10 h −1 . Animal and vegetable oils were hydrogenated for 3 hours under pressure of 5 to 80 Bar and reaction conditions of 250 to 400 ° C. while being fed into the reactor.
(실시 예 1 내지 4 및 비교 예 1 내지 4)(Examples 1 to 4 and Comparative Examples 1 to 4)
삭제delete
삭제delete
아래 [표 3]은 캐슈넛 껍질유와 팜오일을 1:1로 혼합한 혼합유를 원료로 하여 수소화 반응시킨 결과 산가 및 요오드가를 나타낸 것이다. [Table 3] shows the acid value and iodine value as a result of hydrogenation reaction using a mixed oil of cashew nut shell oil and palm oil as a raw material as a raw material.
아래 [표 3]의 실시 예 1 내지 4는 상기 촉매 1의 방법에 따라 제조한 촉매를 사용하였고, 비교 예 1, 2는 촉매 3의 방법에 따라 제조한 촉매, 비교 예 3, 4는 촉매 4의 방법에 따라 제조한 촉매를 각각 사용하여 수소화 반응을 실시하였다. In Examples 1 to 4 of Table 3 below, a catalyst prepared according to the method of Catalyst 1 was used, Comparative Examples 1 and 2 were catalysts prepared according to the method of Catalyst 3, and Comparative Examples 3 and 4 were Catalyst 4 The hydrogenation reaction was performed using the catalyst prepared by the method of each.
(중량부)catalyst
(Parts by weight)
(저감율 %)Property evaluation
(% Reduction)
Ni
금속La family
metal
지지체Al 2 O 3
Support
(℃)Temperature
(℃)
(mg-KOH/g)Acid
(mg-KOH / g)
(식물유혼합유)Raw material
(Plant oil mixed oil)
1Comparative example
One
(Fe)6.5
(Fe)
(60.4)73.7
(60.4)
(65.7)14.7
(65.7)
2Comparative example
2
(Co)8.0
(Co)
(47.5)97.9
(47.5)
(57.6)18.2
(57.6)
3Comparative example
3
(38.9)114.0
(38.9)
(44.5)23.8
(44.5)
4Comparative example
4
(31.3)127.9
(31.3)
(41.3)25.2
(41.3)
1Example
One
(Fe)6.5
(Fe)
(La)0.1
(La)
(69.0)57.8
(69.0)
(68.3)13.6
(68.3)
2Example
2
(Co) 8.0
(Co)
(La)0.5
(La)
(70.9)54.2
(70.9)
(77.2)9.8
(77.2)
3Example
3
(Cu) 10.0
(Cu)
(Pr)1.0
(Pr)
(77.0)42.8
(77.0)
(93.7)2.7
(93.7)
4Example
4
(Zn) 12.0
(Zn)
(Pr) 2.0
(Pr)
(78.0)41.0
(78.0)
(92.5)3.2
(92.5)
상기 [표 3]에 기재된 내용과 같이, 캐슈넛 껍질유와 팜오일을 혼합한 혼합유를 수소화 반응처리한 결과 본 발명에 따른 촉매를 사용한 실시 예 1 내지 4는 비교 예 1 내지 4에 비해 산가 및 요오드가의 저감 효율이 월등하게 우수한 것을 확인할 수 있었다. As described in [Table 3], as a result of the hydrogenation reaction of the mixed oil mixed with cashew nut shell oil and palm oil, Examples 1 to 4 using the catalyst according to the present invention had an acid value and It was confirmed that the reduction efficiency of iodine value was excellent.
그리고 비교 예 1, 2의 경우에는 촉매로서 Ni과 Fe 또는 Co 금속을 함께 사용함에 따라 Ni만을 단독으로 사용한 비교 예 3, 4에 비해 산가 및 요오드가의 저감 효율이 우수한 것을 알 수 있었다.In Comparative Examples 1 and 2, it was found that the reduction efficiency of the acid value and the iodine value was superior to Comparative Examples 3 and 4 using only Ni alone as Ni and Fe or Co metals were used together as the catalyst.
(실시 예 5 내지 20 및 비교 예 5 내지 8)(Examples 5 to 20 and Comparative Examples 5 to 8)
아래 [표 4]는 팜오일을 원료로 하여 수소화 반응시킨 결과 산가 및 요오드가는 아래 [표 4]의 내용과 같다.[Table 4] below shows the acid value and iodine value of the palm oil as a raw material, as shown in Table 4 below.
삭제delete
삭제delete
아래 [표 4]의 실시 예 5 내지 20은 상기 촉매 1의 방법에 따라 제조한 촉매를 사용하였고, 비교 예 5 내지 8은 촉매 4의 방법에 따라 제조한 촉매를 사용하여 수소화 반응을 실시하였다. In Examples 5 to 20 of Table 4 below, a catalyst prepared according to the method of Catalyst 1 was used, and Comparative Examples 5 to 8 performed a hydrogenation reaction using a catalyst prepared according to the method of Catalyst 4.
(중량부)catalyst
(Parts by weight)
(저감율 %)Property evaluation
(% Reduction)
지지체Al 2 O 3
Support
(℃)Temperature
(℃)
(mg-KOH/g)Acid
(mg-KOH / g)
(팜오일)Raw material
(Palm oil)
5Comparative example
5
(32.6)43.5
(32.6)
(47.5)45.6
(47.5)
6Comparative example
6
(35.8)41.4
(35.8)
(49.4)43.9
(49.4)
7Comparative example
7
(40.3)38.5
(40.3)
(54.3)39.7
(54.3)
8Comparative example
8
(38.4)39.7
(38.4)
(55.8)38.4
(55.8)
5Example
5
(Cu) 14.0
(Cu)
(La) 3.0
(La)
(64.3)23.0
(64.3)
(83.2)14.6
(83.2)
6Example
6
(64.7)22.8
(64.7)
(88.5)10.0
(88.5)
7Example
7
(64.5)22.9
(64.5)
(78.8)18.4
(78.8)
8Example
8
(59.5)26.1
(59.5)
(76.7)20.2
(76.7)
9Example
9
(67.4)21.0
(67.4)
(79.7)17.6
(79.7)
10Example
10
(71.0)18.5
(71.0)
(84.3)13.6
(84.3)
11Example
11
(71.9)18.1
(71.9)
(76.7)20.2
(76.7)
12Example
12
(69.3)19.8
(69.3)
(79.8)17.5
(79.8)
13Example
13
(70.7)18.9
(70.7)
(78.8)18.4
(78.8)
14Example
14
(67.8)20.8
(67.8)
(79.7)17.6
(79.7)
15Example
15
(71.9)18.1
(71.9)
(83.3)14.5
(83.3)
16Example
16
(74.4)16.5
(74.4)
(80.5)16.9
(80.5)
17Example
17
(69.3)19.8
(69.3)
(82.6)15.1
(82.6)
18Example
18
(71.0)18.7
(71.0)
(89.1)9.5
(89.1)
19Example
19
(75.3)15.9
(75.3)
(92.3)6.7
(92.3)
20Example
20
(76.3)15.3
(76.3)
(90.2)8.5
(90.2)
상기 [표 4]에 기재된 내용과 같이, 팜오일을 수소화 반응처리한 결과 본 발명에 따른 촉매를 사용한 실시 예 5 내지 20은 비교 예 5 내지 8에 비해 산가 및 요오드가의 저감 효율이 우수한 것을 확인할 수 있었다. As described in the above [Table 4], as a result of the hydrogenation reaction of palm oil, Examples 5 to 20 using the catalyst according to the present invention confirmed that the reduction efficiency of acid value and iodine value was superior to Comparative Examples 5 to 8. Could.
(실시 예 21 내지 28 및 비교 예 9, 10)(Examples 21 to 28 and Comparative Examples 9 and 10)
아래 [표 5]는 쥐치어유를 원료로 하여 수소화 반응시킨 결과 산가 및 요오드가를 나타낸 것이다. [Table 5] below shows the acid value and iodine value as a result of hydrogenation reaction using juvenile oil as a raw material.
아래 [표 5]의 실시 예 21 내지 28은 상기 촉매 2의 방법에 따라 제조한 촉매를 사용하였고, 비교 예 9, 10은 촉매 4의 방법에 따라 제조한 촉매를 사용하여 수소화 반응을 실시하였다. Examples 21 to 28 in Table 5 below used a catalyst prepared according to the method of Catalyst 2, and Comparative Examples 9 and 10 were subjected to a hydrogenation reaction using a catalyst prepared according to the method of Catalyst 4.
(중량부)catalyst
(Parts by weight)
(저감율 %)Property evaluation
(% Reduction)
Ni
M 2+
금속La family
metal
지지체Al 2 O 3
Support
(℃)Temperature
(℃)
(mg-KOH/g)Acid
(mg-KOH / g)
(쥐치
어유)Raw material
(Fish
Fish oil)
9Comparative example
9
(37.9)92.3
(37.9)
(21.1)8.6
(21.1)
10Comparative example
10
(41.1)87.5
(41.1)
(32.1)7.4
(32.1)
21Example
21
(Zn)14.0
(Zn)
(La)5.0
(La)
(77.0)34.3
(77.0)
(81.7)2.0
(81.7)
22Example
22
(79.9)29.9
(79.9)
(78.0)2.4
(78.0)
23Example
23
(76.7)34.6
(76.7)
(67.0)3.6
(67.0)
24Example
24
(74.5)37.9
(74.5)
(61.5)4.2
(61.5)
25Example
25
(Fe) 16.0
(Fe)
(Pr) 6.5
(Pr)
(77.3)33.8
(77.3)
(74.3)2.8
(74.3)
26Example
26
(76.7)34.5
(76.7)
(67.9)3.5
(67.9)
27Example
27
(80.7)28.7
(80.7)
(69.7)3.3
(69.7)
28Example
28
(78.3)32.2
(78.3)
(79.8)2.2
(79.8)
상기 [표 5]에 기재된 내용과 같이, 쥐치어유를 수소화 반응처리한 결과 본 발명에 따른 촉매를 사용한 실시 예 21 내지 28은 비교 예 9, 10에 비해 산가 및 요오드가의 저감 효율이 우수한 것을 확인할 수 있었다. As described in [Table 5], as a result of hydrogenating the juvenile oil, Examples 21 to 28 using the catalyst according to the present invention confirmed that the reduction efficiency of acid value and iodine value was superior to Comparative Examples 9 and 10. Could.
이와 같이 본 발명에 따른 수소화 반응 촉매를 사용하여 캐슈넛 껍질유와 팜오일을 혼합한 혼합유, 팜오일 및 쥐치어유를 대상으로 수소화 처리한 결과 본 발명에 따른 촉매를 사용한 실시 예들이 비교 예들에 비해 산가 및 요오드가의 저감 효율이 우수한 것을 알 수 있었다.As a result of the hydrogenation of the mixed oil, palm oil and juvenile oil in which cashew nut shell oil and palm oil were mixed using the hydrogenation reaction catalyst according to the present invention, the examples using the catalyst according to the present invention were compared to the comparative examples. It turned out that the reduction efficiency of acid value and iodine value is excellent.
상술한 바와 같은, 본 발명의 바람직한 실시 예에 따른 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매 및 이를 이용한 동식물유의 산가 및 요오드가 저감 방법을 설명하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, the hydrogenation reaction of animal and vegetable oil for use as bio heavy oil according to a preferred embodiment of the present invention, and the acid value and iodine value reduction method of animal and vegetable oil using the same have been described, but this is only described for example and the present invention Those skilled in the art will appreciate that various changes and modifications can be made without departing from the technical spirit.
Claims (7)
상기 반응촉진제는 란터넘(La)족 금속으로, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 또는 Lu 중에서 1종 또는 그 이상을 선택하고,
상기 2가 금속(M2+)은 Fe2+, Co2+, Cu2+ 또는 Zn2+ 중에서 1종을 선택하는 것을 특징으로 하는 바이오중유로 사용하기 위한 동식물유의 수소화 반응 촉매.
Nickel (Ni) was formed on an aluminum oxide porous support calcined by supporting 0.1 to 6.5 parts by weight of reaction accelerator, 14.5 to 24.0 parts by weight of nickel (Ni), and 6.5 to 16.0 parts by weight of divalent metal (M 2+ ), based on 100 parts by weight of the porous support. ) And the bivalent metal (M 2 + ) to support the firing,
The reaction promoter is a Lanternum (La) group metal, and at least one selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu and,
The divalent metal (M 2+ ) is a hydrogenation catalyst of animal and vegetable oil for use as bio heavy oil, characterized in that one selected from Fe 2+ , Co 2+ , Cu 2+ or Zn 2+ .
Using the hydrogenation catalyst according to claim 1 to reduce the acid value and iodine by hydrogenating the animal and vegetable oil at a pressure of 5 ~ 80 Bar, a space velocity of 1 ~ 10 h -1 and 250 ~ 400 ℃ conditions Method for reducing acid value and iodine value of animal and vegetable oils.
상기 동식물유는 코코넛유, 옥수수유, 면실유, 땅콩류, 올리브유, 팜유, 팜액유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 어유, 우지, 돈지, 가금지방 및 이들의 지방산 또는 폐유로 이루어진 군으로부터 선택되는 1종 또는 그 이상의 혼합물인 것을 특징으로 하는 동식물유의 산가 및 요오드가 저감 방법.The method of claim 5,
The animal and vegetable oils include coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, fish oil, tallow, pork and poultry fat. And one or more mixtures selected from the group consisting of fatty acids or waste oils thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170150844A KR102035536B1 (en) | 2017-11-13 | 2017-11-13 | Hydrogenation catalyst of animal and vegetable oil for use as bio heavy fuel oil and its acid value and iodine reduction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170150844A KR102035536B1 (en) | 2017-11-13 | 2017-11-13 | Hydrogenation catalyst of animal and vegetable oil for use as bio heavy fuel oil and its acid value and iodine reduction method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190054497A KR20190054497A (en) | 2019-05-22 |
KR102035536B1 true KR102035536B1 (en) | 2019-10-23 |
Family
ID=66680742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170150844A KR102035536B1 (en) | 2017-11-13 | 2017-11-13 | Hydrogenation catalyst of animal and vegetable oil for use as bio heavy fuel oil and its acid value and iodine reduction method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102035536B1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1260474B (en) * | 1992-05-28 | 1996-04-09 | METAL CATALYST SUPPORTED FOR THE HYDROGENATION OF ORGANIC COMPOUNDS AND ITS PREPARATION PROCEDURE | |
US5356847A (en) | 1992-11-10 | 1994-10-18 | Engelhard Corporation | Nickel catalyst |
JP5005451B2 (en) | 2007-07-13 | 2012-08-22 | Jx日鉱日石エネルギー株式会社 | Method for producing hydrocarbon oil |
KR101234121B1 (en) | 2010-07-16 | 2013-02-19 | 에스케이이노베이션 주식회사 | Preparing method of organic phase change material from animal and vegetable oil |
KR101247612B1 (en) | 2011-07-11 | 2013-04-04 | (주)에스엠피오티 | Homogeneous catalyst for preparing bio-diesel from high acid value bio-oils |
-
2017
- 2017-11-13 KR KR1020170150844A patent/KR102035536B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
M. Konkol 외, 'Characteristics and catalytic behavior of NiAlCe catalysts in the hydrogenation of canola oil: the effect of cerium on cis/trans selectivity', Reaction Kinetics, Mechanisms and Catalysis, Vol. 119, pp. 595-613 (2016)* |
Also Published As
Publication number | Publication date |
---|---|
KR20190054497A (en) | 2019-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Naagar et al. | Nanoferrites heterogeneous catalysts for biodiesel production from soybean and canola oil: a review | |
US9162212B2 (en) | Supported catalyst systems and method of making biodiesel products using such catalysts | |
TWI639692B (en) | Catalyst for hydrogenation decomposition treatment and method for seeking hydrocarbon | |
Sahu et al. | A review on biodiesel production through heterogeneous catalysis route | |
JP5470382B2 (en) | Production method of fatty acid alkyl ester | |
JP2007153927A (en) | Hydro-refining method and hydro-refined oil | |
Yusuff et al. | Optimization of biodiesel production from waste frying oil over alumina supported chicken eggshell catalyst using experimental design tool | |
KR20120073237A (en) | Aviation fuel oil composition | |
Yusuff et al. | Calcium oxide supported on coal fly ash (CaO/CFA) as an efficient catalyst for biodiesel production from Jatropha curcas oil | |
JP2015113405A (en) | Fuel oil base and method of producing the same, and fuel oil composition | |
Lamba et al. | Catalytic synthesis of fatty acid methyl esters from Madhuca indica oil in supercritical methanol | |
KR20110054298A (en) | Method of hydrocarbon production from biological origins using hydrotalcites as catalysts | |
KR102035536B1 (en) | Hydrogenation catalyst of animal and vegetable oil for use as bio heavy fuel oil and its acid value and iodine reduction method | |
JP5072444B2 (en) | Method for producing light oil composition | |
CN104478647A (en) | Method for preparing hexane by catalyzing biomass in water phase | |
CN107303489B (en) | Double-bond saturation and hydrodeoxygenation catalyst and preparation method and application thereof | |
CN110871083A (en) | Bulk hydrodeoxygenation catalyst and preparation method thereof | |
KR102047029B1 (en) | Method for reduce acid value and iodine using transition metal carbide catalyst for the production of biofuel from animal and vegetable oil | |
JP6744098B2 (en) | Method for producing hydrocarbon fraction | |
CN113926459B (en) | Magnetic carbon-based catalyst and method for preparing biodiesel by using same | |
CN109294746A (en) | A kind of method that grease type raw material adds hydrogen to prepare diesel oil distillate | |
JP6175640B2 (en) | A catalyst for producing a hydrogen-containing gas and a method for producing a hydrogen-containing gas using the catalyst. | |
JP5091762B2 (en) | Gas oil base and gas oil composition | |
RU2602278C1 (en) | Catalyst and process of hydrodeoxygenation of vegetal raw materials and its application | |
JP6744099B2 (en) | Method for producing hydrocarbon fraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |