KR101987282B1 - Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii - Google Patents

Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii Download PDF

Info

Publication number
KR101987282B1
KR101987282B1 KR1020170144519A KR20170144519A KR101987282B1 KR 101987282 B1 KR101987282 B1 KR 101987282B1 KR 1020170144519 A KR1020170144519 A KR 1020170144519A KR 20170144519 A KR20170144519 A KR 20170144519A KR 101987282 B1 KR101987282 B1 KR 101987282B1
Authority
KR
South Korea
Prior art keywords
ala
rhp1
leu
gly
gene
Prior art date
Application number
KR1020170144519A
Other languages
Korean (ko)
Other versions
KR20190049073A (en
Inventor
정원중
임종민
임가민
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020170144519A priority Critical patent/KR101987282B1/en
Publication of KR20190049073A publication Critical patent/KR20190049073A/en
Application granted granted Critical
Publication of KR101987282B1 publication Critical patent/KR101987282B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 클라미도모나스 레인하드티 유래 RHP1 유전자를 이용한 바이오매스가 증가된 형질전환 난노클로롭시스 속 미세조류의 제조 방법에 관한 것으로, 보다 상세하게는 본 발명은 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1 유전자를 난노클로롭시스 속 미세조류에 과발현시킴으로써, 난노클로롭시스 속 미세조류 형질전환체(CrRHP1)의 세포 내 Ci(inorganic carbon) 농도를 높일 수 있을 뿐만 아니라, 이의 생장속도를 크게 증가시킬 수 있으므로, 바이오에너지용 난노클로롭시스 속 미세조류의 생산성을 높이는데 매우 유용하게 사용될 수 있다.The present invention relates to a method for producing microalgae transformed with increased biomass using the RHP1 gene derived from Clamidomonas reinhidt, and more particularly, to a method for producing microalgae transformed with Chlamydomonas hint reinhardtii) by over-expressing the RHP1 gene derived from the nanno claw drop system in microalgae, nanno claw drop system in microalgae transformants (cells Ci (inorganic carbon), as well as to increase the density thereof, the growth rate of CrRHP1) It can be very useful for enhancing the productivity of microalgae in nanoprobe for cyanobacteria for bioenergy.

Description

클라미도모나스 레인하드티 유래 RHP1 유전자를 이용한 바이오매스가 증가된 형질전환 난노클로롭시스 살리나의 제조 방법{Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii}[0001] The present invention relates to a method for producing transformed nanoclobloxys salinas using an RHP1 gene derived from Clamidomonas reinhardtii,

본 발명은 클라미도모나스 레인하드티 유래 RHP1 유전자를 이용한 바이오매스가 증가된 형질전환 난노클로롭시스 살리나의 제조 방법에 관한 것이다.The present invention relates to a method for producing transformed Nanocrobrotopsis salina with increased biomass using the RHP1 gene derived from Clamidomonas reinhardtii.

최근 화석연료의 사용증가로 인해 대기 중의 이산화탄소 농도가 증가하여, 지구온난화 등 환경 문제가 심각해지고 있다. 이로 인해 각 나라에서는 경제적이며, 친환경적인 바이오 연료 연구가 활발하게 진행 중이다. 바이오 연료는 석유에너지의 대체연료로서 바이오 디젤, 바이오 에탄올 등이 있다. 바이오 디젤은 조류의 지질과 콩, 유채 등의 농작물 그리고 동물성 유지에서 생산된다. 이 중에 미세조류를 이용한 바이오 디젤이 농작물이나 동물성 유지에 비해 친환경적이고 경제적 지속성을 갖는 것으로 알려져 있다.Recently, due to the increase in the use of fossil fuels, the concentration of carbon dioxide in the atmosphere increases, and environmental problems such as global warming become serious. As a result, bio-fuel research is being actively carried out in each country in an economical and environmentally friendly manner. Biofuels are alternative fuels for petroleum energy, including biodiesel and bioethanol. Biodiesel is produced from algae lipids, crops such as soybeans, oilseed rape, and animal fats. Among them, biodiesel using microalgae is known to have an environmentally friendly and economical sustainability compared to agricultural products and animal fats.

난노클로롭시스(Nannochloropsis)는 바이오연료용 지질생산에 사용 가능한 유력한 미세조류이다. 난노클로롭시스는 해양 미세조류로서 2-4㎛의 편모가 없는 작은 타원형의 초미세플랑크톤이며, 다당류로 이루어진 세포벽과 엽록체와 4개의 엽록체막으로 구성되어 있다. 난노클로롭시스는 전분을 축적하지 않지만, 다량의 지질을 축적한다. 지방산 조성의 특징으로는 긴 사슬 다불포화 지방산(long chain polyunsaturated fatty acid)인 EPA(eicosapentaenoic acid C20:5)를 함유하여 심혈관계 질환 등 건강 기능성 식품으로도 활용된다. 난노클로롭시스의 생장환경인 수중에서는 대기보다 CO2 확산 속도가 약 10,000배 낮다. 이와 같은 CO2의 부족을 극복하기 위하여, 난노클로롭시스를 비롯한 대부분의 미세조류들은 진화적으로 CO2를 농축하는 탄소농축기작(carbon concentrating mechanism; CCM)을 발달시켰다. CCM은 세포 외부에 무기탄소(inorganic carbon; Ci)의 농도가 낮으면 유도되고, 높으면 억제되는 등 외부 무기탄소의 농도에 의해서 조절된다. CCM에 대한 연구는 미세조류인 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 및 시아노박테리아(cyanobacteria)에서 집중적으로 연구가 되어왔다. 최근 광합성과 수분 스트레스 저항성 향상을 위해 수생식물의 CCM 관련 기구를 고등 식물에 주입시키는 등 다양한 종에서의 연구가 진행되고 있다. 클라미도모나스의 CCM은 중탄산염(bicarbonate)과 CO2의 상호전환 역할을 하는 외부/내부의 CA(carbonic anhydrase) 및 CO2의 흡수에 관여하는 CO2 채널, 세포 내의 중탄산염을 수송하는 중탄산염 수송체 등으로 구성되어 있다. 최근 난노클로롭시스의 CCM 연구에서 외부의 CA는 존재하지 않으며 내부의 CA만 존재하는 것이 밝혀졌다. 또한, 본 연구의 대상인 난노클로롭시스 살리나 게놈에는 녹조류와 다르게 CO2 채널의 존재가 확인되지 않았고, 중탄산염 수송체만 존재하는 것이 확인되었다. 또한, CO2 유출방지기구인 피레노이드(pyrenoid)가 없어서 상대적으로 세포 내에 유입되었던 상당량의 CO2가 세포 밖으로 유출되는 중탄산염 펌프/CO2-누설 CCM 활성을 가지는 것으로 알려져 있어, 난노클로롭시스의 CCM은 클라미도모나스에 비해 효율적이지 않을 것으로 예상된다. Nannochloropsis is a potent microalgae that can be used to produce lipids for biofuels. Nanochlooropsis is a marine microalgae, a small elliptical micro-plankton with no flagella of 2-4 ㎛, composed of polysaccharide cell wall, chloroplast and four chloroplast membranes. Nanoclorepsis does not accumulate starch, but accumulates large amounts of lipids. The characteristics of fatty acid composition include EPA (eicosapentaenoic acid C20: 5), which is a long chain polyunsaturated fatty acid, and is used as a health functional food such as cardiovascular diseases. The CO 2 diffusion rate is about 10,000 times lower than that in the atmosphere, which is the growth environment of nano-chloroprosis. In order to overcome this lack of CO 2 , most microalgae, including nanocholrobosis, have developed a carbon concentrating mechanism (CCM) that evolutionarily enriches CO 2 . CCM is regulated by the concentration of external inorganic carbon, such as being induced when the concentration of inorganic carbon (Ci) is low outside the cell, and suppressed when it is high. Studies on CCM have shown that microalgae, Chlamydomonas reinhardtii ) and cyanobacteria (cyanobacteria) have been intensively studied. In recent years, studies on various species such as injecting CCM-related apparatuses of aquatic plants into higher plants have been carried out to improve photosynthesis and water stress resistance. Of Chlamydomonas CCM is bicarbonate (bicarbonate) and CO 2 of the interconversion role outside / inside of the CA (carbonic anhydrase), and CO 2 channels involved in the absorption of CO 2, bicarbonate transporter to transport bicarbonate in the cell, such as . Recently, in the CCM study of nanoclo- ropsis, there is no external CA and only internal CA exists. Unlike the green algae, the existence of CO 2 channels was not observed in the nanoproloxys salinase genome of this study, and only bicarbonate transporters were found to exist. In addition, since it is known that there is no pyrenoid, which is a CO 2 spill prevention device, and that a considerable amount of CO 2 that flows into the cell relatively has a bicarbonate pump / CO 2 -leakage CCM activity out of the cell, Is expected to be less efficient than the Cramidomonas.

RHP1(Rhesus protein 1)은 일반적으로 적혈구막에서 중요한 역할을 하는 단백질로 알려져 있으며, 박테리아부터 포유류까지 다양한 종에서 존재하고 있다. 특히, 적혈구막에 가장 많이 존재하는 것으로 알려져 있다. RHP1은 가스 채널로서, 암모니아/메틸 암모니아를 수송하고, CO2를 흡수하는 역할을 한다.RHP1 (Rhesus protein 1) is generally known to play an important role in red blood cell membranes, and is present in a variety of species, from bacteria to mammals. In particular, it is known to be the most abundant in red blood cell membranes. RHP1 is a gas channel that transports ammonia / methyl ammonia and absorbs CO 2 .

한편, 한국등록특허 제1512479호는 지질 함량이 증대된 난노클로롭시스 오큘라타 변이 균주 및 이를 이용한 지질 제조 방법을 개시하고 있으며, 한국등록특허 제1492402호는 FAB2 유전자를 과발현하는 형질전환 미세조류에서 총 지방산 함량 및 유용지방산 비율을 증가시키는 방법을 개시하고 있다. 하지만, 본 발명의 클라미도모나스 레인하드티 유래 RHP1 유전자를 이용한 바이오매스가 증가된 형질전환 난노클로롭시스 살리나의 제조 방법에 대해 아직까지 개시된 바가 없다.On the other hand, Korean Patent No. 1512479 discloses a nanocholrobicosis mutant strain having an increased lipid content and a method for producing a lipid using the same, and Korean Patent No. 1492402 discloses a method for producing a transformant microalga that overexpresses the FAB2 gene A method of increasing the total fatty acid content and the ratio of the useful fatty acid is disclosed. However, a method for producing the transformed Nanocrobrotopsis salinas having increased biomass using the RHP1 gene derived from Clamidomonas reinhidti of the present invention has not yet been disclosed.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 및 극지 클로렐라 속(Chlorella sp. ArM0029B) 유래의 각각의 RHP1 단백질을 코딩하는 유전자를 난노클로롭시스 살리나(Nannochloropsis salina)에서 각각 과발현시킨 결과, 특히, 클라미도모나스 레인하드티 유래 RHP1 형질전환체(CrRHP1)의 세포 내 Ci(inoragnic carbon) 농도가 증가되고, 3% CO2 조건에서 야생형 난노클로롭시스 살리나에 비해 생장속도가 150% 증가하는 것을 통해, 클라미도모나스 레인하드티 유래 RHP1 형질전환체(CrRHP1)가 극지 클로렐라 속(Chlorella sp. ArM0029B) 유래 RHP1 형질전환체(29BRHP1)보다 바이오매스가 현저하게 증가된 것을 확인함으로써, 본 발명을 완성하였다. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned needs, and it is an object of the present invention to provide Chlamydomonas reinhardtii) and polar Chlorella genus (Chlorella sp. ArM0029B) a result of the gene encoding the respective RHP1 protein derived from each over-expression in nanno claw Rob cis Salina (Nannochloropsis salina), in particular, Chlamydomonas lane hard Ti-derived RHP1 transgenic sieve (CrRHP1) of cells Ci (inoragnic carbon) and the concentration is increased, 3% CO 2 condition as compared to wild-type nanno claw Rob cis Salina by that the growth rate increase 150%, Chlamydomonas lane hard Ti-derived RHP1 transfected Confirming that the biomass of the transformant ( CrRHP1 ) was significantly increased than that of the RHP1 transformant ( 29BRHP1 ) derived from the genus Chlorella sp. ( ArM0029B ), thus completing the present invention.

상기 과제를 해결하기 위하여, 본 발명은 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 난노클로롭시스 속(Nannochloropsis sp.) 미세조류를 형질전환시켜 RHP1 유전자를 과발현하는 단계를 포함하는 난노클로롭시스 속 미세조류의 바이오매스를 증가시키는 방법을 제공한다.In order to solve the above-mentioned problems, the present invention provides a recombinant vector comprising a gene encoding RHP1 (Rhesus protein 1) protein derived from Chlamydomonas reinhardtii as a recombinant vector comprising Nannochloropsis sp. There is provided a method for increasing biomass of a microalgae of a nanocholrobosis microorganism including the step of overexpressing the RHP1 gene by transforming an alga .

본 발명은 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 난노클로롭시스 속(Nannochloropsis sp.) 미세조류를 형질전환시켜 RHP1 유전자를 과발현하는 단계를 포함하는, 야생형에 비해 바이오매스가 증가된 형질전환 난노클로롭시스 속 미세조류의 제조 방법을 제공한다.The present invention relates to a method for transforming a microalgae of Nannochloropsis sp. Microorganism with a recombinant vector comprising a gene encoding RHP1 (Rhesus protein 1) protein derived from Chlamydomonas reinhardtii to produce RHP1 gene Over-expressing the microorganism of the present invention, wherein the biomass is increased compared to the wild-type microorganism.

또한, 본 발명은 상기 방법에 의해 제조된 바이오매스가 증가된 형질전환 난노클로롭시스 속 미세조류를 제공한다.In addition, the present invention provides microalgae transformed with increased biomass produced by the above method.

또한, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 난노클로롭시스 속 미세조류의 바이오매스를 증가시키기 위한 조성물을 제공한다.The present invention also relates to a method for producing biomass of a microorganism belonging to the genus Chlamydomonas reinhardtii comprising the gene coding for the RHP1 (Rhesus protein 1) protein comprising the amino acid sequence of SEQ ID NO: 2 / RTI > and a pharmaceutically acceptable carrier.

또한, 본 발명은 상기 형질전환 난노클로롭시스 속 미세조류를 배양하는 단계; 상기 배양액으로부터 지질을 분리하는 단계; 상기 지질을 트랜스에스테르화시켜 지방산 에스테르를 생산하는 단계; 및 상기 생산된 지방산 에스테르를 바이오디젤로 전환하는 단계를 포함하는 바이오디젤의 생산 방법을 제공한다.In addition, the present invention provides a method for producing microcystin, Separating the lipid from the culture liquid; Transesterifying the lipid to produce a fatty acid ester; And converting the produced fatty acid ester into biodiesel. The present invention also provides a method for producing biodiesel.

본 발명은 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1 유전자를 난노클로롭시스 살리나(Nannochloropsis salina)에 과발현시킴으로써, 난노클로롭시스 살리나 형질전환체(CrRHP1)의 세포 내 Ci 농도를 높일 수 있을 뿐만 아니라, 이의 생장속도를 크게 증가시킬 수 있으므로, 바이오에너지용 난노클로롭시스 살리나의 생산성을 높이는데 매우 유용하게 사용될 수 있다.The present invention relates to the use of the Chlamydomonas reinhardtii) nanno RHP1 the gene derived from the claw drop cis Salina (Nannochloropsis salina ), it is possible to increase the intracellular Ci concentration of nancrochloropsis salinina transformant ( CrRHP1 ) as well as to greatly increase its growth rate, so that the productivity of nanocholrobrosis salina for bioenergy It can be very useful for height.

도 1은 본 발명의 일 구현 예에 따른 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 또는 극지 클로렐라 속(Chlorella sp. ArM0029B) 유래의 RHP1 유전자를 포함하고 있는 난노클로롭시스 살리나(Nannochloropsis salina)의 형질전환용 벡터의 모식도이다. CrRHP1은 클라미도모나스 레인하드티 유래의 RHP1 단백질을 코딩하는 유전자의 cDNA를 나타내고, 29B RHP1은 극지 클로렐라 속 유래의 RHP1 단백질을 코딩하는 유전자의 cDNA를 나타낸다.
도 2는 본 발명의 일 구현 예에 따른 형질전환된 난노클로롭시스 살리나(상단: CrRHP1 및 하단: 29B RPH1)에서 RHP1 유전자를 포함하고 있는 형질전환용 벡터의 삽입 여부를 PCR을 통해 확인한 결과이다. NC는 야생형(WT; wild type)이며, PC는 양성군으로 형질전환용 벡터를 사용한 것이며, 상단 겔의 1~10은 CrRHP1 형질전환체 라인이며, 하단 겔의 1~14는 29B RPH1 형질전환체 라인을 나타낸다.
도 3은 본 발명의 일 구현 예에 따른 형질전환된 난노클로롭시스 살리나(CrRHP1)에서 RHP1 유전자를 포함하고 있는 형질전환용 벡터의 삽입 여부를 서던 블롯(Southern blot)을 통해 확인한 결과이다. M은 분자 마커이며, NC는 야생형(WT; wild type)이며, 1~24은 CrRHP1 형질전환체 라인을 나타낸다.
도 4는 본 발명의 일 구현 예에 따른 형질전환된 난노클로롭시스 살리나(CrRHP1)에서 RHP1 유전자를 포함하고 있는 형질전환용 벡터의 삽입 여부를 노던 블롯(Northern blot)을 통해 확인한 결과이다. NC는 야생형(WT; wild type)이며, 1~24은 CrRHP1 형질전환체 라인을 나타낸다.
도 5는 본 발명의 일 구현 예에 따른 F2/N 고체 배지에 다양한 농도의 CO2 및 중탄산염(bicarbonate; BicA)을 처리하였을 때, CrRHP1 형질전환체(A) 및 29B RPH1 형질전환체(B)의 생장을 측정한 결과이다. WT는 야생형이며, 1, 19, 3 및 4는 CrRHP1 형질전환체 라인이며, 4 및 5는 29B RPH1 형질전환체 라인을 나타낸다.
도 6은 본 발명의 일 구현 예에 따른 F2/N 액체 배지에서 고농도 CO2 조건으로 CrRHP1 형질전환체(A) 및 29B RPH1 형질전환체(B)를 배양하였을 때, 이들의 생장을 측정한 결과이다. WT는 야생형이다.
도 7은 본 발명의 일 구현 예에 따른 고농도 CO2(A) 및 주변(ambient) CO2(B) 조건에서 CrRHP1 형질전환체를 배양한 후, CrRHP1 형질전환체의 세포 내 Ci(inorganic carbon) 함량을 측정한 결과이다. WT는 야생형이다.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a plot of the Nannochloropsis salina strain containing the RHP1 gene from Chlamydomonas reinhardtii or Chlorella sp. ArM0029B according to one embodiment of the present invention And Fig. CrRHP1 represents the cDNA of the gene encoding the RHP1 protein derived from Clamidomonas reinhidhtii, and 29B RHP1 represents the cDNA of the gene encoding the RHP1 protein derived from the genus Polar Chlorella.
Figure 2 is a graph showing the activity of the transformed Nanocloprosis Salina (upper: CrRHP1 < RTI ID = 0.0 > And at the bottom: 29B RPH1 ), the presence of the transgene containing the RHP1 gene was confirmed by PCR. NC is a wild type (WT), PC is a positive group, and 1 to 10 of the upper gel are CrRHP1 Transformant lines 1 to 14 of the bottom gel are 29B RPH1 Transformant lines.
FIG. 3 is a result of Southern blot analysis for the insertion of a transfection vector containing the RHP1 gene in transformed Nanoproloxis salina ( CrRHP1 ) according to an embodiment of the present invention. M is a molecular marker, NC is wild type (WT), 1 to 24 is CrRHP1 Transformant lines.
FIG. 4 is a result of Northern blot analysis for the insertion of a transfection vector containing the RHP1 gene in transformed hanococcalopsis salina ( CrRHP1 ) according to an embodiment of the present invention. NC is wild type (WT), 1 to 24 is CrRHP1 Transformant lines.
FIG. 5 is a graph showing the effect of the CrRHP1 transformant (A) and the 29B RPH1 transformant (B) when CO 2 and bicarbonate (BicA) were treated at various concentrations in the F2 / N solid medium according to an embodiment of the present invention. Of the growth of the plant. WT is wild type, 1, 19, 3 and 4 are CrRHP1 transformant lines, and 4 and 5 represent 29B RPH1 transformant lines.
FIG. 6 shows the results of culturing CrRHP1 transformant (A) and 29B RPH1 transformant (B) under high-concentration CO 2 conditions in an F2 / N liquid medium according to an embodiment of the present invention. to be. WT is wild type.
FIG. 7 is a graph illustrating the concentration of high CO 2 (A) and ambient CO 2 (B) in accordance with an embodiment of the present invention. After culturing the transformants under conditions CrRHP1, a result obtained by measuring the intracellular Ci (inorganic carbon) content of CrRHP1 transformants. WT is wild type.

본 발명의 목적을 달성하기 위하여, 본 발명은 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 난노클로롭시스 속(Nannochloropsis sp.) 미세조류를 형질전환시켜 RHP1 유전자를 과발현하는 단계를 포함하는 난노클로롭시스 속 미세조류의 바이오매스를 증가시키는 방법을 제공한다.In order to accomplish the object of the present invention, the present invention provides a method for the treatment of chlamydomonas which comprises the step of over-expressing the RHP1 gene by transforming a microalgae of Nannochloropsis sp. with a recombinant vector containing a gene encoding a RHP1 (Rhesus protein 1) protein derived from a reinhardtii , Thereby increasing the biomass of the microalgae.

본 발명에 따른 RHP1 단백질의 범위는 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 서열번호 2로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 난노클로롭시스 속 미세조류의 바이오매스 증가 활성을 의미한다. 본 발명은 또한 RHP1 단백질의 단편, 유도체 및 유사체 (analogues)를 포함한다. 본원에 사용된, 용어 "단편", "유도체" 및 "유사체"는 본 발명의 RHP1 폴리펩티드와 실질적으로 같은 생물학적 기능 또는 활성을 보유하는 폴리펩티드를 말한다.The range of the RHP1 protein according to the present invention may be selected from the group consisting of Chlamydomonas 2 and a functional equivalent of the protein of SEQ ID NO: 2 derived from E. reinhardtii . Is at least 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 90% or more, more preferably 90% or more, Quot; refers to a protein having a homology of at least 95% with a physiological activity substantially equivalent to that of the protein represented by SEQ ID NO: 2. "Substantially homogenous bioactivity" means the biomass increasing activity of microalgae from the nanochlrobroscite. The present invention also includes fragments, derivatives and analogues of the RHP1 protein. As used herein, the terms "fragments", "derivatives" and "analogs" refer to polypeptides having substantially the same biological function or activity as the RHP1 polypeptides of the present invention.

용어 "재조합"은 세포가 이종 또는 동종의 새로운 조합의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한, 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term "recombinant" refers to a cell in which a cell replicates a new, heterologous or homologous recombinant nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid. The recombinant cell can express a gene or a gene fragment that is not found in the natural form of the cell in one of the sense or antisense form. In addition, the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 발현카세트(프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호)는 독립적으로 재생산될 수 있다. The term "vector" is used to refer to a DNA fragment (s), nucleic acid molecule, which is transferred into a cell. The vector replicates the DNA, and the expression cassette (promoter, enhancer, termination signal, and polyadenylation signal) in the host cell can be independently regenerated.

용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.The term "expression vector" means a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.

본 발명의 일 구현 예에 따른 방법에서, 상기 난노클로롭시스 속(Nannochloropsis sp.) 미세조류는 난노클로롭시스 살리나(Nannochloropsis salina), 난노클로롭시스 가디타나(Nannochloropsis gaditana), 난노클로롭시스 그라뉼라타(Nannochloropsis granulata), 난노클로롭시스 림네티카(Nannochloropsis limnetica), 난노클로롭시스 오세아니카(Nannochloropsis oceanica), 난노클로롭시스 오큘라타(Nannochloropsis oculata) 등일 수 있으며, 바람직하게는 난노클로롭시스 살리나(Nannochloropsis salina)일 수 있으나, 이에 제한되지 않는다.In a method according to an embodiment of the present invention, the Nannochloropsis sp.) The microalgae were Nannochloropsis salina , Nannochloropsis nana gaditana , Nannochloropsis < RTI ID = 0.0 > granulata , Nannochloropsis limnetica , Nannochloropsis oceanica , Nannochloropsis < RTI ID = 0.0 > oculata ), and the like, preferably, but not limited to, Nannochloropsis salina .

또한, 본 발명은 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 난노클로롭시스 속(Nannochloropsis sp.) 미세조류를 형질전환시켜 RHP1 유전자를 과발현하는 단계를 포함하는 야생형에 비해 바이오매스가 증가된 형질전환 난노클로롭시스 속 미세조류의 제조 방법을 제공한다.The present invention also relates to a method for transforming a microalgae of Nannochloropsis sp. With a recombinant vector comprising a gene encoding RHP1 (Rhesus protein 1) protein derived from Chlamydomonas reinhardtii The present invention also provides a method for producing microorganisms of transformed cyno-chloroplast with increased biomass compared to a wild type strain comprising overexpressing the RHP1 gene.

본 발명의 일 구현 예에 따른 방법에서, 상기 RHP1 단백질 및 난노클로롭시스 속(Nannochloropsis sp.) 미세조류는 전술한 바와 같다.In the process according to one embodiment of the invention, the protein and RHP1 nanno claw drop in cis (Nannochloropsis sp.) Microalgae are as described above.

또한, 본 발명은 상기 방법에 의해 제조된 바이오매스가 증가된 형질전환 난노클로롭시스 속 미세조류를 제공한다.In addition, the present invention provides microalgae transformed with increased biomass produced by the above method.

또한, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 난노클로롭시스 속 미세조류의 바이오매스를 증가시키기 위한 조성물을 제공한다.The present invention also relates to a method for producing biomass of a microorganism belonging to the genus Chlamydomonas reinhardtii comprising the gene coding for the RHP1 (Rhesus protein 1) protein comprising the amino acid sequence of SEQ ID NO: 2 / RTI > and a pharmaceutically acceptable carrier.

상기 조성물은 유효성분으로 바람직하게는 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 서열번호 2의 아미노산 서열로 이루어진 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하며, 상기 유전자를 난노클로롭시스 속 미세조류에 형질전환시킴으로써 난노클로롭시스 속 미세조류의 바이오매스를 증가시킬 수 있는 것이다.The above composition preferably contains a gene encoding RHP1 (Rhesus protein 1) protein consisting of the amino acid sequence of SEQ ID NO: 2 derived from Chlamydomonas reinhardtii as an active ingredient, By transforming the microalgae in the cisterns, the biomass of the microalgae of the nanochlo- roboc system can be increased.

또한, 본 발명은 In addition,

상기 형질전환 난노클로롭시스 속 미세조류를 배양하는 단계;Culturing the transformed cynoopsis microalgae;

상기 배양액으로부터 지질을 분리하는 단계;Separating the lipid from the culture liquid;

상기 지질을 트랜스에스테르화시켜 지방산 에스테르를 생산하는 단계; 및Transesterifying the lipid to produce a fatty acid ester; And

상기 생산된 지방산 에스테르를 바이오디젤로 전환하는 단계를 포함하는 바이오디젤의 생산 방법을 제공한다.And converting the produced fatty acid ester into biodiesel.

본 발명의 일 구현 예에 따른 방법에서, 생산된 지질을 바이오디젤로 전환하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있으며, 특정 방법에 특별히 제한되는 것은 아니다.In the method according to an embodiment of the present invention, the method of converting the produced lipid into biodiesel can use any method known in the art, and is not particularly limited to a specific method.

이하, 실시예를 이용하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not limited thereto.

재료 및 방법Materials and methods

1. One. 난노클로롭시스Nanochlorobosis 살리나( Salina ( Nannochloropsis salinaNannochloropsis salina )의 배양조건) Culture conditions

본 발명에서는 미세조류인 난노클로롭시스 살리나(Nannochloropsis salina) CCMP 1776 균주를 사용하였으며, 이를 F2/N 배지(15g/L의 해염(Sigma-Aldrich사, USA), 10mM의 Tris-HCl(pH7.6), 427.5mg/L의 NaNO3, 30mg/L의 NaH2PO4·2H2O, 5㎖/L의 트레이스 금속 혼합물, 4.36g/L의 Na2 EDTA·2H2O, 3.15g/L의 FeCl3·6H2O, 10mg/L의 CoCl2·6H2O, 22mg/L의 ZnSO4·7H2O, 180mg/L의 MnCl2·4H2O, 9.8mg/L의 CuSO4·5H2O, 6.3mg/L의 Na2MoO4·2H2O 및 2.5㎖/L의 비타민 스톡(1mg/L의 vitamin B12, 1mg/L의 비오틴, 200mg/L의 티아민·HCl))에서 25℃, 고농도 CO2, 50-80μmol의 광자/m2·s 및 50rpm 조건으로 진탕배양하였다.In the present invention, the microalgae, Nannochloropsis saline ) CCMP 1776 strain was used, which was inoculated into a F2 / N medium (15 g / L of sea salt (Sigma-Aldrich, USA), 10 mM Tris-HCl (pH 7.6), 427.5 mg / L NaNO 3 , 30 mg / L NaH 2 PO 4 .2H 2 O, 5 mL / L trace metal mixture, 4.36 g / L Na 2 EDTA.H 2 O, 3.15 g / L FeCl 3 .6H 2 O, 10 mg / L CoCl 2 H 2 O, 22 mg / L ZnSO 4 .7H 2 O, 180 mg / L MnCl 2 .4H 2 O, 9.8 mg / L CuSO 4 .5H 2 O, 6.3 mg / L Na 2 MoO 4 2H 2 O and 2.5㎖ / L vitamin stock (1mg / L of vitamin B 12, 1mg / L of biotin, 200mg / thiamin · HCl of L)) 25 ℃ in the high-concentration CO 2, photons of 50-80μmol / m 2 · s And 50 rpm.

2. 유전자 과발현을 위한 형질전환용 벡터 제작2. Transgenic vectors for gene overexpression

클라미도모나스 레인하드티(Chlamydomonas reinhardtii)의 RHP1 유전자(CrRHP1; 서열번호 1)는 바이오니아에 의뢰하여 유전자를 합성하였다. 극지 클로렐라(Chlorella sp. ArM0029B)의 RHP1 유전자(29B RHP1; 서열번호 3, 아미노산 서열; 서열번호 4)는 유전자 특이적 프라이머(표 1)를 사용하여 PCR로 증폭하여 확보하였다. CrRHP1 유전자는 BamH I 및 Sac I 제한효소로, 29B RPH1 유전자는 Nco I 및 Sac I 제한효소로 각각의 pNsNI 벡터에 도입하여 각각의 형질전환용 벡터를 제작하였다(도 1).The Chlamydomonas The RHP1 gene ( CrRHP1 ; SEQ ID NO: 1) of reinhardtii was synthesized by commissioning of bioneer . RHP1 Polar Chlorella (Chlorella sp. ArM0029B) The gene ( 29B RHP1 ; SEQ ID NO: 3, amino acid sequence; SEQ ID NO: 4) was amplified by PCR using a gene-specific primer (Table 1). The CrRHP1 gene is a BamH I and Sac I restriction enzyme, and the 29B RPH1 gene is Nco I and Sac I restriction enzymes, respectively, to prepare respective vectors for transformation (FIG. 1).

본 발명에 사용된 프라이머The primers used in the present invention 유전자gene 프라이머primer 염기서열(5'-3')The base sequence (5'-3 ') 목적purpose 예상
사이즈(bp)
prediction
Size (bp)


CrRHP1CrRHP1
RHP_F3RHP_F3 CGTGGTGACCATGGGCATCGCAAT
(서열번호 5)
CGTGGTGACCATGGGCATCGCAAT
(SEQ ID NO: 5)
gDNA PCR
gDNA PCR

347

347
Tub ter_R1Tub ter_R1 CCGCCGCCTCGCGTTCTTTA
(서열번호 6)
CCGCCGCCTCGCGTTCTTTA
(SEQ ID NO: 6)
RHP1_F2RHP1_F2 GGCACGCTGGTGGCTGGCCT
(서열번호 7)
GGCACGCTGGTGGCTGGCCT
(SEQ ID NO: 7)
Souther blot and Northern blot ProbeSouther blot and Northern blot Probe 300300
RHP1_R4RHP1_R4 CCCTCGCGAATGGGGTTGAGCT
(서열번호 8)
CCCTCGCGAATGGGGTTGAGCT
(SEQ ID NO: 8)



29B 29B RHP1RHP1

RHP1_FRHP1_F AACCATGGATGCTGAAGCCGCGGCT
(서열번호 9)
AACCATGGATGCTGAAGCCGCGGCT
(SEQ ID NO: 9)

Cloning

Cloning
13001300
RHP1_RRHP1_R GCGAGCTCTCATTCCTCCTTCTCCACCT
(서열번호 10)
GCGAGCTCTCATTCCTCCTTCTCCACCT
(SEQ ID NO: 10)
HSP70P_F1HSP70P_F1 GCGGAGGACGCACGCCCTTGA
(서열번호 11)
GCGGAGGACGCACGCCCTTGA
(SEQ ID NO: 11)
gDNA PCR
gDNA PCR
905905
RHP1_R1RHP1_R1 CCCCAAAGGCGTGGATCGTGATGGA
(서열번호 12)
CCCCAAAGGCGTGGATCGTGATGGA
(SEQ ID NO: 12)
RHP1_F(probe)RHP1_F (probe) CTTTGCCGCCTCGGCAGCTA
(서열번호 13)
CTTTGCCGCCTCGGCAGCTA
(SEQ ID NO: 13)
Souther blot and Northern blot ProbeSouther blot and Northern blot Probe 307307
RHP1_R(probe)RHP1_R (probe) CAGGGCCGCATTTGCTGGGTA
(서열번호 14)
CAGGGCCGCATTTGCTGGGTA
(SEQ ID NO: 14)

3. 형질전환3. Transformation

난노클로롭시스 살리나(Nannochloropsis salina) CCMP 1776 균주를 25℃, 고농도 CO2, 50-80μmol의 광자/m2·s 및 50rpm 조건으로 3일 동안 배양한 후, 배양액으로부터 회수한 세포를 상기 형질전환용 벡터와 혼합하여 ECM 830(BTX사, USA)를 이용한 전기천공법(electroporation)으로 형질전환을 수행하였다. 이후에, 1일간 약광(dim light) 조건에서 정치 배양하였으며, 형질전환 후 블레오마이신(ZeocinTM, USA) 저항성을 가지는 라인을 선발하였다. 선발된 라인의 콜로니를 2.5mg/L의 블레오마이신이 첨가된 F2/N 고체 배지에 옮겨 배양하였다. Nannochloropsis salina ) CCMP 1776 strain was cultured at 25 ° C, high concentration CO 2 , 50-80 μmol photon / m 2 · s And 50 rpm for 3 days. Then, the cells recovered from the culture were mixed with the transformation vector and transformed by electroporation using ECM 830 (BTX, USA). Subsequently, the cells were cultured under dim light conditions for 1 day, and lines having resistance to bleomycin (Zeocin ( TM ), USA) were selected after transformation. Colonies of the selected lines were transferred to 2.5 mg / L of bleomycin-added F2 / N solid medium and cultured.

4. 게놈 DNA 추출, 4. Genomic DNA extraction, PCRPCR  And 서던Southern 블롯Blot (Southern blot)(Southern blot)

블레오마이신이 첨가된 배지에서 저항성을 띄는 난노클로롭시스 살리나(Nannochloropsis salina)의 콜로니를 F2/N 액체 배지에서 25℃, 고농도 CO2, 50-80μmol의 광자/m2·s 및 50rpm 조건으로 배양하였다. 3일간 배양하여 수확한 세포에서 게놈 DNA를 분리하여 PCR을 수행하였다. PCR 분석을 위하여, RHP1 유전자에 대해 특이적 프라이머(표 1)를 사용하였으며, PCR 증폭 유무로 형질전환체를 확인하였다. 추출한 15㎍의 DNA를 Xho I(NEB사, USA) 제한효소로 16시간 동안 절단하였으며, 0.8% 아가로오스 겔에 35볼트로 16시간 동안 전기영동하였다. 아가로오스 겔상의 DNA를 10X SSC(stacked switched capacitor) 버퍼를 이용하여 아머삼 나이론막(Amersham hybond N+membrane; GE healthcare사, USA)에 옮겨 [α-32P]dCTP로 라벨링한 300bp의 CrRHP1 및 29B RHP1 프로브를 이용해 혼성화(hybridization)하여 서던 블롯(Southern blot)을 실시하였다. 멤브레인은 이미지 플레이트(Fujifilm사, Japan)에 2일간 노출시킨 후, 이미지 분석기(BAS-1800, Fujifilm, Japan)로 시그널을 확인하였다. Nannochloropsis resistant to resistant media with bleomycin salina ) colonies were cultured in F2 / N liquid medium at 25 ° C, high concentration CO 2 , 50-80 μmol photons / m 2 · s and 50 rpm. Genomic DNA was isolated from the harvested cells by culturing for 3 days and PCR was performed. For PCR analysis, a specific primer (Table 1) was used for the RHP1 gene and a transformant was identified with and without PCR amplification. The extracted 15 의 DNA was digested with Xho I (NEB, USA) for 16 hours and electrophoresed on 0.8% agarose gel at 35 volts for 16 hours. The DNA on agarose gel was transferred to an amersham hybond N + membrane (GE healthcare, USA) using 10X SSC (Stacked Switched Capacitor) buffer, and 300 bp of CrRHP1 labeled with [? - 32P] dCTP and 29B RHP1 probe and subjected to Southern blotting. The membrane was exposed to an image plate (Fujifilm, Japan) for 2 days, and the signal was confirmed with an image analyzer (BAS-1800, Fujifilm, Japan).

5. RNA 추출 및 노던 5. RNA Extraction and Northern 블롯Blot (Northern blot)(Northern blot)

상기와 같은 조건으로 배양하여 회수한 난노클로롭시스 살리나(Nannochloropsis salina) 세포에 1㎖의 NucleoZoL(Machery-Nagel사, Germany)을 첨가한 후, 13,000rpm에서 10분간 원심분리하여 상층액을 회수하였다. 회수한 상층액에 멸균수를 첨가하고 13,000rpm에서 10분간 원심분리하여 펠렛(pellet)만 남기고 상층액을 제거한 후, 75% 에탄올로 불순물을 제거하고, 펠렛을 0.1%의 DEPC (diethyl pyrocarbonate)가 포함된 3차 멸균수에 녹여 RNA를 추출하였다. 노던 블롯(Northern blot) 분석은 상기 추출한 15㎍의 RNA를 5% 포름알데히드가 들어간 1% 아가로오스 겔에 100볼트로 3시간 동안 전기영동하였다. 아가로오스 겔상의 RNA를 아머삼 나이론막(Amersham hybond N+membrane; GE healthcare, USA)에 옮겨 고정시켰다. 프로브 제작과정부터 시그널 확인과정까지는 상기 서던 블롯(Southern blot)에서 언급한 바와 같이 동일하게 수행하였다. 1 ml of NucleoZoL (Machery-Nagel, Germany) was added to the recovered Nannochloropsis salina cells, and the supernatant was recovered by centrifugation at 13,000 rpm for 10 minutes . The sterilized water was added to the recovered supernatant and centrifuged at 13,000 rpm for 10 minutes to remove the supernatant, leaving only the pellet. The supernatant was removed with 75% ethanol, and the pellet was dissolved in 0.1% of diethyl pyrocarbonate (DEPC) The RNA was dissolved in the tertiary sterilized water and extracted. For Northern blot analysis, the extracted 15 의 of RNA was electrophoresed in 100% vol for 3 hours on 1% agarose gel containing 5% formaldehyde. RNA on agarose gels was transferred to an Amersham hybond N + membrane (GE healthcare, USA) and fixed. The procedure from the probe fabrication process to the signal check process was carried out in the same manner as described in the Southern blot.

6. 생장속도 측정6. Growth rate measurement

야생형(wild type)과 형질전환체의 생장속도를 비교하기 위해, 먼저 고체배지에 난노클로롭시스 살리나(Nannochloropsis salina)를 25℃, 고농도 CO2, 24시간 동안 50-80μmol의 광자/m2·s 및 50rpm 조건으로 배양하였다. OD750 값이 0.7, 0.07 및 0.007인 세포를 F/2, F/2N 및 F/2+10mM 탄산수소나트륨(sodium bicarbonate; Shinyo pure cheminal사, Japan) 고체 배지에 플레이팅(plating)한 후, 고농도 CO2와 주변(ambient) CO2 조건에서 6일간 배양 후 생장속도를 확인하였다. In order to compare the growth rates of wild type and transformants, NANOCHLOROPSIS salina ) at 25 ° C, high concentration CO 2 , 50-80 μmol photons / m 2 · s And 50 rpm. Cells with OD 750 values of 0.7, 0.07 and 0.007 were plated in solid media of F / 2, F / 2N and F / 2 + 10 mM sodium bicarbonate (Shinyo Pure Cheminal, Japan) Growth rates were determined after 6 days of incubation at high CO 2 and ambient CO 2 conditions.

또한, 액체배지에 난노클로롭시스 살리나(Nannochloropsis salina)를 25℃, 고농도 CO2, 24시간 동안 50-80μmol의 광자/m2·s 및 50rpm 조건으로 배양한 후, OD750 값을 0.1로 맞추어 접종하였다. 생장속도는 난노클로롭시스 살리나를 배양하는 동안 1㎖씩 취하여 UV-가시분광광도법(UV-2450, Shimadzu, Japan)을 사용해서 OD750 파장에서 흡광도를 측정하였다.In addition, in the liquid medium, Nannochloropsis salina ) were cultured at 25 ° C, high concentration CO 2 , 50-80 μmol photon / m 2 · s and 50 rpm for 24 hours, and then inoculated with an OD 750 value of 0.1. The growth rate was measured by absorbance at OD 750 wavelength using UV-visible spectrophotometry (UV-2450, Shimadzu, Japan), taking 1 ml each while culturing Nanocloprosis salina.

7. 7. CiCi (inorganic carbon) 함량 측정Inorganic carbon content measurement

Ci 함량 측정은 참고문헌(Park, Karlsson et al. 1999, FEBS letters, 444(1),102-5)을 약간 변형시켜 수행하였다. 구체적으로, F2/N 배지에서 고농도 CO2또는 주변(ambient) CO2 조건하에 25℃, 24시간 동안 50-80μmol의 광자/m2·s 및 50rpm 조건으로 3일간 배양한 난노클로롭시스 살리나를 이용하였다. 난노클로롭시스 살리나 세포의 OD750 값을 5로 맞추고, CO2-free 20mM MES(pH 5.3)로 3번 세척하였다. 옥시랩(Hansatech사, United Kingdom)를 사용하여 세포 내 산소발생량을 측정하였다.Measurements of Ci content were performed with slight modifications of the reference (Park, Karlsson et al. 1999, FEBS letters, 444 (1), 102-5). Specifically, in the F2 / N medium, high concentration CO 2 or ambient CO 2 25 ℃, photons / m 2 · s of 50-80μmol for 24 hours under conditions And Nanocholoropsis salina incubated at 50 rpm for 3 days. The OD 750 value of the nanochlo- robus salina cells was adjusted to 5 and washed 3 times with CO 2 -free 20 mM MES (pH 5.3). The amount of oxygen produced in the cells was measured using OxyLab (Hansatech, United Kingdom).

8. 가스 크로마토그래피(Gas chromatography)를 통한 지방산 분석8. Analysis of Fatty Acids by Gas Chromatography

난노클로롭시스 살리나를 F2/N 배지에서 25℃, 고농도 CO2, 50-80μmol의 광자/m2·s 및 50rpm 조건으로 7일간 배양하고, 2일간 동결건조한 후 지질함량 분석에 사용하였다. 건조된 세포로부터 지방산 추출을 하기 위해, 2.5%의 황산 1.5㎖, 톨루엔 400㎕, 펜타데칸오익산(10mg/㎖) 100㎕을 첨가 후 볼텍싱하고, 90℃에서 90분 처리하였다. 1M의 NaCl 1㎖과 헥산 1.5㎖을 첨가하여 볼텍싱하고 760rpm에서 5분간 원심분리하여 지방산을 추출하였으며, 가스 크로마토그래피(YL 6100 GC, Young lin)를 사용하였다. 주입부 모세관 온도는 250℃로 설정하고 질소는 5.0㎖/min의 조건으로 주입하였으며, 오븐은 초기온도 140℃에서 5분마다 1℃씩 상승하도록 하였다. 검출기는 불꽃 이온화 검출기(Flame ionization detector, FID)를 사용하였으며, 검출조건은 250℃, Air 300㎖/min 및 H2 30㎖/min으로 하였고 시그널은 20.00 Hz로 측정하였다. Nanocloprosis Salina was cultured in F2 / N medium at 25 ℃, high concentration CO 2 , 50-80 μmol photon / m 2 · s And 50 rpm for 7 days, lyophilized for 2 days and then used for lipid content analysis. To extract the fatty acid from the dried cells, 1.5 ml of 2.5% sulfuric acid, 400 쨉 l of toluene and 100 쨉 l of pentadecanoic acid (10 mg / ml) were added and vortexed and treated at 90 째 C for 90 minutes. 1 ml of NaCl and 1.5 ml of hexane were added and vortexed and centrifuged at 760 rpm for 5 minutes to extract fatty acids. Gas chromatography (YL 6100 GC, Young Lin) was used. The inlet capillary temperature was set at 250 ° C and nitrogen was injected at 5.0 ml / min. The oven was allowed to rise at an initial temperature of 140 ° C every 5 minutes by 1 ° C. The detector was a flame ionization detector (FID), and the detection conditions were 250 ° C, 300 ml / min air and 30 ml / min H 2 , and the signal was measured at 20.00 Hz.

실시예Example 1.  One. RHP1RHP1 과발현 형질전환체 생산 Over-expressing transformant production

CrRHP129B RPH1 유전자가 삽입된 각각의 형질전환용 벡터(도 1)로 난노클로롭시스 살리나(Nannochloropsis salina) CCMP 1776 균주를 형질전환시킨 후, 2.5mg/L의 블레오마이신이 첨가된 F2/N 배지에 배양하여 블레오마이신 저항성을 가지는 콜로니를 선발하였다. 선발된 콜로니들의 유전자 삽입 여부를 확인하기 위해, 상기 표 1에 개시한 바와 같이 유전자 특이적 프라이머를 이용하여 PCR을 수행하였다. 그 결과, 도 2에 개시한 바와 같이 야생형(Wild type; NC)에서는 RHP1 밴드가 검출되지 않았으며, 양성 대조군(positive control)을 비롯한 본 발명의 CrRHP1 형질전환체에서는 347bp 크기의 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1 밴드가 검출되었으며, 29B RPH1 형질전환체에서도 905bp 크기의 극지 클로렐라(Chlorella sp. ArM0029B) 유래의 RHP1 밴드가 검출되었다. 이러한 결과를 통해 선별된 형질전환체에 RHP1 유전자가 도입되었음을 확인하였다.Each of the transforming vectors (FIG. 1) into which the CrRHP1 and 29B RPH1 genes were inserted was transformed into Nannochloropsis salina ) CCMP 1776 strain was transformed and cultured in F2 / N medium supplemented with 2.5 mg / L of bleomycin to select a colony having bleomycin resistance. PCR was carried out using gene-specific primers as shown in Table 1 to confirm whether or not the selected colonies were inserted into the genes. As a result, the RHP1 band was not detected in the wild type (NC) as shown in Fig. 2, and in the CrRHP1 transformant of the present invention including the positive control, the 347 bp size Clamidomonas lane hard The RHP1 band from Chlamydomonas reinhardtii was detected, and 29B RPH1 The RHP1 band derived from the polarized chlorella ( Chlorella sp. ArM0029B) of 905 bp size was also detected in the transformant. From these results, it was confirmed that the RHP1 gene was introduced into the selected transformants.

또한, PCR로 확인된 상기 CrRHP1 형질전환체의 게놈 내 RHP1 유전자의 도입 여부와 카피(copy) 수를 확인하기 위해, RHP1 프로브(표 1)를 이용하여 서던 블롯을 수행하였다. 그 결과, 야생형(Wild type)에는 RHP1 밴드가 검출되지 않았으며, 형질전환체에서는 1개 이상의 밴드가 검출되었다. 이는 RHP1 유전자가 안정적으로 게놈에 도입된 것을 나타내며, 다른 위치에 나타난 밴드를 통해 독립적인 라인을 선발하였다. 서던 블롯을 통해 CrRHP1 형질전환체의 경우, 독립적인 라인 1, 2, 3, 4, 5, 17, 19, 21, 22, 23 및 24를, 29B RPH1 형질전환체(데이터 미제시)의 경우 4 및 5 라인을 선발하였다(도 3). In addition, the above-identified CrRHP1 Southern blots were performed using the RHP1 probe (Table 1) to confirm the introduction and copy number of the RHP1 gene in the genome of the transformant. As a result, the RHP1 band was not detected in the wild type, and more than one band was detected in the transformant. This indicates that the RHP1 gene was stably introduced into the genome, and an independent line was selected through bands at other positions. Through Southern blot, CrRHP1 Independent lines 1, 2, 3, 4, 5, 17, 19, 21, 22, 23 and 24 for the transformants were obtained from 29B RPH1 4 and 5 lines were selected for the transformant (data not shown) (Fig. 3).

상기 서던 블롯을 통해 선발된 형질전환체의 RNA 수준에서 RHP1 유전자 발현을 확인하기 위해, RHP1 프로브를 이용하여 노던 블롯(Northern blot)을 수행하였다. 그 결과, 도 4에 개시한 바와 같이 야생형(Wild type; NC)에서는 RHP1 밴드가 검출되지 않았으며, CrRHP1 형질전환체에서는 RHP1 밴드가 검출되었다. 이러한 결과를 통해, 야생형(wild type)에서는 발현되지 않는 RHP1 유전자가 형질전환체에서는 안정적으로 발현하는 것을 확인하였다. CrRHP1 형질전환체의 경우, 이 중에 높은 발현을 보이는 1, 3, 4 및 19라인(CrRHP1)을, 29B RPH1 형질전환체(데이터 미제시)의 경우 4 및 5 라인을 선발하여 하기 실시예에 사용하였다.Northern blots were performed using the RHP1 probe to confirm RHP1 gene expression at the RNA level of the transformants selected through the Southern blot. As a result, the RHP1 band was not detected in wild type (NC) as shown in Fig. 4, and CrRHP1 RHP1 band was detected in the transformant. From these results, it was confirmed that the RHP1 gene, which is not expressed in the wild type, is stably expressed in the transformant. CrRHP1 In the case of the transformants, 1, 3, 4 and 19 line ( CrRHP1 ) exhibiting high expression in this was expressed as 29B RPH1 For the transformant (data not shown), lines 4 and 5 were selected and used in the following examples.

실시예Example 2.  2. RHP1RHP1 과발현 형질전환체의 생장 분석 Growth analysis of overexpressed transformants

RHP1 유전자의 과발현이 난노클로롭시스 살리나(Nannochloropsis salina)의 생장속도에 미치는 영향을 확인하기 위해, 동일 양의 세포를 다양한 배지와 배양조건에서 배양하여 생장속도를 비교하였다. 그 결과, 고체 배지에서 기본배양 배지인 F2의 경우, 주변(ambient) CO2와 고농도 CO2에서 각각 배양하였을 때, 야생형(wild type)과 형질전환체 사이에 뚜렷한 차이를 보이지 않았다. F2 배지에 중탄산염(bicarbonate)을 첨가하였을 때, F2 배지와 마찬가지로 주변(ambient) CO2와 고농도 CO2 조건 모두에서 야생형(wild type)과 형질전환체의 생장속도에 뚜렷한 차이는 보이지 않았다. 난노클로롭시스 살리나의 최적 배양 배지인 F2/N의 경우, 주변(ambient) CO2 조건에서는 야생형(wt; wild type)과 형질전환체 간에 뚜렷한 차이가 없었으나, 고농도 CO2 조건에서는 형질전환체가 주변(ambient) CO2 조건보다 빠른 생장속도를 보였다. 또한, F2/N 배지에 중탄산염을 첨가하였을 때, F2/N 배지와 마찬가지로 주변(ambient) CO2 조건에서 배양하였을 때 야생형과 형질전환체 사이에 뚜렷한 차이가 없었으나, 고농도 CO2 조건에서는 형질전환체가 야생형보다 빠른 생장속도를 보였으며, 전반적으로, CrRHP1 형질전환체가 29B RPH1 형질전환체보다 생장이 더 우수하였다(도 5). To determine the effect of overexpression of the RHP1 gene on the growth rate of Nannochloropsis salina , the growth rate was compared by culturing the same amount of cells in various media and culture conditions. As a result, in the case of F2 which is the basic culture medium in the solid medium, there was no significant difference between the wild type and the transformant when cultured in ambient CO 2 and high concentration CO 2 , respectively. When the bicarbonate was added to the F2 medium, there was no significant difference in the growth rates of the wild type and the transformant in both ambient CO 2 and high concentration CO 2 conditions as in the F2 medium. In the case of F2 / N, the optimal culture medium for nanocholorobsys salinas, ambient CO 2 The terms wild-type; showed a faster growth rate than the (wt wild type) and there was no significant difference between transgenic, high-concentration CO 2 conditions, the transgenic body surrounding (ambient) CO 2 conditions. In addition, when bicarbonate was added to the F2 / N medium, there was no significant difference between the wild type and the transformant when cultured under ambient CO 2 conditions as in the F2 / N medium, but in the high CO 2 condition, The body showed faster growth rate than the wild type, and overall, CrRHP1 When the transformant was 29B RPH1 (Fig. 5).

또한, 상기 고체 배지에서 배양하였을 때 보인 생장속도 증가가 액체 배지에서 배양하였을 때에도 일어나는지 확인하기 위해, 액체배양으로 생장속도를 비교하였다. 그 결과, 도 6에 개시한 바와 같이 배양 4일까지는 야생형(WT)과 형질전환체 간에 큰 차이가 없었으나, 배양 7일부터 야생형과 형질전환체 사이에 생장속도에 차이가 보이기 시작하였으며, 라인에 따라 10일째에 OD 값에서 최대 1.5가 증가하였다. 상기 OD 값이 1.5로 차이가 나는 것은 세포수로 1.5배 차이를 나타내는 것으로, 생장속도가 150% 증가했음을 나타낸다. 또한, 액체 배양의 경우에서도 CrRHP1 형질전환체가 29B RPH1 형질전환체보다 생장속도가 더 우수한 것을 확인하였다(도 6). 또한, 시간의존적으로 야생형과 형질전환체 사이의 생장속도 차이가 커지는 것으로 보아 연속배양 방법 등을 사용하여 더 오랜 시간 배양할 경우, 야생형과 형질전환체의 생장속도 차이가 더 클 것으로 예상된다. 상기 결과들을 통해 난노클로롭시스 살리나(Nannochloropsis salina)에서 RHP1 유전자가 과발현됨으로써 생장속도가 증가되었음을 확인하였다. Growth rates were also compared by liquid culture in order to determine whether the increase in growth rate observed when cultured in the solid medium occurred when cultured in a liquid medium. As a result, as shown in FIG. 6, there was no significant difference between the wild type (WT) and the transformant until the 4th day of culture, but the growth rate began to appear between the wild type and the transformant from the 7th day of culture, The maximum OD value increased by 1.5 at 10 days. The difference in the OD value of 1.5 indicates a 1.5-fold difference in cell number, indicating that the growth rate was increased by 150%. In the case of liquid culture, CrRHP1 When the transformant was 29B RPH1 It was confirmed that the growth rate was better than that of the transformant (Fig. 6). In addition, since the difference in growth rate between wild type and transformant increases with time, it is expected that the difference in growth rate between wild type and transformant is larger when cultured for a longer time using continuous culture method or the like. From the above results, it was confirmed that the growth rate was increased by overexpression of RHP1 gene in Nannochloropsis salina .

실시예Example 3.  3. CrRHP1CrRHP1 과발현 형질전환체 세포 내  Over-expressing transformant cells CiCi 함량 분석 Content analysis

상기 실시예 2에서 생장속도가 우수하였던 CrRHP1 과발현 형질전환체의 세포 내에 Ci(inorganic carbon)의 흡수 변화를 확인하기 위해, 세포 내의 Ci 함량을 측정하였다. 그 결과, 도 7에 개시한 바와 같이 고농도 CO2 조건에서 배양된 세포의 경우, CrRHP1 형질전환체(#1, #3 및 #4)들이 야생형(WT)과 비교하여 세포 내 Ci 농도가 35%, 83% 및 100%로, 야생형보다 높은 경향을 보였다. 주변(ambient) CO2에서 배양된 세포의 경우도 마찬가지로 야생형과 비교하여 세포 내 Ci 농도가 57 내지 100% 증가하였다(도 7). The intracellular Ci content was measured in order to confirm the change in the absorption of Ci (inorganic carbon) in the cells of the CrRHP1 overexpressing transformant having the excellent growth rate in Example 2 above. As a result, in the cells cultured under high CO 2 conditions as shown in FIG. 7, CrRHP1 transformants (# 1, # 3 and # 4) had an intracellular Ci concentration of 35% , 83% and 100%, respectively. In the case of cells cultured in ambient CO 2 , the intracellular Ci concentration was also increased by 57 to 100% as compared to the wild type (FIG. 7).

이러한 결과는 RHP1 유전자 발현으로 인해, CO2 흡수가 증가하여 세포 내의 Ci양이 야생형보다 증가한 것으로 판단되며, 형질전환체의 세포 내 Ci 함량이 주변(ambient) CO2와 고농도 CO2 조건에서 모두 높았는데, 고농도 CO2에서 배양한 경우에만 생장이 증가한 것은 세포가 생장할 때 사용하는 CO2의 절대량이 증가하였기 때문일 것이라고 판단된다. 즉, 주변(ambient) CO2 조건에서는 세포가 생장하는데 사용할 수 있는 CO2의 양이 한정적이어서 세포 내 Ci 함량이 증가하였으나, 광합성 효율 증가를 통한 생장증가에는 충분치 않은 것으로 판단된다. 하지만 고농도 CO2의 경우, 주변으로부터 다량의 CO2를 흡수하여 이로 인해 광합성이 증가하였으므로 생장속도가 빨라진 것으로 판단된다. These results indicate that the expression of RHP1 gene increases CO 2 uptake, resulting in an increase in the amount of Ci in the cell than in the wild type, and the intracellular Ci content of the transformant is high in both ambient CO 2 and high CO 2 conditions However, the increase in the growth only when cultured in high-concentration CO 2 may be attributed to an increase in the absolute amount of CO 2 used for cell growth. That is, in the ambient CO 2 condition, the amount of CO 2 that can be used for cell growth is limited, so that the intracellular Ci content is increased but it is not enough to increase the growth through the increase of photosynthesis efficiency. However, in the case of high concentration CO 2 , it was assumed that CO 2 was absorbed from the periphery and the photosynthesis was increased, so that the growth rate was accelerated.

실시예Example 4.  4. CrRHP1CrRHP1 과발현 형질전환체의 지방산 분석 Fatty acid analysis of overexpressing transformants

고농도 CO2 조건에서 CrRHP1 형질전환체의 생장속도 증가로 인해 지방산 조성과 총 함량에 변화가 있는지 확인하기 위해, 가스 크로마토그래피(Gas chromatography) 방법을 통해 분석하였으며, 고농도 CO2에서 배양된 세포를 7일에 회수하여 분석을 진행하였다. 그 결과, 하기 표 2에 개시한 바와 같이 야생형과 형질전환 간에 단위 바이오매스당 총 지방산 함량에 대해 뚜렷한 차이는 없었으나, 지방산 중에 C16:3n3과 C18:3n3의 경우, 야생형보다 CrRHP1 형질전환체에서 더 많이 생산되는 것을 확인할 수 있었다. 이상의 결과를 종합하면 바이오매스가 150% 증가하였으므로 지질생산성 역시 150% 증가하였음을 알 수 있다.In order to investigate the changes in fatty acid composition and total content due to the increase of growth rate of CrRHP1 transformant under high concentration CO 2 condition, it was analyzed by gas chromatography. Cells cultured in high concentration CO 2 were analyzed by 7 And the analysis was carried out. As a result, there was no significant difference in the total fatty acid content per unit biomass between the wild type and the transformation as shown in Table 2, but in the case of C16: 3n3 and C18: 3n3 in the fatty acid, the CrRHP1 transformant And it was confirmed that it is produced more. These results indicate that the biomass increased 150% and the lipid productivity also increased 150%.

Figure 112017108337970-pat00001
Figure 112017108337970-pat00001

<110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii <130> PN17290 <160> 14 <170> KoPatentIn 3.0 <210> 1 <211> 1725 <212> DNA <213> Chlamydomonas reinhardtii <400> 1 atgcaggcac ttcctcccaa gattcccgct tccgtatcgg gccacggaac ccagtcccgg 60 cgtcacagcc tggactggtc gcatattggc cttccctctc gcgagacgca gctgcgggct 120 ggctttgtgc cctcggctgc tgtggtgatt gtgattttcg tcggcctgtt tttcggcttg 180 acccagtaca ccgagttggg cacaaatgcg caggaggagg tcgatcgctt ttacaaatac 240 ctggtcgatg tcaacatcat ggtgtggatc ggtttcggct tcctgatgac cttcatgcgc 300 cgctacggct acggcgctgt ggccctgaac tactttgcct cggcgctcat gttcctggag 360 gccatcctca tgatcggcgc cacgcagcaa gtgttctgga actaccatcg caccaagatc 420 cagatcgaca tcgccttgct gatcgactgc gccttctgcg ccgcctctgg tatgattgcc 480 ttcggcgcca tcatcggcaa ggccacgccc acgcagttgc tgtggctgct cttttggcag 540 gttccgctgt acgctctcaa ccagcagctg gtgatccaca cattcaaggc gctggacatg 600 ggcggcacca tcgtcatcca cctgttcgga gcctactacg gattggcagc ctcgctcatg 660 atcagccgca agcagccgct gcacggcctg gacaacccca agaactcggg cgcctacctg 720 aacgacatct tctccatgat cggaaccatc ttcctcttca tctactggcc cagcttcaac 780 ggcgccctgg cgtccgtgtc ggctggccac atggaggagg cgaccgatgc caagaaggcc 840 gcccaattcc tgtccatcgt caacacgctg ctgtcgctgc tgggcgccgg gctatcggtg 900 ttcgccacct cggccctggt gggcggccgc ttcaacatgg tgcacatcca gaacagcacc 960 ctggccggtg gcgtggcgat gggcgccgcc tgcacgctgc gcctgacgcc cggtggcgcg 1020 ctggctgtgg gcctgggcgc gggagccatc agcaccctgg gcttccagta cctcatgccc 1080 ttcctggacc gcaccatcgg actgggcgac acctgcggtg tgcacaacct gcacggcatc 1140 cccgccatcg tcggcacgct ggtggctggc ctggcggctc tgggccagca ccccgactac 1200 ctggagcacg acaccggccg ccagcagctg ggctaccagg tgcttgcggg cgtggtgacc 1260 atgggcatcg caatcgccgg cggcctgcta ggcggcttcg tggtgtcgtg gttcaacccc 1320 cgtggcgacg acccgctgac cgtgcccgag ctgttcgacg atgggccctg gtgggagcac 1380 cagcgcgtgg agcccatgcc catctccacc tccatccacc tcagcaacat gagcgcacac 1440 ggcaagagcc accacaacca gtccgtcagc gtgggccagc tcaaccccat tcgcgagggc 1500 cgcgagatcg ctgtgtcagg cgtgcctgcc accggccagc gctccgtggg cgagatcgcc 1560 gtgaccatgc aggccgcgcc cgtgatggcc tcctcagcgc ccgtgatggg catgcacgcc 1620 gccgccgcca cccccatcga tacgccgctg ttcgcggacg gtcacgccat ggagaacgcc 1680 gcgcgcccgg tgcagcccat ggtggccggc gccggcaacg tgtag 1725 <210> 2 <211> 574 <212> PRT <213> Chlamydomonas reinhardtii <400> 2 Met Gln Ala Leu Pro Pro Lys Ile Pro Ala Ser Val Ser Gly His Gly 1 5 10 15 Thr Gln Ser Arg Arg His Ser Leu Asp Trp Ser His Ile Gly Leu Pro 20 25 30 Ser Arg Glu Thr Gln Leu Arg Ala Gly Phe Val Pro Ser Ala Ala Val 35 40 45 Val Ile Val Ile Phe Val Gly Leu Phe Phe Gly Leu Thr Gln Tyr Thr 50 55 60 Glu Leu Gly Thr Asn Ala Gln Glu Glu Val Asp Arg Phe Tyr Lys Tyr 65 70 75 80 Leu Val Asp Val Asn Ile Met Val Trp Ile Gly Phe Gly Phe Leu Met 85 90 95 Thr Phe Met Arg Arg Tyr Gly Tyr Gly Ala Val Ala Leu Asn Tyr Phe 100 105 110 Ala Ser Ala Leu Met Phe Leu Glu Ala Ile Leu Met Ile Gly Ala Thr 115 120 125 Gln Gln Val Phe Trp Asn Tyr His Arg Thr Lys Ile Gln Ile Asp Ile 130 135 140 Ala Leu Leu Ile Asp Cys Ala Phe Cys Ala Ala Ser Gly Met Ile Ala 145 150 155 160 Phe Gly Ala Ile Ile Gly Lys Ala Thr Pro Thr Gln Leu Leu Trp Leu 165 170 175 Leu Phe Trp Gln Val Pro Leu Tyr Ala Leu Asn Gln Gln Leu Val Ile 180 185 190 His Thr Phe Lys Ala Leu Asp Met Gly Gly Thr Ile Val Ile His Leu 195 200 205 Phe Gly Ala Tyr Tyr Gly Leu Ala Ala Ser Leu Met Ile Ser Arg Lys 210 215 220 Gln Pro Leu His Gly Leu Asp Asn Pro Lys Asn Ser Gly Ala Tyr Leu 225 230 235 240 Asn Asp Ile Phe Ser Met Ile Gly Thr Ile Phe Leu Phe Ile Tyr Trp 245 250 255 Pro Ser Phe Asn Gly Ala Leu Ala Ser Val Ser Ala Gly His Met Glu 260 265 270 Glu Ala Thr Asp Ala Lys Lys Ala Ala Gln Phe Leu Ser Ile Val Asn 275 280 285 Thr Leu Leu Ser Leu Leu Gly Ala Gly Leu Ser Val Phe Ala Thr Ser 290 295 300 Ala Leu Val Gly Gly Arg Phe Asn Met Val His Ile Gln Asn Ser Thr 305 310 315 320 Leu Ala Gly Gly Val Ala Met Gly Ala Ala Cys Thr Leu Arg Leu Thr 325 330 335 Pro Gly Gly Ala Leu Ala Val Gly Leu Gly Ala Gly Ala Ile Ser Thr 340 345 350 Leu Gly Phe Gln Tyr Leu Met Pro Phe Leu Asp Arg Thr Ile Gly Leu 355 360 365 Gly Asp Thr Cys Gly Val His Asn Leu His Gly Ile Pro Ala Ile Val 370 375 380 Gly Thr Leu Val Ala Gly Leu Ala Ala Leu Gly Gln His Pro Asp Tyr 385 390 395 400 Leu Glu His Asp Thr Gly Arg Gln Gln Leu Gly Tyr Gln Val Leu Ala 405 410 415 Gly Val Val Thr Met Gly Ile Ala Ile Ala Gly Gly Leu Leu Gly Gly 420 425 430 Phe Val Val Ser Trp Phe Asn Pro Arg Gly Asp Asp Pro Leu Thr Val 435 440 445 Pro Glu Leu Phe Asp Asp Gly Pro Trp Trp Glu His Gln Arg Val Glu 450 455 460 Pro Met Pro Ile Ser Thr Ser Ile His Leu Ser Asn Met Ser Ala His 465 470 475 480 Gly Lys Ser His His Asn Gln Ser Val Ser Val Gly Gln Leu Asn Pro 485 490 495 Ile Arg Glu Gly Arg Glu Ile Ala Val Ser Gly Val Pro Ala Thr Gly 500 505 510 Gln Arg Ser Val Gly Glu Ile Ala Val Thr Met Gln Ala Ala Pro Val 515 520 525 Met Ala Ser Ser Ala Pro Val Met Gly Met His Ala Ala Ala Ala Thr 530 535 540 Pro Ile Asp Thr Pro Leu Phe Ala Asp Gly His Ala Met Glu Asn Ala 545 550 555 560 Ala Arg Pro Val Gln Pro Met Val Ala Gly Ala Gly Asn Val 565 570 <210> 3 <211> 1299 <212> DNA <213> Chlorella sp. <400> 3 atggatgctg aagccgcggc tcctctgctg gcgggcacca gccacgccgg cacgtcatgg 60 gacctgcgcg gcacttttgc cgcctccctg gcgggcctca ccaccctcct gctcgtcctg 120 cttgctctgt ttggccagta cgccgccgac ctcacagatg ccaacgtgga tcgttactac 180 gcctggctgt ccgatgtgta cgtgatggtc tttttgggtt ttggcttcct catgaccttc 240 ctccgccgct actcctactc cgccgtctcc ctcaacttcg tctgctcctg tctggtcatc 300 ctggaagccc tgctggccat cggctgggtg cagcagggct ggggcaccgt gtctgtggac 360 ctccccttgc tcatcgacgc cgccttctgc gcgggcgccg ccatgatttc ctttggggcg 420 gtgctgggca aagcctcccc cgcccagctg ctctggctgc tggccctgga ggtgcccctc 480 tacgccctca acgcccaggt tgtgacaggc cgctgggggg cgctggacgt gggaggctcc 540 atcacgatcc acgcctttgg ggcggtctac gggctggcgg cctccgtgtg gctgtctccc 600 aagggggcgg gcagcgggca ccccaaaaac ggggcctcct acgcgtcaga catgacggcc 660 atgctgggca cgctcttcct cttcatctac tggccctctt tcaacggcgc actggccaca 720 gcgcccggca ccgacgcgca gccgcgcgcc ttttgcgtga tgaacaccgt cttggcgctc 780 ctgggggcct gcctggccgg ctttgccgcc tcggcagcta ccgggcagct ggacatggtg 840 cacgtgcaga acgccacgct ggcagggggt gtcgccatcg gctccgctgc caacctcgtc 900 atgccgcccg cctgcgccct ggcagtcggc atcgccgccg gggccctctc cacctgcggc 960 tacctgtggc tgtcccccgc cctggagcgc acctgcgggg tcaccgacac ctgcggagtg 1020 gccaaccttc acggcatgcc cggcgtgctg ggcggactcg catccgccct cttcgcccac 1080 ctcttctacc cagcaaatgc ggccctggtt gcgcacggcg ccaaggggca gcccggggtc 1140 cagctggcgg ggctggggtg cacgctggcg gcggcggcgg tgggcggggc gtgtgctggc 1200 tgggcggtga gcagggccag ccctgcgggg cagagcctgg cagcagagga catgttcgag 1260 gatgcacact tttggcacga ggtggagaag gaggaatga 1299 <210> 4 <211> 432 <212> PRT <213> Chlorella sp. <400> 4 Met Asp Ala Glu Ala Ala Ala Pro Leu Leu Ala Gly Thr Ser His Ala 1 5 10 15 Gly Thr Ser Trp Asp Leu Arg Gly Thr Phe Ala Ala Ser Leu Ala Gly 20 25 30 Leu Thr Thr Leu Leu Leu Val Leu Leu Ala Leu Phe Gly Gln Tyr Ala 35 40 45 Ala Asp Leu Thr Asp Ala Asn Val Asp Arg Tyr Tyr Ala Trp Leu Ser 50 55 60 Asp Val Tyr Val Met Val Phe Leu Gly Phe Gly Phe Leu Met Thr Phe 65 70 75 80 Leu Arg Arg Tyr Ser Tyr Ser Ala Val Ser Leu Asn Phe Val Cys Ser 85 90 95 Cys Leu Val Ile Leu Glu Ala Leu Leu Ala Ile Gly Trp Val Gln Gln 100 105 110 Gly Trp Gly Thr Val Ser Val Asp Leu Pro Leu Leu Ile Asp Ala Ala 115 120 125 Phe Cys Ala Gly Ala Ala Met Ile Ser Phe Gly Ala Val Leu Gly Lys 130 135 140 Ala Ser Pro Ala Gln Leu Leu Trp Leu Leu Ala Leu Glu Val Pro Leu 145 150 155 160 Tyr Ala Leu Asn Ala Gln Val Val Thr Gly Arg Trp Gly Ala Leu Asp 165 170 175 Val Gly Gly Ser Ile Thr Ile His Ala Phe Gly Ala Val Tyr Gly Leu 180 185 190 Ala Ala Ser Val Trp Leu Ser Pro Lys Gly Ala Gly Ser Gly His Pro 195 200 205 Lys Asn Gly Ala Ser Tyr Ala Ser Asp Met Thr Ala Met Leu Gly Thr 210 215 220 Leu Phe Leu Phe Ile Tyr Trp Pro Ser Phe Asn Gly Ala Leu Ala Thr 225 230 235 240 Ala Pro Gly Thr Asp Ala Gln Pro Arg Ala Phe Cys Val Met Asn Thr 245 250 255 Val Leu Ala Leu Leu Gly Ala Cys Leu Ala Gly Phe Ala Ala Ser Ala 260 265 270 Ala Thr Gly Gln Leu Asp Met Val His Val Gln Asn Ala Thr Leu Ala 275 280 285 Gly Gly Val Ala Ile Gly Ser Ala Ala Asn Leu Val Met Pro Pro Ala 290 295 300 Cys Ala Leu Ala Val Gly Ile Ala Ala Gly Ala Leu Ser Thr Cys Gly 305 310 315 320 Tyr Leu Trp Leu Ser Pro Ala Leu Glu Arg Thr Cys Gly Val Thr Asp 325 330 335 Thr Cys Gly Val Ala Asn Leu His Gly Met Pro Gly Val Leu Gly Gly 340 345 350 Leu Ala Ser Ala Leu Phe Ala His Leu Phe Tyr Pro Ala Asn Ala Ala 355 360 365 Leu Val Ala His Gly Ala Lys Gly Gln Pro Gly Val Gln Leu Ala Gly 370 375 380 Leu Gly Cys Thr Leu Ala Ala Ala Ala Val Gly Gly Ala Cys Ala Gly 385 390 395 400 Trp Ala Val Ser Arg Ala Ser Pro Ala Gly Gln Ser Leu Ala Ala Glu 405 410 415 Asp Met Phe Glu Asp Ala His Phe Trp His Glu Val Glu Lys Glu Glu 420 425 430 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 cgtggtgacc atgggcatcg caat 24 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ccgccgcctc gcgttcttta 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggcacgctgg tggctggcct 20 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ccctcgcgaa tggggttgag ct 22 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 aaccatggat gctgaagccg cggct 25 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gcgagctctc attcctcctt ctccacct 28 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gcggaggacg cacgcccttg a 21 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ccccaaaggc gtggatcgtg atgga 25 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ctttgccgcc tcggcagcta 20 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 cagggccgca tttgctgggt a 21 <110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing transgenic Nannochloropsis salina with          increased biomass using RHP1 gene from Chlamydomonas reinhardtii <130> PN17290 <160> 14 <170> KoPatentin 3.0 <210> 1 <211> 1725 <212> DNA <213> Chlamydomonas reinhardtii <400> 1 atgcaggcac ttcctcccaa gattcccgct tccgtatcgg gccacggaac ccagtcccgg 60 cgtcacagcc tggactggtc gcatattggc cttccctctc gcgagacgca gctgcgggct 120 ggctttgtgc cctcggctgc tgtggtgatt gtgattttcg tcggcctgtt tttcggcttg 180 acccagtaca ccgagttggg cacaaatgcg caggaggagg tcgatcgctt ttacaaatac 240 ctggtcgatg tcaacatcat ggtgtggatc ggtttcggct tcctgatgac cttcatgcgc 300 cgctacggct acggcgctgt ggccctgaac tactttgcct cggcgctcat gttcctggag 360 gccatcctca tgatcggcgc cacgcagcaa gtgttctgga actaccatcg caccaagatc 420 cagatcgaca tcgccttgct gatcgactgc gccttctgcg ccgcctctgg tatgattgcc 480 ttcggcgcca tcatcggcaa ggccacgccc acgcagttgc tgtggctgct cttttggcag 540 gttccgctgt acgctctcaa ccagcagctg gtgatccaca cattcaaggc gctggacatg 600 ggcggcacca tcgtcatcca cctgttcgga gcctactacg gattggcagc ctcgctcatg 660 atcagccgca agcagccgct gcacggcctg gacaacccca agaactcggg cgcctacctg 720 aacgacatct tctccatgat cggaaccatc ttcctcttca tctactggcc cagcttcaac 780 ggcgccctgg cgtccgtgtc ggctggccac atggaggagg cgaccgatgc caagaaggcc 840 gcccaattcc tgtccatcgt caacacgctg ctgtcgctgc tgggcgccgg gctatcggtg 900 ttcgccacct cggccctggt gggcggccgc ttcaacatgg tgcacatcca gaacagcacc 960 ctggccggtg gcgtggcgat gggcgccgcc tgcacgctgc gcctgacgcc cggtggcgcg 1020 ctggctgtgg gcctgggcgc gggagccatc agcaccctgg gcttccagta cctcatgccc 1080 ttcctggacc gcaccatcgg actgggcgac acctgcggtg tgcacaacct gcacggcatc 1140 cccgccatcg tcggcacgct ggtggctggc ctggcggctc tgggccagca ccccgactac 1200 ctggagcacg acaccggccg ccagcagctg ggctaccagg tgcttgcggg cgtggtgacc 1260 atgggcatcg caatcgccgg cggcctgcta ggcggcttcg tggtgtcgtg gttcaacccc 1320 cgtggcgacg acccgctgac cgtgcccgag ctgttcgacg atgggccctg gtgggagcac 1380 cagcgcgtgg agcccatgcc catctccacc tccatccacc tcagcaacat gagcgcacac 1440 ggcaagagcc accacaacca gtccgtcagc gtgggccagc tcaaccccat tcgcgagggc 1500 cgcgagatcg ctgtgtcagg cgtgcctgcc accggccagc gctccgtggg cgagatcgcc 1560 gtgaccatgc aggccgcgcc cgtgatggcc tcctcagcgc ccgtgatggg catgcacgcc 1620 gccgccgcca cccccatcga tacgccgctg ttcgcggacg gtcacgccat ggagaacgcc 1680 gcgcgcccgg tgcagcccat ggtggccggc gccggcaacg tgtag 1725 <210> 2 <211> 574 <212> PRT <213> Chlamydomonas reinhardtii <400> 2 Met Gln Ala Leu Pro Pro Lys Ile Pro Ala Ser Val Ser Gly His Gly   1 5 10 15 Thr Gln Ser Arg Arg His Ser Leu Asp Trp Ser His Ile Gly Leu Pro              20 25 30 Ser Arg Glu Thr Gln Leu Arg Ala Gly Phe Val Ser Ser Ala Ala Val          35 40 45 Val Ile Val Ile Phe Val Gly Leu Phe Phe Gly Leu Thr Gln Tyr Thr      50 55 60 Glu Leu Gly Thr Asn Ala Gln Glu Glu Val Asp Arg Phe Tyr Lys Tyr  65 70 75 80 Leu Val Asp Val Asn Ile Met Val Trp Ile Gly Phe Gly Phe Leu Met                  85 90 95 Thr Phe Met Arg Arg Tyr Gly Tyr Gly Ala Val Ala Leu Asn Tyr Phe             100 105 110 Ala Ser Ala Leu Met Phe Leu Glu Ala Ile Leu Met Ile Gly Ala Thr         115 120 125 Gln Gln Val Phe Trp Asn Tyr His Arg Thr Lys Ile Gln Ile Asp Ile     130 135 140 Ala Leu Leu Ile Asp Cys Ala Phe Cys Ala Ala Ser Gly Met Ile Ala 145 150 155 160 Phe Gly Ala Ile Ile Gly Lys Ala Thr Pro Thr Gln Leu Leu Trp Leu                 165 170 175 Leu Phe Trp Gln Val Pro Leu Tyr Ala Leu Asn Gln Gln Leu Val Ile             180 185 190 His Thr Phe Lys Ala Leu Asp Met Gly Gly Thr Ile Val Ile His Leu         195 200 205 Phe Gly Ala Tyr Tyr Gly Leu Ala Ala Ser Leu Met Ile Ser Arg Lys     210 215 220 Gln Pro Leu His Gly Leu Asp Asn Pro Lys Asn Ser Gly Ala Tyr Leu 225 230 235 240 Asn Asp Ile Phe Ser Ile Gly Thr Ile Phe Leu Phe Ile Tyr Trp                 245 250 255 Pro Ser Phe Asn Gly Ala Leu Ala Ser Val Ser Ala Gly His Met Glu             260 265 270 Glu Ala Thr Asp Ala Lys Lys Ala Ala Gln Phe Leu Ser Ile Val Asn         275 280 285 Thr Leu Leu Ser Leu Gly Ala Gly Leu Ser Val Phe Ala Thr Ser     290 295 300 Ala Leu Val Gly Gly Arg Phe Asn Met Val His Ile Gln Asn Ser Thr 305 310 315 320 Leu Ala Gly Gly Val Ala Met Gly Ala Ala Cys Thr Leu Arg Leu Thr                 325 330 335 Pro Gly Aly Gly Ala Gly Aly Gly Aly Gly Aly Gly Aly Ile Ser Thr             340 345 350 Leu Gly Phe Gln Tyr Leu Met Pro Phe Leu Asp Arg Thr Ile Gly Leu         355 360 365 Gly Asp Thr Cys Gly Val His Asn Leu His Gly Ile Pro Ala Ile Val     370 375 380 Gly Thr Leu Val Ala Gly Leu Ala Ala Leu Gly Gln His Pro Asp Tyr 385 390 395 400 Leu Glu His Asp Thr Gly Arg Gln Gln Leu Gly Tyr Gln Val Leu Ala                 405 410 415 Gly Val Val Thr Met Gly Ile Ale Ile Ala Gly Gly Leu Leu Gly Gly             420 425 430 Phe Val Val Ser Trp Phe Asn Pro Arg Gly Asp Asp Pro Leu Thr Val         435 440 445 Pro Glu Leu Phe Asp Asp Gly Pro Trp Trp Glu His Gln Arg Val Glu     450 455 460 Pro Met Pro Ile Ser Thr Ser Ile His Leu Ser Asn Met Ser Ala His 465 470 475 480 Gly Lys Ser His His Asn Gln Ser Val Ser Val Gly Gln Leu Asn Pro                 485 490 495 Ile Arg Glu Gly Arg Glu Ile Ala Val Ser Gly Val Pro Ala Thr Gly             500 505 510 Gln Arg Ser Val Gly Glu Ile Ala Val Thr Met Gln Ala Ala Pro Val         515 520 525 Met Ala Ser Ser Ala Pro Val Met Gly Met Ala Ala Ala Ala Thr     530 535 540 Pro Ile Asp Thr Pro Leu Phe Ala Asp Gly His Ala Met Glu Asn Ala 545 550 555 560 Ala Arg Pro Val Gln Pro Met Val Ala Gly Ala Gly Asn Val                 565 570 <210> 3 <211> 1299 <212> DNA <213> Chlorella sp. <400> 3 atggatgctg aagccgcggc tcctctgctg gcgggcacca gccacgccgg cacgtcatgg 60 gacctgcgcg gcacttttgc cgcctccctg gcgggcctca ccaccctcct gctcgtcctg 120 cttgctctgt ttggccagta cgccgccgac ctcacagatg ccaacgtgga tcgttactac 180 gcctggctgt ccgatgtgta cgtgatggtc tttttgggtt ttggcttcct catgaccttc 240 ctccgccgct actcctactc cgccgtctcc ctcaacttcg tctgctcctg tctggtcatc 300 ctggaagccc tgctggccat cggctgggtg cagcagggct ggggcaccgt gtctgtggac 360 ctccccttgc tcatcgacgc cgccttctgc gcgggcgccg ccatgatttc ctttggggcg 420 gtgctgggca aagcctcccc cgcccagctg ctctggctgc tggccctgga ggtgcccctc 480 tacgccctca acgcccaggt tgtgacaggc cgctgggggg cgctggacgt gggaggctcc 540 atcacgatcc acgcctttgg ggcggtctac gggctggcgg cctccgtgtg gctgtctccc 600 aagggggcgg gcagcgggca ccccaaaaac ggggcctcct acgcgtcaga catgacggcc 660 atgctgggca cgctcttcct cttcatctac tggccctctt tcaacggcgc actggccaca 720 gcgcccggca ccgacgcgca gccgcgcgcc ttttgcgtga tgaacaccgt cttggcgctc 780 ctgggggcct gcctggccgg ctttgccgcc tcggcagcta ccgggcagct ggacatggtg 840 cacgtgcaga acgccacgct ggcagggggt gtcgccatcg gctccgctgc caacctcgtc 900 atgccgcccg cctgcgccct ggcagtcggc atcgccgccg gggccctctc cacctgcggc 960 tacctgtggc tgtcccccgc cctggagcgc acctgcgggg tcaccgacac ctgcggagtg 1020 gccaaccttc acggcatgcc cggcgtgctg ggcggactcg catccgccct cttcgcccac 1080 ctcttctacc cagcaaatgc ggccctggtt gcgcacggcg ccaaggggca gcccggggtc 1140 cagctggcgg ggctggggtg cacgctggcg gcggcggcgg tgggcggggc gtgtgctggc 1200 tgggcggtga gcagggccag ccctgcgggg cagagcctgg cagcagagga catgttcgag 1260 gatgcacact tttggcacga ggtggagaag gaggaatga 1299 <210> 4 <211> 432 <212> PRT <213> Chlorella sp. <400> 4 Met Asp Ala Glu Ala Ala Pro Leu Leu Ala Gly Thr Ser His Ala   1 5 10 15 Gly Thr Ser Trp Asp Leu Arg Gly Thr Phe Ala Ala Ser Leu Ala Gly              20 25 30 Leu Thr Thr Leu Leu Leu Val Leu Leu Ala Leu Phe Gly Gln Tyr Ala          35 40 45 Ala Asp Leu Thr Asp Ala Asn Val Asp Arg Tyr Tyr Ala Trp Leu Ser      50 55 60 Asp Val Tyr Val Met Val Phe Leu Gly Phe Gly Phe Leu Met Thr Phe  65 70 75 80 Leu Arg Arg Tyr Ser Tyr Ser Ala Val Ser Leu Asn Phe Val Cys Ser                  85 90 95 Cys Leu Val Ile Leu Glu Ala Leu Leu Ala Ile Gly Trp Val Gln Gln             100 105 110 Gly Trp Gly Thr Val Ser Val Asp Leu Pro Leu Leu Ile Asp Ala Ala         115 120 125 Phe Cys Ala Gly Ala Ala Met Ile Ser Phe Gly Ala Val Leu Gly Lys     130 135 140 Ala Ser Pro Ala Gln Leu Leu Trp Leu Leu Ala Leu Glu Val Pro Leu 145 150 155 160 Tyr Ala Leu Asn Ala Gln Val Val Thr Gly Arg Trp Gly Ala Leu Asp                 165 170 175 Val Gly Gly Ser Ile Thr Ile His Ala Phe Gly Ala Val Tyr Gly Leu             180 185 190 Ala Ala Ser Val Trp Leu Ser Pro Lys Gly Ala Gly Ser Gly His Pro         195 200 205 Lys Asn Gly Ala Ser Tyr Ala Ser Asp Met Thr Ala Met Leu Gly Thr     210 215 220 Leu Phe Leu Phe Ile Tyr Trp Pro Ser Phe Asn Gly Ala Leu Ala Thr 225 230 235 240 Ala Pro Gly Thr Asp Ala Gln Pro Arg Ala Phe Cys Val Met Asn Thr                 245 250 255 Val Leu Ala Leu Leu Gly Ala Cys Leu Ala Gly Phe Ala Ala Ser Ala             260 265 270 Ala Thr Gly Gln Leu Asp Met Val His Val Gln Asn Ala Thr Leu Ala         275 280 285 Gly Gly Val Ala Ile Gly Ser Ala Ala Asn Leu Val Met Pro Ala     290 295 300 Cys Ala Leu Ala Val Gly Ile Ala Ala Gly Ala Leu Ser Thr Cys Gly 305 310 315 320 Tyr Leu Trp Leu Ser Pro Ala Leu Glu Arg Thr Cys Gly Val Thr Asp                 325 330 335 Thr Cys Gly Val Ala Asn Leu His Gly Met Pro Gly Val Leu Gly Gly             340 345 350 Leu Ala Ser Ala Leu Phe Ala His Leu Phe Tyr Pro Ala Asn Ala Ala         355 360 365 Leu Val Ala His Gly Ala Lys Gly Gln Pro Gly Val Gln Leu Ala Gly     370 375 380 Leu Gly Cys Thr Leu Ala Ala Ala Val Gly Gly Ala Cys Ala Gly 385 390 395 400 Trp Ala Val Ser Arg Ala Ser Pro Ala Gly Gln Ser Leu Ala Ala Glu                 405 410 415 Asp Met Phe Glu Asp Ala His Phe Trp His Glu Val Glu Lys Glu Glu             420 425 430 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 cgtggtgacc atgggcatcg caat 24 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ccgccgcctc gcgttcttta 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggcacgctgg tggctggcct 20 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ccctcgcgaa tggggttgag ct 22 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 aaccatggat gctgaagccg cggct 25 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gcgagctctc attcctcctt ctccacct 28 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gcggaggacg cacgcccttg a 21 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ccccaaaggc gtggatcgtg atgga 25 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ctttgccgcc tcggcagcta 20 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 cagggccgca tttgctgggt a 21

Claims (7)

서열번호 2의 아미노산 서열로 이루어진, 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 난노클로롭시스 살리나(Nannochloropsis salina)를 형질전환시켜 RHP1 유전자를 과발현하는 단계를 포함하는 난노클로롭시스 살리나의 바이오매스와 헥사데카트리엔산(Hexadecatrienoic acid) 및 리놀렌산(Linolenic acid)의 함량을 증가시키는 방법. Nannochloropsis salina is transformed with a recombinant vector comprising a gene encoding RHP1 (Rhesus protein 1) protein derived from Chlamydomonas reinhardtii , which is composed of the amino acid sequence of SEQ ID NO: 2 Wherein the method comprises the step of overexpressing the RHP1 gene to increase the content of biomass, hexadecatrienoic acid and linolenic acid of nanocholoropsis salina. 삭제delete 삭제delete 서열번호 2의 아미노산 서열로 이루어진, 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 난노클로롭시스 살리나(Nannochloropsis salina)를 형질전환시켜 RHP1 유전자를 과발현하는 단계를 포함하는, 야생형에 비해 바이오매스와 헥사데카트리엔산(Hexadecatrienoic acid) 및 리놀렌산(Linolenic acid)의 함량이 증가된 형질전환 난노클로롭시스 살리나의 제조 방법. Nannochloropsis salina is transformed with a recombinant vector comprising a gene encoding RHP1 (Rhesus protein 1) protein derived from Chlamydomonas reinhardtii , which is composed of the amino acid sequence of SEQ ID NO: 2 Wherein the method comprises the step of overexpressing the RHP1 gene, wherein the amount of biomass, hexadecatrienoic acid and linolenic acid is increased compared to the wild type. 제4항의 방법에 의해 제조된, 야생형에 비해 바이오매스와 헥사데카트리엔산(Hexadecatrienoic acid) 및 리놀렌산(Linolenic acid)의 함량이 증가된 형질전환 난노클로롭시스 살리나.4. A transformed Nanocrobrotopsis salina produced by the method of claim 4, wherein the content of biomass, hexadecatrienoic acid and linolenic acid is increased compared to the wild type. 서열번호 2의 아미노산 서열로 이루어진 클라미도모나스 레인하드티(Chlamydomonas reinhardtii) 유래의 RHP1(Rhesus protein 1) 단백질을 코딩하는 유전자를 포함하는 난노클로롭시스 살리나의 바이오매스와 헥사데카트리엔산(Hexadecatrienoic acid) 및 리놀렌산(Linolenic acid)의 함량을 증가시키기 위한 조성물.A gene encoding a RHP1 (Rhesus protein 1) protein derived from Chlamydomonas reinhardtii consisting of the amino acid sequence of SEQ ID NO: 2 and a gene coding for a protein of Rhesus protein 1 (HCP) acid and linolenic acid. 제5항의 형질전환 난노클로롭시스 살리나를 배양하는 단계;
상기 난노클로롭시스 살리나를 배양하여 획득한 배양액으로부터 지질을 분리하는 단계;
상기 지질을 트랜스에스테르화시켜 지방산 에스테르를 생산하는 단계; 및
상기 생산된 지방산 에스테르를 바이오디젤로 전환하는 단계를 포함하는 바이오디젤의 생산 방법.
Culturing the transformed Nanocloprosis Salina of claim 5;
Separating the lipid from the culture obtained by culturing the Nanocoplopysis salina;
Transesterifying the lipid to produce a fatty acid ester; And
And converting the produced fatty acid ester to biodiesel.
KR1020170144519A 2017-11-01 2017-11-01 Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii KR101987282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170144519A KR101987282B1 (en) 2017-11-01 2017-11-01 Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170144519A KR101987282B1 (en) 2017-11-01 2017-11-01 Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii

Publications (2)

Publication Number Publication Date
KR20190049073A KR20190049073A (en) 2019-05-09
KR101987282B1 true KR101987282B1 (en) 2019-06-10

Family

ID=66546093

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170144519A KR101987282B1 (en) 2017-11-01 2017-11-01 Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii

Country Status (1)

Country Link
KR (1) KR101987282B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023043298A1 (en) * 2021-09-17 2023-03-23 고려대학교 산학협력단 Mutant microalgae having high cell growth rate and lipid productivity under fluctuating light conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Marine Drugs. Vol. 14, No. 4, 페이지 1-18 (2016.03.25.)*

Also Published As

Publication number Publication date
KR20190049073A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US8709766B2 (en) Use of endogenous promoters in genetic engineering of Nannochloropsis gaditana
CA2535310C (en) Fatty acid desaturases from primula
US10253325B2 (en) Methods for elevating fat/oil content in plants
JP5299886B2 (en) Genes for increasing production of plant oils and methods of use thereof
CN105734067A (en) Lowering saturated fatty acid content of plant seeds
WO2012023960A2 (en) Transgenically mitigating the establishment and spread of transgenic algae in natural ecosystems by suppressing the activity of a carbon concentrating mechanism
ES2715327T3 (en) Polynucleotides, enhanced acyltransferase polypeptides and methods of use
AU2012294956A1 (en) Methods for increasing CO2 assimilation and oil production in photosynthetic organisms
CN108779476A (en) The production of alpha-olefin
Vikramathithan et al. Overexpression of Chlamydomonas reinhardtii LCIA (CrLCIA) gene increases growth of Nannochloropsis salina CCMP1776
US20150252378A1 (en) Novel Acyltransferase Polynucleotides, Polypeptides and Methods of Use
KR101987282B1 (en) Method for producing transgenic Nannochloropsis salina with increased biomass using RHP1 gene from Chlamydomonas reinhardtii
CN1207645A (en) Process for constructing temp.-tolerant plants
US9410132B2 (en) Acyl-CoA: diacylglycerol acyltransferase 1-like gene (PtDGAT1) and uses thereof
US20230080079A1 (en) Mutant lipase and use thereof
KR101922113B1 (en) Pyruvate transporter from phaeodactylum tricornutum
WO2011010485A1 (en) Process for production of eicosanoid, eicosanoid biosynthesis gene derived from marchantia polymorpha, and use of the gene
CN102295691B (en) BCCP2 gene and application on enhancing lipid content of plant and algae thereof
KR102212882B1 (en) Chlamydomonas sp. Microalgae with increased fatty acid productivity and method for increasing fatty acid productivity of Chlamydomonas sp. Microalgae
WO2015182110A1 (en) Algae and method for producing same, and method for producing biomass using said algae
KR102277385B1 (en) Method for producing biodiesel in blue-green algae cells using FAMT gene
US20210261632A1 (en) Modified form of oleosin that when expressed in plants leads to increased triacylgycerol (oil) accumulation
KR20220136947A (en) Recombinant microalga with highly improved tolerances towards high CO2 and/or low pH conditions
CA3192136A1 (en) Recombinant algae having high lipid productivity
KR101480051B1 (en) Selective Marker of Transformant Using Mutant Gene Encoding Ribosomal Proteinof Microalgae Thraustochytrid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant