KR102013530B1 - Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof - Google Patents

Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof Download PDF

Info

Publication number
KR102013530B1
KR102013530B1 KR1020180126461A KR20180126461A KR102013530B1 KR 102013530 B1 KR102013530 B1 KR 102013530B1 KR 1020180126461 A KR1020180126461 A KR 1020180126461A KR 20180126461 A KR20180126461 A KR 20180126461A KR 102013530 B1 KR102013530 B1 KR 102013530B1
Authority
KR
South Korea
Prior art keywords
graphite
negative electrode
dye
ion battery
lithium ion
Prior art date
Application number
KR1020180126461A
Other languages
Korean (ko)
Inventor
김광호
이승걸
윤제문
이원수
Original Assignee
재단법인 하이브리드 인터페이스기반 미래소재 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 하이브리드 인터페이스기반 미래소재 연구단 filed Critical 재단법인 하이브리드 인터페이스기반 미래소재 연구단
Priority to KR1020180126461A priority Critical patent/KR102013530B1/en
Application granted granted Critical
Publication of KR102013530B1 publication Critical patent/KR102013530B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An object of the present invention is to provide a negative electrode material of a carbon-based lithium ion battery, and to provide an efficient way to simultaneously dope elements, such as S, N, on the carbon material in a simplified process. In accordance with the object, the present invention provides a negative electrode material of a lithium ion battery, in which sulphur dye is mixed with a binder along with graphite in a powder form to produce slurry, and the slurry is placed on metal foil and heat-treated in a vacuum atmosphere. The present invention also relates to a method for manufacturing the same.

Description

염료―흑연 리튬이온 배터리용 음극재 및 그 제조방법{Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof}Dye-graphite anode material for graphite lithium ion battery and its manufacturing method {Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof}

본 발명은 리튬이온 배터리용 음극재 및 그 제조방법에 관한 것이다. The present invention relates to a negative electrode material for a lithium ion battery and a method of manufacturing the same.

리튬이온 배터리는 크기에 비해 용량이 높아 노트북, 드론 등 많은 전자기기에 널리 사용되는 이차전지이다. 한 번의 배터리 충전으로 좀 더 장시간 사용하기 위해서는 배터리를 고용량화할 필요가 있고, 그에 따라 배터리에 더 많은 이온을 담을 수 있는 전극활물질을 지속적으로 개발하고 있다. 또한, 리튬이온 배터리는 일정 횟수의 충방전 사이클을 넘게 되면 성능이 급저하되어 수명을 다하게 된다. 그에 따라 리튬이온 배터리의 음극재로서 안전성과 충방전 효율이 좋은 탄소재료를 고려하게 되었고, 현재 상용화된 음극재 물질은 흑연(graphite)이다. Lithium-ion battery is a secondary battery widely used in many electronic devices such as laptops and drones due to its large capacity. In order to use the battery for a longer time with a single battery charge, the battery needs to be increased in capacity, and accordingly, the electrode active material that can hold more ions in the battery is continuously developed. In addition, when a lithium ion battery exceeds a certain number of charge / discharge cycles, its performance decreases rapidly, resulting in end of life. Accordingly, carbon materials having good safety and charging and discharging efficiency are considered as negative electrode materials of lithium ion batteries, and the current commercially available negative electrode material is graphite.

도 1은 이차전지의 구성을 개략적으로 보여주며, 양극/음극/전해질/분리막을 기본적인 구성요소로 하고 있다. 음극재로서 상용화된 물질인 흑연 외에도 현재 Si, Ge, Sn, P, S, N 등이 연구되고 있다. 이들이 나타내는 이차전지 용량은 도 2에 표로 도시하였다. FIG. 1 schematically shows a configuration of a secondary battery, and has a basic component of a cathode / cathode / electrolyte / separation membrane. Si, Ge, Sn, P, S, N and the like are currently being studied in addition to graphite, which is a material commercialized as a negative electrode material. The secondary battery capacity they represent is shown in the table in FIG.

황은 큰 원자구조를 지니고 있어서 흑연의 d(002)면의 거리를 더 멀게 만들어서 리튬이온의 탈삽입을 용이하게 한다. 또한, 이들은 극성을 띠기 쉬운 비공유전자쌍을 지니고 있어서 주변 탄소의 전하가 바뀌기 쉽도록 도와준다. Sulfur has a large atomic structure that makes the d (002) plane of graphite farther away, thereby facilitating the intercalation of lithium ions. In addition, they have a lone pair of electrons that tend to be polar, helping to change the charge on the surrounding carbon.

한편, 질소의 경우, 강한 전기음성도를 나타내어 전기전도성을 높여준다. 그에 따라 황 및/또는 질소의 도핑은 탄소기반 음극재 이차전지의 용량을 높여준다. On the other hand, in the case of nitrogen, it shows a strong electronegativity to improve the electrical conductivity. Accordingly, the doping of sulfur and / or nitrogen increases the capacity of the carbon-based negative electrode secondary battery.

등록특허 10-1563889호에서도 비정질 탄소에 황을 도입하여 고용량화를 추구하고 있다. 즉, 탄소소재 기반의 음극재는 배터리 고용량화와 사이클 안정성 향상을 위해 황(S), 질소(N), 산소(O)와 같은 원소를 흑연 등의 탄소재에 도핑한다. 탄소재에 대한 원소 도핑은 쉽게 이루어지지 않으며, 고온 열처리, 용매열합성법 등의 다양한 방법이 시도되고 있다. 그러나 도핑에 소요되는 고난도 공정은 결과적으로 양산성 및 가격경쟁력을 상실하게 한다. Patent No. 10-1563889 also seeks to increase the capacity by introducing sulfur into the amorphous carbon. That is, the carbon material-based negative electrode material is doped with elements such as sulfur (S), nitrogen (N), oxygen (O) to the carbon material such as graphite in order to increase the battery capacity and improve cycle stability. Elemental doping of the carbon material is not easy, and various methods such as high temperature heat treatment and solvent thermal synthesis method have been tried. However, the high level of processing required for doping results in loss of productivity and price competitiveness.

본 발명의 목적은 탄소 기반의 리튬이온 배터리의 음극재를 제공하되, 간소화된 공정으로 탄소재에 S, N 원소를 동시도핑할 수 있는 효율적인 방안을 제공하고자 하는 것이다. An object of the present invention is to provide an anode material of a carbon-based lithium-ion battery, but to provide an efficient way to co-dope the S, N elements in the carbon material in a simplified process.

상기 목적에 따라 본 발명은, 황화염료(sulphur dye)를 흑연과 함께 파우더 상태로 바인더와 혼합하여 슬러리를 만들고 상기 슬러리를 금속 호일에 올린 후 진공 분위기에서 열처리하는 것을 특징으로 하는 리튬이온 배터리의 음극재 및 그 제조방법을 제공한다. According to the above object, the present invention is a negative electrode of a lithium ion battery, characterized in that the sulfide dye (sulphur dye) in combination with a binder in a powder form with a graphite to make a slurry, the slurry is put on a metal foil and heat-treated in a vacuum atmosphere It provides ash and a method of manufacturing the same.

즉, 본 발명은,That is, the present invention,

황화염료(sulphur dye)를 흑연과 함께 파우더 상태로 바인더와 혼합하여 슬러리 상태로 제조된 것을 특징으로 하는 리튬이온 배터리의 음극재를 제공한다.It provides a negative electrode material of a lithium-ion battery, characterized in that the sulfide dye (sulphur dye) is mixed with a binder in a powder form with graphite to prepare a slurry.

상기에 있어서, 황화염료는 공기 중에서 건조된 것을 밀링하여 파우더화한 것으로, 상기 황화염료는 N과 S 원소를 함유하고 있고, 피라진(pyrazine) 환(N-N 링), 티아진(thiazine) 환(N-S 링), 티아트렌(thianthrene) 환(S-S 링), 또는 티아졸(thiazole) 환(N-S 링)들을 포함하여 N과 S 원소가 흑연에 동시도핑(co-doping)된 것을 특징으로 하는 리튬이온 배터리의 음극재를 제공한다. In the above, the sulfide dye is powdered by milling the dried in the air, the sulfide dye contains N and S elements, pyrazine ring (NN ring), thiazine ring (NS) Lithium ions characterized by co-doping of N and S elements to graphite, including rings), thianthrene rings (SS rings), or thiazole rings (NS rings) Provide the negative electrode material of the battery.

상기에 있어서, 흑연과 황화염료 파우더는 70:30 내지 95:5의 무게비로 하여 혼합된 것을 특징으로 하는 리튬이온 배터리의 음극재를 제공한다. In the above, the graphite and sulfide dye powder provides a negative electrode material of a lithium ion battery, characterized in that mixed in a weight ratio of 70:30 to 95: 5.

상기에 있어서, 흑연과 황화염료(sulphur dye)로 된 활물질 60 내지 80wt%, 수퍼 P(Super P) 10 내지 20wt%, 바인더 10 내지 20wt%를 혼합 교반하여 황화염료(sulphur dye)와 흑연이 섞여 슬러리화 되게 한 것을 특징으로 하는 리튬이온 배터리의 음극재를 제공한다. In the above, 60-80 wt% of an active material composed of graphite and a sulfur dye, 10 to 20 wt% of Super P, and 10 to 20 wt% of a binder are mixed and stirred to form a sulfur dye and graphite. It provides a negative electrode material of a lithium ion battery characterized in that the slurry.

또한, 본 발명은,In addition, the present invention,

황화염료(sulphur dye)를 흑연과 함께 파우더 상태로 바인더와 혼합하여 슬러리화 하는 것을 특징으로 하는 음극재 제조방법을 제공한다.It provides a method for producing a negative electrode material characterized in that the sulfide dye (sulphur dye) is mixed with a binder in a powder state with graphite to slurry.

상기에 있어서, 흑연과 황화염료(sulphur dye)로 된 활물질 60 내지 80wt%, 수퍼 P(Super P) 10 내지 20wt%, 바인더 10 내지 20wt%를 혼합하여 황화염료(sulphur dye)와 흑연이 섞여 슬러리화 되게 하는 것을 특징으로 하는 리튬이온 배터리의 음극재의 제조방법을 제공한다. In the above, 60 to 80 wt% of an active material consisting of graphite and a sulfur dye, 10 to 20 wt% of Super P, and 10 to 20 wt% of a binder are mixed to form a slurry by mixing a sulfur dye and graphite. It provides a method for producing a negative electrode material of a lithium ion battery, characterized in that the.

또한, 본 발명은, In addition, the present invention,

상기의 음극재 슬러리를 금속 호일에 올리고, 진공 분위기에서 60 내지 80℃로 20 내지 28시간 열처리를 실시하여 제조된 것을 특징으로 하는 리튬이온 배터리의 음극을 제공한다.The negative electrode material slurry is provided on a metal foil, and a negative electrode of a lithium ion battery is prepared by performing heat treatment at 60 to 80 ° C. for 20 to 28 hours in a vacuum atmosphere.

본 발명에 따르면, 황화염료는 N과 S 원소를 함유하고 있고, pyrazine 환(N-N 링), thiazine 환(N-S 링), thianthrene 환(S-S 링), 또는 thiazole 환(N-S 링)들을 포함하고 있는 화합물이다. 황화염료의 구성 원소인 N과 S 원소가 흑연에 동시도핑(co-doping)되는 효과를 제공할 수 있다. 따라서 흑연을 기반으로 하는 이차전지 음극재로서 고용량 및 높은 사이클 안정성을 갖게 한다. According to the present invention, the sulfide dye contains N and S elements, and includes a pyrazine ring (NN ring), a thiazine ring (NS ring), a thianthrene ring (SS ring), or a thiazole ring (NS ring). to be. It is possible to provide the effect of co-doping the graphite elements N and S elements constituting the sulfur dye. Therefore, as a secondary battery negative electrode material based on graphite, it has high capacity and high cycle stability.

또한, 황화염료는 가격이 1달러/Kg으로 매우 저렴하여 가격경쟁력이 우수하며, 흑연에 대한 두가지 원소의 동시도핑 공정도 쉽고 간단하여 양산성이 있다. In addition, the sulfide dye is very low price of $ 1 / Kg, excellent price competitiveness, and the simultaneous doping process of the two elements on the graphite is easy and easy to mass-produce.

본 발명에 따른 음극재로 제작된 리튬이온 배터리는 300mAh/g 내지 450mAh/g 정도의 고용량을 나타내었고, 700회 정도의 안정적인 충방전 사이클을 보였으며, 이는 본 발명의 음극재를 적용한 이차전지가 상용화에 충분한 성능을 지녔음을 시사한다. The lithium ion battery made of the negative electrode material according to the present invention exhibited a high capacity of about 300 mAh / g to 450 mAh / g, and showed a stable charge / discharge cycle of about 700 times, which is a secondary battery using the negative electrode material of the present invention. It has sufficient performance for commercialization.

도 1은 일반적인 이차전지 구성을 보여준다.
도 2는 몇가지 음극재 물질에 따른 이차전지 용량비교 표이다.
도 3는 본 발명에 따른 음극재의 SEM과 EDS mapping 사진이다.
도 4는 본 발명에 따른 음극재의 파우더와 액상 각각에 대한 FT-IR 그래프이다.
도 5은 본 발명의 음극재를 적용한 리튬이온 배터리의 용량을 보여주는 그래프들이다.
도 6은 본 발명의 음극재를 적용한 리튬이온 배터리의 충방전 사이클 성능을 보여주는 그래프들이다.
도 7 및 도 8는 본 발명의 음극재를 적용한 리튬이온 배터리의 미분 용량 그래프들이다.
1 shows a general secondary battery configuration.
2 is a secondary battery capacity comparison table according to several negative electrode materials.
3 is a SEM and EDS mapping picture of the negative electrode material according to the present invention.
Figure 4 is an FT-IR graph for each of the powder and liquid phase of the negative electrode material according to the present invention.
5 is a graph showing the capacity of the lithium ion battery to which the negative electrode material of the present invention is applied.
6 is a graph showing charge and discharge cycle performance of a lithium ion battery to which the negative electrode material of the present invention is applied.
7 and 8 are differential capacity graphs of a lithium ion battery to which the negative electrode material of the present invention is applied.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

본래 황화염료는 섬유 염색용도로 사용되는 소재이나, 본 발명자들은 이차전지 음극재인 흑연에 대해 황과 질소를 도핑함에 있어 두가지 원소를 모두 지니고 화학구조가 흑연과 닮았다는 점에 착안하여 황화염료를 이용한 원소 도핑을 시도하게 되었다.  Sulfur dye is a material used for textile dyeing, but the present inventors have noticed that the chemical structure resembles graphite and has both elements in doping sulfur and nitrogen to graphite, a secondary battery anode material. Attempted elemental doping.

황화염료는 황과 질소를 모두 포함하고 있어 탄소기반의 이차전지 음극재인 흑연에 황과 질소를 동시도핑하는 데 매우 유리한 소재라 할 수 있으며, 가격이 Kg당 1달러 정도로 매우 저렴하다. 이러한 가격경쟁력뿐 아니라 황화염료를 이용하여 흑연에 황과 질소를 동시도핑하는 공정도 매우 간단하고 쉽다. Sulfide dyes contain both sulfur and nitrogen, making it a very advantageous material for co-doping sulfur and nitrogen to graphite, a carbon-based secondary battery anode material. In addition to this price competitiveness, the process of simultaneously doping sulfur and nitrogen to graphite using sulfide dyes is very simple and easy.

황화염료는 N과 S 원소를 함유하고 있고, pyrazine 환(N-N 링), thiazine 환(N-S 링), thianthrene 환(S-S 링), 또는 thiazole 환(N-S 링)들을 포함하고 있는 화합물이다. 황화염료의 구성 원소인 N과 S 원소가 흑연에 동시도핑(co-doping)되는 효과를 제공할 수 있다. 따라서 흑연을 기반으로 하는 이차전지 음극재로서 고용량 및 높은 사이클 안정성을 갖게 한다. Sulfide dyes are compounds containing N and S elements and containing pyrazine rings (N-N rings), thiazine rings (N-S rings), thianthrene rings (S-S rings), or thiazole rings (N-S rings). It is possible to provide the effect of co-doping the graphite elements N and S elements constituting the sulfur dye. Therefore, as a secondary battery negative electrode material based on graphite, it has high capacity and high cycle stability.

먼저, 황화염료를 준비하고, 공기 중에서 60내지 120도에서 1시간 내지 6시간 동안 열처리 건조시킨다. First, sulfide dyes are prepared and heat-dried for 1 to 6 hours at 60 to 120 degrees in air.

건조된 황화염료를 단순 밀링하여 파우더 상태로 만든다.The dried sulphide dye is simply milled to a powder state.

천연 흑연과 황화염료 파우더는 70:30 내지 95:5의 무게비로 하여 혼합한다.Natural graphite and sulfur dye powder is mixed in a weight ratio of 70:30 to 95: 5.

즉, 흑연:황화염료의 무게비는 70~95:30~5로 혼합한다. That is, the weight ratio of graphite: sulfide dye is mixed at 70-95: 30-5.

본 실시예에서는 90:10의 무게비로 혼합하였다.In this example, the mixture was mixed at a weight ratio of 90:10.

이와 같이 하여 흑연과 황화염료를 포함한 활물질이 제조된다.In this way, an active material including graphite and a sulfur dye is produced.

다음으로, 상기 활물질을 슬러리화한다.Next, the active material is slurried.

황화염료(sulphur dye)와 흑연으로 된 활물질 60 내지 80wt%, 수퍼 P(Super P) 10 내지 20wt%, 바인더(PVDF) 10 내지 20wt%를 혼합 교반하며, 이때 황화염료(sulphur dye)와 흑연이 섞여 슬러리화 되게 한다.60 to 80 wt% of sulfur dye and active material made of graphite, 10 to 20 wt% of Super P, and 10 to 20 wt% of binder (PVDF) are mixed and stirred. Mix and slurry.

본 실시예에서는 활물질 70wt%, 수퍼 P(Super P) 15wt%, 바인더(PVDF) 15wt%를 혼합 교반하였다. 상기에서, 수퍼 P는 전도성을 더욱 향상시킨다. In this example, 70 wt% of the active material, 15 wt% of Super P, and 15 wt% of binder (PVDF) were mixed and stirred. In the above, the super P further improves the conductivity.

제조된 슬러리를 금속 호일에 올린 후 진공 분위기에서 열처리하여 음극을 제조한다. 상기에서, 진공 분위기에서 열처리는 60 내지 80℃에서 10 내지 28시간 실시하며, 본 실시예에서는 70℃에서 24시간 실시하였다.The prepared slurry is placed on a metal foil and then heat-treated in a vacuum atmosphere to prepare a negative electrode. In the above, the heat treatment in a vacuum atmosphere is carried out for 10 to 28 hours at 60 to 80 ℃, in this embodiment was carried out at 70 ℃ 24 hours.

상기에서, 흑연과 혼합되는 염료는 황화염료에 한정되지 않고 다른 염료일 수 있으며, 그들 역시 음극재로서 이차전지의 고용량화를 이룰 수 있다. In the above, the dye mixed with graphite is not limited to sulfur dyes, but may be other dyes, they can also achieve high capacity of the secondary battery as a negative electrode material.

이와 같이 제작된 음극재에 대해 SEM 사진을 찍어 흑연과 황화염료가 공존하고 있음을 확인하였고, EDS mapping을 통해서 황화염료에 질소와 황이 고르게 분산되어 있음을 확인하였다.(도 3 참조).SEM photographs were taken of the negative electrode material prepared as described above, and it was confirmed that graphite and sulfide dye coexist, and it was confirmed that nitrogen and sulfur were evenly dispersed in the sulfide dye through EDS mapping (see FIG. 3).

도 4는 본 발명에 따른 음극재의 파우더와 액상 각각에 대한 FT-IR을 측정하여 음극재 안에 질소와 황이 공존하고 있음을 보여주는 그래프이다.Figure 4 is a graph showing that the nitrogen and sulfur coexist in the negative electrode material by measuring the FT-IR for each of the powder and liquid phase of the negative electrode material according to the present invention.

도 5은 본 발명의 음극재를 적용한 리튬이온 배터리의 염료와 흑연 비율에 따른 용량의 상관관계를 보여주는 그래프들이다. 도 5a, 5b, 5c는 흑연과 5%, 10%, 15%의 황화염료를 혼합하여 제조된 음극재들을 372 mA/g 전류밀도에서 300회의 충방전 사이클을 수행한 그래프이다. 혼합비를 달리하여 제조된 음극재 중에서 10% 황화염료-흑연 전극이 372 mA/g 전류밀도에서 388 mAh/g의 용량을 보여 가장 우수한 용량특성을 가진다 (도 5b). 도 5d는 10%황화염료 음극재를 100 mA/g의 전류밀도로 600회의 충방전 사이클을 수행하여 얻은 그래프로써 450 mAh/g의 향상된 성능값을 유지하고 있음을 확인한다. 5 is a graph showing the correlation between the capacity of the lithium ion battery applying the negative electrode material of the present invention according to the dye and graphite ratio. 5A, 5B, and 5C are graphs of 300 charge / discharge cycles performed at 372 mA / g current density of anode materials prepared by mixing graphite with 5%, 10%, and 15% sulfide dyes. Among the negative electrode materials prepared by varying the mixing ratio, the 10% sulfide dye-graphite electrode exhibited a capacity of 388 mAh / g at a current density of 372 mA / g and has the best capacity characteristic (FIG. 5B). 5d is a graph obtained by performing 600 charge / discharge cycles of the 10% sulfide dye anode material at a current density of 100 mA / g to confirm that the improved performance value of 450 mAh / g is maintained.

도 6은 본 발명의 음극재를 적용한 리튬이온 배터리의 충방전 사이클 성능을 보여주는 그래프들이다.6 is a graph showing charge and discharge cycle performance of a lithium ion battery to which the negative electrode material of the present invention is applied.

상기에 따르면, 본 발명의 음극재를 적용한 리튬이온 배터리의 용량은 100mA/g의 전류밀도에서 450mAh/g의 정전용량을 700회 정도까지 거의 100%로 안정적인 효율성을 보였으며, 3000 mA/g의 높은 전류밀도에서도 300mAh/g의 안정적인 정전용량을 보였다.According to the above, the capacity of the lithium ion battery applying the negative electrode material of the present invention showed a stable efficiency of almost 100% up to 700 times of 450mAh / g capacitance at a current density of 100 mA / g, the 3000 mA / g of Even at high current densities, it showed stable capacitance of 300mAh / g.

도 7 및 도 8는 본 발명의 음극재를 적용한 리튬이온 배터리의 미분 용량 그래프들이다.7 and 8 are differential capacity graphs of a lithium ion battery to which the negative electrode material of the present invention is applied.

상기에 따르면, 충전과 방전시 리튬의 탈삽입이 일어나는 전압이 가까워서 고효율을 낼 수 있고, 초기에서 600회까지 거의 일정한 위치에서 리튬의 탈삽입이 일어나 매우 안정한 상태임을 보여준다.According to the above, the charge and discharge during the charging and discharging is close to the voltage at which the insertion occurs close to high efficiency, it shows that the desorption of lithium at a nearly constant position from the initial to 600 times to show a very stable state.

한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. In addition to the embodiments disclosed herein, it is apparent to those skilled in the art that other modifications based on the technical idea of the present invention may be implemented.

Claims (7)

황화염료(sulphur dye) 파우더와 흑연 파우더를 혼합하여, 황화염료에 포함된 N과 S 원소가 흑연에 동시도핑(co-doping)되게 제조된 것을 특징으로 하는 리튬이온 배터리의 음극재용 활물질.An active material for a negative electrode material of a lithium ion battery, characterized in that the sulfide dye powder and the graphite powder are mixed so that N and S elements contained in the sulfide dye are co-doped with graphite. 제1항에 있어서, 황화염료는 N과 S 원소를 함유하고 있고, 피라진(pyrazine) 환(N-N 링), 티아진(thiazine) 환(N-S 링), 티아트렌(thianthrene) 환(S-S 링), 또는 티아졸(thiazole) 환(N-S 링)들을 포함하여 N과 S 원소가 흑연에 동시도핑(co-doping)된 것을 특징으로 하는 리튬이온 배터리의 음극재용 활물질.The sulfide dye according to claim 1, wherein the sulfide dye contains N and S elements, and a pyrazine ring (NN ring), a thiazine ring (NS ring), and a thianthrene ring (SS ring). And or thiazole rings (NS rings), wherein the N and S elements are co-doped with graphite (co-doping). 제1항에 있어서, 흑연과 황화염료 파우더는 70~95:30~5의 무게비로 하여 혼합된 것을 특징으로 하는 리튬이온 배터리의 음극재용 활물질. The active material for negative electrode materials of a lithium ion battery according to claim 1, wherein the graphite and the sulfur dye powder are mixed in a weight ratio of 70 to 95:30 to 5. 흑연과 황화염료(sulphur dye)로 된 제1항의 활물질 60 내지 80wt%, 수퍼 P(Super P) 10 내지 20wt%, 바인더 10 내지 20wt%를 혼합 교반하여 황화염료(sulphur dye)와 흑연이 섞여 슬러리화 되게 한 것을 특징으로 하는 리튬이온 배터리의 음극재. 60 to 80 wt% of the active material of claim 1 consisting of graphite and a sulfur dye, 10 to 20 wt% of Super P, and 10 to 20 wt% of a binder are mixed and stirred to form a slurry by mixing a sulfur dye and graphite. The negative electrode material of a lithium ion battery, characterized in that it is made. 황화염료(sulphur dye)를 흑연과 함께 파우더 상태로 혼합하여 활물질을 만들고,
상기 활물질을 바인더와 혼합하여, 황화염료에 포함된 N과 S 원소가 흑연에 동시도핑(co-doping)된 슬러리로 만드는 것을 특징으로 하는 리튬이온 배터리의 음극재 제조방법.
Sulfur dye is mixed with graphite in powder form to form an active material,
The method of manufacturing a negative electrode material of a lithium ion battery, characterized in that the active material is mixed with a binder to form a slurry co-doped with N and S elements contained in the sulfur dye.
제5항에 있어서, 흑연과 황화염료(sulphur dye)로 된 활물질 60 내지 80wt%, 수퍼 P(Super P) 10 내지 20wt%, 바인더 10 내지 20wt%를 혼합하여 황화염료(sulphur dye)와 흑연이 섞여 슬러리화 되게 하는 것을 특징으로 하는 리튬이온 배터리의 음극재 제조방법.The sulfur dye and the graphite according to claim 5, wherein 60 to 80 wt% of an active material composed of graphite and a sulfur dye, 10 to 20 wt% of Super P, and 10 to 20 wt% of a binder are mixed. Method for producing a negative electrode material of a lithium ion battery characterized in that the slurry to be mixed. 제4항의 음극재를 금속 호일에 올리고, 진공 분위기에서 60 내지 80℃로 10 내지 28시간 열처리를 실시하여 제조된 것을 특징으로 하는 리튬이온 배터리의 음극.














A negative electrode of a lithium ion battery, wherein the negative electrode material of claim 4 is placed on a metal foil and heat-treated at 60 to 80 ° C. for 10 to 28 hours in a vacuum atmosphere.














KR1020180126461A 2018-10-23 2018-10-23 Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof KR102013530B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180126461A KR102013530B1 (en) 2018-10-23 2018-10-23 Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180126461A KR102013530B1 (en) 2018-10-23 2018-10-23 Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof

Publications (1)

Publication Number Publication Date
KR102013530B1 true KR102013530B1 (en) 2019-08-23

Family

ID=67763790

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180126461A KR102013530B1 (en) 2018-10-23 2018-10-23 Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof

Country Status (1)

Country Link
KR (1) KR102013530B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220018131A (en) * 2020-08-05 2022-02-15 부산대학교 산학협력단 3D graphene-dye nanocomposite and method for preparing thereof
KR20220165873A (en) 2021-06-08 2022-12-16 주식회사 신성씨앤티 Battery and composite electrodes used for the battery
WO2024065181A1 (en) * 2022-09-27 2024-04-04 宁德时代新能源科技股份有限公司 Negative electrode composition and preparation method therefor, negative electrode slurry and preparation method therefor, negative electrode sheet and preparation method therefor, secondary battery, electric device, and use of thianthrene compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067920A (en) * 2007-12-21 2009-06-25 삼성에스디아이 주식회사 Expanded graphite oxide and a method for preparing the same
WO2012141166A1 (en) * 2011-04-11 2012-10-18 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same
KR20160122838A (en) * 2014-02-14 2016-10-24 더 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 Sulfur composites and polymeric materials from elemental sulfur
KR20170005822A (en) * 2014-05-20 2017-01-16 하이드로-퀘벡 Electrode for a photovoltaic battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067920A (en) * 2007-12-21 2009-06-25 삼성에스디아이 주식회사 Expanded graphite oxide and a method for preparing the same
WO2012141166A1 (en) * 2011-04-11 2012-10-18 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same
KR20160122838A (en) * 2014-02-14 2016-10-24 더 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 Sulfur composites and polymeric materials from elemental sulfur
KR20170005822A (en) * 2014-05-20 2017-01-16 하이드로-퀘벡 Electrode for a photovoltaic battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220018131A (en) * 2020-08-05 2022-02-15 부산대학교 산학협력단 3D graphene-dye nanocomposite and method for preparing thereof
KR102400456B1 (en) * 2020-08-05 2022-05-20 부산대학교 산학협력단 Method for preparing a negative electrode for secondary battery containing three-dimensional graphene-dye nanocomposite
KR20220165873A (en) 2021-06-08 2022-12-16 주식회사 신성씨앤티 Battery and composite electrodes used for the battery
WO2024065181A1 (en) * 2022-09-27 2024-04-04 宁德时代新能源科技股份有限公司 Negative electrode composition and preparation method therefor, negative electrode slurry and preparation method therefor, negative electrode sheet and preparation method therefor, secondary battery, electric device, and use of thianthrene compound

Similar Documents

Publication Publication Date Title
CN109119603B (en) Composite negative electrode material, preparation method thereof, lithium ion secondary battery negative electrode piece and lithium ion secondary battery
CN109755545B (en) Porous carbon material and preparation method thereof, porous carbon/sulfur composite material, battery positive electrode material, lithium-sulfur battery and application thereof
JP6280651B2 (en) Method for producing electrode active material slurry and electrode active material slurry produced by the method
JP6044587B2 (en) Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
KR102013530B1 (en) Dye-Graphite anode material for Lithium Ion Battery and Manufacturing Mehtod Thereof
EP3493303A1 (en) Negative electrode material and preparation method thereof, negative electrode, and all-solid-state lithium ion battery
CN106532012A (en) Sulfur-biomass carbon/transition metal composite electrode material and preparation method and application thereof
CN107902633B (en) Selenized pyrite material and battery prepared from same
CN110729475A (en) Sodium-ion battery positive electrode material with layered and tunnel-shaped mixed structure, preparation method of sodium-ion battery positive electrode material and sodium-ion battery
CN110770948B (en) Method for preparing graphene coated powder material and product thereof
CN109616698B (en) Lithium-sulfur battery electrolyte and preparation method thereof
WO2024124961A1 (en) Lithium-rich manganese-based positive electrode material, preparation method therefor, and use thereof
CN108539142A (en) A kind of preparation method of lithium sulfur battery anode material
CN109167040A (en) Method for applying carbon fluoride additive to lithium-sulfur battery and application of carbon fluoride additive
CN102077398A (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
CN108091835B (en) Lithium-sulfur battery composite positive electrode material with sulfur loaded on cobalt ferrite and preparation method thereof
CN108281647B (en) Method for preparing iron oxide negative electrode material with micro/nano-grade two-dimensional sheet shape for high-performance lithium ion battery
CN111525120A (en) Oxide material containing Mg, Cu and Mn as well as preparation method and application thereof
CN104485449A (en) Preparation method of polymer coated sulfur composite for lithium-sulphur battery anode
CN109888198B (en) Metal intercalation molybdenum oxide material and preparation method and application thereof
CN115799761A (en) Secondary ion battery capacity compensation functional diaphragm, preparation method and application thereof, and battery
JP2020053382A (en) Positive active material for potassium secondary battery and potassium secondary battery
CN114590842A (en) Preparation method of morphology-controllable cobalt nonaoctasulfide material and application of morphology-controllable cobalt nonasulfide material in electrode
KR20140012354A (en) Manufacturing method of cathode material for mg rechargeable batteries, and cathode material for mg rechargeable batteries made by the same
CN109192967B (en) Preparation method and application of lithium-sulfur battery positive electrode

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant