KR101990212B1 - A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica - Google Patents

A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica Download PDF

Info

Publication number
KR101990212B1
KR101990212B1 KR1020170158746A KR20170158746A KR101990212B1 KR 101990212 B1 KR101990212 B1 KR 101990212B1 KR 1020170158746 A KR1020170158746 A KR 1020170158746A KR 20170158746 A KR20170158746 A KR 20170158746A KR 101990212 B1 KR101990212 B1 KR 101990212B1
Authority
KR
South Korea
Prior art keywords
alcohol
seq
gene
nucleotide sequence
microorganism
Prior art date
Application number
KR1020170158746A
Other languages
Korean (ko)
Other versions
KR20180059376A (en
Inventor
상병인
전병승
신승진
최옥경
박효정
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of KR20180059376A publication Critical patent/KR20180059376A/en
Application granted granted Critical
Publication of KR101990212B1 publication Critical patent/KR101990212B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • C12Y208/03008Acetate CoA-transferase (2.8.3.8)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 C3-C8 알코올 생산에 관여하는 Acyl CoA transferase를 암호화하는 신규 유전자, 상기 유전자 및 Alcohol Dehydrogenase를 암호화하는 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물 및 이를 이용하여 C3-C8 알코올을 선택적으로 생산하는 방법에 관한 것이다.
본 발명에 따르면, C3-C8 알코올 생산에 관여하는 Acyl CoA transferase를 암호화하는 신규 유전자를 제공함으로써, 이를 이용하여 C3-C8 알코올을 향상된 생산 수율 및 선택적으로 생산할 수 있다.
The present invention relates to a novel gene encoding an Acyl CoA transferase involved in C3-C8 alcohol production, a vector comprising the gene and a gene encoding an alcohol dehydrogenase, a microorganism transformed with the vector, and C3-C8 alcohol And a method for selectively producing the same.
According to the present invention, by providing a novel gene encoding an Acyl CoA transferase involved in the production of C3-C8 alcohol, it is possible to produce C3-C8 alcohol with improved production yield and selectively.

Description

메가스파에라 헥사노이카 유래 Acyl CoA transferase를 활용한 C3-C8 알코올의 선택적 생산 방법{A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica}A method for selectively producing C3-C8 alcohol using Acyl CoA transferase derived from megasparrahexanoic acid {A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica}

본 발명은 C3-C8 알코올 생산에 관여하는 Acyl CoA transferase를 암호화하는 신규 유전자, 상기 유전자 및 Alcohol Dehydrogenase를 암호화하는 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물 및 이를 이용하여 C3-C8 알코올을 선택적으로 생산하는 방법에 관한 것이다.The present invention relates to a novel gene encoding an Acyl CoA transferase involved in C3-C8 alcohol production, a vector comprising the gene and a gene encoding an alcohol dehydrogenase, a microorganism transformed with the vector, and C3-C8 alcohol And a method for selectively producing the same.

지구상에서 사용되는 에너지의 80%는 화석연료로부터 생산되며, 플라스틱 원료, 합성 고무, 용매, 페인트, 접착제와 같은 원료 물질들도 대부분 석유화학공정으로부터 생산되고 있다. 이에, 화석연료의 지속적 공급이 필요하나, 그 매장량의 한계로 인해서, 새로운 대체연료의 개발이 시급한 실정이다. 80% of the energy used on the earth is produced from fossil fuels, and most of the raw materials such as plastic raw materials, synthetic rubber, solvents, paints and adhesives are produced from petrochemical processes. Therefore, it is necessary to continuously supply fossil fuels, but due to the limitation of the reserves, it is urgent to develop new alternative fuels.

현재, 이용 가능한 대체에너지로는 바이오 에너지, 태양열, 풍력, 지력, 조력발전 등이 대두되고 있으며, 그 중에서도 바이오 에너지는 수송용 연료로서 그 활용도가 높으며 환경오염 물질의 배출을 적게는 30% 이상, 많게는 90% 까지도 줄일 수 있는 장점으로 인하여, 전 세계적으로 높은 관심을 받고 있다. 바이오 에너지란 자연계에 있는 바이오매스(biomass)로부터 만들어지는 지속 가능한 에너지원을 말하는데, 옥수수, 사탕수수, 폐기용 셀룰로오스 등과 같은 식물이나 농업 및 환경 폐기물로부터 생산되기 때문에 지구 온난화의 주범이 되는 온실가스인 이산화탄소(CO2)를 증가시키지 않고 각종 유기성 폐기물을 이용함으로써 폐기물을 줄이는 효과가 있다. 또한 중금속 및 다른 유해물질을 포함하고 있지 않으며 액체 바이오 연료의 경우 기존의 자동차 액체 연료와 함께 혼합하여 사용할 수 있는 장점이 있다. 이러한 재생 가능한 식물성 원료 물질에서 유래한 바이오 연료로는 C2 물질인 에탄올과 C4 물질인 부탄올이 수송용 연료로서 이미 많은 연구가 진행되고 있지만 항공용 연료 등은 더욱 높은 탄소수를 가진 물질을 필요로 하기 때문에 새로운 바이오 연료의 개발이 필요한 실정이다.Currently, bioenergy, solar energy, wind power, intelligence, and tidal power generation are emerging as alternative energy sources. Among them, bioenergy is highly utilized as transportation fuel and less than 30% Due to its ability to reduce to as much as 90%, it is attracting worldwide attention. Bio-energy is a sustainable source of energy made from biomass in the natural world. It is produced from plants, agriculture and environmental waste such as corn, sugarcane, and waste cellulose, There is an effect of reducing waste by using various organic wastes without increasing carbon dioxide (CO 2 ). It does not contain heavy metals and other harmful substances, and liquid biofuels have the advantage of being mixed with existing automotive liquid fuels. As a biofuel derived from such renewable vegetable raw materials, a lot of research has already been carried out on ethanol as a C2 material and butanol as a C4 material as a transportation fuel, but aviation fuel requires a material having a higher carbon number It is necessary to develop new biofuels.

이에, 클로스트리듐 속 균주와 같은 바이오 연료를 생산하는 균주들이 보고된바 있으나, 상기 균주들은 높은 탄소수를 가진 알코올을 생산하는데에 한계가 있을 뿐만 아니라 다양한 탄소수를 가진 알코올을 선택적으로 생산할 수 없다는 문제점이 있다.Thus, strains producing biofuels such as Clostridium sp. Have been reported. However, these strains have limitations in producing high-carbon alcohol and can not selectively produce alcohols having various carbon numbers .

본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명에서는 C3-C8 알코올 생산에 관여하는 Acyl CoA transferase를 암호화하는 신규 유전자, 상기 유전자 및 Alcohol Dehydrogenase를 암호화하는 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물, 및 이를 이용하여 C3-C8 알코올을 선택적으로 생산하는 방법을 제공하고자 한다.Disclosure of the Invention The present invention has been conceived in order to solve the above problems. In the present invention, a novel gene encoding Acyl CoA transferase involved in C3-C8 alcohol production, a vector containing the gene and a gene encoding Alcohol Dehydrogenase, And a method for selectively producing a C3-C8 alcohol using the microorganism.

본 발명은 상기 과제를 해결하기 위해서,In order to solve the above problems,

서열번호 1 내지 8로 이루어진 군으로부터 선택된 어느 하나의 염기서열을 포함하는, C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자를 제공한다.A gene encoding an enzyme involved in biosynthesis of a C3-C8 alcohol including any one of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 1 to 8 is provided.

본 발명에 따르면, 상기 서열번호 1 내지 8의 염기서열은 Acyl CoA transferase(ACT) 효소를 코딩하는 것일 수 있다.According to the present invention, the nucleotide sequence of SEQ ID NOS: 1 to 8 may be one encoding an Acyl CoA transferase (ACT) enzyme.

본 발명에 따르면, 상기 유전자는 메가스파에라 헥사노이카 (Megasphaera hexanoica) 균주 (KCCM11835P)로부터 유래된 것일 수 있다.According to the present invention, the gene may be derived from Megasphaera hexanoica strain (KCCM11835P).

본 발명에 따르면, 상기 C3 알코올은 프로판올(propanol)이고, C4 알코올은 부탄올(butanol)이며, C5 알코올은 펜탄올(pentanol)이고, C6 알코올은 헥산올(hexanol)이며, C7 알코올은 헵탄올(heptanol)이고, C8 알코올은 옥탄올(octanol)일 수 있다.According to the present invention, the C3 alcohol is propanol, the C4 alcohol is butanol, the C5 alcohol is pentanol, the C6 alcohol is hexanol, the C7 alcohol is heptanol heptanol), and the C8 alcohol may be octanol.

또한, 본 발명은 서열번호 1 내지 8로 이루어진 군으로부터 선택된 어느 하나의 염기서열을 포함하는 C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자; 및 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자;를 포함하는 벡터를 제공한다.The present invention also relates to a gene encoding an enzyme involved in biosynthesis of a C3-C8 alcohol comprising any one of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 1 to 8; And a gene encoding an alcohol dehydrogenase (ADH) enzyme.

본 발명에 따르면, 상기 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자는 서열번호 9 내지 11로 이루어진 군으로부터 선택되는 어느 하나의 염기서열을 포함할 수 있다.According to the present invention, the gene encoding the Alcohol Dehydrogenase (ADH) enzyme may include any one of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 9 to 11.

본 발명에 따르면, 상기 서열번호 9의 염기서열로 표시되는 유전자는 Aldehyde-alcohol dehydrogenase(AdhE)를 코딩하고, 상기 서열번호 10의 염기서열로 표시되는 유전자는 Aldehyde/alcohol dehydrogenase(AdhE2)를 코딩하고, 상기 서열번호 11의 염기서열로 표시되는 유전자는 Propionaldehyde dehydrogenase-Alcohol dehydrogenase(PduP-AdhA)를 코딩하는 것일 수 있다.According to the present invention, the gene represented by the nucleotide sequence of SEQ ID NO: 9 encodes Aldehyde-alcohol dehydrogenase (AdhE), the gene represented by the nucleotide sequence of SEQ ID NO: 10 encodes Aldehyde / alcohol dehydrogenase (AdhE2) , And the gene represented by the nucleotide sequence of SEQ ID NO: 11 may be one coding for Propionaldehyde dehydrogenase-Alcohol dehydrogenase (PduP-AdhA).

또한, 본 발명은 상기 벡터에 의해 형질전환된, C3-C8 알코올 생산능력을 가지는 미생물을 제공한다.In addition, the present invention provides a microorganism transformed by the above-mentioned vector and capable of producing C3-C8 alcohol.

본 발명에 따르면, 상기 미생물은 대장균, 박테리아, 효모 및 곰팡이로 구성된 군에서 선택될 수 있다.According to the present invention, the microorganism may be selected from the group consisting of E. coli, bacteria, yeast and mold.

본 발명에 따르면, 상기 미생물은 락테이트(lactate) 생합성에 관여하는 효소를 코딩하는 유전자, 아세테이트(acetate) 생합성에 관여하는 효소를 코딩하는 유전자, 에탄올(ethanol) 생합성에 관여하는 효소를 코딩하는 유전자 및 숙시네이트(succinate) 생합성에 관여하는 효소를 코딩하는 유전자로 구성된 군에서 선택되는 1종 이상의 유전자가 약화 또는 결실되어 있는 대장균일 수 있다.According to the present invention, the microorganism may be a gene encoding an enzyme involved in lactate biosynthesis, a gene encoding an enzyme involved in acetate biosynthesis, a gene encoding an enzyme involved in ethanol biosynthesis, And a gene coding for an enzyme involved in the biosynthesis of succinate may be weakened or deleted in E. coli.

또한, 본 발명은 상기 미생물을 배양하여 C3-C8 알코올을 생산하는 방법을 제공한다.The present invention also provides a method for producing a C3-C8 alcohol by culturing the microorganism.

본 발명에 따르면, 상기 미생물 배양시 C3 내지 C8 유기산 중 어느 하나 이상을 첨가할 수 있다.According to the present invention, at least one of C3 to C8 organic acids may be added during the microbial culture.

본 발명에 따르면, C3-C8 알코올 생산에 관여하는 Acyl CoA transferase를 암호화하는 신규 유전자를 제공함으로써, 이를 이용하여 C3-C8 알코올을 향상된 생산 수율 및 선택적으로 생산할 수 있다.According to the present invention, by providing a novel gene encoding an Acyl CoA transferase involved in the production of C3-C8 alcohol, it is possible to produce C3-C8 alcohol with improved production yield and selectively.

도 1의 본 발명의 실시예에 따라 형질전환 미생물의 제조에 사용된, Acyl CoA transferase(ACT)를 암호화하는 유전자 및 Alcohol Dehydrogenase(ADH)를 암호화하는 유전자를 포함하는 벡터를 도시한 도면이다.
도 2는 본 발명의 실시예에 따라 형질전환된 미생물의 C3-C8 알코올의 생합성 경로를 도시한 도면이다.
도 3은 메가스페라 헥사노이카 균주의 전체 유전자 지도 및 유전자 정보를 도시한 도면이다.
도 4는 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 48시간 동안 배양시 생산되는 C3-C8 알코올의 생산량을 나타낸 그래프이다.
도 5는 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C5-C8 유기산을 첨가하여 48시간 동안 배양시 C5-C8 알코올 전환량, 유기산 소비량 및 알코올 전환률을 나타낸 그래프이다.
도 6은 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 72시간 동안 배양시 생산되는 C3-C8 알코올의 생산량을 나타낸 그래프이다.
도 7은 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 72시간 동안 배양시 생산되는 C3-C8 알코올의 전환률을 나타낸 그래프이다.
도 8은 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 72시간 동안 배양시 Cell growth 측정 결과를 나타낸 그래프이다.
도 9는 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 72시간 동안 배양시 생산되는 C3-C8 알코올의 전환률을 C3-C5 알코올과, C5-C8 알코올로 분리하여 나타낸 그래프이다.
도 10은 본 발명의 실시예 9에 따라 Alcohol Dehydrogenase(ADH) 효소로 AdhE를 사용한 미생물에 C4 유기산을 첨가하여 배양시 C4 알코올 생산량을 나타낸 그래프이다.
도 11은 본 발명의 실시예 1에 따라 Alcohol Dehydrogenase(ADH) 효소로 AdhE2를 사용한 미생물에 C4 유기산을 첨가하여 배양시 C4 알코올 생산량을 나타낸 그래프이다.
도 12는 본 발명의 실시예 10에 따라 Alcohol Dehydrogenase(ADH) 효소로 PduP-AdhA를 사용한 미생물에 C4 유기산을 첨가하여 배양시 C4 알코올 생산량을 나타낸 그래프이다.
도 13은 본 발명의 실시예 1, 9-10에 따른 미생물의 C3-C8 알코올 전환량 및 생산량을 나타낸 그래프이다.
도 14는 본 발명의 실시예 1에 따라 형질전환된 미생물의 부티르산 및 헥사노익산에 대한 내성을 측정한 결과를 나타낸 그래프이다.
도 15는 본 발명의 실시예 1에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 16은 본 발명의 실시예 2에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 17은 본 발명의 실시예 3에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 18은 본 발명의 실시예 4에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 19는 본 발명의 실시예 5에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 20은 본 발명의 실시예 6에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 21은 본 발명의 실시예 7에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 22는 본 발명의 실시예 8에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
도 23은 본 발명의 비교예 1에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타낸 그래프이다.
1 is a diagram showing a vector including a gene encoding Acyl CoA transferase (ACT) and a gene encoding Alcohol Dehydrogenase (ADH), which are used in the production of the transformed microorganism according to the embodiment of the present invention in FIG.
2 is a view showing a biosynthetic pathway of a C3-C8 alcohol of a transformed microorganism according to an embodiment of the present invention.
Fig. 3 is a diagram showing the entire gene map and gene information of the Megasperra hexanoika strain.
FIG. 4 is a graph showing production yields of C3-C8 alcohol produced by culturing the microorganism transformed according to Example 1-8 and Comparative Example 1 of the present invention with 48 hours of C3-C8 organic acid added thereto.
5 is a graph showing C5-C8 alcohol conversion, organic acid consumption, and alcohol conversion rate when cultured for 48 hours with C5-C8 organic acid added to the transformed microorganism according to Example 1-8 and Comparative Example 1 of the present invention .
FIG. 6 is a graph showing production yields of C3-C8 alcohol produced by culturing the transformed microorganism according to Example 1-8 and Comparative Example 1 of the present invention after culturing for 72 hours with C3-C8 organic acid added thereto. FIG.
FIG. 7 is a graph showing the conversion of C3-C8 alcohol produced by culturing the transformed microorganism according to Example 1-8 and Comparative Example 1 of the present invention for 72 hours by adding C3-C8 organic acid thereto.
8 is a graph showing the results of cell growth measurement when cultured for 72 hours with C3-C8 organic acid added to the transformed microorganism according to Example 1-8 and Comparative Example 1 of the present invention.
9 is a graph showing the conversion of C3-C8 alcohol produced by culturing for 72 hours with C3-C8 organic acid added to the transformed microorganism according to Example 1-8 and Comparative Example 1 of the present invention, -C8 alcohol. ≪ / RTI >
10 is a graph showing the amount of C4 alcohol produced when C4 organic acid is added to a microorganism using AdhE as an alcohol dehydrogenase (ADH) enzyme according to Example 9 of the present invention.
FIG. 11 is a graph showing the amount of C4 alcohol produced when a C4 organic acid is added to a microorganism using AdhE2 as an alcohol dehydrogenase (ADH) enzyme according to Example 1 of the present invention.
FIG. 12 is a graph showing the amount of C4 alcohol produced when a C4 organic acid was added to a microorganism using PduP-AdhA as an alcohol dehydrogenase (ADH) enzyme according to Example 10 of the present invention.
FIG. 13 is a graph showing the conversion and yield of C3-C8 alcohol in microorganisms according to Examples 1 and 9-10 of the present invention. FIG.
FIG. 14 is a graph showing the results of measurement of tolerance to butyric acid and hexanoic acid of a transformed microorganism according to Example 1 of the present invention. FIG.
15 is a graph showing C4 and C6 organic acid consumption and C4 and C6 alcohol production amounts of microorganisms transformed according to Example 1 of the present invention over time.
16 is a graph showing C4 and C6 organic acid consumption and C4 and C6 alcohol production amounts of microorganisms transformed according to Example 2 of the present invention over time.
17 is a graph showing C4 and C6 organic acid consumption amounts and C4 and C6 alcohol production amounts of microorganisms transformed according to Example 3 of the present invention over time.
18 is a graph showing C4 and C6 organic acid consumption amounts and C4 and C6 alcohol production amounts of microorganisms transformed according to Example 4 of the present invention over time.
19 is a graph showing C4 and C6 organic acid consumption amounts and C4 and C6 alcohol production amounts of microorganisms transformed according to Example 5 of the present invention over time.
Fig. 20 is a graph showing C4 and C6 organic acid consumption and C4 and C6 alcohol production amounts of microorganisms transformed according to Example 6 of the present invention over time. Fig.
FIG. 21 is a graph showing C4 and C6 organic acid consumption and C4 and C6 alcohol production amounts of the transformed microorganisms over time according to Example 7 of the present invention. FIG.
22 is a graph showing C4 and C6 organic acid consumption amounts and C4 and C6 alcohol production amounts of microorganisms transformed according to Example 8 of the present invention over time.
23 is a graph showing the amounts of C4 and C6 organic acids consumed and the yields of C4 and C6 alcohols of the microorganisms transformed according to Comparative Example 1 of the present invention over time.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 "결실"이란 해당 유전자의 일부 또는 전체 염기를 변이, 치환 또는 삭제시키거나, 일부 염기를 도입시켜 해당 유전자가 발현되지 않도록 하거나 발현되더라고 효소활성을 나타내지 못하도록 하는 것을 포괄하는 개념으로, 해당 유전자의 효소가 관여하는 생합성 경로를 차단하는 모든 것을 포함한다.The term "deletion" in the present invention is a concept encompassing the mutation, substitution or deletion of a part or whole base of the gene, or introduction of a certain base so that the gene is not expressed or expressed, All of which block the biosynthetic pathway involved in the enzyme of the gene of interest.

본 발명에서 "약화"란 해당 유전자의 일부 염기를 변이, 치환 또는 삭제시키거나, 일부 염기를 도입시켜 해당 유전자에 의해 발현되는 효소의 활성을 감소시키는 것을 포괄하는 개념으로, 해당 유전자의 효소가 관여하는 생합성 경로의 일부 또는 상당부분을 차단하는 모든 것을 포함한다.In the present invention, "attenuated" is a concept encompassing the mutation, substitution, deletion, or deletion of some bases of the gene, or reduction of the activity of the enzyme expressed by the gene by introducing a part of the base. And blocking all or a substantial portion of the biosynthetic pathway.

본 발명에서 "미생물"은 조류, 세균류, 원생동물류, 사상균류, 효모류와 바이러스 등을 포함한다.In the present invention, "microorganism" includes algae, fungi, protozoa, filamentous fungi, yeast and viruses.

본 발명에서 "벡터"는 특정 유전자를 숙주세포 내로 전달하는 목적을 가진 모든 핵산 분자가 될 수 있으며, 일반적으로는 자가복제서열, 게놈삽입서열, 파지 또는 뉴클레오티드 서열, 선형 또는 원형, 단일 또는 이중가닥의 DNA 혹은 RNA이다. 특히, 외래 유전자를 가지고 있으며 외래 유전자 외에 특정 숙주세포의 형질전환을 용이하게 하는 인자를 갖는 것일 수 있다. 일반적으로 벡터에는 적당한 유전자의 전사 및 번역을 지시하는 서열, 선택마커, 및 자가복제 또는 염색체 삽입을 허용하는 서열이 포함된다. 벡터의 구체적인 예로는 플라스미드 벡터, 파지 또는 코스미드 벡터 등이 있으나, 이에 제한되는 것은 아니다.In the present invention, a "vector" may be any nucleic acid molecule having the purpose of transferring a specific gene into a host cell, and generally includes a self-replicating sequence, a genomic insertion sequence, a phage or nucleotide sequence, a linear or circular, Of DNA or RNA. In particular, it may be one having a foreign gene and having a factor that facilitates transformation of a specific host cell in addition to the foreign gene. Vectors generally include sequences that direct transcription and translation of appropriate genes, selectable markers, and sequences that allow autologous replication or chromosome insertion. Specific examples of the vector include, but are not limited to, a plasmid vector, a phage or a cosmid vector.

본 발명에서는 세포 외부에 있는 C3-C8의 유기산을 acyl-CoA로 바꿀 수 있는 “8개의 Acyl CoAtransferase”를 메가스파에라 헥사노이카로부터 발굴하였으며, 이 유전자를 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자와 함께 대장균에 삽입하여 동시 발현시킴으로써 외부 유기산으로부터 C3-C8 알코올을 선택적으로 전환 생산하는 방법을 제공하고자 한다.In the present invention, " 8 Acyl CoAtransferases " capable of converting the C3-C8 organic acid outside the cell into acyl-CoA were extracted from megasparrahexanoic acid, and this gene was amplified using a gene encoding an alcohol dehydrogenase (ADH) And then simultaneously expressing C3-C8 alcohol from the external organic acid, thereby selectively producing C3-C8 alcohol.

이를 위해 먼저 본 발명에서는, C3-C8 알코올 생합성에 관여하는 Acyl CoA transferase(ACT) 효소를 코딩하는 유전자들을 메가스페라 헥사노이카 (Megasphaera hexanoica) 균주 (KCCM11835P)로부터 성공적으로 분리해내었다.For this purpose, genes encoding Acyl CoA transferase (ACT) enzymes involved in C3-C8 alcohol biosynthesis have been successfully isolated from Megasphaera hexanoica strain (KCCM11835P) in the present invention.

다음으로, 하기 실시예에서 서술한 바와 같이, 메가스페라 헥사노이카 균주의 전체 유전자를 해독하였으며(도 3), 이중 C3-C8의 유기산을 acyl-CoA로 바꿀 수 있는 Acyl CoAtransferase를 암호화하는 유전자 중 RNA 발현 레벨이 높게 유지되는 유전자들을 선별하였다.Next, as described in the following examples, the entire gene of the megasperahexanoicus strain was decoded (Fig. 3), and a gene encoding Acyl CoAtransferase capable of converting an organic acid of the C3-C8 into acyl-CoA Genes with high levels of RNA expression were selected.

이를 통해 본 발명에서는 서열번호 1 내지 8로 이루어진 군으로부터 선택된 어느 하나의 염기서열을 포함하는, C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자를 제공한다.Accordingly, the present invention provides a gene encoding an enzyme involved in biosynthesis of a C3-C8 alcohol, which comprises any one of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 1-8.

이때, 상기 서열번호 1 내지 8의 염기서열은 Acyl CoA transferase(ACT) 효소를 코딩하는 것을 특징으로 한다.In this case, the nucleotide sequences of SEQ ID NOS: 1 to 8 are characterized by encoding an Acyl CoA transferase (ACT) enzyme.

또한, 상기 유전자는 메가스파에라 헥사노이카 (Megasphaera hexanoica) 균주 (KCCM11835P)로부터 유래된 것을 특징으로 한다.The gene is also characterized in that it is derived from Megasphaera hexanoica strain (KCCM11835P).

이때, 상기 C3 유기산은 프로피온산이고, 상기 C3 알코올은 프로판올(propanol)이며, C4 유기산은 부티르산이고, C4 알코올은 부탄올(butanol)이며, C5 유기산은 펜타노익산이고, C5 알코올은 펜탄올(pentanol)이며, C6 유기산은 헥사노익산이고, C6 알코올은 헥산올(hexanol)이며, C7 유기산은 헵타노익산이고, C7 알코올은 헵탄올(heptanol)이고, C8 유기산은 옥타노익산이고, C8 알코올은 옥탄올(octanol)이다.The C3 organic acid is propionic acid, the C3 alcohol is propanol, the C4 organic acid is butyric acid, the C4 alcohol is butanol, the C5 organic acid is pentanoic acid, the C5 alcohol is pentanol, C6 C8 organic acid is hexanoic acid, C6 alcohol is hexanol, C7 organic acid is heptanoic acid, C7 alcohol is heptanol, C8 organic acid is octanoic acid, C8 alcohol is octanoic acid, Octanol.

또한, 본 발명은 서열번호 1 내지 8로 이루어진 군으로부터 선택된 어느 하나의 염기서열을 포함하는 C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자; 및 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자;를 포함하는 벡터를 제공한다.The present invention also relates to a gene encoding an enzyme involved in biosynthesis of a C3-C8 alcohol comprising any one of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 1 to 8; And a gene encoding an alcohol dehydrogenase (ADH) enzyme.

구체적으로, 서열번호 1 내지 8로 이루어진 군으로부터 선택되는 어느 하나의 염기서열을 포함하는 C3-C8 알코올 생합성에 관여하는 Acyl CoA transferase(ACT) 효소를 코딩하는 유전자를 pCDF duet 벡터의 MCSⅠ 영역에 삽입하고, Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자를 pCDF duet 벡터의 MCSⅡ 영역에 삽입하였다.Specifically, a gene encoding an Acyl CoA transferase (ACT) enzyme involved in the C3-C8 alcohol biosynthesis involving any one of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 1 to 8 is inserted into the MCS I region of the pCDF duet vector And the gene encoding the alcohol dehydrogenase (ADH) enzyme was inserted into the MCS II region of the pCDF duet vector.

이때, 상기 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자는 서열번호 9 내지 11로 이루어진 군으로부터 선택되는 어느 하나의 염기서열을 포함할 수 있으며, 구체적으로 상기 서열번호 9의 염기서열로 표시되는 유전자는 Aldehyde-alcohol dehydrogenase(AdhE)를 코딩하고, 상기 서열번호 10의 염기서열로 표시되는 유전자는 Aldehyde/alcohol dehydrogenase(AdhE2)를 코딩하고, 상기 서열번호 11의 염기서열로 표시되는 유전자는 Propionaldehyde dehydrogenase-Alcohol dehydrogenase(PduP-AdhA)를 코딩하는 것을 특징으로 한다.Herein, the gene coding for the alcohol dehydrogenase (ADH) enzyme may include any one of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 9 to 11. Specifically, the gene represented by the nucleotide sequence of SEQ ID NO: (AdhE), the gene represented by the nucleotide sequence of SEQ ID NO: 10 encodes Aldehyde / alcohol dehydrogenase (AdhE2), and the gene represented by the nucleotide sequence of SEQ ID NO: 11 encodes Aldehyde-alcohol dehydrogenase dehydrogenase (PduP-AdhA).

이때, 상기 AdhE는 Escherichia coli MG1655로부터 유래되고, 상기 AdhE2는 Clostridium acetobutylicum로부터 유래되며, 상기 PduP-AdhA에서 PduP는 Salmonella typhimurium로부터 유래되고, AdhA는 Lactococcus lactis로부터 유래된 것을 특징으로 한다.At this time, the AdhE is Escherichia coli AdhE2 is derived from Clostridium acetobutylicum , PduP in PduP-AdhA is derived from Salmonella typhimurium , and AdhA is derived from Lactococcus lactis .

또한, 본 발명은 상기 벡터에 의해 형질전환된, C3-C8 알코올 생산능력을 가지는 미생물을 제공한다.In addition, the present invention provides a microorganism transformed by the above-mentioned vector and capable of producing C3-C8 alcohol.

또한, 상기 C3-C8 알코올의 생산량을 향상시키기 위하여 상기 미생물은 락테이트(lactate) 생합성에 관여하는 효소를 코딩하는 유전자, 아세테이트(acetate) 생합성에 관여하는 효소를 코딩하는 유전자, 에탄올(ethanol) 생합성에 관여하는 효소를 코딩하는 유전자 및 숙시네이트(succinate) 생합성에 관여하는 효소를 코딩하는 유전자로 구성된 군에서 선택되는 1종 이상의 유전자가 약화 또는 결실되어 있는 것이 바람직하다.In order to improve the yield of the C3-C8 alcohol, the microorganism may be selected from a gene encoding an enzyme involved in lactate biosynthesis, a gene encoding an enzyme involved in acetate biosynthesis, And at least one gene selected from the group consisting of a gene encoding an enzyme involved in succinate biosynthesis and an enzyme involved in biosynthesis of succinate is weakened or deleted.

이때, 하기 실시예에서는 대장균 MG1655를 숙주 미생물로 이용하였으나, 다른 대장균이나, 박테리아, 효모 및 곰팡이를 사용하여 C3-C8 알코올의 생합성에 관여하는 Acyl CoA transferase(ACT) 효소를 코딩하는 유전자 및 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자를 도입시킨다면 본 발명의 목적을 달성할 수 있다고 할 것이다.In the following examples, Escherichia coli MG1655 was used as a host microorganism. However, genes coding for Acyl CoA transferase (ACT) enzymes involved in the biosynthesis of C3-C8 alcohol using other Escherichia coli, bacteria, yeast and fungi and Alcohol Dehydrogenase (ADH) < / RTI > enzyme is introduced, it is said that the object of the present invention can be achieved.

또한, 본 발명은 상기 미생물을 배양하여 C3-C8 알코올을 생산하는 방법을 제공한다.The present invention also provides a method for producing a C3-C8 alcohol by culturing the microorganism.

이때, 상기 미생물 배양시 C3 내지 C8 유기산 중 어느 하나 이상을 첨가할 수 있다. 구체적으로 상기 미생물 배양시 C3 유기산을 첨가하면 C3 알코올이, C4 유기산을 첨가하면 C4 알코올이, C5 유기산을 첨가하면 C5 알코올이, C6 유기산을 첨가하면 C6 알코올이, C7 유기산을 첨가하면 C7 알코올이, C8 유기산을 첨가하면 C8 알코올이 선택적으로 생산되며, 소정의 탄소수를 가진 복수의 유기산을 첨가하면 소정의 탄소수를 가진 복수의 알코올을 생산할 수 있다.At this time, at least one of C3 to C8 organic acids may be added during the culture of the microorganism. Specifically, when a C3 organic acid is added to the microorganism culture, a C4 alcohol is added to the C4 organic acid, a C5 alcohol is added to the C5 organic acid, a C6 alcohol is added to the C6 organic acid, a C7 alcohol is added to the C7 organic acid, When C8 organic acid is added, C8 alcohol is selectively produced. When a plurality of organic acids having a predetermined carbon number is added, a plurality of alcohols having a predetermined carbon number can be produced.

이하, 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments and the like. It will be apparent to those skilled in the art, however, that these examples are provided for further illustrating the present invention and that the scope of the present invention is not limited thereto.

1. 균주 분리1. Strain isolation

대한민국 서울시 마장동에 위치한 우시장에서 위액이 포함된 소내장을 구매하고 이를 혐기적으로 처리하였다. 상기 혐기적으로 처리된 위액을 5 g/L hexanoic acid가 포함된 Reinforced Clostridia medium (difco)에 접종하여 37 ℃에서 3일간 증균 배양시켰다. 이 증균 배양액을 동일한 배지에 수차례 계대 배양하였다. 증균 배양한 배양액은 Reinforced Clostridia medium (difco)배지에 도말하여 콜로니를 형성시켰다. 선발된 각각의 콜로니들을 Reinforced Clostridia medium (difco) 액체 배지에 접종하여 37℃에서 3일간 배양 후, 기체 크로마토그래피(Gas chromatography, GC)를 이용하여 헥사노산 생산량을 측정하였다. 그 결과, 가장 많은 양의 헥사노산을 생산하는 미생물을 분리하였으며 이를 메가스페라 헥사노이카(Megasphaera hexanoica)로 명명하였다. 해당 균주를 부다페스트 조약에 따른 미생물 기탁기관인 대한민국 한국미생물보존센터에 2016년 04월 28일자로 기탁하여 기탁번호 KCCM11835P를 부여받았다.In the wuxi market in Majang-dong, Seoul, Korea, we purchased small intestine containing gastric juice and processed it anaerobically. The anaerobically treated gastric juice was inoculated into Reinforced Clostridia medium (difco) containing 5 g / L hexanoic acid and incubated at 37 ° C for 3 days. This enrichment culture was subcultured several times in the same medium. The cultures were cultured in Reinforced Clostridia medium (difco) medium to form colonies. Each of the selected colonies was inoculated into a Reinforced Clostridia medium (difco) liquid medium and cultured at 37 ° C for 3 days. Then, hexanoic acid production was measured by gas chromatography (GC). As a result, microorganisms producing the greatest amount of hexanoic acid were isolated and named Megasphaera hexanoica. The strain was deposited on April 28, 2016 with the deposit number KCCM11835P to the Korea Microorganism Conservation Center, a microorganism depository organization under the Budapest Treaty.

2. 유전체 분석2. Dielectric analysis

메가스페라 헥사노이카의 유전체 분석은 유전체 전문 분석 기관인 천랩에 의뢰하여 GS FLX454, 일루미나 하이시크 기기를 이용하여 분석하였으며, 천랩에서 제공하는 바이오 인포매틱 프로그램인 CL genomics 를 이용하여 완벽한 전체 유전자 지도를 확보하였다.Genome analysis of megasperahexanoicas was performed by GSL FLX454 and Illumina High-Sic equipment, which was commissioned by Chunlab, a specialist in genome analysis, and the complete genetic map was analyzed using CL genomics, a bioinformatic program provided by ChunLab. Respectively.

도 3에는 상기 과정에 의해서 얻어진 메가스페라 헥사노이카의 전체 유전자 지도를 도시하였다. 유전체 분석 결과, 1개의 contig으로 이루어진 유전체를 확보하였으며, 유전체 크기는 28778511 bp 이며, G+C 비율은 49 % 이며, 2821개의 암호화 서열, rRNA 18개, tRNA 53개 도 1로부터, GC skew가 급격히 변화되는 지점이 복제 기점임을 유추할 수 있다.FIG. 3 shows the entire gene map of megasperahexanoicas obtained by the above process. As a result of the dielectric analysis, a dielectric consisting of one contig was ensured, the dielectric size was 28778511 bp, the G + C ratio was 49%, 2821 cryptic sequences, 18 rRNAs and 53 tRNAs, It can be inferred that the point of change is the origin of replication.

상기 유전체 분석 결과에 의해 도출된 유전자 중 Acyl CoA transferase(ACT)를 암호화하는 서열번호 1 내지 8(서열번호 1: ACT 5510, 서열번호 2: ACT 3270, 서열번호 3: ACT 3280, 서열번호 4: ACT 23750, 서열번호 5: ACT 19420, 서열번호 6: ACT 7470 서열번호 7: ACT 5060, 서열번호 8: ACT 24660으로 표시) 및 서열번호 12의 유전자(ACT 27250으로 표시)들을 분리하였다.(SEQ ID NO: 1: ACT 5510, SEQ ID NO: 2: ACT 3270, SEQ ID NO: 3: ACT 3280, SEQ ID NO: 4) encoding the Acyl CoA transferase (ACT) among genes derived from the above- (Denoted as ACT 23750, SEQ ID NO: 5: ACT 19420, SEQ ID NO: 6: ACT 7470 SEQ ID NO: 7 ACT 5060, SEQ ID NO: 8 ACT 24660) and SEQ ID NO: 12 (denoted ACT 27250).

3. 본 발명에 따른 유전자를 포함하는 벡터의 제조3. Production of a vector containing the gene according to the present invention

본 발명에 따른 서열번호 1 내지 8 및 서열번호 12로 표시되는 염기서열을 포함하는 Acyl CoA transferase(ACT) 효소를 코딩하는 유전자를 각각 pCDF duet-1 벡터의 MCSⅠ영역에 삽입하였고, 상기 ACT 유전자가 삽입된 각각의 벡터에 서열번호 9 내지 11중 어느 하나로 표시되는 염기서열을 포함하는 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자를 MCSⅡ 영역에 삽입하여 본 발명에 따른 벡터를 제조하였으며(도 1), 이때, ACT 유전자의 발현량은 대략 700,000으로, ADH 유전자의 발현량은 대략 10000000 내지 3000000으로 조절하였다. 구체적인 제조방법은 다음과 같다.The genes coding for the Acyl CoA transferase (ACT) enzymes comprising the nucleotide sequences of SEQ ID NOS: 1 to 8 and SEQ ID NO: 12 according to the present invention were inserted into the MCS I region of the pCDF duet-1 vector, A vector according to the present invention was prepared by inserting a gene encoding an alcohol dehydrogenase (ADH) enzyme comprising the nucleotide sequence shown in any one of SEQ ID NOS: 9 to 11 into each inserted vector into the MCS II region (FIG. 1) At this time, the expression level of the ACT gene was approximately 700,000 and the expression level of the ADH gene was adjusted to approximately 10000000-3000000. The specific manufacturing method is as follows.

(1) 서열번호 1 및 서열번호 10을 포함하는 벡터의 제조(1) Preparation of a vector comprising SEQ ID NO: 1 and SEQ ID NO: 10

서열번호 1에 따른 ACT 5510을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 13 및 14의 프라이머 세트를 사용하였다. PCR을 이용하여 증폭된 PCR fragment를 BAMHI과 HIND3으로 처리하였고, pCDF duet-1 벡터 역시 BAMHI과 HIND3으로 처리한 후 프렙하였으며, 일정량을 라이게이션 키트인 마이티 믹스를 사용하여 라이게이션 하였다. 라이게이션 된 플라스미드를 DH5 alpha에 삽입하였으며, 동일한 프라이머를 사용하여 콜로니 pcr을 수행하여 벡터에 해당 유전자가 삽입되는지를 확인하였다.In order to insert the gene coding for ACT 5510 according to SEQ ID NO: 1 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOs: 13 and 14 below, in which BAMHI was inserted in front of the primer set and HIND3 restriction enzyme region was inserted in the rear Were used. The PCR fragment amplified by PCR was treated with BAMHI and HIND3. The pCDF duet-1 vector was also treated with BAMHI and HIND3 and then subjected to ligation using a ligation kit, Mighty Mix. The ligated plasmid was inserted into DH5 alpha, and colony PCR was performed using the same primer to confirm that the gene was inserted into the vector.

[서열번호 13] : 5'-TATATGGATCCCATGTACAAACTTTCACAAATTGCAG-3'[SEQ ID NO: 13]: 5'-TATATGGATCCCATGTACAAACTTTCACAAATTGCAG-3 '

[서열번호 14] : 5'-TATATAAGCTTTTAGTATTCTGTCTTGCTCGTCT-3'[SEQ ID NO: 14]: 5'-TATATAAGCTTTTAGTATTCTGTCTTGCTCGTCT-3 '

다음으로, 서열번호 10에 따른 AdhE2를 코딩하는 유전자를 pCDF duet-1 벡터의 MCSⅡ 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 NDEI, 뒤쪽에는 XHOI 제한효소 영역이 삽입된 아래의 서열번호 33 및 34의 프라이머 세트를 사용하였다. PCR을 이용하여 증폭된 PCR fragment를 NDEI과 XHOI으로 처리하였고, pCDF duet-1 벡터 역시 NDEI과 XHOI으로 처리한 후 프렙하였으며, 일정량을 라이게이션 키트인 마이티 믹스를 사용하여 라이게이션 하였다. 라이게이션 된 플라스미드를 DH5 alpha에 삽입하였으며, 동일한 프라이머를 사용하여 콜로니 pcr을 수행하여 벡터에 해당 유전자가 삽입되는지를 확인하였다.Next, in order to insert the gene coding for AdhE2 according to SEQ ID NO: 10 into the MCS II region of the pCDF duet-1 vector, NDEI was inserted in front of the primer set and SEQ ID NOS: 33 and 34 in which the XHOI restriction enzyme region was inserted at the rear Primer set was used. The PCR fragments amplified by PCR were treated with NDEI and XHOI. The pCDF duet-1 vector was also treated with NDEI and XHOI, and then subjected to ligation using a ligation kit, Mighty Mix. The ligated plasmid was inserted into DH5 alpha, and colony PCR was performed using the same primer to confirm that the gene was inserted into the vector.

[서열번호 33] : 5'-TATATCATATGATGAAAGTTACAAATCAAAAAGAACTAAAA-3'[SEQ ID NO: 33]: 5'-TATATCATATGATGAAAGTTACAAATCAAAAAGAACTAAAA-3 '

[서열번호 34] : 5'-TATATGAGCTCTTAAAATGATTTTATATAGATATCCTTAAGTT-3'[SEQ ID NO: 34]: 5'-TATATGAGCTCTTAAAATGATTTTATATAGATATCCTTAAGTT-3 '

(2) 서열번호 2 및 서열번호 10을 포함하는 벡터의 제조(2) Preparation of a vector comprising SEQ ID NO: 2 and SEQ ID NO: 10

서열번호 2에 따른 ACT 3270을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 15 및 16의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene encoding ACT 3270 according to SEQ ID NO: 2 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOS: 15 and 16 below, in which BAMHI was inserted in front of the primer set and HIND3 restriction enzyme region was inserted in the rear Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 15] : 5'-TATATGATCCCATGTCAGAATGGACGGATATGTA-3'[SEQ ID NO: 15]: 5'-TATATGATCCCATGTCAGAATGGACGGATATGTA-3 '

[서열번호 16] : 5'-TATATAAGCTTTTACCGTTTATTGCTCTTGCGC-3'[SEQ ID NO: 16]: 5'-TATATAAGCTTTTACCGTTTATTGCTCTTGCGC-3 '

(3) 서열번호 3 및 서열번호 10을 포함하는 벡터의 제조(3) Preparation of a vector comprising SEQ ID NO: 3 and SEQ ID NO: 10

서열번호 3에 따른 ACT 3280을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 17 및 18의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for ACT 3280 according to SEQ ID NO: 3 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOs: 17 and 18 below, in which BAMHI and HIND3 restriction enzyme regions were inserted in front of the primer set, Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 17]: 5'-TATATGAGCTCCATGGATGTAATGCAAGAATATGCC-3'[SEQ ID NO: 17]: 5'-TATATGAGCTCCATGGATGTAATGCAAGAATATGCC-3 '

[서열번호 18]: 5'-TATATGTCGACTTAGATCAGGATATGCATTTTTTTAGC-3'[SEQ ID NO: 18]: 5'-TATATGTCGACTTAGATCAGGATATGCATTTTTTTAGC-3 '

(4) 서열번호 4 및 서열번호 10을 포함하는 벡터의 제조(4) Preparation of a vector comprising SEQ ID NO: 4 and SEQ ID NO: 10

서열번호 4에 따른 ACT 23750을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 19 및 20의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for ACT 23750 according to SEQ ID NO: 4 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOS: 19 and 20 below, in which BAMHI was inserted in front of the primer set and HIND3 restriction enzyme region was inserted in the rear Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 19]: 5'-TATATGAGCTCCATGACACAATATGAAACAATGTATGAA-3'[SEQ ID NO: 19]: 5'-TATATGAGCTCCATGACACAATATGAAACAATGTATGAA-3 '

[서열번호 20]: 5'-TATATGTCGACTTACCAAATCATGTATTTGTCAACAG-3'[SEQ ID NO: 20]: 5'-TATATGTCGACTTACCAAATCATGTATTTGTCAACAG-3 '

(5) 서열번호 5 및 서열번호 10을 포함하는 벡터의 제조(5) Preparation of a vector comprising SEQ ID NO: 5 and SEQ ID NO: 10

서열번호 5에 따른 ACT 19420을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 21 및 22의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for ACT 19420 according to SEQ ID NO: 5 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOS: 21 and 22 below, in which BAMHI was inserted in front of the primer set and HIND3 restriction enzyme region was inserted in the rear Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 21]: 5'-TATATGGATCCCATGATGAATCAATGGCAGCGCAT-3'[SEQ ID NO: 21]: 5'-TATATGGATCCCATGATGAATCAATGGCAGCGCAT-3 '

[서열번호 22]: 5'-TATATAAGCTTTTACACAATAATATGCATCTTTCTGG-3'[SEQ ID NO: 22]: 5'-TATATAAGCTTTTACACAATAATATGCATCTTTCTGG-3 '

(6) 서열번호 6 및 서열번호 10을 포함하는 벡터의 제조(6) Preparation of a vector comprising SEQ ID NO: 6 and SEQ ID NO: 10

서열번호 6에 따른 ACT 7470을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 23 및 24의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for ACT 7470 according to SEQ ID NO: 6 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOS: 23 and 24 below, in which BAMHI was inserted in front of the primer set and HIND3 restriction enzyme region was inserted in the back, Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 23]: 5'-TATATGGATCCCATGGATTACCAGAGTGAATACATGA-3'[SEQ ID NO: 23]: 5'-TATATGGATCCCATGGATTACCAGAGTGAATACATGA-3 '

[서열번호 24]: 5'-TATATAAGCTTTTATCGTTTATGAGAAGCGCGC-3'[SEQ ID NO: 24]: 5'-TATATAAGCTTTTATCGTTTATGAGAAGCGCGC-3 '

(7) 서열번호 7 및 서열번호 10을 포함하는 벡터의 제조(7) Preparation of a vector comprising SEQ ID NO: 7 and SEQ ID NO: 10

서열번호 7에 따른 ACT 5060을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 25 및 26의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for ACT 5060 according to SEQ ID NO: 7 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOs: 25 and 26 below, in which BAMHI and HIND3 restriction enzyme regions were inserted in front of the primer set, Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 25]: 5'-TATATGGATCCCATGAATCCATTCGAAATATATCAGG-3'[SEQ ID NO: 25]: 5'-TATATGGATCCCATGAATCCATTCGAAATATATCAGG-3 '

[서열번호 26]: 5'-TATATAAGCTTTTATTTCTTGTTACTGTTCCTCCAG-3'[SEQ ID NO: 26]: 5'-TATATAAGCTTTTATTTCTTGTTACTGTTCCTCCAG-3 '

(8) 서열번호 8 및 서열번호 10을 포함하는 벡터의 제조(8) Preparation of a vector comprising SEQ ID NO: 8 and SEQ ID NO: 10

서열번호 8에 따른 ACT 24660을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 27 및 28의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for ACT 24660 according to SEQ ID NO: 8 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOS: 27 and 28 below, in which BAMHI was inserted in front of the primer set and HIND3 restriction enzyme region was inserted in the rear, Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 27]: 5'-TATATGAGCTCCATGATTGACATTTCAGATCGCATA-3'[SEQ ID NO: 27]: 5'-TATATGAGCTCCATGATTGACATTTCAGATCGCATA-3 '

[서열번호 28]: 5'-TATATGTCGACTTACTTCATACTCCCTGTTTCCA-3'[SEQ ID NO: 28]: 5'-TATATGTCGACTTACTTCATACTCCCTGTTTCCA-3 '

(9) 서열번호 1 및 서열번호 9를 포함하는 벡터의 제조(9) Preparation of a vector comprising SEQ ID NO: 1 and SEQ ID NO: 9

서열번호 9에 따른 AdhE를 코딩하는 유전자를 pCDF duet-1 벡터의 MCSⅡ 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 NDEI, 뒤쪽에는 XHOI 제한효소 영역이 삽입된 아래의 서열번호 31 및 32의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for AdhE according to SEQ ID NO: 9 into the MCS II region of the pCDF duet-1 vector, a primer set of SEQ ID NOs: 31 and 32 shown below inserted with NDEI in front of the primer set and XHOI restriction enzyme region in the back A vector was prepared in the same manner as in (1) above, except that it was used.

[서열번호 31]: 5'-GCGCCATATGGCTGTTACTAATGTCG-3'[SEQ ID NO: 31]: 5'-GCGCCATATGGCTGTTACTAATGTCG-3 '

[서열번호 32]: 5'-GCGCCTCGAGTTAAGCGGATTTTTTC-3'[SEQ ID NO: 32]: 5'-GCGCCTCGAGTTAAGCGGATTTTTTC-3 '

(10) 서열번호 1 및 서열번호 11을 포함하는 벡터의 제조(10) Preparation of a vector comprising SEQ ID NO: 1 and SEQ ID NO: 11

서열번호 11에 따른 AdhE를 코딩하는 유전자를 pCDF duet-1 벡터의 MCSⅡ 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 NDEI, 뒤쪽에는 XHOI 제한효소 영역이 삽입된 아래의 서열번호 35 및 36의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene coding for AdhE according to SEQ ID NO: 11 into the MCS II region of the pCDF duet-1 vector, a primer set of SEQ ID NOS: 35 and 36, in which NDEI was inserted in front of the primer set and an XHOI restriction enzyme region was inserted in the rear, A vector was prepared in the same manner as in (1) above, except that it was used.

[서열번호 35]: 5'-GCGCCATATGAACACCAGCGAACTGGAAA-3'[SEQ ID NO: 35]: 5'-GCGCCATATGAACACCAGCGAACTGGAAA-3 '

[서열번호 36]: 5'-GCGCCTCGAGTTATTTGGTGAAGTCG-3'[SEQ ID NO: 36]: 5'-GCGCCTCGAGTTATTTGGTGAAGTCG-3 '

(11) 서열번호 12 및 서열번호 10을 포함하는 벡터의 제조(11) Preparation of a vector comprising SEQ ID NO: 12 and SEQ ID NO: 10

서열번호 12에 따른 ACT 27250을 코딩하는 유전자를 pCDF duet-1 벡터의 MCSI 영역에 삽입하기 위하여, 프라이머세트 앞쪽에는 BAMHI, 뒤쪽에는 HIND3 제한효소 영역이 삽입된 아래의 서열번호 29 및 30의 프라이머 세트를 사용한 것을 제외하고는 상기 (1)과 동일한 방법을 수행하여 벡터를 제조하였다.In order to insert the gene encoding ACT 27250 according to SEQ ID NO: 12 into the MCSI region of the pCDF duet-1 vector, primers set forth in SEQ ID NOS: 29 and 30, in which BAMHI was inserted in front of the primer set and HIND3 restriction enzyme region was inserted in the rear, Was used to prepare a vector. ≪ tb > < TABLE >

[서열번호 29]: 5'-TATATGGATCCCATGACTGGTATTGATGCACATATTT-3'[SEQ ID NO: 29]: 5'-TATATGGATCCCATGACTGGTATTGATGCACATATTT-3 '

[서열번호 30]: 5'-TATATAAGCTTTTATCGTCTCGTCATCTCCTTAT-3'[SEQ ID NO: 30]: 5'-TATATAAGCTTTTATCGTCTCGTCATCTCCTTAT-3 '

4. 본 발명에 따른 벡터에 의해 형질전환된 C3-C8 알코올 생산능력을 가지는 미생물의 제조4. Production of microorganisms having C3-C8 alcohol production ability transformed by the vector according to the present invention

(1) ldhA, pta, adhe, frda 유전자의 결실(1) deletion of ldhA, pta, adhe, and frda genes

대장균 MG1655에서 ldhA, pta, adhe 및 frda 유전자를 추가로 결실시키기 위하여, 하기 서열번호 37 내지 44의 프라이머들을 이용한 리컴비네이즈 보유 pKM 208 플라스미드와 카나마이신 레지스턴스 유전자를 보유한 pKDA를 이용한 결시 방법을 사용하였다. ldhA (lactate dehydrogenase를 코딩하는 유전자), pta (phosphotransacetylase를 코딩하는 유전자), adhe (alcohol dehydrogenase를 코딩하는 유전자) 및 frda 유전자를 결실시켰다. In order to further delete the ldhA, pta, adhe and frda genes from Escherichia coli MG1655, pKM 208 plasmid carrying the recombinase-bearing pKM 208 plasmids using the primers of the following SEQ ID NOS: 37-44 and pKDA using the kanamycin resistance gene were used. ldhA (a gene encoding lactate dehydrogenase), pta (a gene encoding phosphotransacetylase), adhe (a gene encoding alcohol dehydrogenase), and the frda gene.

[서열번호 37] ldhA1stup: 5'-AAATATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGAG AAAGTCTTGTGTAGGCTGGAGCTGCTTC-3'[SEQ ID NO: 37] ldhA1stup: 5'-AAATATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGAG AAAGTCTTGTGTAGGCTGGAGCTGCTTC-3 '

[서열번호 38] ldhA1stdo: 5'-ATTGGGGATTATCTGAATCAGCTCCCCTGGGTTGCAGGGGAG CGGCAAGATCCTCCTTAGTTCCTATTCC-3'[SEQ ID NO: 38] ldhA1stdo: 5'-ATTGGGGATTATCTGAATCAGCTCCCCTGGGTTGCAGGGGAG CGGCAAGATCCTCCTTAGTTCCTATTCC-3 '

[서열번호 39] FRDA f: 5'-CTTACCCTGAAGTACGGGGCTGTGGGATAAAAACAATCTGGAGGA ATGTCGTGTAGGCTGGAGCTGCTTC-3'[SEQ ID NO: 39] FRDA f: 5'-CTTACCCTGAAGTACGGGGCTGTGGGATAAAACAATCTGGAGGA ATGTCGTGTAGGCTGGAGCTGCTTC-3 '

[서열번호 40] FRDA r: 5'-TATCGACTTCCGGGTTATAGCGCACCACCTCAATTTTCAGGTTTT TCATCTCCTCCTTAGTTCCTATTCC-3'[SEQ ID NO: 40] FRDA r: 5'-TATCGACTTCCGGGTTATAGCGCACCACCTCAATTTTCAGGTTTT TCATCTCCTCCTTAGTTCCTATTCC-3 '

[서열번호 41] PTA f: 5'-GGTGCTGTTTTGTAACCCGCCAAATCGGCGGTAACGAAAGAGGAT AAACCGTGTAGGCTGGAGCTGCTTC-3'[SEQ ID NO: 41] PTA f: 5'-GGTGCTGTTTTGTAACCCGCCAAATCGGCGGTAACGAAAGAGGAT AAACCGTGTAGGCTGGAGCTGCTTC-3 '

[서열번호 42] PTA r: 5'-TTATTTCCGGTTCAGATATCCGCAGCGCAAAGCTGCGGATGATGA CGAGAATATCCTCCTTAGTTCCTATTCC-3'[SEQ ID NO: 42] PTA r: 5'-TTATTTCCGGTTCAGATATCCGCAGCGCAAAGCTGCGGATGATGA CGAGAATATCCTCCTTAGTTCCTATTCC-3 '

[서열번호 43] ADHE f: 5'-ATTCGAGCAGATGATTTACTAAAAAAGTTTAACATTATCAGGAGA GCATTGTGTAGGCTGGAGCTGCTTC-3'[SEQ ID NO: 43] ADHE f: 5'-ATTCGAGCAGATGATTTACTAAAAAAGTTTAACATTATCAGGAGA GCATTGTGTAGGCTGGAGCTGCTTC-3 '

[서열번호 44] ADHE r: 5'-AAAAAACGGCCCCAGAAGGGGCCGTTTATATTGCCAGACAGCGCT ACTGATCCTCCTTAGTTCCTATTCC-3'[SEQ ID NO: 44] ADHE r: 5'-AAAAAACGGCCCCAGAAGGGGCCGTTTATATTGCCAGACAGCGCT ACTGATCCTCCTTAGTTCCTATTCC-3 '

(2) C3-C8 알코올 생산능력을 가지는 미생물의 제조(2) Production of microorganisms having C3-C8 alcohol production ability

하기 도 2에 따른 알코올 생합성 경로를 가지는 미생물을 제조하기 위하여, 상기 ldhA, pta, adhe, frda 유전자가 결실된 대장균 MG1655에 상기 3-(1)에 따른 벡터가 도입된 미생물(실시예 1: ACT_5510), 상기 3-(2)에 따른 벡터가 도입된 미생물(실시예 2: ACT_3270), 상기 3-(3)에 따른 벡터가 도입된 미생물(실시예 3: ACT_3280), 상기 3-(4)에 따른 벡터가 도입된 미생물(실시예 4: ACT_23750), 상기 3-(5)에 따른 벡터가 도입된 미생물(실시예 5: ACT_19420), 상기 3-(6)에 따른 벡터가 도입된 미생물(실시예 6: ACT_7470), 상기 3-(7)에 따른 벡터가 도입된 미생물(실시예 7: ACT_5060), 상기 3-(8)에 따른 벡터가 도입된 미생물(실시예 8: ACT_24660), 상기 3-(9)에 따른 벡터가 도입된 미생물(실시예 9: ADH로 AdhE 사용), 상기 3-(10)에 따른 벡터가 도입된 미생물(실시예 10: ADH로 PduP-AdhA 사용), 상기 3-(11)에 따른 벡터가 도입된 미생물(비교예 1: ACT_27250)을 제조하였다. In order to produce a microorganism having an alcohol biosynthesis pathway according to FIG. 2, a microorganism into which the vector according to the above-mentioned 3- (1) was introduced (Example 1: ACT_5510 ), The microorganism (Example 2: ACT_3270) into which the vector according to the above 3- (2) was introduced (Example 2: ACT_3270), the microorganism into which the vector according to the above 3- (3) (Example 4: ACT_23750), the microorganism into which the vector according to the above 3- (5) was introduced (Example 5: ACT_19420), the microorganism into which the vector according to the above 3- (6) Example 6: ACT_7460), microorganisms into which the vector according to the above 3- (7) (Example 7: ACT_5060), vector according to the above 3- (8) (Example 8: ACT_24660) (Example 9: using AdhE as ADH), the microorganism into which the vector according to (3- (10) above was introduced (Example 10: using PduP-AdhA as ADH) 3- (11) The introduction of micro-organisms: (Comparative Example 1 ACT_27250) was prepared.

5. C3-C8 알코올 생산 능력 측정5. Measurement of C3-C8 alcohol production capacity

상기 실시예 1-10 및 비교예 1에 따라 형질전환된 미생물의 C3-C8 알코올 생산 능력과 관련된 실험들을 진행하였다.Experiments related to the C3-C8 alcohol production ability of the transformed microorganisms according to Examples 1-10 and Comparative Example 1 were conducted.

도 4는 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 48시간 동안 배양시 생산되는 C3-C8 알코올의 생산량을 나타낸 그래프이다. 이때, 상기 각각의 미생물들에 C3-C8 유기산을 각각 1g/L씩 첨가하여 배양한 후 해당 유기산의 탄소수에 대응하는 알코올의 생산량을 측정하였다. 측정 결과, 본 발명에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 배양할 경우 C3-C8 알코올이 선택적으로 전환생산됨을 확인하였다. 또한, 실시예 1-8에 따른 미생물들은 모두 뛰어난 알코올 선택적 생산성을 나타내었다. 구체적으로 실시예 1에 따른 미생물의 경우 전반적으로 모든 유기산에 대하여 뛰어난 전환능력을 나타내었다. 또한, 실시예 4 및 실시예 6에 따른 미생물의 경우 C4 유기산에 대해 가장 높은 알코올 전환률을 나타내었으며, 실시예 5 및 실시예 8에 따른 미생물의 경우 유기산의 탄소수가 높아질수록 전환률이 감소되는 경향을 보이는 반면, 실시예 7에 따른 미생물은 C4, C6 유기산에 대하여 전환량이 증가되는 현상을 나타내었다. FIG. 4 is a graph showing production yields of C3-C8 alcohol produced by culturing the microorganism transformed according to Example 1-8 and Comparative Example 1 of the present invention with 48 hours of C3-C8 organic acid added thereto. At this time, 1 g / L of C3-C8 organic acid was added to each of the microorganisms and cultured, and the amount of alcohol produced corresponding to the number of carbon atoms of the corresponding organic acid was measured. As a result of the measurement, it was confirmed that C3-C8 alcohol was selectively converted when C3-C8 organic acid was added to the transformed microorganism according to the present invention. In addition, all of the microorganisms according to Examples 1-8 showed excellent alcohol-selective productivity. Specifically, the microorganism according to Example 1 showed excellent conversion ability to all organic acids as a whole. In addition, the microorganisms according to Examples 4 and 6 showed the highest alcohol conversion rates with respect to the C4 organic acids. In the case of the microorganisms according to Examples 5 and 8, the higher the carbon number of the organic acid, the lower the conversion rate While the microorganism according to Example 7 showed an increase in conversion amount with respect to C4, C6 organic acid.

도 5는 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C5-C8 유기산을 첨가하여 48시간 동안 배양시 C5-C8 알코올 전환량, 유기산 소비량 및 알코올 전환률을 나타낸 그래프이다. 이를 통해 본 발명의 실시예 1-8에 따른 미생물들은 모두 높은 탄소수의 유기산에 대해서도 뛰어난 알코올 전환생산 능력을 가짐을 확인하였다.5 is a graph showing C5-C8 alcohol conversion, organic acid consumption, and alcohol conversion rate when cultured for 48 hours with C5-C8 organic acid added to the transformed microorganism according to Example 1-8 and Comparative Example 1 of the present invention . Thus, it was confirmed that the microorganisms according to Examples 1-8 of the present invention all had excellent alcohol conversion production capacity even for a high carbon number organic acid.

도 6은 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물에 C3-C8 유기산을 첨가하여 72시간 동안 배양시 생산되는 C3-C8 알코올의 생산량을 나타내고, 도 7은 C3-C8 알코올의 전환률을 나타내며, 도 8은 세포 생장량(Cell growth) 측정 결과를 나타내고, 도 9는 생산되는 C3-C8 알코올의 전환률을 C3-C5 알코올과, C5-C8 알코올로 분리하여 나타낸 그래프이다. 이를 통해 실시예 1-8에 따른 미생물들은 72 시간 배양시에도 모두 뛰어난 알코올 선택적 생산성 및 높은 전환률을 나타냄을 확인하였으며, 특히 실시예 1-3에 따른 미생물은 모든 유기산들에 대하여 매우 높은 선택성 및 알코올 전환률을 나타냄을 확인함과 동시에 실시에 4-8에 따른 미생물들 또한 유기산을 알코올로 전환함에 있어 다양한 특성을 가짐을 확인하였다.FIG. 6 shows the yield of C3-C8 alcohol produced by culturing the transformed microorganism with C3-C8 organic acid for 72 hours according to Example 1-8 and Comparative Example 1 of the present invention, and FIG. FIG. 8 is a graph showing the results of cell growth measurement, and FIG. 9 is a graph showing the conversion rates of C3-C8 alcohol produced by separating C3-C5 alcohol and C5-C8 alcohol. Thus, it was confirmed that the microorganisms according to Example 1-8 exhibited excellent alcohol-selective productivity and high conversion even when incubated for 72 hours. Especially, the microorganisms according to Example 1-3 had very high selectivity for all organic acids, And that the microorganisms according to Examples 4-8 also have various properties in converting organic acids into alcohols.

다음으로, 본 발명의 실시예 1, 9-10에 따른 미생물의 C3-C8 알코올 전환량 및 생산량을 측정하여 그 결과를 하기 도 13에 나타내었다. 측정 결과 ADH 효소로 사용된 AdhE, AdhE2, Pdup-AdhA 모두 C3-C8 유기산에 대해 높은 선택성 및 알코올 전환률을 보임을 확인하였다. 특히 C5-C7 유기산에 대해 Pdup-AdhA가 가장 높은 알코올 전환률을 가지며, C8 유기산에 대해서는 AdhE가 가장 높은 알코올 전환률을 가진다는 것을 확인하였다.Next, the C3-C8 alcohol conversion amount and the production amount of the microorganism according to Examples 1, 9-10 of the present invention were measured, and the results are shown in Fig. As a result, it was confirmed that AdhE, AdhE2, and Pdup-AdhA, which are used as ADH enzymes, show high selectivity and alcohol conversion for C3-C8 organic acids. In particular, Pdup-AdhA has the highest alcohol conversion rate for C5-C7 organic acids and AdhE has the highest alcohol conversion for C8 organic acids.

다음으로, 본 발명의 실시예 1, 실시예 9 및 실시예 10에 따른 미생물에 C4 유기산을 1 g/L 첨가하여 48시간 동안 배양시 C4 알코올 전환량 및 생산량을 측정하였으며 그 결과를 하기 도 10 내지 도 12에 나타내었다. 이때, enzyme 자체의 효율을 평가하기 위해 cell을 농축시켜 O.D 값은 10으로 맞춘 후에 유기산을 첨가하여 enzyme의 활성을 측정하는 방식으로 실험을 진행하였다(표 1).Next, C4g organic acid was added to the microorganism according to Example 1, Example 9, and Example 10 of the present invention at 1 g / L, and the C4 alcohol conversion and production amount were measured during 48 hours of culture. As shown in Fig. At this time, in order to evaluate the efficiency of the enzyme itself, the cell was concentrated and the O.D value was adjusted to 10, and then the activity of the enzyme was measured by adding organic acid (Table 1).

Figure 112017117562116-pat00001
Figure 112017117562116-pat00001

측정 결과 알코올 생산성은 Pdup-AdhA, AdhE, AdhE2 순으로 나타났으며, AdhE는 AdhE2에 비해 생산성이 우수한 반면 유기산의 알코올 전환률은 다소 떨어진다는 것을 확인하였다.The results showed that alcohol productivity was in the order of Pdup - AdhA, AdhE and AdhE2. AdhE showed higher productivity than AdhE2, but alcohol conversion of organic acid was somewhat lower.

다음으로, 본 발명의 실시예 1에 따라 형질전환된 미생물에 부티르산과 헥사노익산을 주입한 후 배양하여 이들 유기산에 대한 내성을 측정하였으며, 그 결과를 하기 도 14에 나타내었다. 측정 결과, 부티르산의 최적 농도는 30 mM이고, 헥사노익산의 최적 농도는 15 mM임을 확인하였다.Next, the microorganisms transformed according to Example 1 of the present invention were injected with butyric acid and hexanoic acid, and cultured, and the tolerance to these organic acids was measured. The results are shown in Fig. As a result of the measurement, it was confirmed that the optimum concentration of butyric acid was 30 mM and the optimum concentration of hexanoic acid was 15 mM.

다음으로, 본 발명의 실시예 1-8 및 비교예 1에 따라 형질전환된 미생물의 시간에 따른 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 측정하여 그 결과를 하기 도 15 내지 도 23 및 하기 표 2에 나타내었다. 이때, 첨가되는 C4 유기산 및 C6 유기산은 상기 도 14를 통해 도출된 최적 농도로 첨가하였다.Next, the amounts of C4 and C6 organic acids consumed and the yields of C4 and C6 alcohols of the transformed microorganisms were measured according to Examples 1-8 and Comparative Example 1, and the results are shown in Figs. 15 to 23 and Table 2 shows the results. At this time, the added C4 organic acid and C6 organic acid were added at the optimum concentrations derived from FIG.

Figure 112017117562116-pat00002
Figure 112017117562116-pat00002

측정 결과, 상기 미생물들 모두 배양 24시간 대에 최고의 생산효율을 나타냄을 확인하였다. 또한 실시예 1에 따른 미생물이 가장 높은 C4 및 C6 유기산 소비량 및 C4 및 C6 알코올 생산량을 나타냄을 확인하였으며, 실시예 1 내지 8에 따른 미생물들 마다 유기산 소모속도, 알코올 생산속도 및 알코올 전환속도를 가지는 것을 확인하였는바, 이러한 특성들을 이용하여 알코올의 생산속도를 선택적으로 조절할 수 있음을 확인하였다.As a result of the measurement, it was confirmed that all of the microorganisms exhibited the highest production efficiency in 24 hours of incubation. Also, it was confirmed that the microorganisms according to Example 1 showed the highest amounts of C4 and C6 organic acids consumed and C4 and C6 alcohols, respectively. The microorganisms according to Examples 1 to 8 had organic acid consumption rate, alcohol production rate and alcohol conversion rate , It was confirmed that the production rate of alcohol can be selectively controlled by using these characteristics.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11835PKCCM11835P 2016042820160428

<110> Industry-University Cooperation Foundation Hanyang University <120> A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica <130> JKP-0728 <150> KR 10-2016-0158433 <151> 2016-11-25 <160> 44 <170> KoPatentIn 3.0 <210> 1 <211> 1359 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1359) <223> gene coding Acyl CoA transferase(ACT 5510) <400> 1 atgtacaaac tttcacaaat tgcagaagag taccaaaaga aactcgtgac gccgcaggaa 60 gcggcagctg tcgtcaaaag cggagaccgt gtatcgtacg gccttggctg ttcggcaccg 120 tatgatacgg ataaagcgct ggccgaccat atcaataagg atggcttgaa agatgtggaa 180 atcatcgatg cgacgctgat tcaggatcat ccgttcttta cctatacgga aacggaatcc 240 aacgatcagg tccgtttcgt atcgggccat ttcaatggat tcgaccgcaa gatgaataaa 300 gccggccgct gctggttcat gccgctcctc tttaatgaac tgccgaaata ctggagccat 360 aaaaaagtgg atgtcgccat tttccaggta catccgatgg ataaatgggg caacttcaat 420 ctggggcctc aggtagccga tttaaggggc attctcaaat cggcggataa ggtcatcgta 480 gaagtcaatc agaaaatgcc gaaggcactg ggctatgaaa cggaattgaa tattgccgat 540 gtcgatttca tcgtcgaagg gtccaatccg gatatgccga ttgtcccgaa taaaccgtcg 600 accccggtcg atgataaaat tgccagcttc gtcgtaccga tgatcaaaga tggcagtacg 660 ctgcagctcg gtatcggcgg gattccgtcc gctattggcc ataagctggc agaatcggat 720 gtcaaagacc tgagcggtca tacggaaatg ctggtagatc cctatgtcga attgtacgaa 780 gccgggaaaa ttaccggtaa aaagaatcgc gacagaggta aaatcatgta taccttcgcc 840 ggtggcacac agcgtctgta tgattttatc gatgacaacc agatcgtgtt caatgcaccg 900 gtcaactatg tcaacaatat caatgtcgtt gccagcattg acaactttgt ttctatcaac 960 agctgcatca accttgacct ttatggtcag gtctgcgccg aatcggcagg ttaccgccat 1020 atcagtggta ctggcggtgc gctggacttc gcacagggag cctatctttc cgaaggtggc 1080 cagggcttca tctgcgtcca ttcgacgcgt aaactgaaag atggcagcct ggaatcgctg 1140 atccgcccaa ctctgactcc gggatctgtc gtcacgacac cgcgttcggc cgttcactac 1200 atcgttaccg aatacggcgt agccctcctc aaaggccagt ccacatggca gcgggcagaa 1260 gcgctgatta atattgctca tcctgatttc cgggaagaac tcattaaaga agcagaaaaa 1320 atgggcatct ggacgaagac gagcaagaca gaatactga 1359 <210> 2 <211> 1344 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1344) <223> gene coding Acyl CoA transferase(ACT 3270) <400> 2 atgtcagaat ggacggatat gtataaacaa aaactgacga ctccggaaca agcagttacc 60 cttgtaaaag acggcgactg ggtcgattat ggcatgacga cctcccagcc ggtactgctc 120 gataaagcac tggcgggccg caaagatgag ttacatgata ttaaagtacg ggaaaccatg 180 tccctgtttc cccgccaggt atgcgaatgc gaccccgatt gcgatacttt taccgtcatg 240 aactggcatc tcagcggata tgaccgcaag ctggcagcac agtcacgcat gttttttaat 300 cctatgtgtt tccgtaatga accgtcgatt taccgcaata tcattgatgt cgatgtggcg 360 atgattactg tagcgcctat ggataaacac ggatatttta actttggcct ttgtgcggcc 420 gtgaccgagg ctattacgaa aaaggctaaa aaagtcatcg tcgaagtcaa tccgcatatg 480 ccgcgctgtc ttggcggccg tggggaagcc atccatattt ctgacgtcga tgccatcgtc 540 gaagcgcccg atgtgccagt gccgactatt cctttcgtcc ttggaaacga tatcgatcag 600 aaaatagctt cttatatcgt cgaagccatt cccgatgggg caacattgca gctgggcatt 660 ggcgggctgc ctaacagtgt aggcgctatg attgccaaat cggatttgaa agatctgggt 720 gtccatacag aaatgctcgt cgacgcattc taccttatgg ctaaggaagg cagactgacg 780 aataaagtca aaaacctgaa ccgtgataaa ggggtctttg cctttgccct tggttctcag 840 gatttatatg actgggtaga tgacaatcct gctctggcaa cctttcccat cgattatgta 900 aatgatccgg ctgttatcgg acagattgat aattttattt ccatcaacag ttgcatcgaa 960 gtagacctct atggccaggt atcggccgaa tccatgggga cccaccagat cagtggcagc 1020 ggcggccagc tggacttcac cgacggtgcc taccggtcca gaggcggtaa gtccatcatc 1080 gccatgcacg cgacccatac ggataaaaag accggtacgg ttacgtccaa catcagcccc 1140 atcctgaaag ccggtacgac tgtcaccgat ccccgttccc agacgcactg gattgcgaca 1200 gaatacggca tggtcaacct catgggtaaa tcgacctggc agcgcgcaga agcccttatc 1260 ggcctggcac accccgattt ccgggacgaa ctcatcaaag aagcggacaa gatgcatatc 1320 tggcgcaaga gcaataaacg gtaa 1344 <210> 3 <211> 1302 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1302) <223> gene coding Acyl CoA transferase(ACT 3280) <400> 3 atggatgtaa tgcaagaata tgccgataag aaaaaaacgc cggaacagat tgccgcctgt 60 gtggaatcgg gctggtcctg ttgtgctgat atttcaggag ccatcccgcc ggtcctggcc 120 gatgctctgg gaaaacgggc cgctgccggg gatatacagg atgtgacctg tcatactctg 180 ctcgatgtga cgccgctggg gaccttatct tccgaagcct atccgaatat tacgcctgtt 240 acctggtttt ccggtggcgg cctgcgtaaa gcggccaacg aaggacgctg cgacatcatg 300 ccctgctatt accacgatgc gccgggactg tttgaacgat atatcgacat tgatgcgttc 360 tttgcccagg tatctcctat ggataagcac gggtatttca gcaccagcct gagcggttcc 420 tgcagtgccg ccatgatccg gaaagcccgc catatttatc tggaagtcaa tgatcagctg 480 ccgcgggtac tcacggcgcc gcaaatccat atttcacagg tcgatggact gtgtgaaacg 540 tcccatgccc tgcctatcgt gccgccggta cagattgatg aaatcagccg tactatcggc 600 ggttatattg ccgaagaagt gcctgacgga gcgacactgc agcttggtat cggcgctgta 660 ccagaagccg tgggtctggc cctcaaggat aagcatgatc tgggaatcca tacagaactg 720 tttacagaca gcatggtaga actcattgaa tgcggggctg tcaccaatac tagaaaaccg 780 attcaccggg gaaagactgt ggcaaccctg acctttggtt ctcagcgtat ttacgatttt 840 attgatgaca atccggcatt tctcatgtta cctgtcgatt atgtcaatga cccggcagtc 900 atcgcccgcc atccggactt tatttctgtc aatgcggcta ttgaagttga tttctttggt 960 caggcctgct ctgaatcgac aggaacgcgg catatatctg gtacaggtgg ccaggctgat 1020 tacgtgcgcg gtgccatctg ctcaccgggc ggaaaaagct ttattgcttt cccctctacg 1080 gcaaaaggag gcactatcag caaaatcgtg ccgacactga cgccgggagc catcgtttcg 1140 acgagtaaaa atgatattga ttacgtcgtt acagaatacg gcatcgccaa attacggggg 1200 aaaacccttt ctcagcggac aaaagccctg atttccattg cccatccgaa attccgggaa 1260 gagctgacct ttgctgctaa aaaaatgcat atcctgatct aa 1302 <210> 4 <211> 1335 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1335) <223> gene coding Acyl CoA transferase(ACT 23750) <400> 4 atgacacaat atgaaacaat gtatgaacag aaaaaaatga cagcagaaca ggcactccaa 60 ttgattcaaa gccgtgacta catgtttagt gcccaggctt caggggaacc ggcagctatt 120 ctcgataaac ttcagtactt aaaaaaaacg ggagttagag atacgattat taatacctgt 180 cttcccttaa aggattatcc atggctccat gatcaggaaa tgaaaggaat catgttccat 240 aatggctggt ttttctgcgg ccccctgcgt caatcccaga aggaaaaatt gacgagtgcc 300 gtgccacagc ggtctacgac tattttacgc cataccttag accggatccg atacgaagga 360 cgacgccctg ttgttctggc aaccgtatct cctatggata agaatggtta tatgacactt 420 tctgtcagcg ccatttatga acgcgatctg attaatgcgg gagcgctgac tattgtagaa 480 gtcaatccta atttcccaag aacgtttggt gatacactgg tccatgtttc tgaggttgca 540 gctgttgtag aatcagaccg gccgattccc tgtgccaaac tggcgccata tactgaaaca 600 gatgcggcta ttggcaggta tattgcagat ctcatagaag atggatccac aatccagctg 660 ggtattggca atattcccaa tgcagtagcc aatgaactga aagcaaagaa acatttgggg 720 attcatacgg aaatgtttac ggaaacgatg gttgatttga ttgaatgcgg cgctgtagac 780 aattcgcaaa aagggtttat gaatggatat tctgtctgct catttacgat gggaagccag 840 cggttatatg attttattga caataaccct tcggtccttt ttaagtcgag caccttcagt 900 aatgatccct atacgattag ccggaataac aagtttgttt ccattaatgc cagcctggaa 960 atcgacctga ccggtcagtg cgcgtcggaa accgtgggaa atctgcagtg gtccggaacg 1020 ggtggtcagt ctgaaactgt tcagggggca caaatgtcac caggaggcaa gtccattatt 1080 gccatgcatt ctacgtacac gacaaaagat gccgatggca agcccattct ccattctaaa 1140 attgttcctt tcctggctcc aggggcggcg gttacgacat cgcgcaatga taccgattac 1200 gttgttacgg aatatggtgt ggcctggctg cgcggtttaa atattaagca gcgtgccgaa 1260 tccttgatcc gcatagcaca tcctgatttt cgcgatgaac tgcgcaaagc tgttgacaaa 1320 tacatgattt ggtag 1335 <210> 5 <211> 1305 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1305) <223> gene coding Acyl CoA transferase(ACT 19420) <400> 5 atgatgaatc aatggcagcg catgtacgaa gaaaagaaga tgacggctga atccttggcc 60 aggcagttca aaaacgggga tgtctgtgtc agcacagggc aggtggcgga accgacggga 120 attctgcagg tactggcctc gtatgctccc gagctggacc tggaacatat ccgccattgt 180 gtactccttc ccctccggca gcaggagtac atgaaagccg gtatggagaa atatatttat 240 cacatttccc actttgtcag tgcttatgac aggaacatga tatgggaagg ccgcggcgat 300 tatatgccgg cccattacag tcaggtacca caggtgtgga ccagtgtcct gcctgagccg 360 gatgtgtttt acgctgccgt atcccctatg gatgagcacg ggtattttag tttcggtacg 420 gcggccgatt tgagtgaagt ccgtcatcat gcagaaaaaa tactggtaga agtaaatccg 480 actatgcccc ggtcgtttgg ttcctttatc catatttcag aagtagacgg tatatgggaa 540 aatgatgctc ccattacagt agtcgatccg ccgccggtta ccaatacgga ccttgccatc 600 gggcagatga ttgctgacga gatacccaat ggagccacgc tgcagctggg aattggcggc 660 attcccaatg cggtggcaca gagcctgctc gataagcgga atctgggcgt acatagtgaa 720 atgttttgtg acagcatggt tgatctgaca ctggccggag tcattactaa cggctgcaaa 780 cggattcatc gcggaacctc tgttgcgacc tttacctttg cttcccgcag gacctatgat 840 tttattgaca ataatcccgg tgtcgccttc ctgcccgtat cgtatgtcaa tgatccccgc 900 gtcattgcta tgaatgatca ggtcatttcc atcaattcgt gcatcgaaat cgacttgttc 960 ggccaggtat gctcggaaac gatgggaaca aagaactata gcggtgtagg cgggcagatt 1020 gatttcatcc gtggggccgc tgcttccaaa ggaggaaaat cgttcctcgc ttttacggca 1080 acggcaaaaa aagggaaagt gtccaagatt aaaccggtcc tcacagaagg agcctgtgtc 1140 agtacgacga gaaacgatgt cgattatgta gttactgagt ttggaatggc acggctgaaa 1200 gggctgacct gttcccagcg tgccaaagcg ctgattcgca ttgcagctcc tgctttccgg 1260 gaagaattaa cggaggcagc cagaaagatg catattattg tgtga 1305 <210> 6 <211> 1338 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1338) <223> gene coding Acyl CoA transferase(ACT 7470) <400> 6 atggattacc agagtgaata catgagcaaa cgctgtacac cgcagcaggc agtgcagctg 60 atccgcgacg gggactgggt cgattacacc cagggtatta cctttcccca gcttctcgat 120 gaggccctgg cagaacggac aggggaattg gccgatgtga agatccgctg catgttctgc 180 ctgaaacggc cgcagatatt ggaaaaagat ccccatagcg tatcttttac gtatcatacc 240 tggcatagca gccagataga ccgcagggat gtcaatgaag gccgggctta tttcgccccg 300 attcagtaca gtcatctggc agaatattac cgccggggaa tggcaccggt cgatgttgtc 360 atgatgaccg tttctcctat ggaccgtcat gggaacttca gttttgcctg caatccgtcg 420 gccactcagg gcgctctcga tgcagcagac cgcatcatcg tcgaagttaa ccccaacctg 480 ccggaagcgt acggcctggg aggagatttt attcatattt ccgatattga tgctatcgtg 540 gaaagtgatg taccggtgct tatggcaccc aatccgcccg tacaggaaat cgataagaaa 600 attgcggcct ggctgctccc ctatctgaaa gacggtatga cgctgcagat cggtgtcggc 660 ggtattccca atgccctggg gatgctcatt gccgattcgg atctgaaaga tctgggcatg 720 catacggaat atctcagtga tggctgcctg aaactgtatg aggcagggaa gataacgaat 780 cgcagaaaag aactcctgcc gggcaaaggc gtgtatggta cttgtgccgg cagcacggaa 840 ctgtacgatt tcgtcgatca caaccgggca ttactatcag cccctattga atatgtcaat 900 cacgtggatc agatccgtca gctgaaccag ttcgtttcta tcaatggctg cctggccgtc 960 gatttatatg gacaggtttg ctcggaatcg gctggcctct ggcatatcag cggctcgggg 1020 ggacaggtcg attttattag cggtgccttc tggtctcctc atgggcaggc ctttctgact 1080 atgccttcga cgtatacaga ccggcagggt atcgtacatt cacgcataca gccgtttttc 1140 tcacatggcg atatcgttac gacggtacgg gccatagctc cgtgtatcgt aacggaatac 1200 gggatagcag aactggaagg caggacgacg tggcagcggg cagaagcgct cattgccatt 1260 gcccatcccg atttccgcga atctctgatc cgtgcggcgg aagcccagca catatggcgc 1320 gcttctcata aacgataa 1338 <210> 7 <211> 1338 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1338) <223> gene coding Acyl CoA transferase(ACT 5060) <400> 7 ttgaatccat tcgaaatata tcaggaaaaa ctgcacactc ccgaagaggc agtgcatctc 60 gtccagtccg gcgactgggt cgattatagc cagacctgtt cctttccggc ggctctcgat 120 gcggctctgg cggcacggcg ggatgagctc actgacgtga aggtgcgcca cgccatatcg 180 atgcgccctg tccagatagt agaacaggac ccgcagcggc aggcctttac atacaacctc 240 tggcactgct cgggactgga tcgtaagtat atcgatacgg gacgggcttt cttctcgcct 300 atgatgttcc gcttctgcgg ctcctattac agccgcggcc aggcgccggt caacgtggcc 360 atggtgaccg tatcgcccat ggaccgctat ggcaatttca gctatggcct gactaactgc 420 tgtatgcagg aaatgctcga tgcggctgac cggattatcc tggaagtcaa tccccatatg 480 ccttttatat acggtatggc agatgatcac atcaatatcc gcgacgttga tgctgtcgtt 540 gaaaatgatc agcctctgag cgaagcccca agccggggag ccagtgaact ggataagcag 600 attgccgccc agatttttcc cttcatccac gatggagaca cactgcaact cggcatcggc 660 ggtatgccca atgccctggg gtcgctcatt gccgggtcag acctcaggga cctgggcatg 720 catacagaac tcatgagcga tggctacctc gacctgtata aggccggcaa gatcaccaat 780 aagcgtaaga ccctgcagaa gggaaagggc gtattttcca tctgcagcgg atcgaaggaa 840 ctctatgagt tcctcgacca caatattgac attctgtcgg cgcccatgca ttatgtcaac 900 gacccggaaa cgattcgtca gctggaccat ttcgtttcca tcaatggctg cattgcctgc 960 gacctctacg gccaggtcag ctccgaatcg gcggggacgc ggcagatcag tgggaccggc 1020 ggccagcttg atttcgtcac cggtgcctat acggcagaac acggccggac cttcctggcc 1080 atggcgtcga gccgggtgga caagaaaggc gtccgccatt ccaatatcgt accatgcttt 1140 accggcggtg acatcatcac gacgccgcgg gcacagacca tgtacatcgt caccgaatac 1200 ggggcggtca atctggccgg acttacgacg tggcaacggg cagaaaaact gatcggtatc 1260 gctcatcccg atttccggga cgaactcatc aaagccgcag aacaacagaa aatctggagg 1320 aacagtaaca agaaatga 1338 <210> 8 <211> 1500 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(1500) <223> gene coding Acyl CoA transferase(ACT 24660) <400> 8 atgattgaca tttcagatcg catacgaaat aaagcataca tgtccagagt tacgacggca 60 gaagaagcgg cgaagctgat tcatcccgat gatattgtgg ctgtatcggg gtttacaccg 120 gccgggtatc ccaaagccgt accgctggct ctggcgaagc ggatagaacg ggaacatttt 180 cagattacgc tgtatgctgg ggcatccatc ggtgatgaaa ttgatggggc cctggcacgg 240 gtacacggta tttcccgccg gttttcctat catacgaata aagatctgcg ccgcgaaatc 300 aatgatggca gtgtggctta tgccgattat cacgtcagcg tatttgccca gatgctaagg 360 gaagggttca tgaagcgccc cgatatcgtc gtggtggaag cggcagctat cacaaaagaa 420 gggaatctca tccctactac gtctgtagga acgacgccgg ccatgattga cgtgtgtcag 480 aaagttgtcg tcgaaatcaa tgtgacccag ccgctcagtc tggaagggat gcatgacgta 540 tacgatattc ccaatccgcc attccgtgta cccattccca tcgtccatac aggggaccgt 600 attgggaagc cgtatatcac ctgcggttgg gataaaatcg ttgctattgt tccctgtgat 660 attcccgatg ctccccggtc gtttaaacct gttgatgatg cgggccggaa aatgggaaat 720 ctcatcgtgc agttttttaa ggatgaagta gctaaaggcc ggctgccgga gcatctcctg 780 ccactccagt ccggtgtcgg atccgtagcc aatgcggtca ttcaggggct ggccaaaagt 840 gatttcgaac atttgtctat ctttacggaa gtgctccagg acggcatgtt taccctcatc 900 gatgccggga aagtcgatgc cgtatcgacg gcttctattt cagcatcacc ggaagggttg 960 aagcatttct atgaacacat cgatgagtac cggaaaaaaa tcgtcatacg accccaggaa 1020 atttctaata atcccgaagt gatccgccgc atcggagcta ttgccatgaa tacggccatt 1080 gagtttgata tctatggtca ggtcaattcg acacatatct gtggcagtcg tctcatgaat 1140 ggaattggcg gttccgggga ctttgcccgg gcgggatatc tgacgatttt ctttaccagt 1200 tcgacggcaa aaaacggtgc catcagttcc gtagttccca tgtgctccca cgtagatcac 1260 acggagcacg atgtggatgt cctctgtacg gaacagggca ttgcagacct gcgcggtctt 1320 tctcctgtcg aacgggcaag gactatcata gctaactgtg cccacccgga ttacagagac 1380 cagctcacag attatctgaa ccgggctatt gctgcaacgg gtagccagca tgaaccacag 1440 ctcctgaaag aggccctgtc atggcagcag cgctacctgg aaacagggag tatgaagtga 1500 1500 <210> 9 <211> 2676 <212> DNA <213> Unknown <220> <223> Escherichia coli MG1655 <220> <221> gene <222> (1)..(2676) <223> gene coding AdhE <400> 9 atggctgtta ctaatgtcgc tgaacttaac gcactcgtag agcgtgtaaa aaaagcccag 60 cgtgaatatg ccagtttcac tcaagagcaa gtagacaaaa tcttccgcgc cgccgctctg 120 gctgctgcag atgctcgaat cccactcgcg aaaatggccg ttgccgaatc cggcatgggt 180 atcgtcgaag ataaagtgat caaaaaccac tttgcttctg aatatatcta caacgcctat 240 aaagatgaaa aaacctgtgg tgttctgtct gaagacgaca cttttggtac catcactatc 300 gctgaaccaa tcggtattat ttgcggtatc gttccgacca ctaacccgac ttcaactgct 360 atcttcaaat cgctgatcag tctgaagacc cgtaacgcca ttatcttctc cccgcacccg 420 cgtgcaaaag atgccaccaa caaagcggct gatatcgttc tgcaggctgc tatcgctgcc 480 ggtgctccga aagatctgat cggctggatc gatcaacctt ctgttgaact gtctaacgca 540 ctgatgcacc acccagacat caacctgatc ctcgcgactg gtggtccggg catggttaaa 600 gccgcataca gctccggtaa accagctatc ggtgtaggcg cgggcaacac tccagttgtt 660 atcgatgaaa ctgctgatat caaacgtgca gttgcatctg tactgatgtc caaaaccttc 720 gacaacggcg taatctgtgc ttctgaacag tctgttgttg ttgttgactc tgtttatgac 780 gctgtacgtg aacgttttgc aacccacggc ggctatctgt tgcagggtaa agagctgaaa 840 gctgttcagg atgttatcct gaaaaacggt gcgctgaacg cggctatcgt tggtcagcca 900 gcctataaaa ttgctgaact ggcaggcttc tctgtaccag aaaacaccaa gattctgatc 960 ggtgaagtga ccgttgttga tgaaagcgaa ccgttcgcac atgaaaaact gtccccgact 1020 ctggcaatgt accgcgctaa agatttcgaa gacgcggtag aaaaagcaga gaaactggtt 1080 gctatgggcg gtatcggtca tacctcttgc ctgtacactg accaggataa ccaaccggct 1140 cgcgtttctt acttcggtca gaaaatgaaa acggcgcgta tcctgattaa caccccagcg 1200 tctcagggtg gtatcggtga cctgtataac ttcaaactcg caccttccct gactctgggt 1260 tgtggttctt ggggtggtaa ctccatctct gaaaacgttg gtccgaaaca cctgatcaac 1320 aagaaaaccg ttgctaagcg agctgaaaac atgttgtggc acaaacttcc gaaatctatc 1380 tacttccgcc gtggctccct gccaatcgcg ctggatgaag tgattactga tggccacaaa 1440 cgtgcgctca tcgtgactga ccgcttcctg ttcaacaatg gttatgctga tcagatcact 1500 tccgtactga aagcagcagg cgttgaaact gaagtcttct tcgaagtaga agcggacccg 1560 accctgagca tcgttcgtaa aggtgcagaa ctggcaaact ccttcaaacc agacgtgatt 1620 atcgcgctgg gtggtggttc cccgatggac gccgcgaaga tcatgtgggt tatgtacgaa 1680 catccggaaa ctcacttcga agagctggcg ctgcgcttta tggatatccg taaacgtatc 1740 tacaagttcc cgaaaatggg cgtgaaagcg aaaatgatcg ctgtcaccac cacttctggt 1800 acaggttctg aagtcactcc gtttgcggtt gtaactgacg acgctactgg tcagaaatat 1860 ccgctggcag actatgcgct gactccggat atggcgattg tcgacgccaa cctggttatg 1920 gacatgccga agtccctgtg tgctttcggt ggtctggacg cagtaactca cgccatggaa 1980 gcttatgttt ctgtactggc atctgagttc tctgatggtc aggctctgca ggcactgaaa 2040 ctgctgaaag aatatctgcc agcgtcctac cacgaagggt ctaaaaatcc ggtagcgcgt 2100 gaacgtgttc acagtgcagc gactatcgcg ggtatcgcgt ttgcgaacgc cttcctgggt 2160 gtatgtcact caatggcgca caaactgggt tcccagttcc atattccgca cggtctggca 2220 aacgccctgc tgatttgtaa cgttattcgc tacaatgcga acgacaaccc gaccaagcag 2280 actgcattca gccagtatga ccgtccgcag gctcgccgtc gttatgctga aattgccgac 2340 cacttgggtc tgagcgcacc gggcgaccgt actgctgcta agatcgagaa actgctggca 2400 tggctggaaa cgctgaaagc tgaactgggt attccgaaat ctatccgtga agctggcgtt 2460 caggaagcag acttcctggc gaacgtggat aaactgtctg aagatgcatt cgatgaccag 2520 tgcaccggcg ctaacccgcg ttacccgctg atctccgagc tgaaacagat tctgctggat 2580 acctactacg gtcgtgatta tgtagaaggt gaaactgcag cgaagaaaga agctgctccg 2640 gctaaagctg agaaaaaagc gaaaaaatcc gcttaa 2676 <210> 10 <211> 3180 <212> DNA <213> Unknown <220> <223> Clostridium acetobutylicum <220> <221> gene <222> (1)..(3180) <223> gene coding AdhE2 <400> 10 atgaaagtta caaatcaaaa agaactaaaa caaaagctaa atgaattgag agaagcgcaa 60 aagaagtttg caacctatac tcaagagcaa gttgataaaa tttttaaaca atgtgccata 120 gccgcagcta aagaaagaat aaacttagct aaattagcag tagaagaaac aggaataggt 180 cttgtagaag ataaaattat aaaaaatcat tttgcagcag aatatatata caataaatat 240 aaaaatgaaa aaacttgtgg cataatagac catgacgatt ctttaggcat aacaaaggtt 300 gctgaaccaa ttggaattgt tgcagccata gttcctacta ctaatccaac ttccacagca 360 attttcaaat cattaatttc tttaaaaaca agaaacgcaa tattcttttc accacatcca 420 cgtgcaaaaa aatctacaat tgctgcagca aaattaattt tagatgcagc tgttaaagca 480 ggagcaccta aaaatataat aggctggata gatgagccat caatagaact ttctcaagat 540 ttgatgagtg aagctgatat aatattagca acaggaggtc cttcaatggt taaagcggcc 600 tattcatctg gaaaacctgc aattggtgtt ggagcaggaa atacaccagc aataatagat 660 gagagtgcag atatagatat ggcagtaagc tccataattt tatcaaagac ttatgacaat 720 ggagtaatat gcgcttctga acaatcaata ttagttatga attcaatata cgaaaaagtt 780 aaagaggaat ttgtaaaacg aggatcatat atactcaatc aaaatgaaat agctaaaata 840 aaagaaacta tgtttaaaaa tggagctatt aatgctgaca tagttggaaa atctgcttat 900 ataattgcta aaatggcagg aattgaagtt cctcaaacta caaagatact tataggcgaa 960 gtacaatctg ttgaaaaaag cgagctgttc tcacatgaaa aactatcacc agtacttgca 1020 atgtataaag ttaaggattt tgatgaagct ctaaaaaagg cacaaaggct aatagaatta 1080 ggtggaagtg gacacacgtc atctttatat atagattcac aaaacaataa ggataaagtt 1140 aaagaatttg gattagcaat gaaaacttca aggacattta ttaacatgcc ttcttcacag 1200 ggagcaagcg gagatttata caattttgcg atagcaccat catttactct tggatgcggc 1260 acttggggag gaaactctgt atcgcaaaat gtagagccta aacatttatt aaatattaaa 1320 agtgttgctg aaagaaggga aaatatgctt tggtttaaag tgccacaaaa aatatatttt 1380 aaatatggat gtcttagatt tgcattaaaa gaattaaaag atatgaataa gaaaagagcc 1440 tttatagtaa cagataaaga tctttttaaa cttggatatg ttaataaaat aacaaaggta 1500 ctagatgaga tagatattaa atacagtata tttacagata ttaaatctga tccaactatt 1560 gattcagtaa aaaaaggtgc taaagaaatg cttaactttg aacctgatac tataatctct 1620 attggtggtg gatcgccaat ggatgcagca aaggttatgc acttgttata tgaatatcca 1680 gaagcagaaa ttgaaaatct agctataaac tttatggata taagaaagag aatatgcaat 1740 ttccctaaat taggtacaaa ggcgatttca gtagctattc ctacaactgc tggtaccggt 1800 tcagaggcaa caccttttgc agttataact aatgatgaaa caggaatgaa atacccttta 1860 acttcttatg aattgacccc aaacatggca ataatagata ctgaattaat gttaaatatg 1920 cctagaaaat taacagcagc aactggaata gatgcattag ttcatgctat agaagcatat 1980 gtttcggtta tggctacgga ttatactgat gaattagcct taagagcaat aaaaatgata 2040 tttaaatatt tgcctagagc ctataaaaat gggactaacg acattgaagc aagagaaaaa 2100 atggcacatg cctctaatat tgcggggatg gcatttgcaa atgctttctt aggtgtatgc 2160 cattcaatgg ctcataaact tggggcaatg catcacgttc cacatggaat tgcttgtgct 2220 gtattaatag aagaagttat taaatataac gctacagact gtccaacaaa gcaaacagca 2280 ttccctcaat ataaatctcc taatgctaag agaaaatatg ctgaaattgc agagtatttg 2340 aatttaaagg gtactagcga taccgaaaag gtaacagcct taatagaagc tatttcaaag 2400 ttaaagatag atttgagtat tccacaaaat ataagtgccg ctggaataaa taaaaaagat 2460 ttttataata cgctagataa aatgtcagag cttgcttttg atgaccaatg tacaacagct 2520 aatcctaggt atccacttat aagtgaactt aaggatatct atataaaatc attttaagcc 2580 tatgtttcgg ttatggctac ggattatact gatgaattag ccttaagagc aataaaaatg 2640 atatttaaat atttgcctag agcctataaa aatgggacta acgacattga agcaagagaa 2700 aaaatggcac atgcctctaa tattgcgggg atggcatttg caaatgcttt cttaggtgta 2760 tgccattcaa tggctcataa acttggggca atgcatcacg ttccacatgg aattgcttgt 2820 gctgtattaa tagaagaagt tattaaatat aacgctacag actgtccaac aaagcaaaca 2880 gcattccctc aatataaatc tcctaatgct aagagaaaat atgctgaaat tgcagagtat 2940 ttgaatttaa agggtactag cgataccgaa aaggtaacag ccttaataga agctatttca 3000 aagttaaaga tagatttgag tattccacaa aatataagtg ccgctggaat aaataaaaaa 3060 gatttttata atacgctaga taaaatgtca gagcttgctt ttgatgacca atgtacaaca 3120 gctaatccta ggtatccact tataagtgaa cttaaggata tctatataaa atcattttaa 3180 3180 <210> 11 <211> 2556 <212> DNA <213> Unknown <220> <223> Salmonella typhimurium, Lactococcus lactis <220> <221> gene <222> (1)..(2556) <223> gene coding PduP-AdhA <400> 11 catatgttga cggctagctc agtcctaggt acagtgctag cgattatgga taaggaggag 60 cctgcgatga acaccagcga actggaaacc ctgatccgta ccattctgag cgaacagtta 120 accaccccgg cacaaacccc ggttcaaccg caaggtaaag gcattttcca gagcgtttcc 180 gaagcgattg atgcagcaca tcaggcgttt ctgcgttatc aacagtgtcc gctgaaaacc 240 cgtagcgcta ttatctctgc gatgcgtcag gaactgaccc cgttattagc accgttagcc 300 gaagaaagcg ctaacgaaac cggtatgggc aacaaagagg acaaattcct gaaaaacaaa 360 gcggcgctgg ataacacccc gggcgttgaa gatttaacca ccaccgcatt aaccggcgac 420 ggcggtatgg ttctgtttga atacagcccg ttcggcgtta ttggctctgt tgcaccgagc 480 accaatccga ccgaaaccat catcaacaac tccatcagca tgctggcggc aggtaacagc 540 atttatttta gcccgcatcc gggcgcgaaa aaagttagcc tgaaactgat cagcctgatc 600 gaagaaattg cgtttcgttg ttgcggcatt cgtaacctgg ttgttaccgt tgcagaaccg 660 acctttgaag ctacccagca aatgatggcg catccgcgta ttgcggtttt agcaattacg 720 ggcggtccgg gtattgttgc gatgggcatg aaaagcggca aaaaagttat tggcgcaggc 780 gcaggtaatc cgccgtgtat tgttgacgaa accgcggatc tggtcaaagc ggcggaagat 840 attattaacg gcgcgagctt tgattataac ctgccgtgca tcgcggaaaa aagcctgatt 900 gtcgtcgaaa gcgtagcgga acgtttagtt cagcagatgc agacctttgg cgcattactg 960 ctgtctccgg cagataccga taaattacgc gcggtttgct taccggaagg ccaggcgaac 1020 aaaaaactgg ttggtaaatc cccgtctgcc atgttagaag cagcaggtat tgcagttccg 1080 gcaaaagcac cgcgtttact gattgcactg gttaacgctg acgatccgtg ggttacctct 1140 gaacaactga tgccgatgct gccggttgta aaagttagcg attttgatag cgcgctggca 1200 ttagcactga aagttgaaga gggcctgcat cataccgcaa ttatgcatag ccagaacgtc 1260 agccgtctga atttagcagc acgtaccctg caaaccagca tcttcgtcaa aaacggcccg 1320 agttacgcag gtattggcgt tggcggcgaa ggttttacca cctttaccat tgctaccccg 1380 accggtgaag gcaccacctc tgcacgtacc tttgcacgtt ctcgtcgttg cgttttaacg 1440 aacggcttta gcattcgcta agacgtcttg acggctagct cagtcctagg tacagtgcta 1500 gcaggaatgt aatcggagga ggaggaaatg aaagcggcgg tagttcgtca taatccggac 1560 ggttacgcgg atctggtcga aaaagaactg cgcgcaatta aaccgaacga agctctgctg 1620 gacatggaat actgcggcgt ttgtcatacc gatctgcacg tagctgctgg cgattatggt 1680 aacaaagcag gcaccgtgct gggtcatgaa ggtatcggca tcgtcaaaga aatcggcacc 1740 gatgttagta gcctgcaagt aggcgatcgt gttagcgttg cttggttttt cgaaggctgc 1800 ggccattgcg aatattgcgt ttctggtaac gagacctttt gccgcgaggt caaaaacgcg 1860 ggttattctg ttgacggcgg tatggctgaa gaagcgattg ttgtcgcgga ttacgcagtt 1920 aaagttccgg acggtctgga cccgattgaa gcaagtagca ttacctgcgc aggcgttacc 1980 acctacaaag cgatcaaagt tagcggcgtc aaaccgggcg attggcaggt aattttcggc 2040 gcaggtggtc tgggtaatct ggcaattcag tacgcgaaaa acgtcttcgg cgcaaaagtc 2100 atcgcggtcg atattaacca ggacaaactg aacctggcga aaaagattgg cgcagatgtg 2160 attattaaca gcggcgacgt taacccggtg gatgaaatca aaaagattac cggcggcctg 2220 ggtgcacaat ctgcgattgt gtgcgctgtt gcgcgtattg cgtttgaaca ggcagttgct 2280 tccctgaaac cgatgggtaa aatggtcgca gttgcactgc cgaataccga aatgaccctg 2340 tctgttccga cggttgtttt tgacggtgtt gaagttgcag gtagtctggt tggcacccgc 2400 ctggatctgg cagaagcatt tcagttcggc gcggaaggta aagttaaacc gattgtcgcg 2460 acccgtaaac tggaagaaat caacgacatc atcgacgaga tgaaagcggg caaaatcgag 2520 ggtcgtatgg tcatcgactt caccaaataa ctcgag 2556 <210> 12 <211> 444 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1)..(444) <223> gene coding Acyl CoA transferase(ACT 27250) <400> 12 atgactggta ttgatgcaca tatttcatcg gcccacatgg tcctttcccg ggatctcaat 60 ccccacgata cgctcttcgc cgggcagggc acgtcctata tgatcgagtg cgccttcctg 120 gcggtacaga gttttctccg tacgccccat attgtctgtc tggggctgga cggcctgcgc 180 ttccttcatc ccgtccataa gggggataca atccgcgtag atagttccat cgtccatgcc 240 gggacgagcg gcatcggcgt gtatattact ctttcgctcc tgccggacgg accggtggcg 300 gcgtcgtgtt tcgtgtcgtt cgtccacatc gacgaagcga cggggcgggc tgtaccccac 360 ggtgtgacgc tggcggaact tccaccggag atggcccgcc ggcagaagca gtatctggca 420 tataaggaga tgacgagacg atga 444 <210> 13 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(37) <223> forward primer <400> 13 tatatggatc ccatgtacaa actttcacaa attgcag 37 <210> 14 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(34) <223> reverse primer <400> 14 tatataagct tttagtattc tgtcttgctc gtct 34 <210> 15 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(34) <223> forward primer <400> 15 tatatgatcc catgtcagaa tggacggata tgta 34 <210> 16 <211> 33 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(33) <223> reverse primer <400> 16 tatataagct tttaccgttt attgctcttg cgc 33 <210> 17 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(36) <223> forward primer <400> 17 tatatgagct ccatggatgt aatgcaagaa tatgcc 36 <210> 18 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(36) <223> reverse primer <400> 18 tatatgagct ccatggatgt aatgcaagaa tatgcc 36 <210> 19 <211> 39 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(39) <223> forward primer <400> 19 tatatgagct ccatgacaca atatgaaaca atgtatgaa 39 <210> 20 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(37) <223> reverse primer <400> 20 tatatgtcga cttaccaaat catgtatttg tcaacag 37 <210> 21 <211> 35 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(35) <223> forward primer <400> 21 tatatggatc ccatgatgaa tcaatggcag cgcat 35 <210> 22 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(37) <223> reverse primer <400> 22 tatataagct tttacacaat aatatgcatc tttctgg 37 <210> 23 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(37) <223> forward primer <400> 23 tatatggatc ccatggatta ccagagtgaa tacatga 37 <210> 24 <211> 33 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(33) <223> reverse primer <400> 24 tatataagct tttatcgttt atgagaagcg cgc 33 <210> 25 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(37) <223> forward primer <400> 25 tatatggatc ccatgaatcc attcgaaata tatcagg 37 <210> 26 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(36) <223> reverse primer <400> 26 tatataagct tttatttctt gttactgttc ctccag 36 <210> 27 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(36) <223> forward primer <400> 27 tatatgagct ccatgattga catttcagat cgcata 36 <210> 28 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(34) <223> reverse primer <400> 28 tatatgtcga cttacttcat actccctgtt tcca 34 <210> 29 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(37) <223> forward primer <400> 29 tatatggatc ccatgactgg tattgatgca catattt 37 <210> 30 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(34) <223> reverse primer <400> 30 tatataagct tttatcgtct cgtcatctcc ttat 34 <210> 31 <211> 26 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(26) <223> forward primer <400> 31 gcgccatatg gctgttacta atgtcg 26 <210> 32 <211> 26 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(26) <223> reverse primer <400> 32 gcgcctcgag ttaagcggat tttttc 26 <210> 33 <211> 41 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(41) <223> forward primer <400> 33 tatatcatat gatgaaagtt acaaatcaaa aagaactaaa a 41 <210> 34 <211> 43 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(43) <223> reverse primer <400> 34 tatatgagct cttaaaatga ttttatatag atatccttaa gtt 43 <210> 35 <211> 29 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(29) <223> forward primer <400> 35 gcgccatatg aacaccagcg aactggaaa 29 <210> 36 <211> 26 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(26) <223> reverse primer <400> 36 gcgcctcgag ttatttggtg aagtcg 26 <210> 37 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(70) <223> forward primer <400> 37 aaatattttt agtagcttaa atgtgattca acatcactgg agaaagtctt gtgtaggctg 60 gagctgcttc 70 <210> 38 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(70) <223> reverse primer <400> 38 attggggatt atctgaatca gctcccctgg gttgcagggg agcggcaaga tcctccttag 60 ttcctattcc 70 <210> 39 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(70) <223> forward primer <400> 39 cttaccctga agtacggggc tgtgggataa aaacaatctg gaggaatgtc gtgtaggctg 60 gagctgcttc 70 <210> 40 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(70) <223> reverse primer <400> 40 tatcgacttc cgggttatag cgcaccacct caattttcag gtttttcatc tcctccttag 60 ttcctattcc 70 <210> 41 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(70) <223> forward primer <400> 41 ggtgctgttt tgtaacccgc caaatcggcg gtaacgaaag aggataaacc gtgtaggctg 60 gagctgcttc 70 <210> 42 <211> 73 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(73) <223> reverse primer <400> 42 ttatttccgg ttcagatatc cgcagcgcaa agctgcggat gatgacgaga atatcctcct 60 tagttcctat tcc 73 <210> 43 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(43) <223> forward primer <400> 43 attcgagcag atgatttact aaaaaagttt aacattatca ggagagcatt gtgtaggctg 60 gagctgcttc 70 <210> 44 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1)..(70) <223> reverse primer <400> 44 aaaaaacggc cccagaaggg gccgtttata ttgccagaca gcgctactga tcctccttag 60 ttcctattcc 70 <110> Industry-University Cooperation Foundation Hanyang University <120> A method for activating C3-C8 alcohol using acyl CoA          transferase from Megasphaera hexanoica <130> JKP-0728 <150> KR 10-2016-0158433 <151> 2016-11-25 <160> 44 <170> KoPatentin 3.0 <210> 1 <211> 1359 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene &Lt; 222 > (1) .. (1359) <223> gene coding Acyl CoA transferase (ACT 5510) <400> 1 atgtacaaac tttcacaaat tgcagaagag taccaaaaga aactcgtgac gccgcaggaa 60 gcggcagctg tcgtcaaaag cggagaccgt gtatcgtacg gccttggctg ttcggcaccg 120 tatgatacgg ataaagcgct ggccgaccat atcaataagg atggcttgaa agatgtggaa 180 atcatcgatg cgacgctgat tcaggatcat ccgttcttta cctatacgga aacggaatcc 240 aacgatcagg tccgtttcgt atcgggccat ttcaatggat tcgaccgcaa gatgaataaa 300 gccggccgct gctggttcat gccgctcctc tttaatgaac tgccgaaata ctggagccat 360 aaaaaagtgg atgtcgccat tttccaggta catccgatgg ataaatgggg caacttcaat 420 ctggggcctc aggtagccga tttaaggggc attctcaaat cggcggataa ggtcatcgta 480 gaagtcaatc agaaaatgcc gaaggcactg ggctatgaaa cggaattgaa tattgccgat 540 gtcgatttca tcgtcgaagg gtccaatccg gatatgccga ttgtcccgaa taaaccgtcg 600 accccggtcg atgataaaat tgccagcttc gtcgtaccga tgatcaaaga tggcagtacg 660 ctgcagctcg gtatcggcgg gattccgtcc gctattggcc ataagctggc agaatcggat 720 gtcaaagacc tgagcggtca tacggaaatg ctggtagatc cctatgtcga attgtacgaa 780 gccgggaaaa ttaccggtaa aaagaatcgc gacagaggta aaatcatgta taccttcgcc 840 ggtggcacac agcgtctgta tgattttatc gatgacaacc agatcgtgtt caatgcaccg 900 gtcaactatg tcaacaatat caatgtcgtt gccagcattg acaactttgt ttctatcaac 960 agctgcatca accttgacct ttatggtcag gtctgcgccg aatcggcagg ttaccgccat 1020 atcagtggta ctggcggtgc gctggacttc gcacagggag cctatctttc cgaaggtggc 1080 cagggcttca tctgcgtcca ttcgacgcgt aaactgaaag atggcagcct ggaatcgctg 1140 atccgcccaa ctctgactcc gggatctgtc gtcacgacac cgcgttcggc cgttcactac 1200 atcgttaccg aatacggcgt agccctcctc aaaggccagt ccacatggca gcgggcagaa 1260 gcgctgatta atattgctca tcctgatttc cgggaagaac tcattaaaga agcagaaaaa 1320 atgggcatct ggacgaagac gagcaagaca gaatactga 1359 <210> 2 <211> 1344 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene &Lt; 222 > (1) .. (1344) <223> gene coding Acyl CoA transferase (ACT 3270) <400> 2 atgtcagaat ggacggatat gtataaacaa aaactgacga ctccggaaca agcagttacc 60 cttgtaaaag acggcgactg ggtcgattat ggcatgacga cctcccagcc ggtactgctc 120 gataaagcac tggcgggccg caaagatgag ttacatgata ttaaagtacg ggaaaccatg 180 tccctgtttc cccgccaggt atgcgaatgc gaccccgatt gcgatacttt taccgtcatg 240 aactggcatc tcagcggata tgaccgcaag ctggcagcac agtcacgcat gttttttaat 300 cctatgtgtt tccgtaatga accgtcgatt taccgcaata tcattgatgt cgatgtggcg 360 atgattactg tagcgcctat ggataaacac ggatatttta actttggcct ttgtgcggcc 420 gtgaccgagg ctattacgaa aaaggctaaa aaagtcatcg tcgaagtcaa tccgcatatg 480 ccgcgctgtc ttggcggccg tggggaagcc atccatattt ctgacgtcga tgccatcgtc 540 gaagcgcccg atgtgccagt gccgactatt cctttcgtcc ttggaaacga tatcgatcag 600 aaaatagctt cttatatcgt cgaagccatt cccgatgggg caacattgca gctgggcatt 660 ggcgggctgc ctaacagtgt aggcgctatg attgccaaat cggatttgaa agatctgggt 720 gtccatacag aaatgctcgt cgacgcattc taccttatgg ctaaggaagg cagactgacg 780 aataaagtca aaaacctgaa ccgtgataaa ggggtctttg cctttgccct tggttctcag 840 gatttatatg actgggtaga tgacaatcct gctctggcaa cctttcccat cgattatgta 900 aatgatccgg ctgttatcgg acagattgat aattttattt ccatcaacag ttgcatcgaa 960 gtagacctct atggccaggt atcggccgaa tccatgggga cccaccagat cagtggcagc 1020 ggcggccagc tggacttcac cgacggtgcc taccggtcca gaggcggtaa gtccatcatc 1080 gccatgcacg cgacccatac ggataaaaag accggtacgg ttacgtccaa catcagcccc 1140 atcctgaaag ccggtacgac tgtcaccgat ccccgttccc agacgcactg gattgcgaca 1200 gaatacggca tggtcaacct catgggtaaa tcgacctggc agcgcgcaga agcccttatc 1260 ggcctggcac accccgattt ccgggacgaa ctcatcaaag aagcggacaa gatgcatatc 1320 tggcgcaaga gcaataaacg gtaa 1344 <210> 3 <211> 1302 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1) 1302 <223> gene coding Acyl CoA transferase (ACT 3280) <400> 3 atggatgtaa tgcaagaata tgccgataag aaaaaaacgc cggaacagat tgccgcctgt 60 gtggaatcgg gctggtcctg ttgtgctgat atttcaggag ccatcccgcc ggtcctggcc 120 gatgctctgg gaaaacgggc cgctgccggg gatatacagg atgtgacctg tcatactctg 180 ctcgatgtga cgccgctggg gaccttatct tccgaagcct atccgaatat tacgcctgtt 240 acctggtttt ccggtggcgg cctgcgtaaa gcggccaacg aaggacgctg cgacatcatg 300 ccctgctatt accacgatgc gccgggactg tttgaacgat atatcgacat tgatgcgttc 360 tttgcccagg tatctcctat ggataagcac gggtatttca gcaccagcct gagcggttcc 420 tgcagtgccg ccatgatccg gaaagcccgc catatttatc tggaagtcaa tgatcagctg 480 ccgcgggtac tcacggcgcc gcaaatccat atttcacagg tcgatggact gtgtgaaacg 540 tcccatgccc tgcctatcgt gccgccggta cagattgatg aaatcagccg tactatcggc 600 ggttatattg ccgaagaagt gcctgacgga gcgacactgc agcttggtat cggcgctgta 660 ccagaagccg tgggtctggc cctcaaggat aagcatgatc tgggaatcca tacagaactg 720 tttacagaca gcatggtaga actcattgaa tgcggggctg tcaccaatac tagaaaaccg 780 attcaccggg gaaagactgt ggcaaccctg acctttggtt ctcagcgtat ttacgatttt 840 attgatgaca atccggcatt tctcatgtta cctgtcgatt atgtcaatga cccggcagtc 900 atcgcccgcc atccggactt tatttctgtc aatgcggcta ttgaagttga tttctttggt 960 caggcctgct ctgaatcgac aggaacgcgg catatatctg gtacaggtgg ccaggctgat 1020 tacgtgcgcg gtgccatctg ctcaccgggc ggaaaaagct ttattgcttt cccctctacg 1080 gcaaaaggag gcactatcag caaaatcgtg ccgacactga cgccgggagc catcgtttcg 1140 acgagtaaaa atgatattga ttacgtcgtt acagaatacg gcatcgccaa attacggggg 1200 aaaacccttt ctcagcggac aaaagccctg atttccattg cccatccgaa attccgggaa 1260 gagctgacct ttgctgctaa aaaaatgcat atcctgatct aa 1302 <210> 4 <211> 1335 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene <222> (1). (1335) <223> gene coding Acyl CoA transferase (ACT 23750) <400> 4 atgacacaat atgaaacaat gtatgaacag aaaaaaatga cagcagaaca ggcactccaa 60 ttgattcaaa gccgtgacta catgtttagt gcccaggctt caggggaacc ggcagctatt 120 ctcgataaac ttcagtactt aaaaaaaacg ggagttagag atacgattat taatacctgt 180 cttcccttaa aggattatcc atggctccat gatcaggaaa tgaaaggaat catgttccat 240 aatggctggt ttttctgcgg ccccctgcgt caatcccaga aggaaaaatt gacgagtgcc 300 gtgccacagc ggtctacgac tattttacgc cataccttag accggatccg atacgaagga 360 cgacgccctg ttgttctggc aaccgtatct cctatggata agaatggtta tatgacactt 420 tctgtcagcg ccatttatga acgcgatctg attaatgcgg gagcgctgac tattgtagaa 480 gtcaatccta atttcccaag aacgtttggt gatacactgg tccatgtttc tgaggttgca 540 gctgttgtag aatcagaccg gccgattccc tgtgccaaac tggcgccata tactgaaaca 600 gatgcggcta ttggcaggta tattgcagat ctcatagaag atggatccac aatccagctg 660 ggtattggca atattcccaa tgcagtagcc aatgaactga aagcaaagaa acatttgggg 720 attcatacgg aaatgtttac ggaaacgatg gttgatttga ttgaatgcgg cgctgtagac 780 aattcgcaaa aagggtttat gaatggatat tctgtctgct catttacgat gggaagccag 840 cggttatatg attttattga caataaccct tcggtccttt ttaagtcgag caccttcagt 900 aatgatccct atacgattag ccggaataac aagtttgttt ccattaatgc cagcctggaa 960 atcgacctga ccggtcagtg cgcgtcggaa accgtgggaa atctgcagtg gtccggaacg 1020 ggtggtcagt ctgaaactgt tcagggggca caaatgtcac caggaggcaa gtccattatt 1080 gccatgcatt ctacgtacac gacaaaagat gccgatggca agcccattct ccattctaaa 1140 attgttcctt tcctggctcc aggggcggcg gttacgacat cgcgcaatga taccgattac 1200 gttgttacgg aatatggtgt ggcctggctg cgcggtttaa atattaagca gcgtgccgaa 1260 tccttgatcc gcatagcaca tcctgatttt cgcgatgaac tgcgcaaagc tgttgacaaa 1320 tacatgattt ggtag 1335 <210> 5 <211> 1305 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene &Lt; 222 > (1) 1305 <223> gene coding Acyl CoA transferase (ACT 19420) <400> 5 atgatgaatc aatggcagcg catgtacgaa gaaaagaaga tgacggctga atccttggcc 60 aggcagttca aaaacgggga tgtctgtgtc agcacagggc aggtggcgga accgacggga 120 attctgcagg tactggcctc gtatgctccc gagctggacc tggaacatat ccgccattgt 180 gtactccttc ccctccggca gcaggagtac atgaaagccg gtatggagaa atatatttat 240 cacatttccc actttgtcag tgcttatgac aggaacatga tatgggaagg ccgcggcgat 300 tatatgccgg cccattacag tcaggtacca caggtgtgga ccagtgtcct gcctgagccg 360 gatgtgtttt acgctgccgt atcccctatg gatgagcacg ggtattttag tttcggtacg 420 gcggccgatt tgagtgaagt ccgtcatcat gcagaaaaaa tactggtaga agtaaatccg 480 actatgcccc ggtcgtttgg ttcctttatc catatttcag aagtagacgg tatatgggaa 540 aatgatgctc ccattacagt agtcgatccg ccgccggtta ccaatacgga ccttgccatc 600 gggcagatga ttgctgacga gatacccaat ggagccacgc tgcagctggg aattggcggc 660 attcccaatg cggtggcaca gagcctgctc gataagcgga atctgggcgt acatagtgaa 720 atgttttgtg acagcatggt tgatctgaca ctggccggag tcattactaa cggctgcaaa 780 cggattcatc gcggaacctc tgttgcgacc tttacctttg cttcccgcag gacctatgat 840 tttattgaca ataatcccgg tgtcgccttc ctgcccgtat cgtatgtcaa tgatccccgc 900 gtcattgcta tgaatgatca ggtcatttcc atcaattcgt gcatcgaaat cgacttgttc 960 ggccaggtat gctcggaaac gatgggaaca aagaactata gcggtgtagg cgggcagatt 1020 gatttcatcc gtggggccgc tgcttccaaa ggaggaaaat cgttcctcgc ttttacggca 1080 acggcaaaaa aagggaaagt gtccaagatt aaaccggtcc tcacagaagg agcctgtgtc 1140 agtacgacga gaaacgatgt cgattatgta gttactgagt ttggaatggc acggctgaaa 1200 gggctgacct gttcccagcg tgccaaagcg ctgattcgca ttgcagctcc tgctttccgg 1260 gaagaattaa cggaggcagc cagaaagatg catattattg tgtga 1305 <210> 6 <211> 1338 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene &Lt; 222 > (1) .. (1338) <223> gene coding Acyl CoA transferase (ACT 7470) <400> 6 atggattacc agagtgaata catgagcaaa cgctgtacac cgcagcaggc agtgcagctg 60 atccgcgacg gggactgggt cgattacacc cagggtatta cctttcccca gcttctcgat 120 gaggccctgg cagaacggac aggggaattg gccgatgtga agatccgctg catgttctgc 180 ctgaaacggc cgcagatatt ggaaaaagat ccccatagcg tatcttttac gtatcatacc 240 tggcatagca gccagataga ccgcagggat gtcaatgaag gccgggctta tttcgccccg 300 attcagtaca gtcatctggc agaatattac cgccggggaa tggcaccggt cgatgttgtc 360 atgatgaccg tttctcctat ggaccgtcat gggaacttca gttttgcctg caatccgtcg 420 gccactcagg gcgctctcga tgcagcagac cgcatcatcg tcgaagttaa ccccaacctg 480 ccggaagcgt acggcctggg aggagatttt attcatattt ccgatattga tgctatcgtg 540 gaaagtgatg taccggtgct tatggcaccc aatccgcccg tacaggaaat cgataagaaa 600 attgcggcct ggctgctccc ctatctgaaa gacggtatga cgctgcagat cggtgtcggc 660 ggtattccca atgccctggg gatgctcatt gccgattcgg atctgaaaga tctgggcatg 720 catacggaat atctcagtga tggctgcctg aaactgtatg aggcagggaa gataacgaat 780 cgcagaaaag aactcctgcc gggcaaaggc gtgtatggta cttgtgccgg cagcacggaa 840 ctgtacgatt tcgtcgatca caaccgggca ttactatcag cccctattga atatgtcaat 900 cacgtggatc agatccgtca gctgaaccag ttcgtttcta tcaatggctg cctggccgtc 960 gatttatatg gacaggtttg ctcggaatcg gctggcctct ggcatatcag cggctcgggg 1020 ggacaggtcg attttattag cggtgccttc tggtctcctc atgggcaggc ctttctgact 1080 atgccttcga cgtatacaga ccggcagggt atcgtacatt cacgcataca gccgtttttc 1140 tcacatggcg atatcgttac gacggtacgg gccatagctc cgtgtatcgt aacggaatac 1200 gggatagcag aactggaagg caggacgacg tggcagcggg cagaagcgct cattgccatt 1260 gcccatcccg atttccgcga atctctgatc cgtgcggcgg aagcccagca catatggcgc 1320 gcttctcata aacgataa 1338 <210> 7 <211> 1338 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene &Lt; 222 > (1) .. (1338) <223> gene coding Acyl CoA transferase (ACT 5060) <400> 7 ttgaatccat tcgaaatata tcaggaaaaa ctgcacactc ccgaagaggc agtgcatctc 60 gtccagtccg gcgactgggt cgattatagc cagacctgtt cctttccggc ggctctcgat 120 gcggctctgg cggcacggcg ggatgagctc actgacgtga aggtgcgcca cgccatatcg 180 atgcgccctg tccagatagt agaacaggac ccgcagcggc aggcctttac atacaacctc 240 tggcactgct cgggactgga tcgtaagtat atcgatacgg gacgggcttt cttctcgcct 300 atgatgttcc gcttctgcgg ctcctattac agccgcggcc aggcgccggt caacgtggcc 360 atggtgaccg tatcgcccat ggaccgctat ggcaatttca gctatggcct gactaactgc 420 tgtatgcagg aaatgctcga tgcggctgac cggattatcc tggaagtcaa tccccatatg 480 ccttttatat acggtatggc agatgatcac atcaatatcc gcgacgttga tgctgtcgtt 540 gaaaatgatc agcctctgag cgaagcccca agccggggag ccagtgaact ggataagcag 600 attgccgccc agatttttcc cttcatccac gatggagaca cactgcaact cggcatcggc 660 ggtatgccca atgccctggg gtcgctcatt gccgggtcag acctcaggga cctgggcatg 720 catcataac tcatgagcga tggctacctc gacctgtata aggccggcaa gatcaccaat 780 aagcgtaaga ccctgcagaa gggaaagggc gtattttcca tctgcagcgg atcgaaggaa 840 ctctatgagt tcctcgacca caatattgac attctgtcgg cgcccatgca ttatgtcaac 900 gcccggaaa cgattcgtca gctggaccat ttcgtttcca tcaatggctg cattgcctgc 960 gcctctacg gccaggtcag ctccgaatcg gcggggacgc ggcagatcag tgggaccggc 1020 ggccagcttg atttcgtcac cggtgcctat acggcagaac acggccggac cttcctggcc 1080 atggcgtcga gccgggtgga caagaaaggc gtccgccatt ccaatatcgt accatgcttt 1140 accggcggtg acatcatcac gacgccgcgg gcacagacca tgtacatcgt caccgaatac 1200 ggggcggtca atctggccgg acttacgacg tggcaacggg cagaaaaact gatcggtatc 1260 gctcatcccg atttccggga cgaactcatc aaagccgcag aacaacagaa aatctggagg 1320 aacagtaaca agaaatga 1338 <210> 8 <211> 1500 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene &Lt; 222 > (1) .. (1500) <223> gene coding Acyl CoA transferase (ACT 24660) <400> 8 atgattgaca tttcagatcg catacgaaat aaagcataca tgtccagagt tacgacggca 60 gaagaagcgg cgaagctgat tcatcccgat gatattgtgg ctgtatcggg gtttacaccg 120 gccgggtatc ccaaagccgt accgctggct ctggcgaagc ggatagaacg ggaacatttt 180 cagattacgc tgtatgctgg ggcatccatc ggtgatgaaa ttgatggggc cctggcacgg 240 gtacacggta tttcccgccg gttttcctat catacgaata aagatctgcg ccgcgaaatc 300 aatgatggca gtgtggctta tgccgattat cacgtcagcg tatttgccca gatgctaagg 360 gaagggttca tgaagcgccc cgatatcgtc gtggtggaag cggcagctat cacaaaagaa 420 gggaatctca tccctactac gtctgtagga acgacgccgg ccatgattga cgtgtgtcag 480 aaagttgtcg tcgaaatcaa tgtgacccag ccgctcagtc tggaagggat gcatgacgta 540 tacgatattc ccaatccgcc attccgtgta cccattccca tcgtccatac aggggaccgt 600 attgggaagc cgtatatcac ctgcggttgg gataaaatcg ttgctattgt tccctgtgat 660 attcccgatg ctccccggtc gtttaaacct gttgatgatg cgggccggaa aatgggaaat 720 ctcatcgtgc agttttttaa ggatgaagta gctaaaggcc ggctgccgga gcatctcctg 780 ccactccagt ccggtgtcgg atccgtagcc aatgcggtca ttcaggggct ggccaaaagt 840 gatttcgaac atttgtctat ctttacggaa gtgctccagg acggcatgtt taccctcatc 900 gatgccggga aagtcgatgc cgtatcgacg gcttctattt cagcatcacc ggaagggttg 960 aagcatttct atgaacacat cgatgagtac cggaaaaaaa tcgtcatacg accccaggaa 1020 atttctaata atcccgaagt gatccgccgc atcggagcta ttgccatgaa tacggccatt 1080 gagtttgata tctatggtca ggtcaattcg acacatatct gtggcagtcg tctcatgaat 1140 ggaattggcg gttccgggga ctttgcccgg gcgggatatc tgacgatttt ctttaccagt 1200 tcgacggcaa aaaacggtgc catcagttcc gtagttccca tgtgctccca cgtagatcac 1260 acggagcacg atgtggatgt cctctgtacg gaacagggca ttgcagacct gcgcggtctt 1320 tctcctgtcg aacgggcaag gactatcata gctaactgtg cccacccgga ttacagagac 1380 cagctcacag attatctgaa ccgggctatt gctgcaacgg gtagccagca tgaaccacag 1440 ctcctgaaag aggccctgtc atggcagcag cgctacctgg aaacagggag tatgaagtga 1500                                                                         1500 <210> 9 <211> 2676 <212> DNA <213> Unknown <220> <223> Escherichia coli MG1655 <220> <221> gene &Lt; 222 > (1) .. (2676) <223> gene coding AdhE <400> 9 atggctgtta ctaatgtcgc tgaacttaac gcactcgtag agcgtgtaaa aaaagcccag 60 cgtgaatatg ccagtttcac tcaagagcaa gtagacaaaa tcttccgcgc cgccgctctg 120 gctgctgcag atgctcgaat cccactcgcg aaaatggccg ttgccgaatc cggcatgggt 180 atcgtcgaag ataaagtgat caaaaaccac tttgcttctg aatatatcta caacgcctat 240 aaagatgaaa aaacctgtgg tgttctgtct gaagacgaca cttttggtac catcactatc 300 gctgaaccaa tcggtattat ttgcggtatc gttccgacca ctaacccgac ttcaactgct 360 atcttcaaat cgctgatcag tctgaagacc cgtaacgcca ttatcttctc cccgcacccg 420 cgtgcaaaag atgccaccaa caaagcggct gatatcgttc tgcaggctgc tatcgctgcc 480 ggtgctccga aagatctgat cggctggatc gatcaacctt ctgttgaact gtctaacgca 540 ctgatgcacc acccagacat caacctgatc ctcgcgactg gtggtccggg catggttaaa 600 gccgcataca gctccggtaa accagctatc ggtgtaggcg cgggcaacac tccagttgtt 660 atcgatgaaa ctgctgatat caaacgtgca gttgcatctg tactgatgtc caaaaccttc 720 gacaacggcg taatctgtgc ttctgaacag tctgttgttg ttgttgactc tgtttatgac 780 gctgtacgtg aacgttttgc aacccacggc ggctatctgt tgcagggtaa agagctgaaa 840 gctgttcagg atgttatcct gaaaaacggt gcgctgaacg cggctatcgt tggtcagcca 900 gcctataaaa ttgctgaact ggcaggcttc tctgtaccag aaaacaccaa gattctgatc 960 ggtgaagtga ccgttgttga tgaaagcgaa ccgttcgcac atgaaaaact gtccccgact 1020 ctggcaatgt accgcgctaa agatttcgaa gacgcggtag aaaaagcaga gaaactggtt 1080 gt; cgcgtttctt acttcggtca gaaaatgaaa acggcgcgta tcctgattaa caccccagcg 1200 tctcagggtg gtatcggtga cctgtataac ttcaaactcg caccttccct gactctgggt 1260 tgtggttctt ggggtggtaa ctccatctct gaaaacgttg gtccgaaaca cctgatcaac 1320 aagaaaaccg ttgctaagcg agctgaaaac atgttgtggc acaaacttcc gaaatctatc 1380 tacttccgcc gtggctccct gccaatcgcg ctggatgaag tgattactga tggccacaaa 1440 cgtgcgctca tcgtgactga ccgcttcctg ttcaacaatg gttatgctga tcagatcact 1500 tccgtactga aagcagcagg cgttgaaact gaagtcttct tcgaagtaga agcggacccg 1560 accctgagca tcgttcgtaa aggtgcagaa ctggcaaact ccttcaaacc agacgtgatt 1620 atcgcgctgg gtggtggttc cccgatggac gccgcgaaga tcatgtgggt tatgtacgaa 1680 catccggaaa ctcacttcga agagctggcg ctgcgcttta tggatatccg taaacgtatc 1740 tacaagttcc cgaaaatggg cgtgaaagcg aaaatgatcg ctgtcaccac cacttctggt 1800 acaggttctg aagtcactcc gtttgcggtt gtaactgacg acgctactgg tcagaaatat 1860 ccgctggcag actatgcgct gactccggat atggcgattg tcgacgccaa cctggttatg 1920 gacatgccga agtccctgtg tgctttcggt ggtctggacg cagtaactca cgccatggaa 1980 gcttatgttt ctgtactggc atctgagttc tctgatggtc aggctctgca ggcactgaaa 2040 ctgctgaaag aatatctgcc agcgtcctac cacgaagggt ctaaaaatcc ggtagcgcgt 2100 gaacgtgttc acagtgcagc gactatcgcg ggtatcgcgt ttgcgaacgc cttcctgggt 2160 gtatgtcact caatggcgca caaactgggt tcccagttcc atattccgca cggtctggca 2220 aacgccctgc tgatttgtaa cgttattcgc tacaatgcga acgacaaccc gaccaagcag 2280 actgcattca gccagtatga ccgtccgcag gctcgccgtc gttatgctga aattgccgac 2340 cacttgggtc tgagcgcacc gggcgaccgt actgctgcta agatcgagaa actgctggca 2400 tggctggaaa cgctgaaagc tgaactgggt attccgaaat ctatccgtga agctggcgtt 2460 caggaagcag acttcctggc gaacgtggat aaactgtctg aagatgcatt cgatgaccag 2520 tgcaccggcg ctaacccgcg ttacccgctg atctccgagc tgaaacagat tctgctggat 2580 acctactacg gtcgtgatta tgtagaaggt gaaactgcag cgaagaaaga agctgctccg 2640 gctaaagctg agaaaaaagc gaaaaaatcc gcttaa 2676 <210> 10 <211> 3180 <212> DNA <213> Unknown <220> <223> Clostridium acetobutylicum <220> <221> gene &Lt; 222 > (1) .. (3180) <223> gene coding AdhE2 <400> 10 atgaaagtta caaatcaaaa agaactaaaa caaaagctaa atgaattgag agaagcgcaa 60 aagaagtttg caacctatac tcaagagcaa gttgataaaa tttttaaaca atgtgccata 120 gccgcagcta aagaaagaat aaacttagct aaattagcag tagaagaaac aggaataggt 180 cttgtagaag ataaaattat aaaaaatcat tttgcagcag aatatatata caataaatat 240 aaaaatgaaa aaacttgtgg cataatagac catgacgatt ctttaggcat aacaaaggtt 300 gctgaaccaa ttggaattgt tgcagccata gttcctacta ctaatccaac ttccacagca 360 attttcaaat cattaatttc tttaaaaaca agaaacgcaa tattcttttc accacatcca 420 cgtgcaaaaa aatctacaat tgctgcagca aaattaattt tagatgcagc tgttaaagca 480 ggagcaccta aaaatataat aggctggata gatgagccat caatagaact ttctcaagat 540 ttgatgagtg aagctgatat aatattagca acaggaggtc cttcaatggt taaagcggcc 600 tattcatctg gaaaacctgc aattggtgtt ggagcaggaa atacaccagc aataatagat 660 gagagtgcag atatagatat ggcagtaagc tccataattt tatcaaagac ttatgacaat 720 ggagtaatat gcgcttctga acaatcaata ttagttatga attcaatata cgaaaaagtt 780 aaagaggaat ttgtaaaacg aggatcatat atactcaatc aaaatgaaat agctaaaata 840 aaagaaacta tgtttaaaaa tggagctatt aatgctgaca tagttggaaa atctgcttat 900 ataattgcta aaatggcagg aattgaagtt cctcaaacta caaagatact tataggcgaa 960 gtacaatctg ttgaaaaaag cgagctgttc tcacatgaaa aactatcacc agtacttgca 1020 atgtataaag ttaaggattt tgatgaagct ctaaaaaagg cacaaaggct aatagaatta 1080 ggtggaagtg gacacacgtc atctttatat atagattcac aaaacaataa ggataaagtt 1140 aaagaatttg gattagcaat gaaaacttca aggacattta ttaacatgcc ttcttcacag 1200 ggagcaagcg gagatttata caattttgcg atagcaccat catttactct tggatgcggc 1260 acttggggag gaaactctgt atcgcaaaat gtagagccta aacatttatt aaatattaaa 1320 agtgttgctg aaagaaggga aaatatgctt tggtttaaag tgccacaaaa aatatatttt 1380 aaatatggat gtcttagatt tgcattaaaa gaattaaaag atatgaataa gaaaagagcc 1440 tttatagtaa cagataaaga tttttttaaa cttggatatg ttaataaaat aacaaaggta 1500 ctagatgaga tagatattaa atacagtata tttacagata ttaaatctga tccaactatt 1560 gattcagtaa aaaaaggtgc taaagaaatg cttaactttg aacctgatac tataatctct 1620 attggtggtg gatcgccaat ggatgcagca aaggttatgc acttgttata tgaatatcca 1680 gaagcagaaa ttgaaaatct agctataaac tttatggata taagaaagag aatatgcaat 1740 ttccctaaat taggtacaaa ggcgatttca gtagctattc ctacaactgc tggtaccggt 1800 tcagaggcaa caccttttgc agttataact aatgatgaaa caggaatgaa atacccttta 1860 acttcttatg aattaccccc aaacatggca ataatagata ctgaattaat gttaaatatg 1920 cctagaaaat taacagcagc aactggaata gatgcattag ttcatgctat agaagcatat 1980 gtttcggtta tggctacgga ttatactgat gaattagcct taagagcaat aaaaatgata 2040 tttaaatatt tgcctagagc ctataaaaat gggactaacg acattgaagc aagagaaaaa 2100 atggcacatg cctctaatat tgcggggatg gcatttgcaa atgctttctt aggtgtatgc 2160 cattcaatgg ctcataaact tggggcaatg catcacgttc cacatggaat tgcttgtgct 2220 gtattaatag aagaagttat taaatataac gctacagact gtccaacaaa gcaaacagca 2280 ttccctcaat ataaatctcc taatgctaag agaaaatatg ctgaaattgc agagtatttg 2340 aatttaaagg gtactagcga taccgaaaag gtaacagcct taatagaagc tatttcaaag 2400 ttaaagatag atttgagtat tccacaaaat ataagtgccg ctggaataaa taaaaaagat 2460 ttttataata cgctagataa aatgtcagag cttgcttttg atgaccaatg tacaacagct 2520 aatcctaggt atccacttat aagtgaactt aaggatatct atataaaatc attttaagcc 2580 tatgtttcgg ttatggctac ggattatact gatgaattag ccttaagagc aataaaaatg 2640 atatttaaat atttgcctag agcctataaa aatgggacta acgacattga agcaagagaa 2700 aaaatggcac atgcctctaa tattgcgggg atggcatttg caaatgcttt cttaggtgta 2760 tgccattcaa tggctcataa acttggggca atgcatcacg ttccacatgg aattgcttgt 2820 gctgtattaa tagaagaagt tattaaatat aacgctacag actgtccaac aaagcaaaca 2880 gcattccctc aatataaatc tcctaatgct aagagaaaat atgctgaaat tgcagagtat 2940 ttgaatttaa agggtactag cgataccgaa aaggtaacag ccttaataga agctatttca 3000 aagttaaaga tagatttgag tattccacaa aatataagtg ccgctggaat aaataaaaaa 3060 gatttttata atacgctaga taaaatgtca gagcttgctt ttgatgacca atgtacaaca 3120 gctaatccta ggtatccact tataagtgaa cttaaggata tctatataaa atcattttaa 3180                                                                         3180 <210> 11 <211> 2556 <212> DNA <213> Unknown <220> <223> Salmonella typhimurium, Lactococcus lactis <220> <221> gene &Lt; 222 > (1) .. (2556) <223> gene coding PduP-AdhA <400> 11 catatgttga cggctagctc agtcctaggt acagtgctag cgattatgga taaggaggag 60 cctgcgatga acaccagcga actggaaacc ctgatccgta ccattctgag cgaacagtta 120 accaccccgg cacaaacccc ggttcaaccg caaggtaaag gcattttcca gagcgtttcc 180 gaagcgattg atgcagcaca tcaggcgttt ctgcgttatc aacagtgtcc gctgaaaacc 240 cgtagcgcta ttatctctgc gatgcgtcag gaactgaccc cgttattagc accgttagcc 300 gaagaaagcg ctaacgaaac cggtatgggc aacaaagagg acaaattcct gaaaaacaaa 360 gcggcgctgg ataacacccc gggcgttgaa gatttaacca ccaccgcatt aaccggcgac 420 ggcggtatgg ttctgtttga atacagcccg ttcggcgtta ttggctctgt tgcaccgagc 480 accaatccga ccgaaaccat catcaacaac tccatcagca tgctggcggc aggtaacagc 540 atttatttta gcccgcatcc gggcgcgaaa aaagttagcc tgaaactgat cagcctgatc 600 gaagaaattg cgtttcgttg ttgcggcatt cgtaacctgg ttgttaccgt tgcagaaccg 660 acctttgaag ctacccagca aatgatggcg catccgcgta ttgcggtttt agcaattacg 720 gt; gcaggtaatc cgccgtgtat tgttgacgaa accgcggatc tggtcaaagc ggcggaagat 840 attattaacg gcgcgagctt tgattataac ctgccgtgca tcgcggaaaa aagcctgatt 900 gtcgtcgaaa gcgtagcgga acgtttagtt cagcagatgc agacctttgg cgcattactg 960 ctgtctccgg cagataccga taaattacgc gcggtttgct taccggaagg ccaggcgaac 1020 aaaaaactgg ttggtaaatc cccgtctgcc atgttagaag cagcaggtat tgcagttccg 1080 gcaaaagcac cgcgtttact gattgcactg gttaacgctg acgatccgtg ggttacctct 1140 gaacaactga tgccgatgct gccggttgta aaagttagcg attttgatag cgcgctggca 1200 ttagcactga aagttgaaga gggcctgcat cataccgcaa ttatgcatag ccagaacgtc 1260 agccgtctga atttagcagc acgtaccctg caaaccagca tcttcgtcaa aaacggcccg 1320 agttacgcag gtattggcgt tggcggcgaa ggttttacca cctttaccat tgctaccccg 1380 accggtgaag gcaccacctc tgcacgtacc tttgcacgtt ctcgtcgttg cgttttaacg 1440 aacggcttta gcattcgcta agacgtcttg acggctagct cagtcctagg tacagtgcta 1500 gcaggaatgt aatcggagga ggaggaaatg aaagcggcgg tagttcgtca taatccggac 1560 ggttacgcgg atctggtcga aaaagaactg cgcgcaatta aaccgaacga agctctgctg 1620 gacatggaat actgcggcgt ttgtcatacc gatctgcacg tagctgctgg cgattatggt 1680 aacaaagcag gcaccgtgct gggtcatgaa ggtatcggca tcgtcaaaga aatcggcacc 1740 gatgttagta gcctgcaagt aggcgatcgt gttagcgttg cttggttttt cgaaggctgc 1800 ggccattgcg aatattgcgt ttctggtaac gagacctttt gccgcgaggt caaaaacgcg 1860 ggttattctg ttgacggcgg tatggctgaa gaagcgattg ttgtcgcgga ttacgcagtt 1920 aaagttccgg acggtctgga cccgattgaa gcaagtagca ttacctgcgc aggcgttacc 1980 acctacaaag cgatcaaagt tagcggcgtc aaaccgggcg attggcaggt aattttcggc 2040 gcaggtggtc tgggtaatct ggcaattcag tacgcgaaaa acgtcttcgg cgcaaaagtc 2100 atcgcggtcg atattaacca ggacaaactg aacctggcga aaaagattgg cgcagatgtg 2160 attattaaca gcggcgacgt taacccggtg gatgaaatca aaaagattac cggcggcctg 2220 ggtgcacaat ctgcgattgt gtgcgctgtt gcgcgtattg cgtttgaaca ggcagttgct 2280 tccctgaaac cgatgggtaa aatggtcgca gttgcactgc cgaataccga aatgaccctg 2340 tctgttccga cggttgtttt tgacggtgtt gaagttgcag gtagtctggt tggcacccgc 2400 ctggatctgg cagaagcatt tcagttcggc gcggaaggta aagttaaacc gattgtcgcg 2460 acccgtaaac tggaagaaat caacgacatc atcgacgaga tgaaagcggg caaaatcgag 2520 ggtcgtatgg tcatcgactt caccaaataa ctcgag 2556 <210> 12 <211> 444 <212> DNA <213> Unknown <220> <223> Megasphaera hexanoica <220> <221> gene &Lt; 222 > (1) <223> gene coding Acyl CoA transferase (ACT 27250) <400> 12 atgactggta ttgatgcaca tatttcatcg gcccacatgg tcctttcccg ggatctcaat 60 ccccacgata cgctcttcgc cgggcagggc acgtcctata tgatcgagtg cgccttcctg 120 gcggtacaga gttttctccg tacgccccat attgtctgtc tggggctgga cggcctgcgc 180 ttccttcatc ccgtccataa gggggataca atccgcgtag atagttccat cgtccatgcc 240 gggacgagcg gcatcggcgt gtatattact ctttcgctcc tgccggacgg accggtggcg 300 gcgtcgtgtt tcgtgtcgtt cgtccacatc gacgaagcga cggggcgggc tgtaccccac 360 ggtgtgacgc tggcggaact tccaccggag atggcccgcc ggcagaagca gtatctggca 420 tataaggaga tgacgagacg atga 444 <210> 13 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (37) <223> forward primer <400> 13 tatatggatc ccatgtacaa actttcacaa attgcag 37 <210> 14 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind &Lt; 222 > (1) <223> reverse primer <400> 14 tatataagct tttagtattc tgtcttgctc gtct 34 <210> 15 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind &Lt; 222 > (1) <223> forward primer <400> 15 tatatgatcc catgtcagaa tggacggata tgta 34 <210> 16 <211> 33 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (33) <223> reverse primer <400> 16 tatataagct tttaccgttt attgctcttg cgc 33 <210> 17 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (36) <223> forward primer <400> 17 tatatgagct ccatggatgt aatgcaagaa tatgcc 36 <210> 18 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (36) <223> reverse primer <400> 18 tatatgagct ccatggatgt aatgcaagaa tatgcc 36 <210> 19 <211> 39 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (39) <223> forward primer <400> 19 tatatgagct ccatgacaca atatgaaaca atgatatgaa 39 <210> 20 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (37) <223> reverse primer <400> 20 tatatgtcga cttaccaaat catgtatttg tcaacag 37 <210> 21 <211> 35 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) <223> forward primer <400> 21 tatatggatc ccatgatgaa tcaatggcag cgcat 35 <210> 22 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (37) <223> reverse primer <400> 22 tatataagct tttacacaat aatatgcatc tttctgg 37 <210> 23 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (37) <223> forward primer <400> 23 tatatggatc ccatggatta ccagagtgaa tacatga 37 <210> 24 <211> 33 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (33) <223> reverse primer <400> 24 tatataagct tttatcgttt atgagaagcg cgc 33 <210> 25 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (37) <223> forward primer <400> 25 tatatggatc ccatgaatcc attcgaaata tatcagg 37 <210> 26 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (36) <223> reverse primer <400> 26 tatataagct tttatttctt gttactgttc ctccag 36 <210> 27 <211> 36 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (36) <223> forward primer <400> 27 tatatgagct ccatgattga catttcagat cgcata 36 <210> 28 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind &Lt; 222 > (1) <223> reverse primer <400> 28 tatatgtcga cttacttcat actccctgtt tcca 34 <210> 29 <211> 37 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (37) <223> forward primer <400> 29 tatatggatc ccatgactgg tattgatgca catattt 37 <210> 30 <211> 34 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind &Lt; 222 > (1) <223> reverse primer <400> 30 tatataagct tttatcgtct cgtcatctcc ttat 34 <210> 31 <211> 26 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (26) <223> forward primer <400> 31 gcgccatatg gctgttacta atgtcg 26 <210> 32 <211> 26 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (26) <223> reverse primer <400> 32 gcgcctcgag ttaagcggat tttttc 26 <210> 33 <211> 41 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (41) <223> forward primer <400> 33 tatatcatat gatgaaagtt acaaatcaaa aagaactaaa a 41 <210> 34 <211> 43 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (43) <223> reverse primer <400> 34 tatatgagct cttaaaatga ttttatatag atatccttaa gtt 43 <210> 35 <211> 29 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (29) <223> forward primer <400> 35 gcgccatatg aacaccagcg aactggaaa 29 <210> 36 <211> 26 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (26) <223> reverse primer <400> 36 gcgcctcgag ttatttggtg aagtcg 26 <210> 37 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (70) <223> forward primer <400> 37 aaatattttt agtagcttaa atgtgattca acatcactgg agaaagtctt gtgtaggctg 60 gagctgcttc 70 <210> 38 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (70) <223> reverse primer <400> 38 attggggatt atctgaatca gctcccctgg gttgcagggg agcggcaaga tcctccttag 60 ttcctattcc 70 <210> 39 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (70) <223> forward primer <400> 39 cttaccctga agtacggggc tgtgggataa aaacaatctg gaggaatgtc gtgtaggctg 60 gagctgcttc 70 <210> 40 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (70) <223> reverse primer <400> 40 tatcgacttc cgggttatag cgcaccacct caattttcag gtttttcatc tcctccttag 60 ttcctattcc 70 <210> 41 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (70) <223> forward primer <400> 41 ggtgctgttt tgtaacccgc caaatcggcg gtaacgaaag aggataaacc gtgtaggctg 60 gagctgcttc 70 <210> 42 <211> 73 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (73) <223> reverse primer <400> 42 ttatttccgg ttcagatatc cgcagcgcaa agctgcggat gatgacgaga atatcctcct 60 tagttcctat tcc 73 <210> 43 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (43) <223> forward primer <400> 43 attcgagcag atgatttact aaaaaagttt aacattatca ggagagcatt gtgtaggctg 60 gagctgcttc 70 <210> 44 <211> 70 <212> DNA <213> Unknown <220> <223> Artificial Sequence <220> <221> primer_bind <222> (1) (70) <223> reverse primer <400> 44 aaaaaacggc cccagaaggg gccgtttata ttgccagaca gcgctactga tcctccttag 60 ttcctattcc 70

Claims (12)

서열번호 1의 염기서열로 표시되는 유전자, 서열번호 2의 염기서열로 표시되는 유전자, 서열번호 3의 염기서열로 표시되는 유전자, 서열번호 4의 염기서열로 표시되는 유전자, 서열번호 5의 염기서열로 표시되는 유전자, 서열번호 6의 염기서열로 표시되는 유전자, 서열번호 7의 염기서열로 표시되는 유전자 및 서열번호 8의 염기서열로 표시되는 유전자로 이루어진 군으로부터 선택되는 C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자.A gene represented by the nucleotide sequence of SEQ ID NO: 1, a gene represented by the nucleotide sequence of SEQ ID NO: 3, a gene represented by the nucleotide sequence of SEQ ID NO: 4, a nucleotide sequence of SEQ ID NO: , A gene represented by the nucleotide sequence of SEQ ID NO: 6, a gene represented by the nucleotide sequence of SEQ ID NO: 7, and a gene represented by the nucleotide sequence of SEQ ID NO: 8, to the biosynthesis of the C3-C8 alcohol selected from the group consisting of Genes that encode enzymes involved. 제1항에 있어서,
상기 서열번호 1 내지 서열번호 8의 염기서열로 표시되는 각각의 유전자는 Acyl CoA transferase(ACT) 효소를 코딩하는 것을 특징으로 하는 C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자.
The method according to claim 1,
A gene coding for an enzyme involved in biosynthesis of a C3-C8 alcohol characterized in that each gene represented by the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 8 encodes an Acyl CoA transferase (ACT) enzyme.
제1항에 있어서,
상기 서열번호 1 내지 서열번호 8의 염기서열로 표시되는 각각의 유전자는 기탁번호 KCCM11835P로 기탁된 메가스파에라 헥사노이카 (Megasphaera hexanoica) 균주로부터 유래된 것을 특징으로 하는 C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자.
The method according to claim 1,
Each of the genes represented by the nucleotide sequences of SEQ ID NOS: 1 to 8 is involved in the biosynthesis of C3-C8 alcohol, which is derived from Megasphaera hexanoica strain deposited with Accession No. KCCM11835P Gene encoding the enzyme.
제1항에 있어서,
상기 C3 알코올은 프로판올(propanol)이고, C4 알코올은 부탄올(butanol)이며, C5 알코올은 펜탄올(pentanol)이고, C6 알코올은 헥산올(hexanol)이며, C7 알코올은 헵탄올(heptanol)이고, C8 알코올은 옥탄올(octanol)인 것을 특징으로 하는 C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자.
The method according to claim 1,
Wherein the C3 alcohol is propanol, the C4 alcohol is butanol, the C5 alcohol is pentanol, the C6 alcohol is hexanol, the C7 alcohol is heptanol, the C8 alcohol is hexanol, A gene encoding an enzyme involved in biosynthesis of a C3-C8 alcohol characterized in that the alcohol is octanol.
제1항에 따른 C3-C8 알코올의 생합성에 관여하는 효소를 코딩하는 유전자; 및
Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자;를 포함하는 벡터.
A gene encoding an enzyme involved in biosynthesis of the C3-C8 alcohol according to claim 1; And
A gene encoding an alcohol dehydrogenase (ADH) enzyme.
제5항에 있어서,
상기 Alcohol Dehydrogenase(ADH) 효소를 코딩하는 유전자는 서열번호 9 내지 11의 염기서열 중 어느 하나로 표시되는 것을 특징으로 하는 벡터.
6. The method of claim 5,
Wherein the gene encoding the Alcohol Dehydrogenase (ADH) enzyme is represented by any one of the nucleotide sequences of SEQ ID NOS: 9 to 11.
제6항에 있어서,
상기 서열번호 9의 염기서열로 표시되는 유전자는 Aldehyde-alcohol dehydrogenase(AdhE)를 코딩하고, 상기 서열번호 10의 염기서열로 표시되는 유전자는 Aldehyde/alcohol dehydrogenase(AdhE2)를 코딩하고, 상기 서열번호 11의 염기서열로 표시되는 유전자는 Propionaldehyde dehydrogenase-Alcohol dehydrogenase(PduP-AdhA)를 코딩하는 것을 특징으로 하는 벡터.
The method according to claim 6,
Wherein the gene represented by the nucleotide sequence of SEQ ID NO: 9 encodes Aldehyde-alcohol dehydrogenase (AdhE), the gene represented by the nucleotide sequence of SEQ ID NO: 10 encodes Aldehyde / alcohol dehydrogenase (AdhE2) Wherein the gene represented by the nucleotide sequence of SEQ ID NO: 1 encodes Propionaldehyde dehydrogenase-Alcohol dehydrogenase (PduP-AdhA).
제5항에 따른 벡터에 의해 형질전환된, C3-C8 알코올 생산능력을 가지는 미생물.A microorganism having the ability to produce C3-C8 alcohols, transformed by the vector according to claim 5. 제8항에 있어서,
상기 미생물은 대장균, 박테리아, 효모 및 곰팡이로 구성된 군에서 선택되는 것을 특징으로 하는 미생물.
9. The method of claim 8,
Wherein the microorganism is selected from the group consisting of E. coli, bacteria, yeast and fungi.
제9항에 있어서,
상기 미생물은 락테이트(lactate) 생합성에 관여하는 효소를 코딩하는 유전자, 아세테이트(acetate) 생합성에 관여하는 효소를 코딩하는 유전자, 에탄올(ethanol) 생합성에 관여하는 효소를 코딩하는 유전자 및 숙시네이트(succinate) 생합성에 관여하는 효소를 코딩하는 유전자로 구성된 군에서 선택되는 1종 이상의 유전자가 약화 또는 결실되어 있는 대장균인 것을 특징으로 하는 미생물.
10. The method of claim 9,
The microorganism includes a gene encoding an enzyme involved in lactate biosynthesis, a gene encoding an enzyme involved in acetate biosynthesis, a gene encoding an enzyme involved in ethanol biosynthesis, and a succinate ) A gene coding for an enzyme involved in biosynthesis is weakened or deleted in the microorganism.
제8항에 따른 미생물을 배양하여 C3-C8 알코올을 생산하는 방법.A method for producing a C3-C8 alcohol by culturing the microorganism according to claim 8. 제11항에 있어서,
상기 미생물 배양시 C3 내지 C8 유기산 중 어느 하나 이상을 첨가하는 것을 특징으로 하는 C3-C8 알코올을 생산하는 방법.
12. The method of claim 11,
Wherein at least one of C3 to C8 organic acids is added during the culture of the microorganism.
KR1020170158746A 2016-11-25 2017-11-24 A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica KR101990212B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160158433 2016-11-25
KR1020160158433 2016-11-25

Publications (2)

Publication Number Publication Date
KR20180059376A KR20180059376A (en) 2018-06-04
KR101990212B1 true KR101990212B1 (en) 2019-06-17

Family

ID=62628319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170158746A KR101990212B1 (en) 2016-11-25 2017-11-24 A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica

Country Status (1)

Country Link
KR (1) KR101990212B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178513A1 (en) 2015-05-06 2016-11-10 한양대학교 산학협력단 Novel gene involved in production of c5-c8 organic acids, strain, and method for preparing biofuel using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178513A1 (en) 2015-05-06 2016-11-10 한양대학교 산학협력단 Novel gene involved in production of c5-c8 organic acids, strain, and method for preparing biofuel using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI GenBank Accession No.: CP011940.1 (2018.07.12.)

Also Published As

Publication number Publication date
KR20180059376A (en) 2018-06-04

Similar Documents

Publication Publication Date Title
US11142761B2 (en) Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
CN109072245B (en) CRISPR/CAS system for C1 immobilized bacteria
Yazdani et al. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products
Franchi et al. Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes
CN103502435B (en) Recombinant microorganism and application thereof
CN101918539A (en) Light-driven CO2 reduction to organic compounds to serve as fuels or as industrial half products by an autotroph containing a fermentative gene cassette
CN116323928A (en) Recombinant microorganism and use thereof
CN102083977B (en) Homo-succinic acid producing microorganism variant and process for preparing succinic acid using the same
WO2014165763A1 (en) Microorganisms for the conversion of methane and methanol to higher value chemicals and fuels
CN107075462A (en) The generative capacity of 2,3 butanediols obtains enhanced recombinant microorganism and the production method using its 2,3 butanediols
CN112469813A (en) Method for producing methacrylic acid esters
KR101990212B1 (en) A method for selectively producing C3-C8 alcohol using acyl CoA transferase from Megasphaera hexanoica
CN113840909A (en) Fermentative production of 2-phenylethyl alcohol from gaseous substrates
CN116348608A (en) Synthetic growth based on one-carbon substrates
KR20110135261A (en) Recombinant microorganisms producing butanol and method for preparing butanol using the same
CN114015634B (en) Recombinant escherichia coli for high yield of succinic acid and construction method and application thereof
JP2019193618A (en) Hydrogenophilaceae bacteria transformant
KR101766955B1 (en) Novel genes involved in production of C5-C8 organic acid, vector comprising the genes, microorganism transformed with the vector, and method for producing C5-C8 organic acid using the microorganism
CN103205428A (en) Promoter for microbial fermentation and application thereof
TWI481711B (en) Bacterial strain for enhancing glycerol metabolism and its application
CN114480239B (en) Restructuring bacillus methyl butyrate for synergetically assimilating methanol by utilizing WLP (wlP) pathway and reductive glycine pathway and application thereof
JP6450912B1 (en) Hydrogenophilus genus transformant
KR20230156819A (en) Microorganism with knock-in at acetolactate decarboxylase gene locus
Seo Production of 1-butanol and butanol isomers by metabolically engineered Clostridium beijerinckii and Saccharomyces cerevisiae
CN113403333A (en) Construct for biosynthesis of ethanol, strain and method for producing ethanol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant