KR102020593B1 - Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same - Google Patents

Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same Download PDF

Info

Publication number
KR102020593B1
KR102020593B1 KR1020130029935A KR20130029935A KR102020593B1 KR 102020593 B1 KR102020593 B1 KR 102020593B1 KR 1020130029935 A KR1020130029935 A KR 1020130029935A KR 20130029935 A KR20130029935 A KR 20130029935A KR 102020593 B1 KR102020593 B1 KR 102020593B1
Authority
KR
South Korea
Prior art keywords
cement
graphene
weight
cement mortar
carbon nanotubes
Prior art date
Application number
KR1020130029935A
Other languages
Korean (ko)
Other versions
KR20140115174A (en
Inventor
이행기
박일성
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020130029935A priority Critical patent/KR102020593B1/en
Publication of KR20140115174A publication Critical patent/KR20140115174A/en
Application granted granted Critical
Publication of KR102020593B1 publication Critical patent/KR102020593B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/02Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets
    • E04F2290/023Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets for heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/2081Floor or wall heating panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Floor Finish (AREA)
  • Central Heating Systems (AREA)

Abstract

본 발명은 열전도성 시멘트 모르타르를 이용한 바닥 난방구조체 및 그 시공방법에 관한 것으로, 본 발명에 따른 열전도성 시멘트 모르타르를 이용한 바닥 난방구조체는, 바닥면 상에 시공되는 온수배관과; 상기 온수배관이 매립되도록 바닥면 상에 타설되며, 탄소나노튜브, 또는 그래핀, 또는 탄소나노튜브 및 그래핀을 혼입한 시멘트 모르타르층을 포함하는 것을 특징으로 한다. The present invention relates to a floor heating structure using a thermally conductive cement mortar and a construction method thereof. The floor heating structure using the thermally conductive cement mortar according to the present invention comprises: a hot water pipe constructed on a floor; The hot water pipe is embedded on the bottom surface to be embedded, characterized in that it comprises a carbon nanotube, or graphene, or a cement mortar layer incorporating carbon nanotubes and graphene.

Description

열전도성 시멘트 모르타르를 이용한 바닥 난방구조체 및 그 시공방법{Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same}Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same}

본 발명은 바닥 난방구조체 및 그 시공방법에 관한 것으로, 더욱 상세하게는 열전도도가 높은 탄소나노튜브와 그래핀을 혼합한 시멘트 모르타르를 이용하여 난방 효율을 증진시킬 수 있는 바닥 난방 바닥구조체 및 그 시공방법에 관한 것이다. The present invention relates to a floor heating structure and a construction method thereof, and more particularly, a floor heating floor structure and a construction thereof that can improve heating efficiency by using a cement mortar mixed with carbon nanotubes and graphene having high thermal conductivity. It is about a method.

우리 나라의 일반 주거용 바닥구조는 온수 배관을 매설하고 온수 배관 내부에 있는 온수를 이용하여 바닥을 가열하는 온돌 방식의 난방구조가 일반화되어 있다. 그러나 종래의 바닥 난방구조는 마감 모르타르층으로 인해 배관의 온수 열이 모르타르를 통해 바닥 전체로 전달되는 시간이 길다. 또한 난방 효율을 높이기 위해 온수 배관의 설치량을 증가시키게 되면 공사비와 난방비가 하는 등의 문제가 발생한다. The general residential floor structure of our country has a generalized ondol heating structure that embeds hot water pipes and heats the floor using hot water inside the hot water pipes. However, the conventional floor heating structure has a long time for the hot water heat of the pipe is transferred to the entire floor through the mortar due to the finishing mortar layer. In addition, if the installation amount of the hot water pipes is increased to increase heating efficiency, problems such as construction cost and heating cost occur.

이러한 문제를 해결하기 위하여 아래의 선행기술문헌들에 제시된 것과 같이 시멘트 모르타르에 금속분말 또는 흑연, 강섬유를 혼입시켜 바닥 난방구조를 시공하고 있다. In order to solve this problem, the floor heating structure is constructed by incorporating metal powder, graphite, or steel fiber into cement mortar as shown in the following prior art documents.

그러나, 시멘트 모르타르에 금속분말 또는 흑연, 강섬유를 혼입하는 방식은 열전도도의 증대 효과가 그리 높지는 않거나, 제작에 많은 비용이 소요되는 문제가 있다. However, the method of incorporating metal powder, graphite, or steel fiber into the cement mortar has a problem in that the effect of increasing the thermal conductivity is not very high or expensive to manufacture.

대한민국 등록특허 제10-0519443호(2005년 09월 28일 등록) : 난방구조를 갖는 방바닥에 시공되는 시멘트 몰탈 및 그제조방법Republic of Korea Patent Registration No. 10-0519443 (September 28, 2005 registration): Cement mortar to be installed on the floor having a heating structure and its manufacturing method 대한민국 공개특허 제10-2002-0001283호(2002년01월09일 공개) : 강섬유 모르타르를 이용한 바닥 난방구조Republic of Korea Patent Publication No. 10-2002-0001283 (January 09, 2002 published): Floor heating structure using steel fiber mortar

본 발명은 상기와 같은 문제를 해결하기 위한 것으로, 본 발명의 목적은 열전도가 매우 우수한 탄소나노튜브 및/또는 그래핀을 균일하게 혼입하여 저렴한 비용으로 높은 열전도 효과를 얻을 수 있는 열전도성 시멘트 모르타르를 이용한 바닥 난방구조체 및 그 시공방법을 제공함에 있다. The present invention is to solve the above problems, an object of the present invention by uniformly mixing the carbon nanotubes and / or graphene excellent in thermal conductivity to obtain a thermally conductive cement mortar that can obtain a high thermal conductivity effect at low cost The present invention provides a floor heating structure and a construction method thereof.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 바닥 난방구조체는, 바닥면 상에 시공되는 온수배관과; 상기 온수배관이 매립되도록 바닥면 상에 타설되며, 탄소나노튜브, 또는 그래핀, 또는 탄소나노튜브 및 그래핀을 혼입한 시멘트 모르타르층을 포함하는 것을 특징으로 한다. Floor heating structure according to the present invention for achieving the above object, the hot water pipe is constructed on the floor; The hot water pipe is embedded on the bottom surface to be embedded, characterized in that it comprises a carbon nanotube, or graphene, or a cement mortar layer incorporating carbon nanotubes and graphene.

본 발명의 다른 한 형태에 따르면, (a) 바닥면 상에 온수배관을 설치하는 단계와; (b) 시멘트와 모래 및 실리카퓸을 혼합하여 설정시간 동안 건비빔하는 단계와; (c) 상기 시멘트와 모래 및 실리카퓸의 혼합물에 탄소나노튜브 또는 그래핀, 또는 탄소나노튜브와 그래핀을 혼입하여 설정시간 동안 건비빔하는 단계와; (d) 상기 혼합물에 물을 첨가하고, 설정시간 동안 교반하여 시멘트 모르타르를 제작하는 단계와; (e) 상기 시멘트 모르타르를 상기 바닥면에 타설하여 온수배관을 매립하는 단계를 포함하는 바닥 난방구조체의 시공방법이 제공된다.According to another aspect of the invention, (a) installing a hot water pipe on the bottom surface; (b) mixing the cement with sand and silica fume to dry the beam for a set time; (c) incorporating carbon nanotubes or graphene, or carbon nanotubes and graphene into the mixture of cement, sand, and silica fume, and performing a dry beam for a predetermined time; (d) adding water to the mixture and stirring for a set time to produce cement mortar; (e) A method of constructing a floor heating structure comprising the step of embedding the cement mortar on the bottom surface to bury a hot water pipe.

이와 같은 본 발명에 따르면, 열전도도가 매우 우수하며 저렴한 비용으로 구입할 수 있는 탄소나노튜브 및/또는 그래핀을 시멘트에 혼입하여 열전도성이 매우 우수한 시멘트 모르타르를 제작하고, 이 시멘트 모르타르를 바닥 마감층으로 도포하여 바닥 난방구조체를 시공할 수 있다. 따라서 저렴한 비용으로 열전도성이 우수한 바닥 난방구조체를 구현할 수 있으며, 온수배관의 길이를 줄일 수 있는 효과가 있다. According to the present invention, by incorporating carbon nanotubes and / or graphene, which are very excellent in thermal conductivity and can be purchased at low cost, into cement, a cement mortar having excellent thermal conductivity is manufactured, and the cement mortar is used as a floor finishing layer. Can be applied to the floor heating structure. Therefore, it is possible to implement a floor heating structure with excellent thermal conductivity at a low cost, it is possible to reduce the length of the hot water pipe.

도 1은 본 발명의 일 실시예에 따른 바닥 난방구조체를 나타낸 요부 단면도이다.
도 2는 본 발명의 바닥 난방구조체의 시공방법을 설명하는 순서도이다.
도 3은 본 발명에 따른 바닥 난방구조체를 위한 시멘트 모르타르 시험체와 일반 시멘트 모르타르의 열전도도를 비교하여 나타낸 그래프이다.
도 4는 일반 시멘트 모르타르 대비 본 발명의 시멘트 모르타르 시험체들의 열전도도 향상 비율을 나타낸 그래프이다.
1 is a cross-sectional view of main parts showing a floor heating structure according to an embodiment of the present invention.
Figure 2 is a flow chart illustrating a construction method of the floor heating structure of the present invention.
3 is a graph showing the thermal conductivity of the cement mortar test specimen and the general cement mortar for the floor heating structure according to the present invention.
Figure 4 is a graph showing the thermal conductivity improvement rate of the cement mortar test specimens of the present invention compared to the general cement mortar.

이하 첨부된 도면을 참조하여 본 발명에 따른 열전도성 시멘트 모르타르를 이용한 바닥 난방구조체 및 그 시공방법의 바람직한 실시예를 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the floor heating structure and the construction method using the thermally conductive cement mortar according to the present invention.

도 1을 참조하면, 본 발명의 바닥 난방구조체는 건축물의 콘크리트 슬래브(11) 상에 차례로 시공되면서 바닥면을 형성하는 단열재층(12) 및 경량기포 콘크리트층(13)과, 상기 경량기포 콘크리트층(13) 상에 시공되는 온수배관(20)과, 상기 온수배관(20)이 매립되도록 경량기포 콘크리트층(13)의 상면에 타설되는 시멘트 모르타르층(30)을 포함한다. 상기 시멘트 모르타르층(30) 상에는 바닥재(40)가 시공된다. Referring to Figure 1, the floor heating structure of the present invention is installed on the concrete slab 11 of the building in order to form a bottom surface and the insulation layer 12 and light-weight foam concrete layer 13, and the light-weight foam concrete layer The hot water pipe 20 to be installed on the (13) and the hot water pipe 20 includes a cement mortar layer 30 that is poured on the upper surface of the lightweight foamed concrete layer 13 to be embedded. The flooring material 40 is constructed on the cement mortar layer 30.

상기 온수배관(20)은 단열재층(12) 및 경량기포 콘크리트층(13) 상에 시공되는 것으로 예시되었지만, 이와 다르게 온수배관(20)이 콘크리트 슬래브(11) 상에 바로 시공되거나, 콘크리트 슬래브(11) 상에 시공되는 여타의 다른 구조물 상에 시공될 수도 있다. Although the hot water pipe 20 is illustrated as being installed on the heat insulating material layer 12 and the light-weight foam concrete layer 13, the hot water pipe 20 is installed directly on the concrete slab 11 or the concrete slab ( 11) may be constructed on any other structure constructed on it.

상기 시멘트 모르타르층(30)은 바닥 마감층으로서 바닥면 상에 타설되어 시공되는데, 상기 시멘트 모르타르층(30)은 탄소나노튜브와 그래핀 중 어느 한 종을 시멘트와 모래에 혼입하거나, 또는 탄소나노튜브와 그래핀을 함께 시멘트와 모래에 혼입하여 제작한 시멘트 모르타르에 의해 시공됨으로써 우수한 열전도성을 갖는다. The cement mortar layer 30 is constructed by placing on the bottom surface as a bottom finishing layer, the cement mortar layer 30 is any one of carbon nanotubes and graphene mixed in cement and sand, or carbon nano It is constructed by cement mortar made by mixing the tube and graphene together with cement and sand, and has excellent thermal conductivity.

좀 더 구체적으로 설명하면, 상기 시멘트 모르타르층(30)은 시멘트와 모래를 1:1~3의 중량비로 혼합하며, 물은 시멘트 중량을 기준으로 44~66 중량%, 실리카퓸은 시멘트 중량 기준 10~20 중량%, 탄소나노튜브 또는 그래핀, 또는 탄소나노튜브 및 그래핀은 시멘트 중량 기준 0.1~1.0 중량%, 초유동화제는 시멘트 중량 기준 0.005~0.01 중량%(바람직하기로 0.008 중량%)로 혼입하여 만들어진다. More specifically, the cement mortar layer 30 mixes cement and sand in a weight ratio of 1: 1 to 3, water is 44 to 66% by weight based on cement weight, and silica fume is based on cement weight 10 ~ 20% by weight, carbon nanotubes or graphene, or 0.1 to 1.0% by weight of carbon nanotubes and graphene, and 0.005 to 0.01% by weight of cement (preferably 0.008% by weight) of cement It is made by mixing.

상기 탄소나노튜브 및 그래핀이 함께 혼입되는 경우, 탄소나노튜브 및 그래핀은 1:1의 중량비로 혼입되는 것이 바람직하다. When the carbon nanotubes and graphene are mixed together, the carbon nanotubes and graphene are preferably mixed in a weight ratio of 1: 1.

탄소나노튜브(CNT : Carbon Nanotube)는 튜브형태의 나노크기의 작은 입자로서 sp2라는 강한 화학결합에 의한 독특한 구조적, 화학적, 기계적 및 전기적 성질을 바탕으로 여러 분야에서 활용되고 있다. 상기 탄소나노튜브는 다양한 종류의 것이 사용될 수 있지만, 단일벽 탄소나노튜브(Single-wall carbon nanotubes)를 사용하는 것이 바람직하다.Carbon nanotubes (CNTs) are small sized nanoparticles in the form of tubes, and are used in various fields based on their unique structural, chemical, mechanical and electrical properties due to the strong chemical bond called sp2. The carbon nanotubes may be used in various kinds, but it is preferable to use single-wall carbon nanotubes.

상기 그래핀(graphene)은 탄소의 동소체 중 하나로 탄소 원자들이 각각 sp2 결합으로 연결된 원자 하나 두께의 2차원 구조로 이루어지며, 벤젠 형태의 탄소 고리가 벌집 형태의 결정 구조를 이룬다.The graphene (graphene) is one of the allotrope of carbon is composed of a two-dimensional structure of one atom thick carbon atoms are each connected by sp2 bond, the benzene carbon ring forms a honeycomb crystal structure.

상기 탄소나노튜브와 그래핀은 아래의 표 1을 통해 알 수 있는 것과 같이 다른 금속 재료에 비하여 매우 우수한 열전도도를 가지고 있다. 즉 탄소나노튜브와 그래핀의 경우 은과 구리보다 약 7~10배, 알루미늄보다는 약 15~30배, 황동보다 약 30~60배, 니켈과 철보다 약 40~70배 높은 열전도도를 확인할 수 있다. 이러한 특성은 탄소나노튜브와 그래핀이 효과적인 열 분산자(heat spreadr)로서 역할을 할 수 있는 가능성을 보여준다. 따라서 상기 탄소나노튜브 및/또는 그래핀이 혼입됨으로 인해 상기 시멘트 모르타르층(30)은 매우 우수한 열전도성을 갖게 됨을 알 수 있다. The carbon nanotubes and graphene have a very good thermal conductivity compared to other metal materials as can be seen through Table 1 below. In other words, carbon nanotubes and graphene have a thermal conductivity of about 7 to 10 times higher than silver and copper, about 15 to 30 times higher than aluminum, about 30 to 60 times higher than brass, and about 40 to 70 times higher than nickel and iron. have. These properties show the possibility that carbon nanotubes and graphene can act as effective heat spreaders. Therefore, it can be seen that the cement mortar layer 30 has very excellent thermal conductivity due to mixing of the carbon nanotubes and / or graphene.

재료material 열전도도 W/(m·K)Thermal Conductivity W / (mK) 단일벽 탄소나노튜브(SWNT)Single Wall Carbon Nanotubes (SWNT) ~6000To 6000 다중벽 탄소나노튜브(MWNT)Multi-walled Carbon Nanotubes (MWNT) ~3000To 3000 그래핀(Graphene)Graphene 50005000 silver 429429 구리Copper 400400 알루미늄aluminum 205205 황동Brass 109109 니켈nickel 9191 iron 8080

상기 실리카퓸은 10~500 nm의 탄소나노튜브와 같은 작은 입자크기를 갖는 나노소재로서 시멘트 내에서 탄소나노튜브를 물리적으로 분산하는 작용을 한다. 상기 시멘트 모르타르층(30)에 혼입되는 실리카퓸은 각각 시멘트 중량 기준 10 ~ 20%인 것이 바람직하다. The silica fume is a nanomaterial having a small particle size, such as carbon nanotubes of 10 ~ 500 nm serves to physically disperse the carbon nanotubes in cement. Silica fume mixed in the cement mortar layer 30 is preferably 10 to 20% by weight of the cement.

다음으로 도 2를 참조하여 상기와 같은 본 발명의 바닥 난방구조체를 시공하는 방법에 대해 설명한다. Next, a method of constructing the floor heating structure of the present invention as described above will be described with reference to FIG. 2.

먼저 건축물의 바닥면 상에 온수배관(20)을 시공한다(단계 S1). 그리고 시멘트와 모래 및 실리카퓸을 혼합하여 설정시간 동안 건비빔하는 단계(S2)와, 상기 시멘트와 모래 및 실리카퓸의 혼합물에 탄소나노튜브 또는 그래핀, 또는 탄소나노튜브와 그래핀을 혼입하여 설정시간 동안 건비빔하는 단계(S3)와, 상기 혼합물에 초유동화제를 첨가한 물을 첨가하고 설정시간 동안 교반하여(단계 S4) 시멘트 모르타르를 제작한다. First, the hot water pipe 20 is constructed on the floor of the building (step S1). And mixing the cement, sand, and silica fume for dry setting for a predetermined time (S2), and mixing carbon nanotube or graphene, or carbon nanotube and graphene in the mixture of cement, sand, and silica fume. Drying the beam for a time (S3), and the superfluiding agent is added to the mixture of water and stirred for a set time (step S4) to prepare a cement mortar.

이어서 상기와 같이 제작된 시멘트 모르타르를 바닥면 상에 타설하고 미장하여 온수배관(20)을 매립한 다음(단계 S5), 시멘트 모르타르가 경화되어 형성된 시멘트 모르타르층(30)(도 1참조) 상에 바닥재(40)(도 1참조)를 시공한다(단계 S6). Subsequently, the cement mortar prepared as described above is poured and plastered to fill the hot water pipe 20 (step S5), and then on the cement mortar layer 30 (see FIG. 1) formed by curing the cement mortar. The flooring material 40 (refer FIG. 1) is constructed (step S6).

상기 시멘트 모르타르 제작 단계(S2 ~S4)에서 혼합되는 각각의 재료의 혼합비는 전술한 것과 같다. 즉, 시멘트와 모래를 1 : 1~3의 중량비로 혼합하며, 물은 시멘트 중량을 기준으로 44~66%, 실리카퓸은 시멘트 중량 기준 10~20 중량%, 탄소나노튜브 또는 그래핀, 또는 탄소나노튜브 및 그래핀은 시멘트 중량 기준 0.1~1.0 중량%, 초유동화제는 시멘트 중량 기준 0.005~0.01 중량%로 혼입하여 시멘트 모르타르를 제작한다. 상기 탄소나노튜브 및 그래핀이 함께 혼입되는 경우, 탄소나노튜브 및 그래핀은 동일한 중량비, 즉 1:1의 중량비로 혼입되는 것이 바람직하다.
The mixing ratio of each material to be mixed in the cement mortar manufacturing step (S2 ~ S4) is as described above. That is, cement and sand are mixed at a weight ratio of 1: 1 to 3, water is 44 to 66% based on cement weight, silica fume is 10 to 20% by weight based on cement weight, carbon nanotubes or graphene, or carbon Nanotubes and graphene are mixed with 0.1 to 1.0% by weight based on cement weight, and superfluidizing agent is mixed with 0.005 to 0.01% by weight based on cement weight to produce cement mortar. When the carbon nanotubes and graphene are mixed together, the carbon nanotubes and graphene are preferably mixed in the same weight ratio, that is, in a weight ratio of 1: 1.

실시예 1Example 1

아래의 표 2는 본 발명의 바닥 난방구조체를 구현하기 위한 시멘트 모르타르의 배합비의 일 실시예를 나타낸다.Table 2 below shows an embodiment of the mixing ratio of cement mortar for implementing the floor heating structure of the present invention.

무게(g)Weight (g)


water

시멘트

cement

실리카퓸

Silica fume

모래

sand

초유동화제

Superfluidizer

탄소나노튜브(CNT)

Carbon Nanotubes (CNT)

그래핀
(Graphene)

Graphene
(Graphene)
CNT : Graphene
( 1 : 1)
CNT: Graphene
(1: 1)
CNTCNT GrapheneGraphene 49.549.5 100100 1010 160160 0.0080.008 0.30.3 0.30.3 0.150.15 0.150.15

상기 배합비로 제작된 굳지 않은 시멘트 모르타르를 15×15×5㎝ 의 몰드에 타설하고, 양생실에서 1일동안 기건양생하여 시험체를 제작한 다음, 상기 시험체를 몰드에서 탈형하고 27일 동안 수중양생하였다. 재령 28일에 수중양생 중에 있는 시험체를 꺼내어 완전 건조상태로 만들기 위해 110±5 ℃의 오븐기에 3일 동안 건조시킨 후, 완전건조상태로 된 시험체의 열전도도를 측정하였다. The cement cement mortar prepared in the above compounding ratio was poured into a mold of 15 × 15 × 5 cm, dried in a curing room for 1 day to prepare a test body, and then the test body was demolded from the mold and cured under water for 27 days. . On the 28th day, the specimens in aquatic curing were taken out and dried in an oven at 110 ± 5 ° C. for 3 days to make them completely dry, and then the thermal conductivity of the specimens in the completely dried state was measured.

도 3에서 비교 모르타르(Reference mortar)는 탄소나노튜브와 그래핀이 혼합되지 않은 일반 시멘트 모르타르이다. 도 3에 도시된 것과 같이, 일반 시멘트 모르타르는 0.43(W/mk)의 열전도도를 나타내었고, 그래핀만 혼합될 경우 0.64(W/mk), 탄소나노튜브(CNT)만 혼합될 경우 0.79(W/mk), 탄소난노튜브와 그래핀을 함께 혼합한 경우 0.82(W/mk)의 열전도도를 각각 나타내었다. In FIG. 3, reference mortar is a general cement mortar in which carbon nanotubes and graphene are not mixed. As shown in Figure 3, the general cement mortar showed a thermal conductivity of 0.43 (W / mk), 0.64 (W / mk) when only graphene is mixed, 0.79 (when only carbon nanotubes (CNT) are mixed W / mk), carbon nanotubes, and graphene were mixed together to show thermal conductivity of 0.82 (W / mk), respectively.

도 4는 일반 시멘트 모르타르 대비 그래핀 혼입 시멘트 모르타르, 탄소나노튜브 혼입 시멘트 모르타르, 탄소난노튜브와 그래핀 혼입 시멘트 모르타르의 열전도도 향상 비율을 나타낸 것이다.4 shows the thermal conductivity improvement rate of graphene mixed cement mortar, carbon nanotube mixed cement mortar, carbon nanotubes and graphene mixed cement mortar compared to general cement mortar.

도 4를 통해 알 수 있는 바와 같이, 그래핀을 혼입한 경우 일반 시멘트 모르타르에 비하여 약 49%, 탄소나노튜브를 혼입한 경우 약 84%, 그래핀과 탄소나노튜브를 함께 혼입한 경우 약 91%의 열전도도 향상 효과를 얻을 수 있다. As can be seen through Figure 4, when graphene is mixed about 49% compared to the general cement mortar, about 84% when carbon nanotubes are mixed, about 91% when graphene and carbon nanotubes are mixed together The thermal conductivity improvement effect of can be obtained.

이와 같이 본 발명에 따르면 탄소나노튜브 및/또는 그래핀을 시멘트에 혼입하여 제작된 열전도성이 매우 우수한 시멘트 모르타르를 이용하여 바닥 난방구조체를 구현할 수 있으므로 기존보다 더욱 향상된 열전도 성능을 얻을 수 있으며, 이에 따라 열효율을 향상시킬 수 있고, 온수배관의 길이를 줄일 수 있는 이점이 있다.As described above, according to the present invention, since the floor heating structure can be implemented using cement mortar having excellent thermal conductivity by mixing carbon nanotubes and / or graphene into cement, it is possible to obtain improved heat conduction performance. Accordingly, the thermal efficiency can be improved and the length of the hot water pipe can be reduced.

이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.Although the present invention has been described in detail with reference to the embodiments, those skilled in the art to which the present invention pertains will be capable of various substitutions, additions, and modifications without departing from the technical spirit described above. It is to be understood that such modified embodiments are also within the protection scope of the present invention as defined by the appended claims.

11 : 콘크리트 슬래브 12 : 단열재층
13 : 경량기포 콘크리트층 20 : 온수배관
30 : 시멘트 모르타르층 40 : 바닥재
11: concrete slab 12: insulation layer
13: light weight bubble concrete layer 20: hot water pipe
30: cement mortar layer 40: flooring

Claims (8)

바닥면 상에 시공되는 온수배관(20)과;
상기 온수배관(20)이 매립되도록 바닥면 상에 타설되며, 탄소나노튜브와 그래핀, 실리카퓸, 초유동화제를 시멘트 및 모래와 함께 혼입하여 만들어진 시멘트 모르타르층(30)을 포함하며,
상기 시멘트 모르타르층(30)은 시멘트와 모래를 1 : 1~3의 중량비로 혼합하며, 물은 시멘트 중량을 기준으로 44~66중량%, 실리카퓸은 시멘트 중량 기준 10~20 중량%, 탄소나노튜브 및 그래핀은 시멘트 중량 기준 0.1~1.0 중량%, 초유동화제는 시멘트 중량 기준 0.005~0.01 중량%로 혼입하며, 탄소나노튜브 및 그래핀은 1:1의 중량비로 혼입하여 만들어진 바닥 난방구조체.
Hot water pipe 20 is constructed on the bottom surface;
The hot water pipe 20 is placed on the bottom surface to be embedded, and includes a cement mortar layer 30 made by mixing carbon nanotubes, graphene, silica fume, superfluiding agent with cement and sand,
The cement mortar layer 30 is a mixture of cement and sand in a weight ratio of 1: 1 to 3, water is 44 ~ 66% by weight based on the cement weight, silica fume 10 ~ 20% by weight based on the cement weight, carbon nano Tube and graphene is 0.1 ~ 1.0% by weight based on cement weight, superfluidizer is mixed in 0.005 ~ 0.01% by weight based on cement weight, carbon nanotubes and graphene is mixed in a weight ratio of 1: 1 floor heating structure.
삭제delete 삭제delete 삭제delete 삭제delete (a) 바닥면 상에 온수배관(20)을 설치하는 단계와;
(b) 시멘트와 모래 및 실리카퓸을 혼합하여 설정시간 동안 건비빔하는 단계와;
(c) 상기 시멘트와 모래 및 실리카퓸의 혼합물에 탄소나노튜브 또는 그래핀, 또는 탄소나노튜브와 그래핀을 혼입하여 설정시간 동안 건비빔하는 단계와;
(d) 상기 혼합물에 초유동화제와 물을 첨가하고, 설정시간 동안 교반하여 시멘트 모르타르를 제작하는 단계와;
(e) 상기 시멘트 모르타르를 상기 바닥면에 타설하여 온수배관(20)을 매립하는 단계를 포함하며,
상기 (b) 단계 내지 (d) 단계를 수행하여 시멘트 모르타르를 제작할 때, 시멘트와 모래를 1 : 1~3의 중량비로 혼합하며, 물은 시멘트 중량을 기준으로 44~66중량%, 실리카퓸은 시멘트 중량 기준 10~20 중량%, 탄소나노튜브 및 그래핀은 시멘트 중량 기준 0.1~1.0 중량%, 초유동화제는 시멘트 중량 기준 0.005~0.01 중량%로 혼입하며, 탄소나노튜브 및 그래핀은 1:1의 중량비로 혼입하여 시멘트 모르타르를 제작하는 것을 특징으로 하는 바닥 난방구조체의 시공방법.
(a) installing the hot water pipe 20 on the bottom surface;
(b) mixing the cement with sand and silica fume to dry the beam for a set time;
(c) incorporating carbon nanotubes or graphene, or carbon nanotubes and graphene into the mixture of cement, sand, and silica fume, and performing a dry beam for a predetermined time;
(d) adding a superfluidizing agent and water to the mixture and stirring the mixture for a set time to produce cement mortar;
(e) embedding the cement mortar on the bottom surface to bury the hot water pipe 20;
When preparing the cement mortar by performing the steps (b) to (d), cement and sand are mixed at a weight ratio of 1: 1 to 3, water is 44 to 66% by weight based on the weight of cement, and silica fume is 10 to 20% by weight of cement, carbon nanotubes and graphene are mixed 0.1 to 1.0% by weight of cement, superfluidizing agent is 0.005 to 0.01% by weight of cement, carbon nanotubes and graphene 1: Construction method of a floor heating structure characterized in that the cement mortar is mixed by mixing in a weight ratio of 1.
삭제delete 삭제delete
KR1020130029935A 2013-03-20 2013-03-20 Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same KR102020593B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130029935A KR102020593B1 (en) 2013-03-20 2013-03-20 Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130029935A KR102020593B1 (en) 2013-03-20 2013-03-20 Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same

Publications (2)

Publication Number Publication Date
KR20140115174A KR20140115174A (en) 2014-09-30
KR102020593B1 true KR102020593B1 (en) 2019-09-10

Family

ID=51758591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130029935A KR102020593B1 (en) 2013-03-20 2013-03-20 Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same

Country Status (1)

Country Link
KR (1) KR102020593B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634136B1 (en) 2023-08-09 2024-02-06 현대건설(주) Ultra slim capillary tube floor cooling and heating system using pipe stand

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604293B (en) * 2016-02-03 2018-03-30 湖州浔烯纳米科技有限公司 A kind of energy saving and environment friendly nanometer heating floor
CN105605654B (en) * 2016-02-03 2018-12-04 湖州浔烯纳米科技有限公司 A kind of quick-heating type nanometer heating floor
CN107631344B (en) * 2017-09-30 2023-05-16 戴明 Graphene self-heating floor, manufacturing method and low-voltage self-heating floor system
CN107606679B (en) * 2017-09-30 2023-05-16 戴明 Graphene heat conduction floor and preparation method thereof
CN108253509A (en) * 2018-01-29 2018-07-06 江西飞晖科技有限公司 The multilayer of a kind of graphene-containing and aluminium alloy is rapidly heated electric heater
CN108332268A (en) * 2018-01-30 2018-07-27 四川省安德盖姆石墨烯科技有限公司 A kind of graphene Farinfrared electric heating
CN108839499A (en) * 2018-06-04 2018-11-20 无锡烯旺新材料科技有限公司 The infrared heating picture of graphene
CN109990372A (en) * 2019-04-17 2019-07-09 浙江禾子施能科技有限公司 A kind of graphene electric heater
KR102062393B1 (en) * 2019-07-29 2020-02-11 송두삼 Radiant floor heating system with corrosion proof heat sink and its control method
CN112194435A (en) * 2020-10-13 2021-01-08 盐城工学院 High-temperature-resistant cement-based composite material and preparation method thereof
KR102581874B1 (en) * 2021-07-21 2023-09-26 주식회사 삼화엔지니어링 Floor Structure Of Concrete Structures
CN115073208B (en) * 2022-07-04 2023-06-27 广东中地新材料科技有限公司 Heat accumulating type floor heating backfill layer and preparation method and application thereof
KR102504986B1 (en) * 2023-01-05 2023-03-03 서상률 Construction method of reinforced concrete structure using precast reinforced concrete column
KR102504985B1 (en) * 2023-01-05 2023-03-03 서상률 Construction structure of precast formwork integrated reinforced concrete

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137673B1 (en) * 2010-10-07 2012-04-20 이재환 Composition of nano composite
KR101187320B1 (en) 2012-06-19 2012-10-02 한대근 Exposed concrete pannel for exterior of building comprising additive of carbon source and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170834A (en) * 1994-12-16 1996-07-02 Stylite Kogyo Kk Structure of floor heating and applying method of floor heating
KR20020001283A (en) 2000-06-27 2002-01-09 신승교 Floor heating construction with steel fiber mortar
KR100519443B1 (en) 2002-12-06 2005-10-11 전한수 manufacture method thereof and Cement mortar for carry out the floor of a room having heating structure
KR20110075871A (en) * 2009-12-29 2011-07-06 김영일 The conductive concrete composition and the manufacturing method of conductive concrete using thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137673B1 (en) * 2010-10-07 2012-04-20 이재환 Composition of nano composite
KR101187320B1 (en) 2012-06-19 2012-10-02 한대근 Exposed concrete pannel for exterior of building comprising additive of carbon source and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634136B1 (en) 2023-08-09 2024-02-06 현대건설(주) Ultra slim capillary tube floor cooling and heating system using pipe stand

Also Published As

Publication number Publication date
KR20140115174A (en) 2014-09-30

Similar Documents

Publication Publication Date Title
KR102020593B1 (en) Floor Heating Structure With Thermal Conductive Cement Mortar and Method for Constructing the Same
Zhang et al. Flyweight, superelastic, electrically conductive, and flame‐retardant 3D multi‐nanolayer graphene/ceramic metamaterial
Xu et al. Characterization and engineering application of a novel ceramic composite insulation material
KR101804202B1 (en) Electrically conductive cememtitious composite
Chen et al. High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding
Kim et al. The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction
Ji et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites
Lee et al. Fluctuation of electrical properties of carbon-based nanomaterials/cement composites: Case studies and parametric modeling
CN105514066A (en) Composite graphene infrared radiation and heat conduction film and manufacturing method thereof
Zhou et al. Wood‐Derived, Vertically Aligned, and Densely Interconnected 3D SiC Frameworks for Anisotropically Highly Thermoconductive Polymer Composites
Tian et al. Enhanced effect of carbon nanofibers on heating efficiency of conductive cementitious composites under ohmic heating curing
Arabzadeh et al. Comparison between cement paste and asphalt mastic modified by carbonaceous materials: Electrical and thermal properties
JP2009508786A5 (en)
Balaji et al. Thermal conductivity studies on cement-stabilised soil blocks
KR102212288B1 (en) Exothermic Concrete using Liquid Carbon Nanotubes and Manufacturing Method
Jang et al. Cyclic heat-generation and storage capabilities of self-heating cementitious composite with an addition of phase change material
KR20210000061A (en) Remitar composition for manufacturing exothermic concrete and Method of exothermic concrete using the remitar composition
Sun et al. Enhancement in thermal conductivity of polymer composites through construction of graphene/nanodiamond bi-network thermal transfer paths
Janjaroen et al. The mechanical and thermal properties of cement CAST mortar/graphene oxide composites materials
Samuel et al. Thermal conductivity of several geopolymer composites and discussion of their formulation
KR102213185B1 (en) High Performance Cementitious Composites for Shielding Electromagnetic Pulse
Gong et al. A Spiral Graphene Framework Containing Highly Ordered Graphene Microtubes for Polymer Composites with Superior Through‐Plane Thermal Conductivity
Ding et al. Effect of nanoscale in situ interface welding on the macroscale thermal conductivity of insulating epoxy composites: a multiscale simulation investigation
Liang et al. Design of ultra-lightweight concrete: towards monolithic concrete structures
Wu et al. Construction of three-dimensional interconnected boron nitride/sliver networks within epoxy composites for enhanced thermal conductivity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant