WO2011010485A1 - Process for production of eicosanoid, eicosanoid biosynthesis gene derived from marchantia polymorpha, and use of the gene - Google Patents

Process for production of eicosanoid, eicosanoid biosynthesis gene derived from marchantia polymorpha, and use of the gene Download PDF

Info

Publication number
WO2011010485A1
WO2011010485A1 PCT/JP2010/053533 JP2010053533W WO2011010485A1 WO 2011010485 A1 WO2011010485 A1 WO 2011010485A1 JP 2010053533 W JP2010053533 W JP 2010053533W WO 2011010485 A1 WO2011010485 A1 WO 2011010485A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
dna
seq
derived
protein
Prior art date
Application number
PCT/JP2010/053533
Other languages
French (fr)
Japanese (ja)
Inventor
莞爾 大山
美保 小林
Original Assignee
石川県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川県 filed Critical 石川県
Publication of WO2011010485A1 publication Critical patent/WO2011010485A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P31/00Preparation of compounds containing a five-membered ring having two side-chains in ortho position to each other, and having at least one oxygen atom directly bound to the ring in ortho position to one of the side-chains, one side-chain containing, not directly bound to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having at least one oxygen atom bound in gamma-position to the ring, e.g. prostaglandins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Definitions

  • the present invention relates to the genes involved in biosynthesis of eicosanoids (Prostaglandin (PG), thromboxane (TX), leukotriene (LT), and lipoxin (LX)) derived from Marchantia polymorpha, ie, phospholipase, lipoxygenase and cyclooxygenase. It relates to genes and their use.
  • the present invention also relates to a method for producing eicosanoids by plants.
  • Eicosanoid prostaglandins have peripheral vasodilatory action, platelet aggregation inhibitory action, cytoprotective action, angiogenic action, etc., and are used as these therapeutic agents as so-called lipoPG agents.
  • Leukotrienes a kind of eicosanoid, are leukocyte activators, chemotaxis to inflammatory sites, lysosomal enzyme secretion from neutrophils, active oxygen production promoting action, neutrophil adhesion to vascular endothelial cells It shows the action.
  • Phospholipase is an enzyme that hydrolyzes the ester bonds of glycerophospholipids that make up biological membranes, and is an information exchange enzyme that is activated by various stimuli through the receptor and transmits its information through the production of lipid mediators. Function.
  • Polyunsaturated fatty acids such as arachidonic acid (hereinafter sometimes abbreviated as “AA”) and eicosapentaenoic acid (hereinafter sometimes abbreviated as “EPA”) are lipids in the cell membrane mainly in the nervous system in humans and the like. Is included in many. From these highly unsaturated fatty acids, pharmacologically important physiologically active substances such as prostaglandins and leukotrienes are biosynthesized by the reaction of phospholipase, lipoxygenase, and cyclooxygenase. These biosynthetic metabolic pathways are called arachidonic acid cascades.
  • AA arachidonic acid
  • EPA eicosapentaenoic acid
  • eicosanoids such as prostaglandins (PG), thromboxane (TX), leukotriene (LT), and lipoxin (LX), which are physiologically active substances, are biosynthesized in animal cells. Yes. Prostaglandins in blood are prepared for quantitative analysis (Patent Document 1).
  • Eicosanoids are produced by total chemical synthesis from lactones by chemical synthesis methods. This raises the problem of high production costs.
  • Eicosanoids are considered to be biosynthesized by reaction of phospholipase, lipoxygenase, and cyclooxygenase from AA or EPA, for example, in the human body.
  • AA or EPA is first released from cell membrane lipids into cells by phospholipase, and the AA or EPA is oxidized by two molecules of oxygen by cyclooxygenase and converted into prostaglandins and thromboxanes.
  • AA or EPA released from the cell membrane is oxidized by one molecule of oxygen by lipoxygenase and converted into leukotriene and lipoxin.
  • the phospholipase A1 gene has been cloned in several plant species. For example, phospholipase genes derived from Arabidopsis (Non-patent Document 1) and pepper (Non-patent Document 2) have been reported. A plant-derived phospholipase A2 involved in the release of AA or EPA from the cell membrane has not been reported.
  • the lipoxygenase gene has been cloned from several plant species. For example, a lipoxygenase gene derived from Arabidopsis thaliana (Non-patent Document 3), Physcomitrella patens (Non-patent Document 4), and potato (Non-patent Document 5) has been reported. The cyclooxygenase gene has not been cloned from plants.
  • Land plants are composed of moss plants (Bryophyte), fern plants, gymnosperms and angiosperms.
  • Moss plants are the oldest branched group of terrestrial plants, and are composed of three groups: sens, Thais, and hornworts. Zenigoke is said to have first inhabited the land among the above-mentioned organisms (Non-patent Document 6).
  • Non-patent Document 6 The presence of prostaglandins or prostaglandin-like substances has been reported in onions, poplars, larch, evening primroses, morning glory, bean diatoms and certain Thais, but details are unknown (Non-patent Document 7).
  • the present invention has been made in view of the above-mentioned conventional problems, and the object thereof is to use plant species and produce eicosanoids, which are derived from plants such as the genus Coleoptera, a lipoxygenase gene and a cyclooxygenase gene, and It is to provide usage.
  • Another object of the present invention is to provide a technique for producing eicosanoids by plants using animal-derived phospholipase genes, lipoxygenase genes and cyclooxygenase genes.
  • the present inventors have identified each gene encoding the above phospholipase, lipoxygenase, and cyclooxygenase from a cDNA clone derived from Marchantia polymorpha, and a strong promoter for the gene. It has been found that the ability to produce eicosanoids can be improved by introducing and expressing it in the moss. Furthermore, the present inventors have found that the ability to produce eicosanoids can be improved also by introducing and expressing each gene encoding phospholipase, lipoxygenase and cyclooxygenase derived from an animal in the moss. The present inventors have further studied based on the above findings and have completed the present invention. That is, the present invention includes the following inventions [1] to [33].
  • An eicosanoid production comprising a step of growing or growing a plant transformant or a tissue thereof into which one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in a plant Method.
  • a phospholipase gene a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in a plant Method.
  • the phospholipase gene is any one of the following genes (a1) to (a8), the lipoxygenase gene is any one of the following genes (b1) to (b8), and the cyclooxygenase gene is: The method according to any one of [1] to [3], wherein the gene is any one of (c1) to (c8).
  • A1 a gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 1 (a2) consisting of a part of the base sequence shown in SEQ ID NO: 1, and arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell
  • a gene containing DNA derived from the genus Coleoptera encoding a protein having a phospholipase activity to be released (a3) A DNA comprising all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1 under stringent conditions
  • a4 a base represented by SEQ ID NO: 1 DNA comprising the 394th to 2091th nucleotide sequences in the sequence
  • the gene (a5) is hybridized under string
  • a gene encoding a protein comprising the amino acid sequence (b7) comprising the amino acid sequence shown in SEQ ID NO: 4, wherein one or several amino acids are substituted, deleted, inserted and / or added, and arachidone Lipoxy containing acid or eicosapentaenoic acid as substrate
  • a gene encoding a protein derived from the genus Coleoptera having a genease activity (b8) A 5-lipoxygenase gene derived from a mouse (c1) a gene comprising a DNA consisting of the base sequence shown in SEQ ID NO: 5 (c2) shown in SEQ ID NO: 5
  • a gene comprising a part of the base sequence and containing a DNA derived from the genus Coleoptera encoding a protein having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate (c3) complementary to the base sequence shown in SEQ ID NO: 5
  • the phospholipase gene is any one of the genes (a1) to (a7), the lipoxygenase gene is any one of the genes (b1) to (b7), and the cyclooxygenase gene is the gene (c1). ) To (c7), the method according to the above [4].
  • a gene comprising the DNA of any one of (a) to (c) below: (A) DNA comprising the base sequence shown in SEQ ID NO: 1 (B) a DNA derived from the genus Pleurotus that encodes a protein having a phospholipase activity, which comprises a part of the base sequence represented by SEQ ID NO: 1 and releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell.
  • a gene comprising the following DNA (a) or (b): (A) DNA consisting of the 394th to 2091th base sequences in the base sequence shown in SEQ ID NO: 1 (B) a cell membrane that hybridizes under stringent conditions with either DNA comprising the 394th to 2091th nucleotide sequences of the nucleotide sequence represented by SEQ ID NO: 1 or DNA comprising a nucleotide sequence complementary to the DNA.
  • DNA that encodes a protein derived from the genus Lepidoptera having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from phospholipids into cells [8] A gene encoding the following protein (A) or (B).
  • A a protein comprising the amino acid sequence shown in SEQ ID NO: 2
  • B an amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 2
  • a gene containing the DNA of any one of (a) to (c) below (A) DNA consisting of the base sequence shown in SEQ ID NO: 3 (B) a DNA derived from the genus Pleurotus that encodes a protein having a lipoxygenase activity comprising a part of the base sequence shown in SEQ ID NO: 3 and having arachidonic acid or eicosapentaenoic acid as a substrate; (C) Lipoxygenase activity that hybridizes under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 3 and that uses arachidonic acid or eicosapentaenoic acid as a substrate DNA derived from the genus Pleurotus that encodes a protein having [10] A gene comprising the following DNA (a) or (b): (A) DNA consisting of the 127th to 2994th nucleotide sequences in the nucleotide sequence shown in SEQ ID NO: 3
  • A a protein consisting of the amino acid sequence shown in SEQ ID NO: 4
  • B from the amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 4
  • a gene comprising the DNA of any one of (a) to (c) below: (A) DNA consisting of the base sequence shown in SEQ ID NO: 5 (B) a DNA derived from the genus Pleurotus that encodes a protein having a cyclooxygenase activity comprising a part of the base sequence shown in SEQ ID NO: 5 and having arachidonic acid or eicosapentaenoic acid as a substrate; (C) Cyclooxygenase activity that hybridizes under stringent conditions with all or part of DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 5 and uses arachidonic acid or eicosapentaenoic acid as a substrate DNA derived from the genus Pleurotus that encodes proteins [13] A gene comprising the following DNA (a) or (b): (A) DNA consisting of nucleotide sequences 321 to 2153 among the nucleotide sequence shown in SEQ ID NO: 5
  • A Protein consisting of the amino acid sequence shown in SEQ ID NO: 6
  • B From the amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 6 And a protein derived from the genus Pleurotus having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate
  • [15] A protein encoded by the gene according to any one of [6] to [14].
  • [16] An antibody that recognizes the protein encoded by the gene according to any one of [6] to [14].
  • [17] A recombinant expression vector comprising the gene according to any one of [6] to [14].
  • a method for modifying the eicosanoid composition of a plant or a tissue thereof comprising the step of introducing the gene according to any one of [6] to [14] above into the plant.
  • a gene detection instrument using, as a probe, at least a part of the base sequence of the gene according to any one of [6] to [14] or a complementary sequence thereof.
  • a plant trait having an altered eicosanoid composition wherein at least one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene are introduced so as to be expressed in the plant A transformant, a plant transformant that is a descendant of the plant transformant having the same properties as the plant transformant, or a tissue of the plant transformant.
  • [31] A method for modifying the eicosanoid composition of a plant or a tissue thereof, comprising introducing one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene into the plant.
  • [33] A gene or substance obtained by the screening method according to [32].
  • One of the preferred embodiments of the gene according to the present invention encodes a phospholipase gene, a lipoxygenase gene and a cyclooxygenase gene isolated from the same species of genus moss, and a protein having an activity equivalent to the protein encoded by these genes. It is a gene.
  • a phospholipase gene, a lipoxygenase gene and a cyclooxygenase gene derived from the same species of genus moss are expressed in a plant species, genes related to eicosanoid biosynthesis are expressed in the plant rather than expressing three genes derived from different species. It has the effect of functioning well.
  • the genus moss is considered to be a model system of plants, so that these genes have the effect that they can function better in plants than genes derived from biological species other than plants.
  • the plant transformant according to the present invention has an effect that it can produce eicosanoids. For this reason, when the plant transformant according to the present invention is used, the production cost of an eicosanoid useful as an active ingredient of a pharmaceutical can be reduced, and at the same time, a more environmentally friendly production process can be realized. That is, according to the present invention, an eicosanoid can be produced at a low cost by a low-cost and environmentally friendly production process. Furthermore, since a genetically modified plant can be mass-produced by a plant factory system, it is possible to supply a cheaper eicosanoid. The eicosanoid thus obtained has an effect that it can be used as a pharmacologically active substance, a raw material for health foods, and the like.
  • FIG. 1 is a diagram showing only a leukotriene biosynthetic system and a prostaglandin biosynthetic system from a reaction in which AA or EPA is released into cells from a lipid conjugate according to the present invention in the arachidonic acid cascade.
  • FIG. 3 (A) is a schematic diagram of a vector for introducing a phospholipase gene derived from Xenopus, and FIG.
  • FIG. 3 (B) is a schematic diagram of a vector for introducing a lipoxygenase gene derived from Xenopus.
  • (C) is a schematic diagram of a vector for introducing a gene for cyclooxygenase derived from genus Amanita.
  • 4 (A) to 4 (C) respectively show (A) a procedure for preparing an expression construct for introducing a mouse-derived phospholipase A2 gene, and (B) an expression construct for introducing a mouse-derived 5-lipoxygenase gene. It is a figure which shows the preparation procedure and the preparation procedure of the expression construct for introduce
  • FIG. 5 (A) is a schematic diagram of a vector for introducing a mouse-derived phospholipase A2 gene
  • FIG. 5 (B) is a schematic diagram of a vector for introducing a mouse-derived 5-lipoxygenase gene
  • FIG. 5 (C) is a schematic diagram of a vector for introducing a zebrafish-derived cyclooxygenase gene.
  • the eicosanoid production method of the present invention includes a step of proliferating or growing a plant transformant or a tissue thereof in which one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in a plant.
  • an eicosanoid can be produced using a plant.
  • the plant is preferably a genus Coleoptera which will be described later.
  • the plant transformant is preferably a plant transformant having a modified eicosanoid composition, wherein one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in the plant, or the plant A plant transformant that is a descendant of the plant transformant having the same properties as the transformant.
  • a phospholipase gene, lipoxygenase gene, and cyclooxygenase gene the genes described later are suitable, and any of plant-derived and animal-derived genes can be used.
  • the biosynthetic pathway of eicosanoids prostaglandins, leukotrienes, etc.
  • the gene according to the present invention the protein according to the present invention
  • the method for obtaining the protein and gene according to the present invention the method for using the gene and protein according to the present invention
  • the present invention will be described in detail in the order of (usefulness). Further, a method for producing eicosanoids in plants using an eicosanoid biosynthetic gene derived from animals will be described.
  • FIG. 1 Biosynthetic pathway of eicosanoids (prostaglandins and leukotrienes) (FIG. 1).
  • eicosanoids prostaglandins, leukotrienes, etc.
  • arachidonic acid and eicosapentaenoic acid (substrate), respectively
  • the substrate is oxidized by one molecule of oxygen
  • the substrate is oxidized by two molecules of oxygen.
  • biosynthesized into prostaglandins These reactions are catalyzed by intracellular lipoxygenase (LOX) and cyclooxygenase (COX), respectively, as shown in FIG.
  • LOX lipoxygenase
  • COX cyclooxygenase
  • genes of the present invention are the phospholipase gene, lipoxygenase gene, and cyclooxygenase gene described below.
  • the gene of the present invention can be suitably used for, for example, preparation of a recombinant protein, production of a plant transformant having a modified eicosanoid composition, and the like.
  • the phospholipase gene according to the present invention is a gene encoding a protein having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells by hydrolysis of ester bonds. ⁇ 7. It is a gene described in. These genes are preferably used in the eicosanoid production method of the present invention.
  • a gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 1.
  • a gene comprising a part of the base sequence shown in SEQ ID NO: 1 and containing a DNA derived from a genus Coleoptera that encodes a protein having a phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells.
  • a gene comprising DNA consisting of the 394th to 2091th base sequences of the base sequence shown in SEQ ID NO: 1. 5. It hybridizes under stringent conditions with either DNA consisting of the 394th to 2091th base sequences in the base sequence shown in SEQ ID NO: 1 or DNA consisting of base sequences complementary to the DNA, and from cell membrane phospholipids A gene comprising a DNA encoding a protein derived from the genus Coleoptera having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid into cells.
  • the amino acid sequence shown in SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added, and arachidonic acid or eicosapentaenoic acid is converted from cell membrane phospholipids into cells.
  • the phospholipase gene according to the present invention is preferably derived from Marchantia polymorpha.
  • the DNA consisting of the base sequence shown in SEQ ID NO: 1 is a gene derived from Marchantia polymorpha.
  • the 394th to 2091st base sequence is a region translated into a protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 2 is a phospholipase that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells by hydrolysis of ester bonds.
  • DNA derived from the genus Coleoptera which consists of a part of the base sequence shown in SEQ ID NO: 1 and encodes a protein having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells
  • a DNA having the 394th to 2091th base sequences of the base sequence of SEQ ID NO: 1 is preferred.
  • the DNA comprising a part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1 is, for example, a base complementary to the DNA having the 394th to 2091th base sequences in the base sequence of SEQ ID NO: 1. Sequence DNA is preferred.
  • the lipoxygenase gene according to the present invention is a gene encoding a protein having lipoxygenase activity that uses arachidonic acid or eicosapentaenoic acid as a substrate and oxidizes the substrate with one molecule of oxygen. ⁇ 7. It is a gene described in. These genes are preferably used in the eicosanoid production method of the present invention. 1. A gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 3. 2.
  • a gene comprising a part of the base sequence shown in SEQ ID NO: 3 and containing a DNA derived from the genus Coleoptera which encodes a protein having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate. 3.
  • a protein that hybridizes under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 3 and has lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate A gene containing DNA derived from the genus Pleurotus that encodes.
  • the amino acid sequence shown in SEQ ID NO: 4 consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and / or added, and has lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate.
  • the lipoxygenase gene according to the present invention is preferably derived from Marchantia polymorpha.
  • DNA consisting of the base sequence shown in SEQ ID NO: 3 is a gene derived from Marchantia polymorpha.
  • the 127th to 2994th nucleotide sequence is a region translated into a protein consisting of the amino acid sequence shown in SEQ ID NO: 4.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 4 is a lipoxygenase that oxidizes arachidonic acid or eicosapentaenoic acid with one molecule of oxygen.
  • DNA encoding a protein having a part of the base sequence shown in SEQ ID NO: 3 and having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate include, for example, the base sequence shown in SEQ ID NO: 3 Of these, DNA having the 127th to 2994th nucleotide sequence is preferred.
  • the DNA comprising a part of the base sequence complementary to the base sequence shown in SEQ ID NO: 3 is, for example, a base complementary to the DNA having the 127th to 2994th base sequences in the base sequence of SEQ ID NO: 3. Sequence DNA is preferred.
  • the cyclooxygenase gene according to the present invention is a gene encoding a protein having cyclooxygenase activity that uses arachidonic acid or eicosapentaenoic acid as a substrate and oxidizes the substrate with two molecules of oxygen. ⁇ 7. It is a gene described in. These genes are preferably used in the eicosanoid production method of the present invention. 1. A gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 5. 2.
  • a gene comprising a part of the base sequence shown in SEQ ID NO: 5 and containing a DNA derived from a genus Coleoptera that encodes a protein having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate.
  • a protein having a cyclooxygenase activity that hybridizes under stringent conditions with all or part of a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 5 and uses arachidonic acid or eicosapentaenoic acid as a substrate
  • a gene comprising DNA having a nucleotide sequence of positions 321 to 2153 of the nucleotide sequence represented by SEQ ID NO: 5. 5. It hybridizes under stringent conditions with either DNA consisting of the 321st to 2153th base sequences of the base sequence shown in SEQ ID NO: 5 or DNA complementary to the DNA, and arachidonic acid or A gene comprising a DNA encoding a protein derived from a genus Coriolis having cyclooxygenase activity using eicosapentaenoic acid as a substrate.
  • the amino acid sequence shown in SEQ ID NO: 6 consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and / or added, and has cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate
  • the cyclooxygenase gene according to the present invention is preferably derived from Marchantia polymorpha.
  • the DNA consisting of the base sequence shown in SEQ ID NO: 5 is a gene derived from Marchantia polymorpha.
  • the 321st to 2153rd base sequence is a region translated into a protein consisting of the amino acid sequence shown in SEQ ID NO: 6.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 6 is a cyclooxygenase that oxidizes arachidonic acid or eicosapentaenoic acid with two molecules of oxygen.
  • Examples of the DNA derived from the genus Coleoptera which consists of a part of the base sequence shown in SEQ ID NO: 5 and encodes a protein having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate include, for example, SEQ ID NO: 5
  • DNA having the 321st to 2153rd nucleotide sequences is preferred.
  • the DNA comprising a part of the base sequence complementary to the base sequence shown in SEQ ID NO: 5 is, for example, a base complementary to the DNA having the 321st to 2153rd base sequences in the base sequence of SEQ ID NO: 5. Sequence DNA is preferred.
  • stringent conditions means that hybridization occurs only when at least 90% identity, preferably at least 95% identity, most preferably 97% identity exists between sequences. means.
  • hybridization J. Sambrook et al. Molecular Cloning, A lLaboratory Manual. 2 nd Ed., Like the method described in Cold Spring Harbor Laboratory (1989), can be performed by a conventionally known method. Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (harder to hybridize), and a more homologous gene can be obtained.
  • hybridization conditions conventionally known conditions can be preferably used, and are not particularly limited. For example, a commercially available DIG (digoxigenin) hybridization buffer (Roche Diagnostics) is used. And so on.
  • Manitaceae organisms are not limited to (Marchantia polymorpha), but include organisms belonging to the subgenus Amanitaceae (Marchantiales).
  • Examples of organisms belonging to the order of the genus Mantiantiaceae (Marchantiales) include plants such as the clam sphagnum family, sphagnum moss family, jagoke department, azuma genus department, zingagoceae, gentian moss family, sphagnum department, sphagnum department, Can be mentioned.
  • Prostaglandins or prostaglandin-like substances have been reported to exist in the moss genus Ambrystechium serpens, raBrachythecium implicantum, and moss marchantia parviloba (Groenewald, EG, Kruger, G. H. J., de Wet , H., Botes, P. J. and van der Westhuizen, A. J., South African J. Sci. 86: 152-153 (1990)).
  • the gene of the present invention includes not only double-stranded DNA but also single-stranded DNA and RNA such as sense strand and antisense strand constituting the DNA.
  • the antisense strand can be used as a probe or as an antisense compound.
  • DNA includes, for example, cDNA and genomic DNA obtained by cloning or chemical synthesis techniques, or a combination thereof.
  • the gene of the present invention may include sequences such as untranslated region (UTR) sequences and vector sequences (including expression vector sequences).
  • Protein according to the present invention is the following phospholipase protein, lipoxygenase protein, and cyclooxygenase protein.
  • the phospholipase protein according to the present invention may be a protein having the above-described phospholipase activity, that is, a function of releasing AA or EPA into cells from phospholipids bound to the cell membrane. More specifically, the following proteins are preferred. More preferably, it is a protein having phospholipase activity derived from the genus Pleurotus. 1. 1. a protein encoded by the phospholipase gene according to the present invention described in (2) above; 2. A protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
  • a protein having a phospholipase activity that is released into the protein is a phospholipase derived from Marchantia polymorpha.
  • the lipoxygenase protein according to the present invention may be any protein as long as it has the above-described lipoxygenase activity, that is, substrate specificity for AA or EPA, and has an effect of converting these into leukotrienes. More specifically, the following proteins are preferred. More preferably, it is a protein having lipoxygenase activity derived from the genus Pleurotus. 1. 1. a protein encoded by the lipoxygenase gene according to the present invention described in (2) above; 2. A protein consisting of the amino acid sequence shown in SEQ ID NO: 4.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 4 is a lipoxygenase derived from Marchantia polymorpha.
  • the cyclooxygenase protein according to the present invention may be any protein as long as it exhibits substrate specificity for the above-described cyclooxygenase activity, that is, AA or EPA, and has an action of converting these into prostaglandins. More specifically, the following proteins are preferred. More preferably, it is a protein having cyclooxygenase activity derived from the genus Pleurotus. 1. 1. a protein encoded by the cyclooxygenase gene according to the present invention described in (2) above; 2. A protein consisting of the amino acid sequence shown in SEQ ID NO: 6.
  • Cyclooxygenase activity comprising an amino acid sequence in which one or several amino acids of the amino acid sequence shown in SEQ ID NO: 6 are substituted, deleted, inserted and / or added, and using arachidonic acid or eicosapentaenoic acid as a substrate Protein with Protein
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 6 is a cyclooxygenase derived from Marchantia polymorpha.
  • amino acids are substituted, deleted, inserted, and / or added.
  • / or the number of amino acids that can be added are substituted, deleted, inserted, and / or added.
  • Protein and gene acquisition method according to the present invention
  • the protein and gene acquisition method (production method) according to the present invention is not particularly limited, but the following methods are listed as representative methods. Can do.
  • the method (production method) for obtaining the protein of the present invention is not particularly limited as described above.
  • a method for simply purifying the protein from cells, tissues, etc. that express the protein of the present invention is mentioned. be able to.
  • the purification method is not particularly limited, and a cell extract may be prepared from cells or tissues by a known method, and the cell extract may be purified using a known method such as a column. Examples of the cell that expresses the protein of the present invention include the above-mentioned cells of the genus Coleoptera.
  • a method for obtaining the protein of the present invention a method using a gene recombination technique or the like can also be mentioned.
  • the gene of the present invention is incorporated into a vector or the like, it is introduced into a host cell so that it can be expressed by a known method, and the resulting transformed cell is cultured and translated into the cell.
  • a method of purifying a protein can be employed.
  • the host cell may be a plant, microorganism, or animal cell.
  • the protein of the present invention when a foreign gene is introduced into a host cell for the purpose of obtaining the protein of the present invention, there are various expression vectors and hosts incorporating a promoter that functions in the host for the expression of the foreign gene. Since it exists, what is necessary is just to select the thing according to the objective.
  • the method for purifying the protein produced in the host cell differs depending on the host used and the nature of the protein, but the protein is recovered from the host cell or its culture supernatant by a method known to those skilled in the art. Is possible.
  • the target protein can be purified relatively easily by using tags or the like.
  • the method for producing the mutant protein is not particularly limited.
  • site-directed mutagenesis Himoto et al., Gene 152, 271-275 (1995)
  • a method of introducing a point mutation into a base sequence using PCR or a transposon insertion
  • a well-known method for producing a mutant protein such as a method for producing a mutant strain by the above method, can be used.
  • a commercially available kit may be used for the production of the mutant protein.
  • the method for obtaining the protein of the present invention is not limited to the above-described method, and may be, for example, chemically synthesized.
  • the protein of the present invention may be synthesized from the gene of the present invention using a cell-free protein synthesis solution.
  • PeptideeptSynthesis Interscience, New York, 1966; The Proteins, Vol 2, Academic Press Inc., New York, 1976; Peptide Synthesis, Maruzen Co., Ltd., 1975; Peptide Synthesis Fundamentals and Experiments, Maruzen Co., Ltd. 1985 Development of pharmaceuticals, Vol. 14, peptide synthesis, Hirokawa Shoten, 1991, etc., can also be synthesized by peptide synthesis methods.
  • the method (production method) for obtaining the gene of the present invention is not particularly limited, and examples thereof include a method using differential screening (subtraction cloning). In this method, according to a known technique, direct hybridization in a test tube is repeated to concentrate the target cDNA (the gene of the present invention).
  • Each step in the above differential screening may be performed under conditions that are normally used.
  • the clone thus obtained can be analyzed in more detail by preparing a restriction enzyme map and determining its nucleotide sequence (sequencing). From these analyses, it can be easily confirmed whether a DNA fragment containing the gene sequence of the present invention has been obtained.
  • a method for isolating and cloning a DNA fragment containing the gene of the present invention by a known technique can be mentioned.
  • a probe that specifically hybridizes with a part of the base sequence of the gene of the present invention may be prepared and a genomic DNA library or cDNA library may be screened.
  • any probe of any sequence / length may be used as long as it specifically hybridizes to at least a part of the base sequence of the gene of the present invention or its complementary sequence.
  • the sequence of the probe is selected from the regions that are well conserved among the above genus, and the genomic DNA (or cDNA) library of other genus genus is screened, the above protein and Genes encoding homologous or related molecules with similar functions can be isolated and cloned.
  • examples of a method for obtaining the gene of the present invention include a method using amplification means such as PCR.
  • amplification means such as PCR.
  • primers are prepared from the 5 ′ side and 3 ′ side sequences (or their complementary sequences), and genomic DNA (or cDNA) is used as a template using these primers.
  • genomic DNA or cDNA
  • PCR PCR or the like and amplifying the DNA region sandwiched between both primers.
  • Operations such as PCR and primer preparation can be performed by a known genetic engineering technique (gene manipulation technique).
  • the gene of the present invention can also be synthesized by a DNA synthesizer.
  • the protein encoded by the gene obtained by the above method has phospholipase activity, lipoxygenase activity or cyclooxygenase.
  • the protein is produced by introducing the gene into Escherichia coli, yeast, etc., and the prepared protein fraction is used. Thus, it can be confirmed by analyzing each enzyme activity in vitro.
  • the recombinant expression vector of the present invention is used for, for example, producing the above-described proteins (phospholipase protein, lipoxygenase protein and cyclooxygenase protein) according to the present invention in a host cell, or an eicosanoid described later. It can be used for the production of plant transformants having a modified composition.
  • the recombinant expression vector of the present invention can be suitably used for the production of a transformant used in the eicosanoid production method of the present invention.
  • the recombinant expression vector according to the present invention is not particularly limited as long as it contains the phospholipase gene, lipoxygenase gene or cyclooxygenase gene according to the present invention described in (2) above.
  • a recombinant expression vector into which the cDNA of the gene according to the present invention is inserted can be mentioned.
  • these two or more genes may be contained in the same recombinant expression vector, or each may be contained in a separate recombinant expression vector.
  • the recombinant expression vector preferably further contains regulatory sequences such as a promoter necessary for the expression of the gene in order to express the gene according to the present invention in the host.
  • the recombinant expression vector may be produced using a known method.
  • the recombinant expression vector containing the gene according to the present invention usually incorporates the gene, promoter, terminator and the like according to the present invention into the multicloning site of the basic vector (in the following description, referred to as the basic vector for convenience). You can build with.
  • the specific type of basic vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected.
  • plasmids, phages, cosmids, and the like can be used as the basic vector, but are not particularly limited. That is, according to the type of host cell, a promoter sequence or the like is appropriately selected in order to reliably express the gene, and a gene obtained by incorporating this and the gene of the present invention into a basic vector such as various plasmids can be used as a recombinant expression vector. That's fine.
  • a plant cell vector described later is preferably used as a basic vector.
  • markers may be used.
  • the marker is not particularly limited, and a marker known per se may be used.
  • a gene deleted in the host cell is used as a marker, and a plasmid or the like containing this marker and the gene of the present invention is introduced into the host cell as a recombinant expression vector.
  • the introduction of the gene of the present invention can be confirmed from the expression of the marker gene.
  • marker genes include various drug resistance genes and genes that complement plant auxotrophy.
  • examples include hygromycin, neomycin resistance gene (G418 resistance), chloramphenicol resistance gene, kanamycin resistance gene, tetracycline resistance gene or herbicide chlorsulfuron resistance gene, spectinomycin resistance gene and the like. It is done.
  • the protein of the present invention may be expressed as a fusion protein.
  • a green fluorescent protein GFP Green Fluorescent Protein
  • the protein of the present invention may be expressed as a GFP fusion protein.
  • the marker is preferably a hygromycin resistance gene.
  • the host cell is not particularly limited, and various conventionally known cells can be suitably used.
  • Specific examples of host cells used for preparing the protein of the present invention include plants, animals other than humans, insects, bacteria such as Escherichia coli, yeasts (budding yeast Saccharomyces cerevisiae, fission yeast). Examples of such cells include, but are not limited to, oocytes of Schizosaccharomycesbepombe, Caenorhabditis elegans, and Xenopus laevis. As bacteria, Escherichia coli is preferable.
  • crocodile As the plant, for example, white crocodile, algae, Physcomitrella patens, and the above-mentioned genus Coleoptera are preferable, and the genus Asteraceae is more preferable.
  • Escherichia coli and yeast are preferred as host cells for preparing the protein of the present invention.
  • the recombinant expression vector of the present invention is introduced into a plant to produce a plant transformant, preferably a plant transformant having a modified eicosanoid composition
  • the plant is preferably a genus Coleoptera. That is, a preferred host cell is a cell of the order genus Coleoptera.
  • the method for introducing the above recombinant expression vector into a host cell is not particularly limited, and may be appropriately selected depending on the host.
  • conventionally known methods such as an electroporation method, a calcium phosphate method, a liposome method, a DEAE dextran method, an Agrobacterium method, and a particle gun method can be suitably used.
  • an expression system using baculovirus can be employed.
  • a transformant according to the present invention is a trait into which one or more of the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention described in (2) above is introduced. If it is a converter, it will not specifically limit. Such a transformant is capable of producing (expressing) the protein according to the present invention (phospholipase protein, lipoxygenase protein and cyclooxygenase protein). Moreover, the plant transformant obtained by introducing the gene of the present invention into a plant can be used for the production of eicosanoids as described later.
  • the “plant transformant” means not only plant cells, tissues and organs but also individual plants (plants). Preferably, it is a transformant in which the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced.
  • the plant transformant according to the present invention is a plant trait having a modified eicosanoid composition, wherein one or more of the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced so as to be expressed in a plant.
  • a converter is more preferable.
  • Such a plant transformant can be suitably used for the production of eicosanoids.
  • it is a plant transformant in which the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced into a plant so that they can be expressed.
  • Such a plant transformant having a modified eicosanoid composition can be produced, for example, by introducing a phospholipase gene, a lipoxygenase gene and a cyclooxygenase gene according to the present invention into a plant.
  • a plant transformant that is a descendant of the plant transformant having the same properties as the plant transformant, or a tissue of the plant transformant is also a preferred embodiment of the present invention.
  • a gene has been introduced so that it can be expressed means that the gene is introduced into a target cell (for example, a plant host cell) so that it can be expressed by a known genetic engineering technique (gene manipulation technique).
  • a target cell for example, a plant host cell
  • the plant may be, for example, the whole plant body or a part of the plant body, or may be a plant cell such as protoplast or callus.
  • Eicosanoids such as leukotrienes and prostaglandins can be produced by a plant transformant (transformed plant) obtained by introducing such a gene according to the present invention into a plant by a low-cost and environment-friendly production process.
  • the method for producing the transformant (production method) of the present invention is not particularly limited, and examples thereof include a method for transformation by introducing the above-described recombinant expression vector into a host cell.
  • a method for introducing the recombinant expression vector into the host cell a known method may be used, and it may be appropriately selected depending on the host.
  • the organism to be transformed is not particularly limited, and examples thereof include various microorganisms, plants, animals and the like exemplified in the host cell.
  • the host cell includes plants, animals other than humans, insects, bacteria, Yeast and the like are preferable.
  • Escherichia coli is preferable.
  • the plant for example, white crocodile, algae, Physcomitrella patens, the above-mentioned genus Coleoptera, and the like are more preferable, and C. elegans are more preferable.
  • E. coli and yeast are preferable as the host cell used for obtaining the protein according to the present invention.
  • the host plant is preferably a genus Genus.
  • Zenigoke Marchantia polymorpha
  • the recombinant expression vector used for plant transformation is not particularly limited as long as it can express the inserted gene in the plant cell.
  • a basic vector used for the production of a recombinant expression vector for example, pUC plasmids such as pUC18 and pUC19; plasmid DNA for plant host cells such as pBI221, or pWTT23132 (manufactured by DNAP), Gateway (manufactured by Invitrogen)
  • a vector for plant cells such as a binary vector such as PCS31 vector (for chloroplast) is preferred.
  • a recombinant expression vector having a promoter that constantly expresses a gene in a plant cell for example, the 35S promoter of the cauliflower mosaic virus described above
  • a recombinant expression vector having a promoter can be used.
  • the plant cells into which the recombinant expression vector is introduced include various types of plant cells, such as suspension culture cells, protoplasts, leaf sections, and callus.
  • the gene of the present invention may be introduced into intracellular organelles other than the nucleus such as chloroplasts in plant cells by a recombinant expression vector.
  • Any promoter may be used as long as it can be expressed in plant cells as a promoter for expressing the gene according to the present invention contained in the recombinant expression vector in plant cells.
  • a plant-derived promoter such as the cauliflower mosaic virus 35S promoter, rd29A gene promoter, or rbcS promoter; or a cauliflower mosaic virus 35S promoter enhancer sequence added to the 5 ′ side of the Agrobacterium-derived mannopine synthase promoter sequence.
  • a constitutive promoter such as -1 promoter is preferred.
  • an artificially designed and modified promoter such as a tac promoter may be used.
  • Various promoters derived from plant genes can also be used.
  • a constitutive promoter is preferably used because the gene involved in biosynthesis of the introduced eicosanoid is preferably constitutively expressed in plants, and the cauliflower mosaic virus 35S promoter and the like are more preferable.
  • the terminator can be appropriately selected depending on the gene to be introduced, and examples thereof include AG7 terminator, NOS terminator, 35S terminator, rps16 terminator, CaMV35S terminator and the like.
  • a polyethylene glycol method For introduction of a recombinant expression vector into a plant cell, a polyethylene glycol method, an electroporation method (electroporation method), an Agrobacterium-mediated method (for example, Heiei, Y. et al., Plant J., 6, 271-282, 1994, Takaiwa, F., et al., Plant Sci. 111, 39-49, 1995), and various methods known to those skilled in the art, such as a particle gun method. Regeneration of a plant body from a transformed cell can be performed by a method known to those skilled in the art depending on the type of plant cell.
  • the present invention includes a plant transformant into which the gene of the present invention has been introduced, a plant transformant that is a descendant of the plant transformant having the same properties as the plant transformant, and the plant trait This includes the organization of converters.
  • the present invention also includes a propagation material obtained from the plant transformant or the tissue of the plant transformant.
  • a method for obtaining a propagation material from the plant transformant or the tissue of the plant transformant a known method can be used. There are no particular restrictions on the method for growing or growing a plant or plant tissue into which a gene has been introduced by the above recombinant expression vector, the method for regenerating a plant from plant cells, the method for cultivating, etc. The conditions according to the above can be used as appropriate.
  • a plant transformant having a modified eicosanoid composition the plant transformant having the same properties as the plant transformant, wherein the gene according to the present invention is introduced so that it can be expressed in the plant, and the plant transformant serving as a descendant of the plant transformant
  • the plant, the tissue of the plant transformant, and the propagation material obtained from the plant transformant or the tissue of the plant transformant are also included in the present invention.
  • “The eicosanoid composition has been altered” means that the eicosanoid composition in the plant before transformation is different from the eicosanoid composition in the plant transformant or its tissue after transformation. For example, (1) a plant that originally did not contain leukotriene, prostaglandin, etc.
  • the eicosanoid composition of the plant transformant produced was leukotriene, prostaglandin.
  • the eicosanoid composition of the plant transformant produced was leukotriene, prostaglandin.
  • the content of leukotriene, prostaglandin, etc. in the eicosanoid composition is increased as compared with that before transformation, and the like can be mentioned.
  • a plant transformant transformed with the gene of the present invention preferably a plant transformant having a modified eicosanoid composition
  • a tissue of the plant transformant is used.
  • Methods for producing eicosanoids for example, as described above, the plant transformant according to the present invention having an increased content of leukotrienes, prostaglandins and the like has a high content of leukotrienes and prostaglandins, and is highly valuable as a raw material having high pharmaceutical and pharmacological activity. .
  • Such plant transformants are also useful as raw materials for animal drugs, functional foods, feeds, and the like.
  • the eicosanoid is efficiently produced in the cells of the plant body or the tissue as the plant body or the tissue grows or grows.
  • the produced eicosanoid accumulates in the cells of the plant transformant or its tissue.
  • the method for producing an eicosanoid using a plant transformant or a tissue of the plant transformant may include a step of growing or growing the plant transformant or the tissue (preferably by asexual reproduction (vegetative reproduction)). preferable.
  • the plant transformant or tissue thereof may be appropriately cultivated or cultured.
  • the conditions and time for growing or growing (cultivating or cultivating) the plant transformant or its tissue may be appropriately selected depending on the type of plant.
  • asexual reproduction (vegetative reproduction) as the breeding form of the genus Coleoptera. That is, for the genus Coleoptera, it is preferable to grow or grow the transformant or the tissue thereof by asexual reproduction (vegetative reproduction) because the growth speed is high and mass production is possible even as a plant factory system.
  • a well-known method can be used about the plant cultivation floor and the plant cultivation method. Further, for example, the method described in Japanese Patent Application No.
  • a transformant in which the gene of the present invention has been introduced into a cell of the genus Coleoptera is usually cultured for 20 to 49 days, preferably 31 to 49 days to proliferate the eicosanoid into the cell. accumulate.
  • the culture or cultivation temperature is usually about 20 to 30 ° C., preferably about 25 to 30 ° C.
  • the plant transformant produced by producing the eicosanoid according to the present invention or the tissue thereof can be used as it is as a material containing eicosanoid as it is for a pharmaceutical, food, veterinary medicine, feed, etc.
  • a step of purifying the produced eicosanoid from the tissue may be included.
  • the method for purifying eicosanoid is not particularly limited, and can usually be performed by a high-pressure high-temperature steam distillation method.
  • the present invention includes a material obtained by the above-described eicosanoid production method, that is, a material containing at least one of leukotriene and prostaglandin.
  • This “raw material” means all materials that can be used for the above-mentioned pharmaceutical raw materials, food raw materials, veterinary pharmaceutical raw materials, feeds, and the like.
  • the eicosanoids of the above materials have unique physical properties that have multiple double bonds in the molecule. Therefore, it is currently synthesized by total chemical synthesis using lactone as a raw material. For this reason, for example, the production cost of these eicosanoids can be reduced by producing leukotrienes and prostaglandins with the transformed plant of the present invention. In addition, the present invention can realize an eco-friendly eicosanoid production process.
  • Examples of the eicosanoids produced by the present invention include eicosanoids produced from arachidonic acid, such as leukotrienes (LT) such as LTA4; prostaglandin G 2 (PGG 2 ), prostaglandin H 2 (PGH 2 ), prosta Examples include prostaglandins (PG) such as glandin F (PGF2 ⁇ ).
  • Examples of eicosanoids produced from eicosapentaenoic acid include leukotrienes such as LTA5; prostaglandins such as prostaglandin G 3 (PGG 3 ) and prostaglandin H 3 (PGH 3 ).
  • the method of the present invention is applicable to leukotrienes (LT) such as leukotriene LTA5; prostaglandin H 2 (PGH 2 ), prostaglandin G 3 (PGG 3 ), prostaglandin H 3 (PGH 3 ), and prostaglandin F.
  • LT leukotrienes
  • PGW prostaglandin G 3
  • PGW 3 prostaglandin H 3
  • PHF prostaglandin F
  • PG prostaglandins
  • PPF2 ⁇ prostaglandins
  • the present invention includes a method of modifying the eicosanoid composition of a host using the gene according to the present invention.
  • the eicosanoid composition of the host cell can be altered by preparing a transformant into which the gene according to the present invention has been introduced.
  • the target for modifying the eicosanoid composition is not particularly limited, and it is possible to target any organism other than plants, such as animals, bacteria, and yeasts.
  • a method for modifying the eicosanoid composition of a plant or its tissue including the step of introducing the gene according to the present invention described above into the plant is also one aspect of the present invention.
  • the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced into a plant.
  • the above-mentioned genus Coleoptera is preferable, and among them, the genus Marchantia polymorpha is more preferable.
  • the gene detection instrument according to the present invention uses at least a partial base sequence of the gene according to the present invention or a complementary sequence thereof as a probe.
  • the gene detection instrument can be used for detection and measurement of the expression pattern of the gene of the present invention under various conditions.
  • Examples of the gene detection instrument of the present invention include a DNA chip in which the probe that specifically hybridizes with the gene of the present invention is immobilized on a substrate (carrier).
  • the “DNA chip” mainly means a synthetic DNA chip using a synthesized oligonucleotide as a probe, but also includes an affixed DNA microarray using a cDNA such as a PCR product as a probe.
  • the sequence used as a probe can be determined by a conventionally known method for specifying a characteristic sequence from a cDNA sequence. Specifically, for example, SAGE: Serial Analysis of (Gene Expression method (Science 276: 1268, 1997; Cel1 88: 243, 1997; Science 270: 484,1995; Nature 389: 300,1997; US Patent No. 5,695,937) Etc.
  • oligonucleotide when used as an oligonucleotide, the oligonucleotide may be synthesized on a substrate by a combination of a photolithography technique and a solid phase DNA synthesis technique.
  • cDNA when used as the oligonucleotide, it may be attached to the substrate using an array machine.
  • a perfect match probe oligonucleotide
  • a mismatch probe in which one base is substituted in the perfect match probe may be arranged to further improve gene detection accuracy.
  • a plurality of types of oligonucleotides may be fixed on the same substrate to constitute a DNA chip.
  • the gene detection instrument according to the present invention is not limited to the above-described DNA chip, and may be any one that uses at least a partial base sequence of the gene according to the present invention or a complementary sequence thereof as a probe.
  • a kit containing at least a partial base sequence of the gene according to the present invention or a complementary sequence thereof is also included.
  • the antibody according to the present invention is preferably an antibody obtained as a polyclonal antibody or a monoclonal antibody by a known method using the protein according to the present invention, or a partial protein or partial peptide thereof as an antigen.
  • Known methods include, for example, literature (Harlow et al. “Antibodies: A laboratory manual” (Cold Spring Harbor Laboratory, New York (1988)), Iwasaki et al. “Monoclonal antibody hybridoma and ELISA, Kodansha (1991)”). The method of description is mentioned.
  • the antibody thus obtained can be used for detection and measurement of the protein of the present invention.
  • the screening method according to the present invention is a method for screening a gene that regulates the protein or a substance that regulates the protein, using the protein according to the present invention.
  • various conventionally known methods for examining the presence or absence of binding or dissociation between substances can be applied and are not particularly limited.
  • screening for substances that promote or inhibit the activity of the protein according to the present invention (the above-mentioned phospholipase activity, lipoxygenase activity, or cyclooxygenase activity) can be mentioned.
  • the present invention also includes genes or substances obtained by the above screening methods.
  • animal-derived eicosanoid biosynthetic genes One or more of the above-described phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention, or instead of these genes, an animal-derived phospholipase A2 gene Plant transformants produced by introducing one or more of animal-derived lipoxygenase genes and animal-derived cyclooxygenase genes into plants can also be suitably used for the production of eicosanoids.
  • the animal-derived phospholipase A2 gene, lipoxygenase gene and cyclooxygenase gene are also simply referred to as “animal-derived eicosanoid biosynthesis genes”.
  • an animal-derived eicosanoid biosynthetic gene When an animal-derived eicosanoid biosynthetic gene is introduced into a plant, an animal-derived eicosanoid biosynthetic system is used instead of the phospholipase gene, lipoxygenase gene and cyclooxygenase gene of the present invention in the above-described method for producing a plant transformant.
  • a gene may be used, and the transformation method and preferred embodiments thereof are the same as those described above.
  • Animal-derived eicosanoid biosynthetic genes are usually introduced into plants using a recombinant expression vector obtained by inserting the gene into a plant cell vector.
  • a recombinant expression vector obtained by inserting an animal-derived phospholipase A2 gene, lipoxygenase gene, or cyclooxygenase gene into a plant cell vector is one of the preferred embodiments of the present invention.
  • a method for producing a recombinant expression vector containing such an animal-derived eicosanoid biosynthetic gene is not particularly limited. Similarly to the above-described method for producing a recombinant expression vector containing a gene according to the present invention, a known method can be used.
  • a plant cell vector is used as a basic vector, and a recombinant expression vector can be constructed by incorporating an animal-derived eicosanoid biosynthesis gene, promoter, terminator, and the like into the multicloning site of the basic vector.
  • a recombinant expression vector containing an eicosanoid biosynthetic gene derived from animals plant cell vectors used as basic vectors, promoters and terminators that can be expressed in plant cells are the same as those described above. Two or more of these animal-derived phospholipase A2 gene, lipoxygenase gene and cyclooxygenase gene may be contained in the same vector, or may be contained in different vectors.
  • the animal-derived phospholipase A2 gene may be any gene that is an animal-derived gene and encodes the above-described protein having phospholipase activity.
  • an animal-derived phospholipase A2 gene a mouse-derived phospholipase A2 gene (Cell 65, p1043, 1991) is preferable.
  • the animal-derived lipoxygenase gene may be any gene that is an animal-derived gene and encodes the above-described protein having lipoxygenase activity.
  • a mouse-derived 5-lipoxygenase gene J. Biol. Chem. 270, p17993, 1995 is preferable.
  • the animal-derived cyclooxygenase gene may be any gene that is an animal-derived gene and encodes the above-described protein having cyclooxygenase activity.
  • a zebrafish-derived cyclooxygenase gene (Biochem. Biophys. Res. Commun. 352, p181, 2007) is preferable.
  • a recombinant expression vector obtained by inserting the above mouse-derived phospholipase A2 gene, mouse-derived 5-lipoxygenase gene, or zebrafish-derived cyclooxygenase gene into a plant cell vector is also one aspect of the present invention.
  • a plant transformant can be obtained by introducing one or more of phospholipase A2 gene, 5-lipoxygenase gene and cyclooxygenase gene derived from animals into a plant.
  • a plant transformant obtained by introducing at least one or more of the mouse-derived phospholipase A2 gene, mouse-derived 5-lipoxygenase gene or zebrafish-derived cyclooxygenase gene into a plant is a preferred embodiment of the present invention.
  • it is a plant transformant obtained by introducing a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene into a plant. Since such a plant transformant also produces eicosanoid and accumulates it in the cell, it can be suitably used for the production of eicosanoid.
  • the above-mentioned genus Coleoptera is preferable.
  • the plant transformation method and the like are the same as those described above.
  • a plant transformant having a modified eicosanoid composition in which one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene are introduced so as to be expressed in a plant, This is one of the preferred embodiments of the invention.
  • tissue of this plant transformant is also preferable as a plant transformant of this invention.
  • the present invention includes a plant transformant obtained by introducing the above-described animal-derived eicosanoid biosynthesis gene into a plant, and a plant that is a descendant of the plant transformant having the same properties as the plant transformant.
  • the transformant and the tissue of the plant transformant are also included.
  • the present invention also includes a propagation material obtained from the plant transformant or the tissue of the plant transformant.
  • a method for obtaining a propagation material from the plant transformant or the tissue of the plant transformant a known method can be used in the same manner as described above.
  • the method for growing or growing a plant or plant tissue introduced with the eicosanoid biosynthetic gene derived from the animal, the method for regenerating a plant from plant cells, the method for cultivating, etc. is not particularly limited. Conditions according to the type and the like can be used as appropriate.
  • the present invention also includes a method for producing eicosanoid using a plant transformant transformed with an eicosanoid biosynthesis gene derived from an animal or a tissue thereof.
  • a plant transformant according to the present invention having an increased leukotriene or prostaglandin content has a high leukotriene or prostaglandin content, and is highly valuable as a raw material having high pharmaceutical and pharmacological activity.
  • Such plant transformants are also useful as raw materials for animal drugs, functional foods, feeds, and the like.
  • eicosanoid In the production of an eicosanoid using a plant transformant or a tissue thereof, eicosanoid is efficiently produced in the cells of the plant body or the tissue as the plant body or the tissue grows or grows.
  • the produced eicosanoid accumulates in the cells of the plant transformant or its tissue.
  • the method for producing an eicosanoid using a plant transformant or a tissue of the plant transformant may include a step of growing or growing the plant transformant or the tissue (preferably by asexual reproduction (vegetative reproduction)). preferable.
  • the plant transformant or tissue thereof may be appropriately cultivated or cultured.
  • the conditions and time for growing or growing (cultivating or cultivating) the plant transformant or its tissue may be appropriately selected depending on the type of plant.
  • asexual reproduction vegetable reproduction
  • the plant transformant produced by producing the eicosanoid according to the present invention or the tissue thereof can be used as it is as a material containing eicosanoid as it is for a pharmaceutical, food, veterinary medicine, feed, etc.
  • a step of purifying the produced eicosanoid from the tissue may be included.
  • the eicosanoid purification method is not particularly limited, and can be performed by the above-described known methods.
  • the present invention includes a material obtained by the above-described eicosanoid production method, that is, a material containing at least one of leukotriene and prostaglandin.
  • This “raw material” means the same general materials as those described above, which can be used for the above-mentioned pharmaceutical raw material use, food raw material use, veterinary pharmaceutical raw material use, feed use and the like.
  • an eicosanoid biosynthetic gene derived from an animal preferably a phospholipase A2 gene derived from a mouse, a 5-lipoxygenase gene derived from a mouse and a cyclooxygenase gene derived from a zebrafish or 2 or more
  • an animal preferably a phospholipase A2 gene derived from a mouse, a 5-lipoxygenase gene derived from a mouse and a cyclooxygenase gene derived from a zebrafish or 2 or more
  • modify the eicosanoid composition of the host by preparing a transformant into which an animal-derived eicosanoid biosynthesis gene is introduced as described above.
  • the target for modifying the eicosanoid composition is not particularly limited, and it is possible to target any organism other than plants, such as animals, bacteria, and yeasts.
  • a method for modifying the eicosanoid composition of a plant or tissue thereof comprising the step of introducing one or more of the mouse-derived phospholipase A2 gene, mouse-derived 5-lipoxygenase gene and zebrafish-derived cyclooxygenase gene into the plant, It is one of the inventions.
  • the above-mentioned genus Coleoptera is preferable.
  • the screening method according to the present invention uses a protein encoded by the above-described animal-derived eicosanoid biosynthesis gene to screen for a gene that regulates the protein or a substance that regulates the protein.
  • the method is also one aspect of the present invention.
  • the screening method of the present invention is the same as the screening method described above, except that a protein encoded by an eicosanoid biosynthesis gene derived from an animal is used instead of the protein according to the present invention described above.
  • the present invention also includes genes or substances obtained by the above screening methods.
  • Example 1 Isolation of phospholipase gene derived from genus Amanita
  • a clone showing homology with an animal phospholipase was found from the genus moss EST library. It was found that the amino acid sequences Leu-Gly-Arg-Arg-Asp (SEQ ID NO: 7) and Thr-Gly-His-Ser-Leu-Gly (SEQ ID NO: 8) were conserved. Therefore, in order to isolate the phospholipase gene derived from genus Amanita, the following primers encoding the above amino acid sequences were used.
  • PLA1F 5'-CTCGGCCGACGAGAC-3 '(SEQ ID NO: 9)
  • PLA1R 5'-GCCCAAGCTGTGCCCCGT-3 '(SEQ ID NO: 10)
  • RNA extraction kit “RNeasy Plant Mini Mini kit” (manufactured by QIAGEN).
  • the isolated total RNA 5 ⁇ g was reverse transcribed into cDNA using ReverTra Ace (TOYOBO).
  • TOYOBO ReverTra Ace
  • PCR was performed by the method recommended by the manufacturer using the above primers (PLA1F and PLA1R) and 0.5 U of enzyme (Takara Ex Taq, Takara).
  • the reaction volume was 20 ⁇ L, and the reaction was repeated 25 times using a PCR-Thermal-Cycler-Dice (Takara), held at 95 ° C. for 2 minutes, then 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 1 minute. Then, it was cooled to 4 ° C.
  • the obtained PCR product was electrophoresed on a 0.7% (w / v) agarose gel, and the amplified fragment having the size expected from the base sequence of phospholipase was recovered from the gel using Gel Extraction kit (QIAGEN). did.
  • the recovered amplified fragment was ligated to pGEM-Teasy (Promega) and transformed into competent E. coli DH5 ⁇ .
  • 5 ′ and 3′-RACE® PCR uses 1 ⁇ L of the above cDNA as a template, the above primers (3′RACE (PLA1) and 5′RACE (PLA1)) and enzyme (Takara® Ex® Taq, manufactured by Takara) 0.5 U. And performed as recommended by the manufacturer.
  • the reaction volume is 20 ⁇ L, and the PCR-Thermal-Cycler-Dice (manufactured by Takara) is used and kept at 95 ° C. for 2 minutes. Then, it was cooled to 4 ° C.
  • the obtained DNA fragment was subcloned, the base sequence was determined, and the full-length cDNA sequence was obtained.
  • SEQ ID NO: 1 a phospholipase gene of Xenopus. This clone encoded 565 amino acids as shown in SEQ ID NO: 2.
  • the coding region of the base sequence shown in SEQ ID NO: 1 was the 394th to 2091th base sequence.
  • a clone having a length encoding the amino acid sequence represented by SEQ ID NO: 2 was used in the following examples.
  • Example 2 Isolation of Lipoxygenase Gene Derived from Agaricus
  • a clone showing homology with the lipoxygenase of animals was found from the Agaricus EST library. It was found that the amino acid sequences Pro-Ile-Ala-Ile-Glu-Leu (SEQ ID NO: 13) and Asn-Phe-Gly-Gln-Tyr (SEQ ID NO: 14) were conserved. Therefore, the following primers encoding the above amino acid sequences were used in order to isolate the genus Lipoxygenase gene.
  • LOX-F1 5'-CCCATCGCCA TTGAGCTC-3 '(SEQ ID NO: 15)
  • LOX-R1 5'-GTACTGGCCA AAGTT-3 '(SEQ ID NO: 16)
  • the MpLOX gene is DNA consisting of the 127th to 2994th base sequences in the base sequence shown in SEQ ID NO: 3.
  • the length of the isolated MpLOX gene cDNA (excluding the poly A portion) was 3,224 bp, and the deduced amino acid sequence encoded was 955 residues.
  • the nucleotide sequence of the MpLOX gene cDNA is shown in SEQ ID NO: 3, and the deduced amino acid sequence is shown in SEQ ID NO: 4, respectively.
  • MpCOX gene As a result, one type of homologous gene candidate was isolated, and this gene was designated as the MpCOX gene.
  • the length of the MpCOX gene cDNA (excluding the poly A portion) was 2464 bp, and the deduced amino acid sequence was 610 residues.
  • the nucleotide sequence is shown in SEQ ID NO: 5, and the deduced amino acid sequence is shown in SEQ ID NO: 6.
  • Example 4 Construction of a vector to be introduced into the genus Amanita and introduction of the vector into the genus Amanita, a phospholipase gene derived from the genus Amanita, obtained in Example 1,
  • a phospholipase gene derived from the genus Amanita obtained in Example 1
  • an expression construct was prepared by the following procedure. Further, this production procedure is shown in FIG.
  • FIG. 2 (A) shows a method for preparing a vector (plasmid pBin-Hyg-TX-MpPLA) for expressing the phospholipase gene (MpPLA) derived from the genus Coleoptera in Amanita.
  • FIG. 2 (B) shows a method for producing a vector (plasmid pBin-Hyg-TX-MpLOX) for expressing the repolicigenase gene (MpLOX) derived from the genus Coleoptera in Amanita.
  • FIG. 2 (A) shows a method for preparing a vector (plasmid pBin-Hyg-TX-MpPLA) for expressing the phospholipase gene (MpPLA) derived from the genus Coleoptera in Amanita.
  • FIG. 2 (B) shows a method for producing a vector (plasmid pBin-Hyg-TX-MpLOX) for
  • FIG. 2 (C) shows a method for preparing a vector (plasmid pBin-Hyg-TX-MpCOX) for expressing the cyclooxygenase gene (MpCOX) derived from the genus Coleoptera in Amanita.
  • the SmaI restriction enzyme between the cauliflower mosaic virus (CaMV) 35S promoter of pBIN-HYG-TX (Plant J., 2, p397, 1992) and the OCS terminator Cleavage site, XbaI restriction enzyme cleavage site (SmaI-Xbal cleavage site) contains SmaI-XbaI fragment of cDNA containing ORF of phospholipase gene derived from genus Lepidoptera, ORF of lipoxygenase gene (MpLOX gene) derived from genus Lepidoptera
  • MpLOX gene lipoxygenase gene
  • PrimeSTAR DNA polymerase manufactured by Takara
  • 0.5U was used and maintained at 95 ° C for 2 minutes, then at 95 ° C for 30 seconds, at 55 ° C for 30 seconds, and at 72 ° C for 2 minutes.
  • the reaction was repeated 30 times and then cooled to 4 ° C.
  • the obtained DNA fragment was subcloned, the base sequence was determined, and it was confirmed that there was no mistake.
  • the obtained plasmid was treated with the above restriction enzymes and ligated to the pBIN-HYG-TX vector cut with the same restriction enzymes. This was transformed into E. coli DH5 ⁇ . Plasmid DNA (transformation vector) was isolated from the obtained colonies. Agrobacterium C58rifR was transformed.
  • FIG. 3A is a schematic diagram showing the structure of the plasmid pBin-Hyg-TX-MpPLA.
  • FIG. 3B is a schematic diagram showing the structure of the plasmid pBin-Hyg-TX-MpLOX.
  • FIG. 3C is a schematic diagram showing the structure of the plasmid pBin-Hyg-TX-MpCOX.
  • LB represents a left boundary array.
  • RB represents the right boundary array.
  • CaMV p35S represents the cauliflower mosaic virus (CaMV) 35S promoter.
  • tOCS represents the OCS gene terminator.
  • pNOS represents the NOS gene promoter.
  • HPT II represents the hygromycin resistance gene.
  • tAG7 represents an Ag7 gene terminator.
  • the above-mentioned three kinds of constructs (transformation vectors) thus obtained are introduced into Xenoke by the Agrobacterium method by a known method (Plant Cell Rep. 27, p1467, 2008), and transformed Xenoke Acquired. Eicosanoids can be produced by proliferating or growing the transformed genus moss.
  • Example 5 Construction of a vector for introducing a mouse-derived phospholipase gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene into the moss and introduction of the vector into the moss.
  • the phospholipase A2 gene derived from the mouse Cell 65 , p1043, 1991
  • 5-lipoxygenase gene from mouse J. Biol. Chem. 270, p17993, 1995
  • cyclooxygenase gene from zebrafish Biochem. Biophys. Res. Commun. 352, p181, 2007
  • FIG. 4 (A) shows a method for preparing a vector (plasmid pGWB2-mPLA2) for expressing mouse-derived phospholipase A2 gene (mPLA2) in the moss.
  • FIG. 4 (B) shows a method for preparing a vector (plasmid pGWB2-mLOX) for expressing the mouse-derived 5-lipoxygenase gene (mLOX) in Amanita.
  • FIG. 4 (C) shows a method for producing a vector (plasmid pGWB2-zCOX) for expressing the zebrafish-derived cyclooxygenase gene (zCOX) in the mushroom.
  • a mouse-derived phospholipase A2 gene is placed at the EcoRI restriction enzyme cleavage site and the XhoI cleavage site (EcoRI-XhoI cleavage site) between homologous recombination sequences of pENTR (manufactured by Invitrogen).
  • the EcoRI-XhoI fragment of the mouse 5-lipoxygenase gene and the zebrafish cyclooxygenase gene cDNA (ORF) were ligated.
  • ORF cyclooxygenase gene cDNA
  • mPLA2 mouse-derived phospholipase A2 gene
  • mPLA-1FE 5'-GGGCCCGAATTCAATGTCTTTCATAGATCCTTATCAG-3 '(SEQ ID NO: 31)
  • mPLA-1RX 5'-AACGGG CTCGAG TACACAGTGGGTTTACTTAGAA-3 '(SEQ ID NO : 32)
  • mLOX-1FE 5'-AAATCC GAATTC CATGCCCTCCTACACGGTCAC-3 '(SEQ ID NO: 33)
  • mLOX-1RX 5'-AAGGAA CTCGAG ATGGCTACGCTGTTGGGAA-3 '(SEQ ID NO : 34)
  • zCOX-1FE 5'-ACACGC GAATTC AATGAAAAGTTCAGTATTATTTAT-3 '(SEQ ID NO: 35)
  • zCOX-1RX 5'-AGTGTA CTCGAG AGCTCAGATGTCCTTTC-3 '(SEQ ID NO : 36)
  • PrimeSTAR DNA polymerase manufactured by Takara
  • 0.5U was used and maintained at 95 ° C for 2 minutes, then at 95 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 2 minutes.
  • the reaction was repeated 30 times and then cooled to 4 ° C.
  • the obtained fragment was treated with restriction enzymes (EcoRI and XhoI) and ligated to the pENTR vector cut with the same enzymes.
  • the obtained plasmid was transformed into E. coli DB3.1, plasmid DNA was isolated from the obtained colony, the base sequence was determined, and it was confirmed that there was no mistake.
  • LR recombination reaction recombination reaction
  • CaMV cauliflower mosaic virus
  • FIGS. 5 (A) to (C) The structure of the transformation vector obtained above is schematically shown in FIGS. 5 (A) to (C).
  • FIG. 5 (A) is a schematic diagram showing the structure of plasmid pGWB2-mPLA2.
  • FIG. 5 (B) is a schematic diagram showing the structure of plasmid pGWB2-mLOX.
  • FIG. 5 (C) is a schematic diagram showing the structure of plasmid pGWB2-zCOX.
  • LB represents a left boundary array.
  • RB represents the right boundary array.
  • CaMV p35S represents the cauliflower mosaic virus (CaMV) 35S promoter.
  • tNOS represents the NOS gene terminator.
  • p35S represents the cauliflower mosaic virus (CaMV) 35S promoter.
  • HPT II represents the hygromycin resistance gene.
  • the above-described construct thus obtained was introduced into Xenoke by the Agrobacterium method by a known method (Plant Cell Rep. 27, p1467, 2008), and transformed Xenoke was obtained.
  • Eicosanoids can be produced by proliferating or growing the transformed genus moss.
  • the gene and protein of the present invention are useful for eicosanoid production.
  • the plant transformant introduced so that the gene of the present invention can be expressed is extremely useful for supplying raw materials such as drugs and reagents in producing eicosanoids in the pharmaceutical industry and various material industries.
  • the content of eicosanoids in the plant body increases, so such a plant transformant is very useful in the pharmaceutical field and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A process for producing an eicosanoid, which is characterized by comprising a step of proliferating or growing a transgenic plant or a tissue thereof, wherein the transgenic plant is produced by introducing at least one gene selected from a phospholipase gene, a lipoxygenase gene and a cyclooxygenase gene into a plant in such a manner that the gene can be expressed in the plant.

Description

エイコサノイド生産方法、並びにゼニゴケ由来のエイコサノイド生合成系遺伝子及びその利用Eicosanoid production method, eicosanoid biosynthetic gene derived from genus genus and use thereof
 本発明はゼニゴケ(Marchantia polymorpha)由来のエイコサノイド(プロスタグランジン(PG)、トロンボキサン(TX)、ロイコトリエン(LT)、及びリポキシン(LX))生合成に関わる遺伝子、すなわち、ホスホリパーゼ、リポキシゲナーゼ及びシクロオキシゲナーゼの遺伝子とその利用に関するものである。本発明はまた、植物によるエイコサノイド生産方法に関するものである。 The present invention relates to the genes involved in biosynthesis of eicosanoids (Prostaglandin (PG), thromboxane (TX), leukotriene (LT), and lipoxin (LX)) derived from Marchantia polymorpha, ie, phospholipase, lipoxygenase and cyclooxygenase. It relates to genes and their use. The present invention also relates to a method for producing eicosanoids by plants.
 エイコサノイドのプロスタグランジン類には、末梢血管拡張作用、血小板凝集抑制作用、細胞保護作用、血管新生作用などがあり、いわゆるリポPG剤としてこれらの治療剤として用いられている。エイコサノイドの一種であるロイコトリエン類は、白血球の活性化因子、炎症部位への走化性、好中球からのリソソーム酵素分泌、活性酸素産生促進作用、血管内皮細胞への好中球の接着促進作用などの作用を示す。ホスホリパーゼ(PL)は、生体膜を構成するグリセロリン脂質のエステル結合を加水分解する酵素で、受容体を介する様々な刺激により活性化されその情報を脂質メディエーターの産生を介して伝達する情報交換酵素として機能する。 Eicosanoid prostaglandins have peripheral vasodilatory action, platelet aggregation inhibitory action, cytoprotective action, angiogenic action, etc., and are used as these therapeutic agents as so-called lipoPG agents. Leukotrienes, a kind of eicosanoid, are leukocyte activators, chemotaxis to inflammatory sites, lysosomal enzyme secretion from neutrophils, active oxygen production promoting action, neutrophil adhesion to vascular endothelial cells It shows the action. Phospholipase (PL) is an enzyme that hydrolyzes the ester bonds of glycerophospholipids that make up biological membranes, and is an information exchange enzyme that is activated by various stimuli through the receptor and transmits its information through the production of lipid mediators. Function.
 アラキドン酸(以下、「AA」と略記することもある)、エイコサペンタエン酸(以下、「EPA」と略記することもある)などの高度不飽和脂肪酸は、ヒト等において神経系を中心として細胞膜脂質に多く含まれている。これら高度不飽和脂肪酸から、ホスホリパーゼ、リポキシゲナーゼ、及びシクロオキシゲナーゼの反応により、プロスタグランジン、ロイコトリエン等の薬理学的に非常に重要な生理活性物質が生合成されている。これら生合成代謝経路は、アラキドン酸カスケードと呼ばれている。 Polyunsaturated fatty acids such as arachidonic acid (hereinafter sometimes abbreviated as “AA”) and eicosapentaenoic acid (hereinafter sometimes abbreviated as “EPA”) are lipids in the cell membrane mainly in the nervous system in humans and the like. Is included in many. From these highly unsaturated fatty acids, pharmacologically important physiologically active substances such as prostaglandins and leukotrienes are biosynthesized by the reaction of phospholipase, lipoxygenase, and cyclooxygenase. These biosynthetic metabolic pathways are called arachidonic acid cascades.
 このように、生理活性物質であるプロスタグランジン(PG)、トロンボキサン(TX)、ロイコトリエン(LT)、リポキシン(LX)等のエイコサノイドが、動物細胞で生合成されていることは、報告されている。血液中のプロスタグランジンが定量分析用に調製されている(特許文献1)。 Thus, it has been reported that eicosanoids such as prostaglandins (PG), thromboxane (TX), leukotriene (LT), and lipoxin (LX), which are physiologically active substances, are biosynthesized in animal cells. Yes. Prostaglandins in blood are prepared for quantitative analysis (Patent Document 1).
 現在、エイコサノイドは、化学合成法により、ラクトンから全化学合成により生産されている。このため生産コストが高いという問題点が挙げられる。エイコサノイドは、例えばヒトの生体内では、AA又はEPAより、ホスホリパーゼ、リポキシゲナーゼ、及びシクロオキシゲナーゼの反応により生合成されると考えられている。これらの反応では、まずホスホリパーゼによりAA又はEPAが細胞膜脂質より細胞内に遊離され、該AA又はEPAがシクロオキシゲナーゼにより2分子の酸素により酸化され、プロスタグランジン及びトロンボキサンに変換される。一方、細胞膜から遊離したAA又はEPAがリポキシゲナーゼにより1分子の酸素により酸化され、ロイコトリエン及びリポキシンに変換される。 Currently, eicosanoids are produced by total chemical synthesis from lactones by chemical synthesis methods. This raises the problem of high production costs. Eicosanoids are considered to be biosynthesized by reaction of phospholipase, lipoxygenase, and cyclooxygenase from AA or EPA, for example, in the human body. In these reactions, AA or EPA is first released from cell membrane lipids into cells by phospholipase, and the AA or EPA is oxidized by two molecules of oxygen by cyclooxygenase and converted into prostaglandins and thromboxanes. On the other hand, AA or EPA released from the cell membrane is oxidized by one molecule of oxygen by lipoxygenase and converted into leukotriene and lipoxin.
 ホスホリパーゼA1遺伝子は、いくつかの植物種でクローニングされている。例えば、シロイヌナズナ(非特許文献1)、及びペッパー(非特許文献2)由来のホスホリパーゼ遺伝子が報告されている。AA又はEPAの細胞膜からの遊離に関わる植物由来のホスホリパーゼA2は、報告されていない。 The phospholipase A1 gene has been cloned in several plant species. For example, phospholipase genes derived from Arabidopsis (Non-patent Document 1) and pepper (Non-patent Document 2) have been reported. A plant-derived phospholipase A2 involved in the release of AA or EPA from the cell membrane has not been reported.
 リポキシゲナーゼ遺伝子は、いくつかの植物種からクローニングされている。例えば、シロイヌナズナ(非特許文献3)、ヒメツリガネゴケ(非特許文献4)、及びポテト(非特許文献5)由来のリポキシゲナーゼ遺伝子が報告されている。シクロオキシゲナーゼ遺伝子は、植物からはクローニングされていない。 The lipoxygenase gene has been cloned from several plant species. For example, a lipoxygenase gene derived from Arabidopsis thaliana (Non-patent Document 3), Physcomitrella patens (Non-patent Document 4), and potato (Non-patent Document 5) has been reported. The cyclooxygenase gene has not been cloned from plants.
 陸上植物は、コケ植物(コケ植物門(Bryophyte))、シダ植物、裸子植物及び被子植物から構成されている。コケ植物は陸上植物の中でもっとも古くに分岐した群であり、セン類、タイ類、及びツノゴケ類の3つのグループから構成されている。ゼニゴケは、上記生物のうち最初に陸上に生息したと言われている(非特許文献6)。オニオン、ポプラ、カラマツ、マツヨイグサ、アサガオ、ベンケイソウ及びある種のタイ類でプロスタグランジン又はプロスタグランジン様物質の存在が報告されているが、詳細は不明である(非特許文献7)。AA及びEPAは、すでにゼニゴケにより生合成され、蓄積していることが報告されている(非特許文献8)。これらに関わる遺伝子群はクローン化されている。しかしながら、ゼニゴケからホスホリパーゼ、リポキシゲナーゼ及びシクロオキシゲナーゼの遺伝子が同定された報告はない。さらに、ゼニゴケによって、エイコサノイド(プロスタグランジン(PG)、トロンボキサン(TX)、ロイコトリエン(LT)、リポキシン(LX))化合物を生産したことの報告も一切ない。 Land plants are composed of moss plants (Bryophyte), fern plants, gymnosperms and angiosperms. Moss plants are the oldest branched group of terrestrial plants, and are composed of three groups: sens, Thais, and hornworts. Zenigoke is said to have first inhabited the land among the above-mentioned organisms (Non-patent Document 6). The presence of prostaglandins or prostaglandin-like substances has been reported in onions, poplars, larch, evening primroses, morning glory, bean diatoms and certain Thais, but details are unknown (Non-patent Document 7). It has been reported that AA and EPA are already biosynthesized and accumulated by Amanita (non-patent document 8). The genes involved in these have been cloned. However, there has been no report that phospholipase, lipoxygenase and cyclooxygenase genes have been identified from Xenopus. Furthermore, there are no reports of producing eicosanoid (prostaglandin (PG), thromboxane (TX), leukotriene (LT), lipoxin (LX)) compounds by Zenigo.
特開2007-278750号公報JP 2007-278750 A
 本発明は上記従来の問題点に鑑みなされたものであって、その目的は、植物種を用い、エイコサノイドを生産し得る、ゼニゴケ目生物等の植物由来のホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子、並びにその利用法を提供することである。
 本発明はまた、動物由来のホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子を用いて、植物によりエイコサノイドを生産する技術を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and the object thereof is to use plant species and produce eicosanoids, which are derived from plants such as the genus Coleoptera, a lipoxygenase gene and a cyclooxygenase gene, and It is to provide usage.
Another object of the present invention is to provide a technique for producing eicosanoids by plants using animal-derived phospholipase genes, lipoxygenase genes and cyclooxygenase genes.
 本発明者らは、上記の課題を解決するため鋭意検討した結果、ゼニゴケ(Marchantia polymorpha)由来のcDNAクローンから、上記ホスホリパーゼ、リポキシゲナーゼ、及びシクロオキシゲナーゼをコードする各遺伝子を同定し、該遺伝子に強力プロモーターを付与し、ゼニゴケに導入し発現させることにより、該ゼニゴケのエイコサノイド産生能を向上させることができることを見出した。本発明者らはさらに、動物由来のホスホリパーゼ、リポキシゲナーゼ及びシクロオキシゲナーゼをコードする各遺伝子をゼニゴケに導入し発現させることによっても、該ゼニゴケのエイコサノイド産生能を向上させることができることを見出した。本発明者らは、上記知見に基づきさらに研究を重ね、本発明を完成するに至った。すなわち、本発明は、以下の〔1〕~〔33〕の発明を包含する。 As a result of intensive studies to solve the above problems, the present inventors have identified each gene encoding the above phospholipase, lipoxygenase, and cyclooxygenase from a cDNA clone derived from Marchantia polymorpha, and a strong promoter for the gene. It has been found that the ability to produce eicosanoids can be improved by introducing and expressing it in the moss. Furthermore, the present inventors have found that the ability to produce eicosanoids can be improved also by introducing and expressing each gene encoding phospholipase, lipoxygenase and cyclooxygenase derived from an animal in the moss. The present inventors have further studied based on the above findings and have completed the present invention. That is, the present invention includes the following inventions [1] to [33].
〔1〕ホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子、及びシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる植物形質転換体又はその組織を、増殖又は生育させる工程を含むことを特徴とするエイコサノイド生産方法。
〔2〕植物が、ゼニゴケ目生物である前記〔1〕に記載の方法。
〔3〕植物形質転換体が、ホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子、及びシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体である前記〔1〕又は〔2〕に記載の方法。
[1] An eicosanoid production comprising a step of growing or growing a plant transformant or a tissue thereof into which one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in a plant Method.
[2] The method according to the above [1], wherein the plant is a genus Pleurotus.
[3] A plant transformant in which one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced into a plant so that the plant transformant can be expressed, or the plant transformant having a modified eicosanoid composition, or the plant transformant The method according to [1] or [2] above, which is a plant transformant that is a descendant of the plant transformant having the same properties as the body.
〔4〕ホスホリパーゼ遺伝子が、以下の(a1)~(a8)のいずれかの遺伝子であり、リポキシゲナーゼ遺伝子が、以下の(b1)~(b8)のいずれかの遺伝子であり、シクロオキシゲナーゼ遺伝子が、以下の(c1)~(c8)のいずれかの遺伝子である前記〔1〕~〔3〕のいずれかに記載の方法。
(a1)配列番号1に示される塩基配列からなるDNAを含む遺伝子
(a2)配列番号1に示される塩基配列の一部からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
(a3)配列番号1に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
(a4)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNAを含む遺伝子
(a5)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子
(a6)配列番号2に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子
(a7)配列番号2に示されるアミノ酸配列において、1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子
(a8)マウス由来のホスホリパーゼA2遺伝子
(b1)配列番号3に示される塩基配列からなるDNAを含む遺伝子
(b2)配列番号3に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
(b3)配列番号3に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
(b4)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列を有するDNAを含む遺伝子
(b5)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子
(b6)配列番号4に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子
(b7)配列番号4に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子
(b8)マウス由来の5-リポキシゲナーゼ遺伝子
(c1)配列番号5に示される塩基配列からなるDNAを含む遺伝子
(c2)配列番号5に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
(c3)配列番号5に示される塩基配列と相補的な塩基配列からなるDNAの全部又は一部とストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
(c4)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列を有するDNAを含む遺伝子
(c5)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子
(c6)配列番号6に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子
(c7)配列番号6に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子
(c8)ゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子
[4] The phospholipase gene is any one of the following genes (a1) to (a8), the lipoxygenase gene is any one of the following genes (b1) to (b8), and the cyclooxygenase gene is: The method according to any one of [1] to [3], wherein the gene is any one of (c1) to (c8).
(A1) a gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 1 (a2) consisting of a part of the base sequence shown in SEQ ID NO: 1, and arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell A gene containing DNA derived from the genus Coleoptera encoding a protein having a phospholipase activity to be released (a3) A DNA comprising all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1 under stringent conditions And a gene containing a DNA derived from the genus Coleoptera that encodes a protein having a phospholipase activity that liberates arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell (a4) a base represented by SEQ ID NO: 1 DNA comprising the 394th to 2091th nucleotide sequences in the sequence The gene (a5) is hybridized under stringent conditions with either DNA consisting of the 394th to 2091th base sequences of the base sequence shown in SEQ ID NO: 1 or DNA consisting of base sequences complementary to the DNA, And a gene comprising a DNA encoding a protein derived from the genus Coleoptera having a phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell (a6) a protein comprising the amino acid sequence shown in SEQ ID NO: 2 The encoding gene (a7) consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 2, and from cell membrane phospholipid to arachidonic acid or Phospholipa that releases eicosapentaenoic acid into cells A gene encoding a protein derived from the genus Coleoptera having ze activity (a8) a phospholipase A2 gene derived from a mouse (b1) a gene comprising a DNA consisting of the base sequence shown in SEQ ID NO: 3 (b2) a base shown in SEQ ID NO: 3 A gene comprising a part of the sequence and containing a DNA derived from the genus Coleoptera encoding a protein having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate (b3) complementary to the base sequence shown in SEQ ID NO: 3 Including DNA derived from the genus Lepidoptera that hybridizes under stringent conditions with DNA consisting of all or part of a simple nucleotide sequence and encodes a protein having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate Gene (b4) nucleotide sequence shown in SEQ ID NO: 3 A gene comprising DNA having the 127th to 2994th base sequence in the sequence (b5) consisting of DNA consisting of the 127th to 2994th base sequence of the base sequence shown in SEQ ID NO: 3 or a base sequence complementary to the DNA A gene (b6) comprising a DNA that hybridizes with any one of the DNAs under stringent conditions and encodes a protein derived from the genus Coleoptera having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate. A gene encoding a protein comprising the amino acid sequence (b7) comprising the amino acid sequence shown in SEQ ID NO: 4, wherein one or several amino acids are substituted, deleted, inserted and / or added, and arachidone Lipoxy containing acid or eicosapentaenoic acid as substrate A gene encoding a protein derived from the genus Coleoptera having a genease activity (b8) A 5-lipoxygenase gene derived from a mouse (c1) a gene comprising a DNA consisting of the base sequence shown in SEQ ID NO: 5 (c2) shown in SEQ ID NO: 5 A gene comprising a part of the base sequence and containing a DNA derived from the genus Coleoptera encoding a protein having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate (c3) complementary to the base sequence shown in SEQ ID NO: 5 A DNA derived from the genus Amanita which encodes a protein having a cyclooxygenase activity that hybridizes under stringent conditions with all or part of a DNA having a basic nucleotide sequence and that uses arachidonic acid or eicosapentaenoic acid as a substrate. Containing gene (c4) SEQ ID NO: A gene comprising DNA having the 321st to 2153th base sequences in the base sequence shown in (c5) DNA consisting of the 321st to 2153th base sequences in the base sequence shown in SEQ ID NO: 5 or complementary to the DNA A gene (c6) comprising a DNA that hybridizes with any one of DNAs comprising a base sequence under a stringent condition and encodes a protein derived from a genus Coriolis having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate (c6) A gene encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 6 (c7) in the amino acid sequence shown in SEQ ID NO: 6, wherein one or several amino acids are substituted, deleted, inserted and / or added Arachidonic acid or eicosapentae A gene encoding a protein derived from the genus Coleoptera having cyclooxygenase activity using acid as a substrate (c8) a cyclooxygenase gene derived from zebrafish
〔5〕ホスホリパーゼ遺伝子が、前記(a1)~(a7)のいずれかの遺伝子であり、リポキシゲナーゼ遺伝子が、前記(b1)~(b7)のいずれかの遺伝子であり、シクロオキシゲナーゼ遺伝子が、前記(c1)~(c7)のいずれかの遺伝子である前記〔4〕に記載の方法。 [5] The phospholipase gene is any one of the genes (a1) to (a7), the lipoxygenase gene is any one of the genes (b1) to (b7), and the cyclooxygenase gene is the gene (c1). ) To (c7), the method according to the above [4].
〔6〕下記の(a)~(c)のいずれかのDNAを含む遺伝子。
(a)配列番号1に示される塩基配列からなるDNA
(b)配列番号1に示される塩基配列の一部からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
(c)配列番号1に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
〔7〕下記の(a)又は(b)のDNAを含む遺伝子。
(a)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNA
(b)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNA
〔8〕下記の(A)又は(B)のたんぱく質をコードする遺伝子。
(A)配列番号2に示されるアミノ酸配列からなるたんぱく質
(B)配列番号2に示されるアミノ酸配列において、1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質
[6] A gene comprising the DNA of any one of (a) to (c) below:
(A) DNA comprising the base sequence shown in SEQ ID NO: 1
(B) a DNA derived from the genus Pleurotus that encodes a protein having a phospholipase activity, which comprises a part of the base sequence represented by SEQ ID NO: 1 and releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell.
(C) Hybridizing under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1, and arachidonic acid or eicosapentaenoic acid from the cell membrane phospholipid, DNA derived from the genus Pleurotus that encodes a protein having phospholipase activity to be released in the body
[7] A gene comprising the following DNA (a) or (b):
(A) DNA consisting of the 394th to 2091th base sequences in the base sequence shown in SEQ ID NO: 1
(B) a cell membrane that hybridizes under stringent conditions with either DNA comprising the 394th to 2091th nucleotide sequences of the nucleotide sequence represented by SEQ ID NO: 1 or DNA comprising a nucleotide sequence complementary to the DNA. DNA that encodes a protein derived from the genus Lepidoptera having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from phospholipids into cells.
[8] A gene encoding the following protein (A) or (B).
(A) a protein comprising the amino acid sequence shown in SEQ ID NO: 2 (B) an amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 2 And a protein derived from the genus Pleurotus having a phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell.
〔9〕下記の(a)~(c)のいずれかのDNAを含む遺伝子。
(a)配列番号3に示される塩基配列からなるDNA
(b)配列番号3に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
(c)配列番号3に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
〔10〕下記の(a)又は(b)のDNAを含む遺伝子。
(a)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列からなるDNA
(b)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNA
〔11〕下記の(A)又は(B)のたんぱく質をコードする遺伝子。
(A)配列番号4に示されるアミノ酸配列からなるたんぱく質
(B)配列番号4に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質
[9] A gene containing the DNA of any one of (a) to (c) below.
(A) DNA consisting of the base sequence shown in SEQ ID NO: 3
(B) a DNA derived from the genus Pleurotus that encodes a protein having a lipoxygenase activity comprising a part of the base sequence shown in SEQ ID NO: 3 and having arachidonic acid or eicosapentaenoic acid as a substrate;
(C) Lipoxygenase activity that hybridizes under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 3 and that uses arachidonic acid or eicosapentaenoic acid as a substrate DNA derived from the genus Pleurotus that encodes a protein having
[10] A gene comprising the following DNA (a) or (b):
(A) DNA consisting of the 127th to 2994th nucleotide sequences in the nucleotide sequence shown in SEQ ID NO: 3
(B) hybridizing under stringent conditions with either DNA comprising the 127th to 2994th nucleotide sequence of the nucleotide sequence shown in SEQ ID NO: 3 or DNA comprising a complementary nucleotide sequence to the DNA, and arachidon DNA encoding a protein derived from the genus Pleurotus having lipoxygenase activity using acid or eicosapentaenoic acid as a substrate
[11] A gene encoding the following protein (A) or (B).
(A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 4 (B) from the amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 4 And a protein derived from the genus Pleurotus having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate
〔12〕下記の(a)~(c)のいずれかのDNAを含む遺伝子。
(a)配列番号5に示される塩基配列からなるDNA
(b)配列番号5に示される塩基配列の一部からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
(c)配列番号5に示される塩基配列と相補的な塩基配列からなるDNAの全部又は一部とストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
〔13〕下記の(a)又は(b)のDNAを含む遺伝子。
(a)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列からなるDNA
(b)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNA
〔14〕下記の(A)又は(B)のたんぱく質をコードする遺伝子。
(A)配列番号6に示されるアミノ酸配列からなるたんぱく質
(B)配列番号6に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質
[12] A gene comprising the DNA of any one of (a) to (c) below:
(A) DNA consisting of the base sequence shown in SEQ ID NO: 5
(B) a DNA derived from the genus Pleurotus that encodes a protein having a cyclooxygenase activity comprising a part of the base sequence shown in SEQ ID NO: 5 and having arachidonic acid or eicosapentaenoic acid as a substrate;
(C) Cyclooxygenase activity that hybridizes under stringent conditions with all or part of DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 5 and uses arachidonic acid or eicosapentaenoic acid as a substrate DNA derived from the genus Pleurotus that encodes proteins
[13] A gene comprising the following DNA (a) or (b):
(A) DNA consisting of nucleotide sequences 321 to 2153 among the nucleotide sequence shown in SEQ ID NO: 5
(B) hybridizing under stringent conditions with either DNA comprising the 321st to 2153rd base sequences of the base sequence shown in SEQ ID NO: 5 or DNA comprising a base sequence complementary to the DNA; and arachidone DNA encoding a protein derived from the genus Pleurotus having cyclooxygenase activity using acid or eicosapentaenoic acid as a substrate
[14] A gene encoding the following protein (A) or (B).
(A) Protein consisting of the amino acid sequence shown in SEQ ID NO: 6 (B) From the amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 6 And a protein derived from the genus Pleurotus having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate
〔15〕前記〔6〕~〔14〕の何れか1項に記載の遺伝子にコードされるたんぱく質。
〔16〕前記〔6〕~〔14〕の何れか1項に記載の遺伝子にコードされるたんぱく質を認識する抗体。
〔17〕前記〔6〕~〔14〕の何れか1項に記載の遺伝子を含む組換え発現ベクター。
[15] A protein encoded by the gene according to any one of [6] to [14].
[16] An antibody that recognizes the protein encoded by the gene according to any one of [6] to [14].
[17] A recombinant expression vector comprising the gene according to any one of [6] to [14].
〔18〕少なくとも前記〔6〕~〔14〕の何れか1項に記載の遺伝子を植物に導入してなる植物形質転換体若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。
〔19〕植物が、ゼニゴケ目生物である前記〔18〕に記載の植物形質転換体又は植物形質転換体の組織。
〔20〕少なくとも前記〔6〕~〔14〕の何れか1項に記載の遺伝子が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。
〔21〕前記〔18〕~〔20〕の何れか1項に記載の植物形質転換体又は該植物形質転換体の組織から得られる繁殖材料。
[18] A plant transformant obtained by introducing at least the gene according to any one of [6] to [14] above into a plant, or the plant transformant having the same properties as the plant transformant A plant transformant to be a progeny or a tissue of the plant transformant.
[19] The plant transformant or the tissue of the plant transformant according to the above [18], wherein the plant is a genus Coleoptera.
[20] A plant transformant having a modified eicosanoid composition, wherein at least the gene according to any one of [6] to [14] is introduced into a plant so that the gene can be expressed, or the plant transformant A plant transformant that is a descendant of the plant transformant having the same properties, or a tissue of the plant transformant.
[21] A propagation material obtained from the plant transformant according to any one of [18] to [20] or a tissue of the plant transformant.
〔22〕前記〔6〕~〔14〕の何れか1項に記載の遺伝子を植物に導入する工程を含むことを特徴とする植物又はその組織のエイコサノイド組成を改変する方法。 [22] A method for modifying the eicosanoid composition of a plant or a tissue thereof, comprising the step of introducing the gene according to any one of [6] to [14] above into the plant.
〔23〕前記〔6〕~〔14〕の何れか1項に記載の遺伝子の少なくとも一部の塩基配列又はその相補配列をプローブとして用いる遺伝子検出器具。
〔24〕前記〔6〕~〔14〕の何れか1項に記載の遺伝子にコードされるたんぱく質を用いて、該たんぱく質を調節する遺伝子、又は該たんぱく質を調節する物質をスクリーニングする方法。
〔25〕前記〔24〕に記載のスクリーニング方法により得られる遺伝子又は物質。
[23] A gene detection instrument using, as a probe, at least a part of the base sequence of the gene according to any one of [6] to [14] or a complementary sequence thereof.
[24] A method for screening a gene that regulates the protein or a substance that regulates the protein, using the protein encoded by the gene according to any one of [6] to [14].
[25] A gene or substance obtained by the screening method according to [24].
〔26〕マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子又はゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子を植物細胞用ベクターに挿入してなる組換え発現ベクター。
〔27〕少なくとも、マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上を植物に導入してなる植物形質転換体、若しくは該植物形質転換体と同じ性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。
〔28〕植物が、ゼニゴケ目生物である前記〔27〕に記載の植物形質転換体又は植物形質転換体の組織。
[26] A recombinant expression vector obtained by inserting a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene or a zebrafish-derived cyclooxygenase gene into a plant cell vector.
[27] A plant transformant obtained by introducing at least one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene and a zebrafish-derived cyclooxygenase gene, or the plant transformant, A plant transformant that is a descendant of the plant transformant having the same properties, or a tissue of the plant transformant.
[28] The plant transformant or the tissue of the plant transformant according to the above [27], wherein the plant is a genus Coleoptera.
〔29〕少なくとも、マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。
〔30〕前記〔27〕~〔29〕の何れか1項に記載の植物形質転換体又は該植物形質転換体の組織から得られる繁殖材料。
[29] A plant trait having an altered eicosanoid composition, wherein at least one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene are introduced so as to be expressed in the plant A transformant, a plant transformant that is a descendant of the plant transformant having the same properties as the plant transformant, or a tissue of the plant transformant.
[30] A propagation material obtained from the plant transformant according to any one of [27] to [29] or a tissue of the plant transformant.
〔31〕マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上を植物に導入する工程を含む植物又はその組織のエイコサノイド組成を改変する方法。
〔32〕前記〔26〕に記載の組換え発現ベクターにコードされるたんぱく質を用いる、該たんぱく質を調節する遺伝子、又は該たんぱく質を調節する物質をスクリーニングする方法。
〔33〕前記〔32〕に記載のスクリーニング方法により得られる遺伝子又は物質。
[31] A method for modifying the eicosanoid composition of a plant or a tissue thereof, comprising introducing one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene into the plant.
[32] A method for screening a gene that regulates the protein or a substance that regulates the protein, using the protein encoded by the recombinant expression vector according to [26].
[33] A gene or substance obtained by the screening method according to [32].
 本発明に係る遺伝子の好ましい態様の1つは、同一種のゼニゴケから単離されたホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子、並びにこれらの遺伝子にコードされるたんぱく質と同等の活性を有するたんぱく質をコードする遺伝子である。例えば、同一種のゼニゴケ由来のホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子を植物種で発現させた場合には、異なる生物種由来の3種の遺伝子を発現させるより、エイコサノイド生合成に係わる遺伝子が植物内で良好に機能するという効果を奏する。さらにゼニゴケは、植物の一つのモデル系と考えられるため、これらの遺伝子は植物以外の生物種由来の遺伝子に比べ植物内で良好に機能することができるという効果を奏する。 One of the preferred embodiments of the gene according to the present invention encodes a phospholipase gene, a lipoxygenase gene and a cyclooxygenase gene isolated from the same species of genus moss, and a protein having an activity equivalent to the protein encoded by these genes. It is a gene. For example, when a phospholipase gene, a lipoxygenase gene and a cyclooxygenase gene derived from the same species of genus moss are expressed in a plant species, genes related to eicosanoid biosynthesis are expressed in the plant rather than expressing three genes derived from different species. It has the effect of functioning well. Furthermore, the genus moss is considered to be a model system of plants, so that these genes have the effect that they can function better in plants than genes derived from biological species other than plants.
 また、本発明に係る植物形質転換体は、エイコサノイドを生産できると言う効果を奏する。このため、本発明に係る植物形質転換体を用いると、医薬品の有効成分等として有用なエイコサノイドの生産コストを低減でき、同時に、より環境に易しい生産プロセスを実現することができる。つまり本発明によれば、低コストかつ環境にやさしい生産プロセスで、エイコサノイドを安価に生産することができるという効果を奏する。さらに、遺伝子組換え植物であれば、植物工場システムによる大量生産ができることから、より安価なエイコサノイドを供給できるという効果も奏する。こうして得られたエイコサノイドは、薬理活性物質、健康食品の原料等として、活用できるという効果を奏する。 Also, the plant transformant according to the present invention has an effect that it can produce eicosanoids. For this reason, when the plant transformant according to the present invention is used, the production cost of an eicosanoid useful as an active ingredient of a pharmaceutical can be reduced, and at the same time, a more environmentally friendly production process can be realized. That is, according to the present invention, an eicosanoid can be produced at a low cost by a low-cost and environmentally friendly production process. Furthermore, since a genetically modified plant can be mass-produced by a plant factory system, it is possible to supply a cheaper eicosanoid. The eicosanoid thus obtained has an effect that it can be used as a pharmacologically active substance, a raw material for health foods, and the like.
図1は、アラキドン酸カスケードにおける、本発明に関する脂質結合体からAA又はEPAを細胞内に遊離させる反応から、ロイコトリエン生合成系及びプロスタグランジン生合成系のみを示す図である。FIG. 1 is a diagram showing only a leukotriene biosynthetic system and a prostaglandin biosynthetic system from a reaction in which AA or EPA is released into cells from a lipid conjugate according to the present invention in the arachidonic acid cascade. 図2(A)~(C)はそれぞれ、(A)ゼニゴケ由来のホスホリパーゼ遺伝子を導入するための発現コンストラクトの作製手順、(B)ゼニゴケ由来のリポキシゲナーゼ遺伝子を導入するための発現コンストラクトの作製手順、及び(C)ゼニゴケ由来のシクロオキシゲナーゼ遺伝子を導入するための発現コンストラクトの作製手順を示す図である。2 (A) to 2 (C) respectively show (A) a procedure for preparing an expression construct for introducing a phospholipase gene derived from a genus genus, (B) a procedure for preparing an expression construct for introducing a lipoxygenase gene derived from a genus genus, And (C) shows a procedure for producing an expression construct for introducing a cyclooxygenase gene derived from genus Amanita. 図3(A)は、ゼニゴケ由来のホスホリパーゼ遺伝子を導入するためのベクターの模式図であり、図3(B)は、ゼニゴケ由来のリポキシゲナーゼ遺伝子を導入するためのベクターの模式図であり、図3(C)は、ゼニゴケ由来のシクロオキシゲナーゼの遺伝子を導入するためのベクターの模式図である。FIG. 3 (A) is a schematic diagram of a vector for introducing a phospholipase gene derived from Xenopus, and FIG. 3 (B) is a schematic diagram of a vector for introducing a lipoxygenase gene derived from Xenopus. (C) is a schematic diagram of a vector for introducing a gene for cyclooxygenase derived from genus Amanita. 図4(A)~(C)はそれぞれ、(A)マウス由来のホスホリパーゼA2遺伝子を導入するための発現コンストラクトの作製手順、(B)マウス由来の5-リポキシゲナーゼ遺伝子を導入するための発現コンストラクトの作製手順、及び(C)ゼブラフィッシュ由来のシクロオキシゲナーゼ遺伝子を導入するための発現コンストラクトの作製手順を示す図である。4 (A) to 4 (C) respectively show (A) a procedure for preparing an expression construct for introducing a mouse-derived phospholipase A2 gene, and (B) an expression construct for introducing a mouse-derived 5-lipoxygenase gene. It is a figure which shows the preparation procedure and the preparation procedure of the expression construct for introduce | transducing the cyclooxygenase gene derived from (C) zebrafish. 図5(A)は、マウス由来のホスホリパーゼA2遺伝子を導入するためのベクターの模式図であり、図5(B)は、マウス由来の5-リポキシゲナーゼ遺伝子を導入するためのベクターの模式図であり、図5(C)は、ゼブラフィッシュ由来のシクロオキシゲナーゼの遺伝子を導入するためのベクターの模式図である。FIG. 5 (A) is a schematic diagram of a vector for introducing a mouse-derived phospholipase A2 gene, and FIG. 5 (B) is a schematic diagram of a vector for introducing a mouse-derived 5-lipoxygenase gene. FIG. 5 (C) is a schematic diagram of a vector for introducing a zebrafish-derived cyclooxygenase gene.
 本発明の実施の一形態について説明すれば、以下の通りである。なお、本発明は、これに限定されるものではない。
 本発明のエイコサノイド生産方法は、ホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子、及びシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる植物形質転換体又はその組織を、増殖又は生育させる工程を含む。
 本発明により、植物を用いてエイコサノイドを生産することができる。植物は、好ましくは後述するゼニゴケ目生物である。また、植物形質転換体は、好ましくは、ホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子、及びシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体である。ホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子、及びシクロオキシゲナーゼ遺伝子としては、後述する遺伝子が好適であり、植物由来のもの、動物由来のもののいずれも使用できる。
An embodiment of the present invention will be described as follows. Note that the present invention is not limited to this.
The eicosanoid production method of the present invention includes a step of proliferating or growing a plant transformant or a tissue thereof in which one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in a plant.
According to the present invention, an eicosanoid can be produced using a plant. The plant is preferably a genus Coleoptera which will be described later. The plant transformant is preferably a plant transformant having a modified eicosanoid composition, wherein one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in the plant, or the plant A plant transformant that is a descendant of the plant transformant having the same properties as the transformant. As the phospholipase gene, lipoxygenase gene, and cyclooxygenase gene, the genes described later are suitable, and any of plant-derived and animal-derived genes can be used.
 以下、エイコサノイド(プロスタグランジン、ロイコトリエン等)の生合成経路、本発明に係る遺伝子、本発明に係るたんぱく質、本発明に係るたんぱく質及び遺伝子の取得方法、並びに本発明に係る遺伝子及びたんぱく質の利用方法(有用性)の順で本発明を詳細に説明する。さらに、動物由来のエイコサノイド生合成系遺伝子を用いて植物でエイコサノイドを生産する方法等について説明する。 Hereinafter, the biosynthetic pathway of eicosanoids (prostaglandins, leukotrienes, etc.), the gene according to the present invention, the protein according to the present invention, the method for obtaining the protein and gene according to the present invention, and the method for using the gene and protein according to the present invention The present invention will be described in detail in the order of (usefulness). Further, a method for producing eicosanoids in plants using an eicosanoid biosynthetic gene derived from animals will be described.
(1)エイコサノイド(プロスタグランジン、及びロイコトリエン)の生合成経路(図1)。
 細胞内では、エイコサノイド(プロスタグランジン、ロイコトリエン等)はそれぞれアラキドン酸及びエイコサペンタエン酸を起点(基質)として、該基質が1分子の酸素により酸化されロイコトリエンに、該基質が2分子の酸素により酸化されプロスタグランジンに生合成される。これらの反応は、図1に示すように、それぞれ、細胞内のリポキシゲナーゼ(LOX)、シクロオキシゲナーゼ(COX)により触媒される。これらの反応経路はアラキドン酸カスケードと呼ばれている。
(1) Biosynthetic pathway of eicosanoids (prostaglandins and leukotrienes) (FIG. 1).
In cells, eicosanoids (prostaglandins, leukotrienes, etc.) originate from arachidonic acid and eicosapentaenoic acid (substrate), respectively, and the substrate is oxidized by one molecule of oxygen, and the substrate is oxidized by two molecules of oxygen. And biosynthesized into prostaglandins. These reactions are catalyzed by intracellular lipoxygenase (LOX) and cyclooxygenase (COX), respectively, as shown in FIG. These reaction pathways are called arachidonic acid cascades.
(2)本発明に係る遺伝子
 本発明の遺伝子は、以下に記載するホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子である。本発明の遺伝子は、例えば、組換えたんぱく質の調製、エイコサノイド組成が改変された植物形質転換体の作製などに好適に利用することができるものである。
(2) Gene according to the present invention The genes of the present invention are the phospholipase gene, lipoxygenase gene, and cyclooxygenase gene described below. The gene of the present invention can be suitably used for, for example, preparation of a recombinant protein, production of a plant transformant having a modified eicosanoid composition, and the like.
(本発明に係るホスホリパーゼ遺伝子)
 本発明に係るホスホリパーゼ遺伝子は、細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、エステル結合の加水分解により細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードする遺伝子であり、以下の1.~7.に記載する遺伝子である。これらの遺伝子は、本発明のエイコサノイド生産方法に好適に使用されるものである。
(Phospholipase gene according to the present invention)
The phospholipase gene according to the present invention is a gene encoding a protein having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells by hydrolysis of ester bonds. ~ 7. It is a gene described in. These genes are preferably used in the eicosanoid production method of the present invention.
1.配列番号1に示される塩基配列からなるDNAを含む遺伝子。
2.配列番号1に示される塩基配列の一部からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子。
3.配列番号1に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子。
1. A gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 1.
2. A gene comprising a part of the base sequence shown in SEQ ID NO: 1 and containing a DNA derived from a genus Coleoptera that encodes a protein having a phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells.
3. Hybridizes under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1 and releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell A gene comprising DNA from the genus Pleurotus that encodes a protein having phospholipase activity.
4.配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNAを含む遺伝子。
5.配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子。
4). A gene comprising DNA consisting of the 394th to 2091th base sequences of the base sequence shown in SEQ ID NO: 1.
5. It hybridizes under stringent conditions with either DNA consisting of the 394th to 2091th base sequences in the base sequence shown in SEQ ID NO: 1 or DNA consisting of base sequences complementary to the DNA, and from cell membrane phospholipids A gene comprising a DNA encoding a protein derived from the genus Coleoptera having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid into cells.
6.配列番号2に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子。
7.配列番号2に示されるアミノ酸配列において、1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子。
 本発明に係るホスホリパーゼ遺伝子は、好ましくは、ゼニゴケ(Marchantia polymorpha)由来である。
6). A gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
7). The amino acid sequence shown in SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added, and arachidonic acid or eicosapentaenoic acid is converted from cell membrane phospholipids into cells. A gene that encodes a protein derived from the genus Pleurotus having a phospholipase activity that is released inside.
The phospholipase gene according to the present invention is preferably derived from Marchantia polymorpha.
 配列番号1に示される塩基配列からなるDNAは、ゼニゴケ(Marchantia polymorpha)に由来する遺伝子である。なお、配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列は、配列番号2に示されるアミノ酸配列からなるたんぱく質に翻訳される領域である。配列番号2に示されるアミノ酸配列からなるたんぱく質は、細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、エステル結合の加水分解により細胞内に遊離させるホスホリパーゼである。 The DNA consisting of the base sequence shown in SEQ ID NO: 1 is a gene derived from Marchantia polymorpha. Of the base sequence shown in SEQ ID NO: 1, the 394th to 2091st base sequence is a region translated into a protein consisting of the amino acid sequence shown in SEQ ID NO: 2. The protein consisting of the amino acid sequence shown in SEQ ID NO: 2 is a phospholipase that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells by hydrolysis of ester bonds.
 上記配列番号1に示される塩基配列の一部からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAとしては、例えば、配列番号1の塩基配列のうち394ないし2091番目の塩基配列を有するDNAが好ましい。また、配列番号1に示される塩基配列と相補的な塩基配列の一部からなるDNAとしては、例えば、配列番号1の塩基配列のうち394ないし2091番目の塩基配列を有するDNAと相補的な塩基配列のDNAが好ましい。 As a DNA derived from the genus Coleoptera which consists of a part of the base sequence shown in SEQ ID NO: 1 and encodes a protein having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells, For example, a DNA having the 394th to 2091th base sequences of the base sequence of SEQ ID NO: 1 is preferred. The DNA comprising a part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1 is, for example, a base complementary to the DNA having the 394th to 2091th base sequences in the base sequence of SEQ ID NO: 1. Sequence DNA is preferred.
(本発明に係るリポキシゲナーゼ遺伝子)
 本発明に係るリポキシゲナーゼ遺伝子は、アラキドン酸又はエイコサペンタエン酸を基質とし、1分子の酸素により該基質を酸化するリポキシゲナーゼ活性を有するたんぱく質をコードする遺伝子であり、以下の1.~7.に記載する遺伝子である。これらの遺伝子は、本発明のエイコサノイド生産方法に好適に使用されるものである。
1.配列番号3に示される塩基配列からなるDNAを含む遺伝子。
2.配列番号3に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子。
3.配列番号3に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子。
(Lipoxygenase gene according to the present invention)
The lipoxygenase gene according to the present invention is a gene encoding a protein having lipoxygenase activity that uses arachidonic acid or eicosapentaenoic acid as a substrate and oxidizes the substrate with one molecule of oxygen. ~ 7. It is a gene described in. These genes are preferably used in the eicosanoid production method of the present invention.
1. A gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 3.
2. A gene comprising a part of the base sequence shown in SEQ ID NO: 3 and containing a DNA derived from the genus Coleoptera which encodes a protein having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate.
3. A protein that hybridizes under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 3 and has lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate A gene containing DNA derived from the genus Pleurotus that encodes.
4.配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列を有するDNAを含む遺伝子。
5.配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子。
4). A gene comprising DNA having the 127th to 2994th base sequence in the base sequence shown in SEQ ID NO: 3.
5. It hybridizes under stringent conditions with either the DNA consisting of the 127th to 2994th base sequences of the base sequence shown in SEQ ID NO: 3 or the DNA complementary to the DNA, and arachidonic acid or e A gene comprising a DNA encoding a protein derived from a genus Cryptococcus having lipoxygenase activity using icosapentaenoic acid as a substrate.
6.配列番号4に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子。
7.配列番号4に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子。
 本発明に係るリポキシゲナーゼ遺伝子は、好ましくは、ゼニゴケ(Marchantia polymorpha)由来である。
6). A gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 4.
7). The amino acid sequence shown in SEQ ID NO: 4 consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and / or added, and has lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate. A gene that encodes a protein derived from the genus Pleurotus.
The lipoxygenase gene according to the present invention is preferably derived from Marchantia polymorpha.
 配列番号3に示される塩基配列からなるDNAは、ゼニゴケ(Marchantia polymorpha)に由来する遺伝子である。なお、配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列は配列番号4に示されるアミノ酸配列からなるたんぱく質に翻訳される領域である。配列番号4に示されるアミノ酸配列からなるたんぱく質は、1分子の酸素によりアラキドン酸又はエイコサペンタエン酸を酸化するリポキシゲナーゼである。 DNA consisting of the base sequence shown in SEQ ID NO: 3 is a gene derived from Marchantia polymorpha. Of the nucleotide sequence shown in SEQ ID NO: 3, the 127th to 2994th nucleotide sequence is a region translated into a protein consisting of the amino acid sequence shown in SEQ ID NO: 4. The protein consisting of the amino acid sequence shown in SEQ ID NO: 4 is a lipoxygenase that oxidizes arachidonic acid or eicosapentaenoic acid with one molecule of oxygen.
 上記配列番号3に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするDNAとしては、例えば、配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列を有するDNAが好ましい。また、配列番号3に示される塩基配列と相補的な塩基配列の一部からなるDNAとしては、例えば、配列番号3の塩基配列のうち127ないし2994番目の塩基配列を有するDNAと相補的な塩基配列のDNAが好ましい。 Examples of DNA encoding a protein having a part of the base sequence shown in SEQ ID NO: 3 and having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate include, for example, the base sequence shown in SEQ ID NO: 3 Of these, DNA having the 127th to 2994th nucleotide sequence is preferred. The DNA comprising a part of the base sequence complementary to the base sequence shown in SEQ ID NO: 3 is, for example, a base complementary to the DNA having the 127th to 2994th base sequences in the base sequence of SEQ ID NO: 3. Sequence DNA is preferred.
(本発明に係るシクロオキシゲナーゼ遺伝子)
 本発明に係るシクロオキシゲナーゼ遺伝子は、アラキドン酸又はエイコサペンタエン酸を基質とし、2分子の酸素により基質を酸化するシクロオキシゲナーゼ活性を有するたんぱく質をコードする遺伝子であり、以下の1.~7.に記載する遺伝子である。これらの遺伝子は、本発明のエイコサノイド生産方法に好適に使用されるものである。
1.配列番号5に示される塩基配列からなるDNAを含む遺伝子。
2.配列番号5に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子。
3.配列番号5に示される塩基配列と相補的な塩基配列からなるDNAの全部又は一部とストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子。
(Cyclooxygenase gene according to the present invention)
The cyclooxygenase gene according to the present invention is a gene encoding a protein having cyclooxygenase activity that uses arachidonic acid or eicosapentaenoic acid as a substrate and oxidizes the substrate with two molecules of oxygen. ~ 7. It is a gene described in. These genes are preferably used in the eicosanoid production method of the present invention.
1. A gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 5.
2. A gene comprising a part of the base sequence shown in SEQ ID NO: 5 and containing a DNA derived from a genus Coleoptera that encodes a protein having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate.
3. A protein having a cyclooxygenase activity that hybridizes under stringent conditions with all or part of a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 5 and uses arachidonic acid or eicosapentaenoic acid as a substrate A gene containing DNA derived from the genus Pleurotus that encodes.
4.配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列を有するDNAを含む遺伝子。
5.配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子。
4). A gene comprising DNA having a nucleotide sequence of positions 321 to 2153 of the nucleotide sequence represented by SEQ ID NO: 5.
5. It hybridizes under stringent conditions with either DNA consisting of the 321st to 2153th base sequences of the base sequence shown in SEQ ID NO: 5 or DNA complementary to the DNA, and arachidonic acid or A gene comprising a DNA encoding a protein derived from a genus Coriolis having cyclooxygenase activity using eicosapentaenoic acid as a substrate.
6.配列番号6に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子。
7.配列番号6に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子。
 本発明に係るシクロオキシゲナーゼ遺伝子は、好ましくは、ゼニゴケ(Marchantia polymorpha)由来である。
6). A gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 6.
7). The amino acid sequence shown in SEQ ID NO: 6 consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and / or added, and has cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate A gene that encodes a protein derived from the genus Pleurotus.
The cyclooxygenase gene according to the present invention is preferably derived from Marchantia polymorpha.
 配列番号5に示される塩基配列からなるDNAは、ゼニゴケ(Marchantia polymorpha)に由来する遺伝子である。なお、配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列は、配列番号6に示されるアミノ酸配列からなるたんぱく質に翻訳される領域である。配列番号6に示されるアミノ酸配列からなるたんぱく質は、2分子の酸素によりアラキドン酸又はエイコサペンタエン酸を酸化するシクロオキシゲナーゼである。 The DNA consisting of the base sequence shown in SEQ ID NO: 5 is a gene derived from Marchantia polymorpha. Of the base sequence shown in SEQ ID NO: 5, the 321st to 2153rd base sequence is a region translated into a protein consisting of the amino acid sequence shown in SEQ ID NO: 6. The protein consisting of the amino acid sequence shown in SEQ ID NO: 6 is a cyclooxygenase that oxidizes arachidonic acid or eicosapentaenoic acid with two molecules of oxygen.
 上記配列番号5に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAとしては、例えば、配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列を有するDNAが好ましい。また、配列番号5に示される塩基配列と相補的な塩基配列の一部からなるDNAとしては、例えば、配列番号5の塩基配列のうち321ないし2153番目の塩基配列を有するDNAと相補的な塩基配列のDNAが好ましい。 Examples of the DNA derived from the genus Coleoptera which consists of a part of the base sequence shown in SEQ ID NO: 5 and encodes a protein having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate include, for example, SEQ ID NO: 5 Of the nucleotide sequences shown, DNA having the 321st to 2153rd nucleotide sequences is preferred. The DNA comprising a part of the base sequence complementary to the base sequence shown in SEQ ID NO: 5 is, for example, a base complementary to the DNA having the 321st to 2153rd base sequences in the base sequence of SEQ ID NO: 5. Sequence DNA is preferred.
 なお、上記「ストリンジェントな条件」とは、少なくとも90%の同一性、好ましくは少なくとも95%の同一性、最も好ましくは97%の同一性が配列間に存在するときのみハイブリダイゼーションが起こることを意味する。 The above “stringent conditions” means that hybridization occurs only when at least 90% identity, preferably at least 95% identity, most preferably 97% identity exists between sequences. means.
 上記ハイブリダイゼーションは、J. Sambrook et al. Molecular Cloning, A lLaboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory (1989)に記載されている方法等、従来公知の方法で行うことができる。通常、温度が高いほど、塩濃度が低いほどストリンジェンシーは高くなり(ハイブリダイズし難くなる)、より相同な遺伝子を取得することができる。ハイブリダイゼーションの条件としては、従来公知の条件を好適に用いることができ、特に限定しないが、例えば、42℃、市販のDIG(ジゴキシゲニン)ハイブリダイゼーションバッファー(ロシュ・ダイアグノスティックス社製)を用いて行うことなどが挙げられる。 The hybridization, J. Sambrook et al. Molecular Cloning, A lLaboratory Manual. 2 nd Ed., Like the method described in Cold Spring Harbor Laboratory (1989), can be performed by a conventionally known method. Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (harder to hybridize), and a more homologous gene can be obtained. As hybridization conditions, conventionally known conditions can be preferably used, and are not particularly limited. For example, a commercially available DIG (digoxigenin) hybridization buffer (Roche Diagnostics) is used. And so on.
 上記「ゼニゴケ目生物」とは、(Marchantia polymorpha)に限定されるものでなく、ゼニゴケ亜綱ゼニゴケ目(Marchantiales)に属する生物が含まれる。ゼニゴケ亜綱ゼニゴケ目(Marchantiales)に属する生物としては、例えば、ハマグリゼニゴケ科、ミカズキゼニゴケ科、ジャゴケ科、アズマゼニゴケ科、ジンガサゴケ科、ジンチョウゴケ科、ヤワラゼニゴケ科、ウキゴケ科、ゼニゴケ科等の植物が挙げられる。コケ属蘚綱Amblystechium serpens、 Brachythecium implicantum、苔綱Marchantia parvilobaにはプロスタグランジン又はプロスタグランジン様物質が存在することが報告されている(Groenewald, E.G., Kruger, G. H. J., de Wet, H., Botes, P. J. and van der Westhuizen, A. J., South African J. Sci. 86: 152-153 (1990))。 The above-mentioned “Amanitaceae organisms” are not limited to (Marchantia polymorpha), but include organisms belonging to the subgenus Amanitaceae (Marchantiales). Examples of organisms belonging to the order of the genus Mantiantiaceae (Marchantiales) include plants such as the clam sphagnum family, sphagnum moss family, jagoke department, azuma genus department, zingagoceae, gentian moss family, sphagnum department, sphagnum department, Can be mentioned. Prostaglandins or prostaglandin-like substances have been reported to exist in the moss genus Ambrystechium serpens, raBrachythecium implicantum, and moss marchantia parviloba (Groenewald, EG, Kruger, G. H. J., de Wet , H., Botes, P. J. and van der Westhuizen, A. J., South African J. Sci. 86: 152-153 (1990)).
 これらの生物からホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子を取得することは現在の技術水準を持ってすれば容易である。例えば、近縁生物の同じ機能を有する酵素をコードする遺伝子は、クロスハイブリダイゼーションすることが一般に知られている。 It is easy to obtain phospholipase gene, lipoxygenase gene and cyclooxygenase gene from these organisms with the current state of the art. For example, it is generally known that genes encoding enzymes with similar functions in related organisms cross-hybridize.
 本発明の遺伝子は、2本鎖DNAのみならず、それを構成するセンス鎖及びアンチセンス鎖と言った各1本鎖DNAやRNAを包含する。アンチセンス鎖は、プローブとして又はアンチセンス化合物として利用できる。DNAには、例えばクローニング若しくは化学合成技術又はそれらの組み合わせで得られるようなcDNAやゲノムDNA等が含まれる。さらに、本発明の遺伝子は、非翻訳領域(UTR)の配列、ベクター配列(発現ベクター配列を含む)などの配列を含むものであってもよい。 The gene of the present invention includes not only double-stranded DNA but also single-stranded DNA and RNA such as sense strand and antisense strand constituting the DNA. The antisense strand can be used as a probe or as an antisense compound. DNA includes, for example, cDNA and genomic DNA obtained by cloning or chemical synthesis techniques, or a combination thereof. Furthermore, the gene of the present invention may include sequences such as untranslated region (UTR) sequences and vector sequences (including expression vector sequences).
(3)本発明に係るたんぱく質
 本発明に係るたんぱく質は、以下のホスホリパーゼたんぱく質、リポキシゲナーゼたんぱく質及びシクロオキシゲナーゼたんぱく質である。
(3) Protein according to the present invention The protein according to the present invention is the following phospholipase protein, lipoxygenase protein, and cyclooxygenase protein.
(本発明に係るホスホリパーゼたんぱく質)
 本発明に係るホスホリパーゼたんぱく質は、上述したホスホリパーゼ活性、すなわち細胞膜に結合しているリン脂質から、AA又はEPAを細胞内に遊離させる作用を有するたんぱく質であればよい。より具体的には、以下に示すたんぱく質が好ましい。より好ましくは、ゼニゴケ目生物由来のホスホリパーゼ活性を有するたんぱく質である。
 1.上記(2)に記載した本発明に係るホスホリパーゼ遺伝子によってコードされるたんぱく質
 2.配列番号2に示されるアミノ酸配列からなるたんぱく質
 3.配列番号2に示されるアミノ酸配列の1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質
 配列番号2に示されるアミノ酸配列からなるたんぱく質は、ゼニゴケ(Marchantia polymorpha)由来のホスホリパーゼである。
(Phospholipase protein according to the present invention)
The phospholipase protein according to the present invention may be a protein having the above-described phospholipase activity, that is, a function of releasing AA or EPA into cells from phospholipids bound to the cell membrane. More specifically, the following proteins are preferred. More preferably, it is a protein having phospholipase activity derived from the genus Pleurotus.
1. 1. a protein encoded by the phospholipase gene according to the present invention described in (2) above; 2. A protein consisting of the amino acid sequence shown in SEQ ID NO: 2. It consists of an amino acid sequence in which one or several amino acids of the amino acid sequence shown in SEQ ID NO: 2 are substituted, deleted, inserted, and / or added, and arachidonic acid or eicosapentaenoic acid is intracellularly converted from cell membrane phospholipids. A protein having a phospholipase activity that is released into the protein The protein comprising the amino acid sequence shown in SEQ ID NO: 2 is a phospholipase derived from Marchantia polymorpha.
(本発明に係るリポキシゲナーゼたんぱく質)
 本発明に係るリポキシゲナーゼたんぱく質は、上述したリポキシゲナーゼ活性、すなわちAA又はEPAに対して基質特異性を示し、これらをロイコトリエンに変換する作用を有するたんぱく質であればよい。より具体的には、以下に示すたんぱく質が好ましい。より好ましくは、ゼニゴケ目生物由来のリポキシゲナーゼ活性を有するたんぱく質である。
 1.上記(2)に記載した本発明に係るリポキシゲナーゼ遺伝子によってコードされるたんぱく質
 2.配列番号4に示されるアミノ酸配列からなるたんぱく質
 3.配列番号4に示されるアミノ酸配列の1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質
 配列番号4に示されるアミノ酸配列からなるたんぱく質は、ゼニゴケ(Marchantia polymorpha)由来のリポキシゲナーゼである。
(Lipoxygenase protein according to the present invention)
The lipoxygenase protein according to the present invention may be any protein as long as it has the above-described lipoxygenase activity, that is, substrate specificity for AA or EPA, and has an effect of converting these into leukotrienes. More specifically, the following proteins are preferred. More preferably, it is a protein having lipoxygenase activity derived from the genus Pleurotus.
1. 1. a protein encoded by the lipoxygenase gene according to the present invention described in (2) above; 2. A protein consisting of the amino acid sequence shown in SEQ ID NO: 4. It consists of an amino acid sequence in which one or several amino acids of the amino acid sequence shown in SEQ ID NO: 4 are substituted, deleted, inserted, and / or added, and has lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate Protein The protein consisting of the amino acid sequence shown in SEQ ID NO: 4 is a lipoxygenase derived from Marchantia polymorpha.
(本発明に係るシクロオキシゲナーゼたんぱく質)
 本発明に係るシクロオキシゲナーゼたんぱく質は、上述したシクロオキシゲナーゼ活性、すなわちAA又はEPAに対して基質特異性を示し、これらをプロスタグランジンに変換する作用を有するたんぱく質であればよい。より具体的には、以下に示すたんぱく質が好ましい。より好ましくは、ゼニゴケ目生物由来のシクロオキシゲナーゼ活性を有するたんぱく質である。
 1.上記(2)に記載した本発明に係るシクロオキシゲナーゼ遺伝子によってコードされるたんぱく質
 2.配列番号6に示されるアミノ酸配列からなるたんぱく質
 3.配列番号6に示されるアミノ酸配列の1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質
 配列番号6に示されるアミノ酸配列からなるたんぱく質は、ゼニゴケ(Marchantia polymorpha)由来のシクロオキシゲナーゼである。
(Cyclooxygenase protein according to the present invention)
The cyclooxygenase protein according to the present invention may be any protein as long as it exhibits substrate specificity for the above-described cyclooxygenase activity, that is, AA or EPA, and has an action of converting these into prostaglandins. More specifically, the following proteins are preferred. More preferably, it is a protein having cyclooxygenase activity derived from the genus Pleurotus.
1. 1. a protein encoded by the cyclooxygenase gene according to the present invention described in (2) above; 2. A protein consisting of the amino acid sequence shown in SEQ ID NO: 6. Cyclooxygenase activity comprising an amino acid sequence in which one or several amino acids of the amino acid sequence shown in SEQ ID NO: 6 are substituted, deleted, inserted and / or added, and using arachidonic acid or eicosapentaenoic acid as a substrate Protein with Protein The protein consisting of the amino acid sequence shown in SEQ ID NO: 6 is a cyclooxygenase derived from Marchantia polymorpha.
 上記「1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加された」とは、部位特異的突然変異誘発法などの公知の変異たんぱく質作製法により、置換、欠失、挿入、及び/又は付加できる程度の数(通常20個以下、好ましくは10個以下、より好ましくは7個以下、さらに好ましくは5個以下)のアミノ酸が置換、欠失、挿入、及び/又は付加されることを意味する。 The above “one or several amino acids are substituted, deleted, inserted, and / or added” means substitution, deletion, insertion by a known mutant protein production method such as site-directed mutagenesis. And / or the number of amino acids that can be added (usually 20 or less, preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less) are substituted, deleted, inserted, and / or added. Means that.
(4)本発明に係るたんぱく質及び遺伝子の取得方法
 本発明に係るたんぱく質及び遺伝子の取得方法(生産方法)は特に限定されるものではないが、代表的な方法として次に示す各方法を挙げることができる。
(4) Protein and gene acquisition method according to the present invention The protein and gene acquisition method (production method) according to the present invention is not particularly limited, but the following methods are listed as representative methods. Can do.
(たんぱく質の取得方法)
 本発明のたんぱく質を取得する方法(生産方法)は、上述したように特に限定されるものではないが、まず、本発明のたんぱく質を発現する細胞、組織などから該たんぱく質を単純精製する方法を挙げることができる。精製方法も特に限定されるものではなく、公知の方法で細胞又は組織から細胞抽出液を調製し、この細胞抽出液を公知の方法、例えばカラム等を用いて精製すればよい。本発明のたんぱく質を発現する細胞としては、上述したゼニゴケ目生物の細胞等が挙げられる。
(Protein acquisition method)
The method (production method) for obtaining the protein of the present invention is not particularly limited as described above. First, a method for simply purifying the protein from cells, tissues, etc. that express the protein of the present invention is mentioned. be able to. The purification method is not particularly limited, and a cell extract may be prepared from cells or tissues by a known method, and the cell extract may be purified using a known method such as a column. Examples of the cell that expresses the protein of the present invention include the above-mentioned cells of the genus Coleoptera.
 また、本発明のたんぱく質を取得する方法として、遺伝子組換え技術等を用いる方法も挙げられる。この場合、例えば、本発明の遺伝子をベクターなどに組み込んだ後、公知の方法により発現可能に宿主細胞に導入し、得られる形質転換細胞を培養して、該細胞内で翻訳されて得られる上記たんぱく質を精製するという方法などを採用することができる。宿主細胞は、植物、微生物、動物のいずれの細胞でもよい。 In addition, as a method for obtaining the protein of the present invention, a method using a gene recombination technique or the like can also be mentioned. In this case, for example, after the gene of the present invention is incorporated into a vector or the like, it is introduced into a host cell so that it can be expressed by a known method, and the resulting transformed cell is cultured and translated into the cell. For example, a method of purifying a protein can be employed. The host cell may be a plant, microorganism, or animal cell.
 なお、このように本発明のたんぱく質を取得する目的で、宿主細胞に外来遺伝子を導入する場合、外来遺伝子の発現のため宿主内で機能するプロモーターを組み入れた発現ベクター及び宿主には様々なものが存在するので、目的に応じたものを選択すればよい。宿主細胞内で産生されたたんぱく質を精製する方法は、用いた宿主、たんぱく質の性質によって異なるが、該宿主細胞又はその培養上清から、当業者に公知の方法により精製し、たんぱく質を回収することが可能である。例えば、タグの利用等によって比較的容易に目的のたんぱく質を精製することが可能である。 In addition, when a foreign gene is introduced into a host cell for the purpose of obtaining the protein of the present invention, there are various expression vectors and hosts incorporating a promoter that functions in the host for the expression of the foreign gene. Since it exists, what is necessary is just to select the thing according to the objective. The method for purifying the protein produced in the host cell differs depending on the host used and the nature of the protein, but the protein is recovered from the host cell or its culture supernatant by a method known to those skilled in the art. Is possible. For example, the target protein can be purified relatively easily by using tags or the like.
 変異たんぱく質を作製する方法についても、特に限定されるものではない。例えば、部位特異的突然変異誘発法(Hashimoto et al. Gene 152, 271-275(1995))、PCR法を利用して塩基配列に点変異を導入し変異たんぱく質を作製する方法、あるいはトランスポゾンの挿入による突然変異株作製法などの周知の変異たんぱく質作製法を用いることができる。変異たんぱく質の作製には市販のキットを利用しても良い。 The method for producing the mutant protein is not particularly limited. For example, site-directed mutagenesis (Hashimoto et al., Gene 152, 271-275 (1995)), a method of introducing a point mutation into a base sequence using PCR, or a transposon insertion A well-known method for producing a mutant protein, such as a method for producing a mutant strain by the above method, can be used. A commercially available kit may be used for the production of the mutant protein.
 本発明のたんぱく質の取得方法は上述の方法に限定されることはなく、例えば、化学合成されたものであってもよい。例えば、無細胞系のたんぱく質合成液を利用して本発明の遺伝子から本発明のたんぱく質を合成してもよい。また、Peptide Synthesis, Interscience, New York, 1966 ; The Proteins, Vol 2, Academic Press Inc., New York, 1976; ペプチド合成、丸善(株)、1975;ペプチド合成の基礎と実験、丸善(株)1985;医薬品の開発 続 第14巻・ペプチド合成、広川書店、1991などに記載されているペプチド合成方法によって合成することもできる。 The method for obtaining the protein of the present invention is not limited to the above-described method, and may be, for example, chemically synthesized. For example, the protein of the present invention may be synthesized from the gene of the present invention using a cell-free protein synthesis solution. PeptideeptSynthesis, Interscience, New York, 1966; The Proteins, Vol 2, Academic Press Inc., New York, 1976; Peptide Synthesis, Maruzen Co., Ltd., 1975; Peptide Synthesis Fundamentals and Experiments, Maruzen Co., Ltd. 1985 Development of pharmaceuticals, Vol. 14, peptide synthesis, Hirokawa Shoten, 1991, etc., can also be synthesized by peptide synthesis methods.
(遺伝子の取得方法)
 本発明の遺伝子を取得する方法(生産方法)も特に限定されるものではないが、例えば、ディファレンシャルスクリーニング(サブトラクションクローニング)を利用する方法を挙げることができる。この方法では、公知の技術に従って、試験管内での直接的ハイブリダイゼーションを繰り返し、目的のcDNA(本発明の遺伝子)を濃縮すればよい。
(Gene acquisition method)
The method (production method) for obtaining the gene of the present invention is not particularly limited, and examples thereof include a method using differential screening (subtraction cloning). In this method, according to a known technique, direct hybridization in a test tube is repeated to concentrate the target cDNA (the gene of the present invention).
 上記ディファレンシャルスクリーニングにおける各ステップについては、通常用いられる条件の下で行えばよい。これによって得られたクローンは、制限酵素地図の作製及びその塩基配列決定(シークエンシング)によって、さらに詳しく解析することができる。これらの解析によって、本発明の遺伝子配列を含むDNA断片を取得したか容易に確認することができる。 Each step in the above differential screening may be performed under conditions that are normally used. The clone thus obtained can be analyzed in more detail by preparing a restriction enzyme map and determining its nucleotide sequence (sequencing). From these analyses, it can be easily confirmed whether a DNA fragment containing the gene sequence of the present invention has been obtained.
 また、本発明の遺伝子を取得する方法として、公知の技術により、本発明の遺伝子を含むDNA断片を単離し、クローニングする方法が挙げられる。例えば、本発明の遺伝子の塩基配列の一部と特異的にハイブリダイズするプローブを調製し、ゲノムDNAライブラリーやcDNAライブラリーをスクリーニングすればよい。このようなプローブとしては、本発明の遺伝子の塩基配列又はその相補配列の少なくとも一部に特異的にハイブリダイズするプローブであれば、いずれの配列/長さのものを用いてもよい。 Further, as a method for obtaining the gene of the present invention, a method of isolating and cloning a DNA fragment containing the gene of the present invention by a known technique can be mentioned. For example, a probe that specifically hybridizes with a part of the base sequence of the gene of the present invention may be prepared and a genomic DNA library or cDNA library may be screened. As such a probe, any probe of any sequence / length may be used as long as it specifically hybridizes to at least a part of the base sequence of the gene of the present invention or its complementary sequence.
 また、例えば、上記プローブの配列を、上述したゼニゴケ間で良好に保存されている領域の中から選択し、他のゼニゴケ目生物のゲノムDNA(又はcDNA)ライブラリーをスクリーニングすれば、上記たんぱく質と同様の機能を有する相同分子又は類縁分子をコードする遺伝子を単離しクローニングできる。 In addition, for example, if the sequence of the probe is selected from the regions that are well conserved among the above genus, and the genomic DNA (or cDNA) library of other genus genus is screened, the above protein and Genes encoding homologous or related molecules with similar functions can be isolated and cloned.
 あるいは、本発明の遺伝子を取得する方法として、PCR等の増幅手段を用いる方法を挙げることができる。例えば、本発明の遺伝子のcDNA配列のうち、5’側及び3’側の配列(又はその相補配列)の中からそれぞれプライマーを調製し、これらプライマーを用いてゲノムDNA(又はcDNA)等を鋳型にしてPCR等を行い、両プライマー間に挟まれるDNA領域を増幅することで、本発明の遺伝子を含むDNA断片を大量に取得できる。PCR、プライマーの調製等の操作は、公知の遺伝子工学的手法(遺伝子操作技術)により、行うことができる。また、本発明の遺伝子は、DNA合成機によって合成することもできる。 Alternatively, examples of a method for obtaining the gene of the present invention include a method using amplification means such as PCR. For example, among the cDNA sequences of the gene of the present invention, primers are prepared from the 5 ′ side and 3 ′ side sequences (or their complementary sequences), and genomic DNA (or cDNA) is used as a template using these primers. By performing PCR or the like and amplifying the DNA region sandwiched between both primers, a large amount of DNA fragments containing the gene of the present invention can be obtained. Operations such as PCR and primer preparation can be performed by a known genetic engineering technique (gene manipulation technique). The gene of the present invention can also be synthesized by a DNA synthesizer.
 上記方法により得られた遺伝子によりコードされるたんぱく質がホスホリパーゼ活性、リポキシゲナーゼ活性又はシクロオキシゲナーゼを有することは、例えば、大腸菌、酵母等に該遺伝子を導入してたんぱく質を生産させ、調製したたんぱく質画分を用いて、それぞれの酵素活性in vitroで分析することにより確かめることができる。 The protein encoded by the gene obtained by the above method has phospholipase activity, lipoxygenase activity or cyclooxygenase. For example, the protein is produced by introducing the gene into Escherichia coli, yeast, etc., and the prepared protein fraction is used. Thus, it can be confirmed by analyzing each enzyme activity in vitro.
(5)本発明に係る遺伝子及びたんぱく質の利用方法(有用性)
(5-1)組換え発現ベクター
 本発明の組換え発現ベクターは、例えば、前述した本発明に係るたんぱく質(ホスホリパーゼたんぱく質、リポキシゲナーゼたんぱく質及びシクロオキシゲナーゼたんぱく質)を宿主細胞に生産させるため、又は、後述するエイコサノイド組成が改変された植物形質転換体の作出のため等に使用され得るものである。本発明の組換え発現ベクターは、本発明のエイコサノイド生産方法に使用される形質転換体の製造に好適に使用され得るものである。
(5) Gene and protein utilization method (usefulness) according to the present invention
(5-1) Recombinant Expression Vector The recombinant expression vector of the present invention is used for, for example, producing the above-described proteins (phospholipase protein, lipoxygenase protein and cyclooxygenase protein) according to the present invention in a host cell, or an eicosanoid described later. It can be used for the production of plant transformants having a modified composition. The recombinant expression vector of the present invention can be suitably used for the production of a transformant used in the eicosanoid production method of the present invention.
 本発明に係る組換え発現ベクターは、前記(2)に記載した本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子又はシクロオキシゲナーゼ遺伝子を含むものであれば、特に限定されるものではない。例えば、本発明に係る遺伝子のcDNAが挿入された組換え発現ベクターが挙げられる。本発明のホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子は、これらの2以上の遺伝子が同一の組換え発現ベクターに含まれてもよく、それぞれが別の組換え発現ベクターに含まれてもよい。組換え発現ベクターは、本発明に係る遺伝子を宿主中で発現させるために、さらに、該遺伝子の発現に必要なプロモーター等の調節配列を含むことが好ましい。組換え発現ベクターの作製方法は、公知の方法を用いて行えばよい。 The recombinant expression vector according to the present invention is not particularly limited as long as it contains the phospholipase gene, lipoxygenase gene or cyclooxygenase gene according to the present invention described in (2) above. For example, a recombinant expression vector into which the cDNA of the gene according to the present invention is inserted can be mentioned. In the phospholipase gene, lipoxygenase gene and cyclooxygenase gene of the present invention, these two or more genes may be contained in the same recombinant expression vector, or each may be contained in a separate recombinant expression vector. The recombinant expression vector preferably further contains regulatory sequences such as a promoter necessary for the expression of the gene in order to express the gene according to the present invention in the host. The recombinant expression vector may be produced using a known method.
 本発明に係る遺伝子を含む組換え発現ベクターは、通常、基礎となるベクター(以下の説明では、便宜上、基礎ベクターと称する)のマルチクローニングサイトに、本発明に係る遺伝子、プロモーター及びターミネーター等を組み込んで構築すればよい。 The recombinant expression vector containing the gene according to the present invention usually incorporates the gene, promoter, terminator and the like according to the present invention into the multicloning site of the basic vector (in the following description, referred to as the basic vector for convenience). You can build with.
 基礎べクターの具体的な種類は特に限定されるものではなく、宿主細胞中で発現可能なベクターを適宜選択すればよい。ここで、上記基礎ベクターとしては、プラスミド、ファージ、又はコスミドなどを用いることができるが特に限定されるものではない。すなわち、宿主細胞の種類に応じて、確実に遺伝子を発現させるために適宜プロモーター配列等を選択し、これと本発明の遺伝子を各種プラスミド等の基礎ベクターに組み込んだものを組換え発現ベクターとして用いればよい。
 本発明の組換え発現ベクターを植物に導入して植物形質転換体を作出する、又は植物のエイコサノイド組成を改変する場合、基礎ベクターとして、後述する植物細胞用ベクターを用いることが好ましい。
The specific type of basic vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected. Here, plasmids, phages, cosmids, and the like can be used as the basic vector, but are not particularly limited. That is, according to the type of host cell, a promoter sequence or the like is appropriately selected in order to reliably express the gene, and a gene obtained by incorporating this and the gene of the present invention into a basic vector such as various plasmids can be used as a recombinant expression vector. That's fine.
When the recombinant expression vector of the present invention is introduced into a plant to produce a plant transformant or the eicosanoid composition of a plant is modified, a plant cell vector described later is preferably used as a basic vector.
 本発明の遺伝子が宿主細胞に導入されたか否か、さらに、宿主細胞中で確実に発現しているか否かを確認するために、各種マーカーを用いてもよい。マーカーは、特に限定されず、自体公知のものを用いてよい。例えば、宿主細胞中で欠失している遺伝子をマーカーとして用い、このマーカーと本発明の遺伝子とを含むプラスミド等を組換え発現ベクターとして宿主細胞に導入する。これによってマーカー遺伝子の発現から本発明の遺伝子の導入を確認することができる。このようなマーカー遺伝子として、例えば、各種の薬剤耐性遺伝子、植物の栄養要求性を相補する遺伝子等が挙げられる。より具体的には、例えば、ハイグロマイシン、ネオマイシン耐性遺伝子(G418耐性)、クロラムフェニコール耐性遺伝子、カナマイシン耐性遺伝子、テトラサイクリン耐性遺伝子又は除草剤クロルスルフロン耐性遺伝子、スペクチノマイシン耐性遺伝子等が挙げられる。あるいは、本発明のたんぱく質を融合たんぱく質として発現させてもよく、例えば、オワンクラゲ由来の緑色蛍光たんぱく質GFP(Green Fluorescent Protein)をマーカーとして用い、本発明のたんぱく質をGFP融合たんぱく質として発現させてもよい。宿主細胞が植物細胞の場合には、マーカーは、ハイグロマイシン耐性遺伝子が好ましい。また、該マーカー遺伝子の上流及び下流には、該遺伝子を認識するためのプロモーター及びターミネーターを有することが好ましい。 In order to confirm whether or not the gene of the present invention has been introduced into the host cell, and whether or not it is reliably expressed in the host cell, various markers may be used. The marker is not particularly limited, and a marker known per se may be used. For example, a gene deleted in the host cell is used as a marker, and a plasmid or the like containing this marker and the gene of the present invention is introduced into the host cell as a recombinant expression vector. Thus, the introduction of the gene of the present invention can be confirmed from the expression of the marker gene. Examples of such marker genes include various drug resistance genes and genes that complement plant auxotrophy. More specifically, examples include hygromycin, neomycin resistance gene (G418 resistance), chloramphenicol resistance gene, kanamycin resistance gene, tetracycline resistance gene or herbicide chlorsulfuron resistance gene, spectinomycin resistance gene and the like. It is done. Alternatively, the protein of the present invention may be expressed as a fusion protein. For example, a green fluorescent protein GFP (Green Fluorescent Protein) derived from Aequorea jellyfish may be used as a marker, and the protein of the present invention may be expressed as a GFP fusion protein. When the host cell is a plant cell, the marker is preferably a hygromycin resistance gene. Moreover, it is preferable to have a promoter and a terminator for recognizing the gene upstream and downstream of the marker gene.
 上記宿主細胞は、特に限定されるものではなく、従来公知の各種細胞を好適に用いることができる。本発明に係るたんぱく質を調製するために用いられる宿主細胞は、具体的には、例えば、植物、ヒトを除く動物、昆虫、大腸菌(Escherichia coli)等の細菌、酵母(出芽酵母Saccharomyces cerevisiae、分裂酵母Schizosaccharomyces pombe)、線虫(Caenorhabditis elegans)、アフリカツメガエル(Xenopus laevis)の卵母細胞等の細胞を挙げることができるが、特に限定されるものではない。細菌としては、大腸菌が好ましい。植物としては、例えば、シロイロナズナ、藻類、ヒメツリガネゴケ、上記のゼニゴケ目生物等が好ましく、ゼニゴケ科生物がより好ましい。中でも、本発明に係るたんぱく質を調製するための宿主細胞は、大腸菌、酵母が好ましい。 The host cell is not particularly limited, and various conventionally known cells can be suitably used. Specific examples of host cells used for preparing the protein of the present invention include plants, animals other than humans, insects, bacteria such as Escherichia coli, yeasts (budding yeast Saccharomyces cerevisiae, fission yeast). Examples of such cells include, but are not limited to, oocytes of Schizosaccharomycesbepombe, Caenorhabditis elegans, and Xenopus laevis. As bacteria, Escherichia coli is preferable. As the plant, for example, white crocodile, algae, Physcomitrella patens, and the above-mentioned genus Coleoptera are preferable, and the genus Asteraceae is more preferable. Of these, Escherichia coli and yeast are preferred as host cells for preparing the protein of the present invention.
 本発明の組換え発現ベクターを植物に導入して、植物形質転換体、好ましくはエイコサノイド組成が改変された植物形質転換体を作出する場合、植物としてはゼニゴケ目生物が好ましい。すなわち、好ましい宿主細胞は、ゼニゴケ目生物の細胞である。 In the case where the recombinant expression vector of the present invention is introduced into a plant to produce a plant transformant, preferably a plant transformant having a modified eicosanoid composition, the plant is preferably a genus Coleoptera. That is, a preferred host cell is a cell of the order genus Coleoptera.
 上記組換え発現ベクターを宿主細胞に導入する方法、すなわち形質転換方法も特に限定されるものではなく、宿主に応じて適宜選択すればよい。例えば、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法、アグロバクテリウム法、パーティクルガン法等の従来公知の方法を好適に用いることができる。また、例えば、本発明のたんぱく質を昆虫で転移発現させる場合には、バキュロウィルスを用いた発現系を採用することができる。 The method for introducing the above recombinant expression vector into a host cell, that is, the transformation method is not particularly limited, and may be appropriately selected depending on the host. For example, conventionally known methods such as an electroporation method, a calcium phosphate method, a liposome method, a DEAE dextran method, an Agrobacterium method, and a particle gun method can be suitably used. In addition, for example, when the protein of the present invention is transferred and expressed in insects, an expression system using baculovirus can be employed.
(5-2)形質転換体
 本発明に係る形質転換体は、前記(2)に記載した本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子のうちの1種又は2種以上が導入された形質転換体であれば、特に限定されるものではない。このような形質転換体は、本発明に係るたんぱく質(ホスホリパーゼたんぱく質、リポキシゲナーゼたんぱく質及びシクロオキシゲナーゼたんぱく質)を生産(発現)することができるものである。また、本発明の遺伝子を植物に導入してなる植物形質転換体は、後述するようにエイコサノイドの生産に用いることができるものである。ここで「植物形質転換体」とは、植物の細胞、組織、器官のみならず、植物個体(植物体)を含む意味である。好ましくは、本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子が導入された形質転換体である。
(5-2) Transformant A transformant according to the present invention is a trait into which one or more of the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention described in (2) above is introduced. If it is a converter, it will not specifically limit. Such a transformant is capable of producing (expressing) the protein according to the present invention (phospholipase protein, lipoxygenase protein and cyclooxygenase protein). Moreover, the plant transformant obtained by introducing the gene of the present invention into a plant can be used for the production of eicosanoids as described later. Here, the “plant transformant” means not only plant cells, tissues and organs but also individual plants (plants). Preferably, it is a transformant in which the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced.
 本発明に係る植物形質転換体は、本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子のうちの1種又は2種以上が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体がより好ましい。このような植物形質転換体は、エイコサノイドの生産に好適に用いることができるものである。好ましくは、本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子が植物に発現可能に導入されてなる植物形質転換体である。このようなエイコサノイド組成が改変された植物形質転換体は、例えば、本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子を植物に導入することによって作出することができる。また、このような植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織も、本発明の好ましい態様の1つである。 The plant transformant according to the present invention is a plant trait having a modified eicosanoid composition, wherein one or more of the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced so as to be expressed in a plant. A converter is more preferable. Such a plant transformant can be suitably used for the production of eicosanoids. Preferably, it is a plant transformant in which the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced into a plant so that they can be expressed. Such a plant transformant having a modified eicosanoid composition can be produced, for example, by introducing a phospholipase gene, a lipoxygenase gene and a cyclooxygenase gene according to the present invention into a plant. In addition, a plant transformant that is a descendant of the plant transformant having the same properties as the plant transformant, or a tissue of the plant transformant is also a preferred embodiment of the present invention.
 ここで「遺伝子が発現可能に導入された」とは、公知の遺伝子工学的手法(遺伝子操作技術)により、遺伝子が、対象細胞(例えば、植物宿主細胞等)内に発現可能に導入されることを意味する。また、本発明において植物とは、例えば、植物体全体でも、植物体の一部でもよく、また、プロトプラスト、カルス等の植物細胞であってもよい。 Here, “a gene has been introduced so that it can be expressed” means that the gene is introduced into a target cell (for example, a plant host cell) so that it can be expressed by a known genetic engineering technique (gene manipulation technique). Means. In the present invention, the plant may be, for example, the whole plant body or a part of the plant body, or may be a plant cell such as protoplast or callus.
 このような本発明に係る遺伝子を植物に導入してなる植物形質転換体(形質転換植物)により、低コストかつ環境にやさしい生産プロセスでロイコトリエンやプロスタグランジン等のエイコサノイドを生産することができる。 Eicosanoids such as leukotrienes and prostaglandins can be produced by a plant transformant (transformed plant) obtained by introducing such a gene according to the present invention into a plant by a low-cost and environment-friendly production process.
 本発明の形質転換体の作製方法(生産方法)は特に限定されるものではないが、例えば、上述した組換え発現べクターを宿主細胞に導入して形質転換する方法を挙げることができる。組換え発現べクターを宿主細胞に導入する方法は、公知の方法を利用すればよく、宿主により適宜選択すればよい。また、形質転換の対象となる生物も特に限定されるものではなく、上記宿主細胞で例示した各種微生物、植物、動物等を挙げることができる。上述したように、本発明の遺伝子を宿主細胞に導入して、該形質転換細胞を用いて本発明に係るたんぱく質を生産する場合、宿主細胞としては、植物、ヒトを除く動物、昆虫、細菌、酵母等が好ましい。細菌としては、大腸菌が好ましい。植物としては、例えば、シロイロナズナ、藻類、ヒメツリガネゴケ、上記のゼニゴケ目生物等が好ましく、ゼニゴケ目生物がより好ましい。中でも、本発明に係るたんぱく質を取得する際に用いられる宿主細胞は、大腸菌、酵母が好ましい。
 本発明の植物形質転換体によりエイコサノイドを生産する場合、宿主である植物は、ゼニゴケ目生物が好ましい。中でも、ゼニゴケ(Marchantia polymorpha)が好ましい。
The method for producing the transformant (production method) of the present invention is not particularly limited, and examples thereof include a method for transformation by introducing the above-described recombinant expression vector into a host cell. As a method for introducing the recombinant expression vector into the host cell, a known method may be used, and it may be appropriately selected depending on the host. In addition, the organism to be transformed is not particularly limited, and examples thereof include various microorganisms, plants, animals and the like exemplified in the host cell. As described above, when the gene of the present invention is introduced into a host cell and the protein according to the present invention is produced using the transformed cell, the host cell includes plants, animals other than humans, insects, bacteria, Yeast and the like are preferable. As bacteria, Escherichia coli is preferable. As the plant, for example, white crocodile, algae, Physcomitrella patens, the above-mentioned genus Coleoptera, and the like are more preferable, and C. elegans are more preferable. Among them, E. coli and yeast are preferable as the host cell used for obtaining the protein according to the present invention.
When eicosanoids are produced by the plant transformant of the present invention, the host plant is preferably a genus Genus. Among these, Zenigoke (Marchantia polymorpha) is preferable.
 植物の形質転換に用いられる組換え発現ベクターは、該植物細胞内で挿入遺伝子を発現させることが可能なものあれば特に限定されない。例えば、組換え発現ベクターの作製に用いられる基礎ベクターとして、例えばpUC18、pUC19等のpUC系プラスミド;pBI221等の植物宿主細胞用プラスミドDNA、又は、pWTT23132(DNAP社製)、Gateway(Invitrogen社製)等のバイナリーベクター、PCS31ベクター(葉緑体用)等の植物細胞用ベクターが好適である。また、上述したような、植物細胞内で恒常的に遺伝子を発現させるプロモーター(例えば、上述したカリフラワーモザイクウィルスの35Sプロモーター)を有する組換え発現ベクターや、外的な刺激により誘導的に活性化されるプロモーターを有する組換え発現べクターを用いることができる。なお、組換え発現ベクターが導入される植物細胞には、種々の形態の植物細胞、例えば、懸濁培養細胞、プロトプラスト、葉の切片、カルスなどが含まれる。本発明の遺伝子は、組換え発現ベクターにより、植物細胞中の葉緑体等の核以外の細胞内小器官に導入されてもよい。 The recombinant expression vector used for plant transformation is not particularly limited as long as it can express the inserted gene in the plant cell. For example, as a basic vector used for the production of a recombinant expression vector, for example, pUC plasmids such as pUC18 and pUC19; plasmid DNA for plant host cells such as pBI221, or pWTT23132 (manufactured by DNAP), Gateway (manufactured by Invitrogen) A vector for plant cells such as a binary vector such as PCS31 vector (for chloroplast) is preferred. Further, as described above, a recombinant expression vector having a promoter that constantly expresses a gene in a plant cell (for example, the 35S promoter of the cauliflower mosaic virus described above) or an inducibly activated by an external stimulus. A recombinant expression vector having a promoter can be used. The plant cells into which the recombinant expression vector is introduced include various types of plant cells, such as suspension culture cells, protoplasts, leaf sections, and callus. The gene of the present invention may be introduced into intracellular organelles other than the nucleus such as chloroplasts in plant cells by a recombinant expression vector.
 組換え発現ベクターに含まれる、上述した本発明に係る遺伝子を植物細胞中で発現させるためのプロモーターとしては、植物細胞中で発現できるものであればいずれを用いてもよい。例えばカリフラワーモザイクウィルスの35Sプロモーター、rd29A遺伝子プロモーター又はrbcSプロモーター等の植物由来のプロモーター;或いはカリフラワーモザイクウィルスの35Sプロモーターのエンハンサー配列をアグロバクテリウム由来のマンノピン合成酵素プロモーター配列の5’側に付加したmac-1プロモーター等のような構成的プロモーター等が好ましい。さらに、tacプロモーター等のように、人為的に設計改変されたプロモーターを用いてもよい。また、植物の遺伝子由来の種々のプロモーターを利用することもできる。中でも、導入したエイコサノイドの生合成に係わる遺伝子が植物において恒常的に発現することが好ましいことから、構成的プロモーターを用いることが好ましく、カリフラワーモザイクウィルスの35Sプロモーター等がより好ましい。
 ターミネーターとしては、導入する遺伝子により適宜選択することができるが、例えば、AG7ターミネーター、NOSターミネーター、35Sターミネーター、rps16ターミネーター、CaMV35Sターミネーター等が挙げられる。
Any promoter may be used as long as it can be expressed in plant cells as a promoter for expressing the gene according to the present invention contained in the recombinant expression vector in plant cells. For example, a plant-derived promoter such as the cauliflower mosaic virus 35S promoter, rd29A gene promoter, or rbcS promoter; or a cauliflower mosaic virus 35S promoter enhancer sequence added to the 5 ′ side of the Agrobacterium-derived mannopine synthase promoter sequence. A constitutive promoter such as -1 promoter is preferred. Furthermore, an artificially designed and modified promoter such as a tac promoter may be used. Various promoters derived from plant genes can also be used. Among them, a constitutive promoter is preferably used because the gene involved in biosynthesis of the introduced eicosanoid is preferably constitutively expressed in plants, and the cauliflower mosaic virus 35S promoter and the like are more preferable.
The terminator can be appropriately selected depending on the gene to be introduced, and examples thereof include AG7 terminator, NOS terminator, 35S terminator, rps16 terminator, CaMV35S terminator and the like.
 植物細胞への組換え発現ベクターの導入には、ポリエチレングリコール法、電気穿孔法(エレクトロポレーション法)、アグロバクテリウムを介する方法(例えば、Heiei,Y.ら、Plant J.,6,271-282,1994、Takaiwa,F.ら、Plant Sci.111,39-49,1995)、パーティクルガン法など、当業者に公知の種々の方法を用いることができる。形質転換細胞から植物体の再生は、植物細胞の種類に応じて当業者に公知の方法で行うことが可能である。 For introduction of a recombinant expression vector into a plant cell, a polyethylene glycol method, an electroporation method (electroporation method), an Agrobacterium-mediated method (for example, Heiei, Y. et al., Plant J., 6, 271-282, 1994, Takaiwa, F., et al., Plant Sci. 111, 39-49, 1995), and various methods known to those skilled in the art, such as a particle gun method. Regeneration of a plant body from a transformed cell can be performed by a method known to those skilled in the art depending on the type of plant cell.
 例えば、ゼニゴケ目生物の植物形質転換体を作出する手法については、パーティクルガン法により細胞へ遺伝子を直接導入し、植物体を再生させる方法、アグロバクテリウムを介する方法など、いくつかの技術が既に確立されている。本発明においては、これらの方法を好適に用いることができる。このようなゼニゴケ目生物の形質転換体を作製する技術については、例えば、Plant Cell Physiol., 49, p1048 2008に記載されている。 For example, there are already several techniques for creating plant transformants of the genus Amanita, such as a method of directly regenerating plants by introducing a gene directly into cells by the particle gun method, and a method using Agrobacterium. Has been established. In the present invention, these methods can be suitably used. A technique for producing such a transformant of the genus Coleoptera is described in, for example, Plant Cell Physiol., 49, p1048 2008.
 ゲノム内に本発明の遺伝子が導入された植物形質転換体が一旦得られれば、該植物形質転換体の植物体から有性生殖又は無性生殖により子孫を得ることができる。また、当該植物形質転換体、又は、その子孫、あるいは、クローンから、繁殖材料、例えば、葉状体、胚状体、胞子、仮根、株、カルス、プロトプラストなどを得て、それらを基に当該植物形質転換体を量産することが可能である。したがって、本発明には、本発明の遺伝子が導入された植物形質転換体、該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、及び、該植物形質転換体の組織も含まれる。さらに、本発明には、該植物形質転換体又は該植物形質転換体の組織から得られる繁殖材料も含まれる。該植物形質転換体又は該植物形質転換体の組織から繁殖材料を得る方法としては、公知の方法を使用できる。上記組換え発現ベクターにより遺伝子が導入された植物又は植物の組織を増殖又は生育させる方法、植物細胞から植物体を再生させる方法、栽培する方法等については特に限定されるものではなく、植物の種類等に応じた条件を適宜用いることができる。 Once a plant transformant in which the gene of the present invention has been introduced into the genome is obtained, offspring can be obtained from the plant body of the plant transformant by sexual reproduction or asexual reproduction. Further, from the plant transformant, its progeny, or clone, a propagation material such as a leaf, embryo, spore, temporary root, strain, callus, protoplast, etc. is obtained and based on them It is possible to mass-produce plant transformants. Therefore, the present invention includes a plant transformant into which the gene of the present invention has been introduced, a plant transformant that is a descendant of the plant transformant having the same properties as the plant transformant, and the plant trait This includes the organization of converters. Furthermore, the present invention also includes a propagation material obtained from the plant transformant or the tissue of the plant transformant. As a method for obtaining a propagation material from the plant transformant or the tissue of the plant transformant, a known method can be used. There are no particular restrictions on the method for growing or growing a plant or plant tissue into which a gene has been introduced by the above recombinant expression vector, the method for regenerating a plant from plant cells, the method for cultivating, etc. The conditions according to the above can be used as appropriate.
 本発明に係る遺伝子が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、該植物形質転換体の組織、及び、該植物形質転換体又は該植物形質転換体の組織から得られる繁殖材料も本発明に含まれる。「エイコサノイド組成が改変された」とは形質転換前の植物におけるエイコサノイド組成と形質転換後における植物形質転換体又はその組織のエイコサノイド組成とが異なっていることを意味する。例えば、(1)本来エイコサノイド組成にロイコトリエン、プロスタグランジン等が含まれていなかった植物を本発明に係る遺伝子で形質転換することにより、作出された植物形質転換体のエイコサノイド組成にロイコトリエン、プロスタグランジン等が含まれる場合、(2)形質転換前と比較して、エイコサノイド組成におけるロイコトリエン、プロスタグランジン等の含量が増加した場合等を挙げることができる。 A plant transformant having a modified eicosanoid composition, the plant transformant having the same properties as the plant transformant, wherein the gene according to the present invention is introduced so that it can be expressed in the plant, and the plant transformant serving as a descendant of the plant transformant The plant, the tissue of the plant transformant, and the propagation material obtained from the plant transformant or the tissue of the plant transformant are also included in the present invention. “The eicosanoid composition has been altered” means that the eicosanoid composition in the plant before transformation is different from the eicosanoid composition in the plant transformant or its tissue after transformation. For example, (1) a plant that originally did not contain leukotriene, prostaglandin, etc. in the eicosanoid composition was transformed with the gene according to the present invention, so that the eicosanoid composition of the plant transformant produced was leukotriene, prostaglandin. In the case where gin or the like is included, (2) the case where the content of leukotriene, prostaglandin, etc. in the eicosanoid composition is increased as compared with that before transformation, and the like can be mentioned.
(5-3)エイコサノイド生産方法
 本発明には、本発明に係る遺伝子で形質転換された植物形質転換体(好ましくはエイコサノイド組成が改変された植物形質転換体)又は植物形質転換体の組織を用いてエイコサノイドを生産する方法が含まれる。例えば、上述のようにロイコトリエン、プロスタグランジン等の含量が増加した本発明に係る植物形質転換体はロイコトリエンやプロスタグランジンの含量が高く、医薬、薬理活性の高い原料として価値の高いものになる。このような植物形質転換体は、動物用医薬、機能性食品、飼料等の原料としても有用なものである。
(5-3) Eicosanoid Production Method In the present invention, a plant transformant transformed with the gene of the present invention (preferably a plant transformant having a modified eicosanoid composition) or a tissue of the plant transformant is used. Methods for producing eicosanoids. For example, as described above, the plant transformant according to the present invention having an increased content of leukotrienes, prostaglandins and the like has a high content of leukotrienes and prostaglandins, and is highly valuable as a raw material having high pharmaceutical and pharmacological activity. . Such plant transformants are also useful as raw materials for animal drugs, functional foods, feeds, and the like.
 植物形質転換体の植物体又は該植物形質転換体の組織を用いるエイコサノイドの生産においては、該植物体又はその組織の増殖又は生育に伴い、該植物体又はその組織の細胞内でエイコサノイドが効率よく生産される。生産されたエイコサノイドは、植物形質転換体又はその組織の細胞内に蓄積する。植物形質転換体又は植物形質転換体の組織を用いるエイコサノイドの生産方法は、該植物形質転換体又はその組織を、(好ましくは無性生殖(栄養生殖)により)増殖又は生育させる工程を含むことが好ましい。植物形質転換体又はその組織を増殖又は生育させるには、植物形質転換体又はその組織を適宜栽培又は培養すればよい。該植物形質転換体又はその組織を増殖又は生育させる(栽培又は培養する)条件及び時間は、植物の種類により適宜選択すればよい。例えば、本発明に係る遺伝子で形質転換されたゼニゴケ目生物を用いる場合には、ゼニゴケ目生物の繁殖形態として無性生殖(栄養生殖)によることが好ましい。つまりゼニゴケ目生物については、その形質転換体又はその組織を、無性生殖(栄養生殖)により増殖又は生育させると、生長速度が早く植物工場システムとしても大量生産が可能であるため好ましい。植物用栽培床及び植物栽培方法については、公知の方法を使用できる。また、例えば、特願2008-259372に記載の方法(縦型多段式栽培棚を用いマット方式による栽培装置)等も使用することができる。例えば、ゼニゴケ目生物の細胞に本発明の遺伝子を導入した形質転換体(形質転換細胞)は、通常20~49日間、好ましくは31~49日間培養して増殖させることにより、エイコサノイドを細胞内に蓄積する。ゼニゴケ目生物の場合、培養又は栽培温度は、通常約20~30℃、好ましくは約25~30℃である。 In the production of an eicosanoid using a plant body of a plant transformant or a tissue of the plant transformant, the eicosanoid is efficiently produced in the cells of the plant body or the tissue as the plant body or the tissue grows or grows. Produced. The produced eicosanoid accumulates in the cells of the plant transformant or its tissue. The method for producing an eicosanoid using a plant transformant or a tissue of the plant transformant may include a step of growing or growing the plant transformant or the tissue (preferably by asexual reproduction (vegetative reproduction)). preferable. In order to proliferate or grow a plant transformant or tissue thereof, the plant transformant or tissue thereof may be appropriately cultivated or cultured. The conditions and time for growing or growing (cultivating or cultivating) the plant transformant or its tissue may be appropriately selected depending on the type of plant. For example, when using the genus Coleoptera transformed with the gene according to the present invention, it is preferable to use asexual reproduction (vegetative reproduction) as the breeding form of the genus Coleoptera. That is, for the genus Coleoptera, it is preferable to grow or grow the transformant or the tissue thereof by asexual reproduction (vegetative reproduction) because the growth speed is high and mass production is possible even as a plant factory system. A well-known method can be used about the plant cultivation floor and the plant cultivation method. Further, for example, the method described in Japanese Patent Application No. 2008-259372 (cultivation apparatus using a mat type system using a vertical multi-stage cultivation shelf) can be used. For example, a transformant (transformed cell) in which the gene of the present invention has been introduced into a cell of the genus Coleoptera is usually cultured for 20 to 49 days, preferably 31 to 49 days to proliferate the eicosanoid into the cell. accumulate. In the case of the genus Coleoptera, the culture or cultivation temperature is usually about 20 to 30 ° C., preferably about 25 to 30 ° C.
 本発明によりエイコサノイドを生産させた植物形質転換体又はその組織は、エイコサノイドを含有する素材として、そのまま医薬品、食品、動物用医薬、飼料等に用いることができるが、さらに、該植物形質転換体又はその組織から、生成したエイコサノイドを精製する工程を含んでもよい。エイコサノイドの精製方法は特に限定されず、通常、高圧高温水蒸気蒸留法により行うことができる。 The plant transformant produced by producing the eicosanoid according to the present invention or the tissue thereof can be used as it is as a material containing eicosanoid as it is for a pharmaceutical, food, veterinary medicine, feed, etc. A step of purifying the produced eicosanoid from the tissue may be included. The method for purifying eicosanoid is not particularly limited, and can usually be performed by a high-pressure high-temperature steam distillation method.
(5-4)素材
 本発明には、上述のエイコサノイド生産方法により得られた物質、すなわち、ロイコトリエンやプロスタグランジンを少なくとも1つ含む素材も含まれる。この「素材」とは、上述の医薬品原料用途、食品原料用途、動物用医薬原料用途、飼料用途等に利用できる素材全般を意味する。
(5-4) Material The present invention includes a material obtained by the above-described eicosanoid production method, that is, a material containing at least one of leukotriene and prostaglandin. This “raw material” means all materials that can be used for the above-mentioned pharmaceutical raw materials, food raw materials, veterinary pharmaceutical raw materials, feeds, and the like.
 上記素材のエイコサノイドは、分子内に二重結合を複数有するという、ユニークな物性を持つ。そのため、現在はラクトンを原料として全化学合成により合成されている。このため、例えば、本発明の形質転換植物体により、ロイコトリエンやプロスタグランジンを生産させることにより、これらのエイコサノイドの生産コストを低減できる。また、本発明により、環境にやさしいエイコサノイドの生産プロセスを実現できる。 The eicosanoids of the above materials have unique physical properties that have multiple double bonds in the molecule. Therefore, it is currently synthesized by total chemical synthesis using lactone as a raw material. For this reason, for example, the production cost of these eicosanoids can be reduced by producing leukotrienes and prostaglandins with the transformed plant of the present invention. In addition, the present invention can realize an eco-friendly eicosanoid production process.
 本発明により製造されるエイコサノイドとしては、例えば、アラキドン酸から生産されるエイコサノイドとして、LTA4等のロイコトリエン(LT);プロスタグランジンG(PGG)、プロスタグランジンH(PGH)、プロスタグランジンF(PGF2α)等のプロスタグランジン(PG)等が挙げられる。エイコサペンタエン酸から生産されるエイコサノイドとして、例えば、LTA5等のロイコトリエン;プロスタグランジンG(PGG)、プロスタグランジンH(PGH)等のプロスタグランジン等が挙げられる。中でも本発明の方法は、ロイコトリエンLTA5等のロイコトリエン(LT);プロスタグランジンH(PGH)、プロスタグランジンG(PGG)、プロスタグランジンH(PGH)、プロスタグランジンF(PGF2α)等のプロスタグランジン(PG)の製造に好適である。 Examples of the eicosanoids produced by the present invention include eicosanoids produced from arachidonic acid, such as leukotrienes (LT) such as LTA4; prostaglandin G 2 (PGG 2 ), prostaglandin H 2 (PGH 2 ), prosta Examples include prostaglandins (PG) such as glandin F (PGF2α). Examples of eicosanoids produced from eicosapentaenoic acid include leukotrienes such as LTA5; prostaglandins such as prostaglandin G 3 (PGG 3 ) and prostaglandin H 3 (PGH 3 ). Among them, the method of the present invention is applicable to leukotrienes (LT) such as leukotriene LTA5; prostaglandin H 2 (PGH 2 ), prostaglandin G 3 (PGG 3 ), prostaglandin H 3 (PGH 3 ), and prostaglandin F. Suitable for the production of prostaglandins (PG) such as (PGF2α).
(5-5)エイコサノイド組成改変方法
 本発明には、本発明に係る遺伝子を用いて、宿主のエイコサノイド組成を改変する方法が含まれる。例えば、上述のように本発明に係る遺伝子を導入した形質転換体を作製することにより宿主細胞のエイコサノイド組成を改変することが可能となる。エイコサノイド組成を改変する対象は特に限定されるものではなく、植物以外にも動物、細菌、酵母等、あらゆる生物を対象とすることが可能である。
(5-5) Eicosanoid Composition Modification Method The present invention includes a method of modifying the eicosanoid composition of a host using the gene according to the present invention. For example, as described above, the eicosanoid composition of the host cell can be altered by preparing a transformant into which the gene according to the present invention has been introduced. The target for modifying the eicosanoid composition is not particularly limited, and it is possible to target any organism other than plants, such as animals, bacteria, and yeasts.
 上述した本発明に係る遺伝子を植物に導入する工程を含む植物又はその組織のエイコサノイド組成を改変する方法も、本発明の1つである。好ましくは、本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子を植物に導入する。植物としては、上述したゼニゴケ目生物が好ましく、中でも、ゼニゴケMarchantia polymorphaがより好ましい。 A method for modifying the eicosanoid composition of a plant or its tissue including the step of introducing the gene according to the present invention described above into the plant is also one aspect of the present invention. Preferably, the phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention are introduced into a plant. As the plant, the above-mentioned genus Coleoptera is preferable, and among them, the genus Marchantia polymorpha is more preferable.
(5-6)遺伝子検出器具
 本発明に係る遺伝子検出器具は、本発明に係る遺伝子の少なくとも一部の塩基配列又はその相補配列をプローブとして用いるものである。遺伝子検出器具は、種々の条件下において、本発明の遺伝子の発現パターンの検出、測定などに利用することができる。
 本発明の遺伝子検出器具としては、例えば、本発明の遺伝子と特異的にハイブリダイズする上記プローブを基盤(担体)上に固定化したDNAチップが挙げられる。ここで「DNAチップ」とは、主として、合成したオリゴヌクレオチドをプローブに用いる合成型DNAチップを意味するが、PCR産物などのcDNAをプローブに用いる貼り付け型DNAマイクロアレイをも包含するものとする。
(5-6) Gene Detection Instrument The gene detection instrument according to the present invention uses at least a partial base sequence of the gene according to the present invention or a complementary sequence thereof as a probe. The gene detection instrument can be used for detection and measurement of the expression pattern of the gene of the present invention under various conditions.
Examples of the gene detection instrument of the present invention include a DNA chip in which the probe that specifically hybridizes with the gene of the present invention is immobilized on a substrate (carrier). Here, the “DNA chip” mainly means a synthetic DNA chip using a synthesized oligonucleotide as a probe, but also includes an affixed DNA microarray using a cDNA such as a PCR product as a probe.
 プローブとして用いる配列は、cDNA配列の中から特徴的な配列を特定する従来公知の方法によって決定することができる。具体的には、例えば、SAGE:Serial Analysis of Gene Expression法(Science 276:1268,1997;Cel1 88:243,1997;Science 270:484,1995;Nature 389:300,1997;米国特許第5,695,937号)等を挙げることができる。 The sequence used as a probe can be determined by a conventionally known method for specifying a characteristic sequence from a cDNA sequence. Specifically, for example, SAGE: Serial Analysis of (Gene Expression method (Science 276: 1268, 1997; Cel1 88: 243, 1997; Science 270: 484,1995; Nature 389: 300,1997; US Patent No. 5,695,937) Etc.
 なお、DNAチップの製造には、公知の方法を採用すればよい。例えば、オリゴヌクレオチドとして合成オリゴヌクレオチドを使用する場合には、フォトリソグラフィー技術と固相法DNA合成技術との組み合わせにより、基盤上で該オリゴヌクレオチドを合成すればよい。一方、該オリゴヌクレオチドとしてcDNAを用いる場合には、アレイ機を用いて基盤上に貼り付ければよい。 In addition, what is necessary is just to employ | adopt a well-known method for manufacture of a DNA chip. For example, when a synthetic oligonucleotide is used as an oligonucleotide, the oligonucleotide may be synthesized on a substrate by a combination of a photolithography technique and a solid phase DNA synthesis technique. On the other hand, when cDNA is used as the oligonucleotide, it may be attached to the substrate using an array machine.
 また、一般的なDNAチップと同様、パーフェクトマッチプローブ(オリゴヌクレオチド)と、該パーフェクトマッチプローブにおいて一塩基置換されたミスマッチプローブとを配置して遺伝子の検出精度をより向上させてもよい。さらに、異なる遺伝子を並行して検出するために、複数種のオリゴヌクレオチドを同一の基盤上に固定してDNAチップを構成してもよい。 Also, as in a general DNA chip, a perfect match probe (oligonucleotide) and a mismatch probe in which one base is substituted in the perfect match probe may be arranged to further improve gene detection accuracy. Furthermore, in order to detect different genes in parallel, a plurality of types of oligonucleotides may be fixed on the same substrate to constitute a DNA chip.
 本発明に係る遺伝子検出器具は、上記例示したDNAチップに限定されるものではなく、本発明に係る遺伝子の少なくとも一部の塩基配列又はその相補配列をプローブとして用いるものであればよい。例えば、本発明に係る遺伝子の少なくとも一部の塩基配列又はその相補配列を含むキット等も含まれる。 The gene detection instrument according to the present invention is not limited to the above-described DNA chip, and may be any one that uses at least a partial base sequence of the gene according to the present invention or a complementary sequence thereof as a probe. For example, a kit containing at least a partial base sequence of the gene according to the present invention or a complementary sequence thereof is also included.
(5-7)抗体
 本発明の遺伝子にコードされるたんぱく質を認識する抗体も、本発明に包含される。本発明に係る抗体は、好ましくは、本発明に係るたんぱく質、又はその部分たんぱく質、部分ペプチドを抗原として、公知の方法によりポリクローナル抗体又はモノクローナル抗体として得られる抗体である。公知の方法としては、例えば、文献(Harlowらの「Antibodies:A laboratory manual」(Cold Spring Harbor Laboratory,New York(1988))、岩崎らの「単クローン抗体ハイブリドーマとELISA,講談社(1991)」)に記載の方法が挙げられる。このようにして得られる抗体は、本発明のたんぱく質の検出、測定などに利用できる。
(5-7) Antibody An antibody that recognizes the protein encoded by the gene of the present invention is also encompassed by the present invention. The antibody according to the present invention is preferably an antibody obtained as a polyclonal antibody or a monoclonal antibody by a known method using the protein according to the present invention, or a partial protein or partial peptide thereof as an antigen. Known methods include, for example, literature (Harlow et al. “Antibodies: A laboratory manual” (Cold Spring Harbor Laboratory, New York (1988)), Iwasaki et al. “Monoclonal antibody hybridoma and ELISA, Kodansha (1991)”). The method of description is mentioned. The antibody thus obtained can be used for detection and measurement of the protein of the present invention.
(5-8)スクリーニング方法
 本発明に係るスクリーニング方法は、本発明に係るたんぱく質を用いて、該たんぱく質を調節する遺伝子、又は該たんぱく質を調節する物質をスクリーニングする方法である。本発明のスクリーニング方法としては、物質間の結合の有無又は解離の有無を調べる従来公知の種々の方法を適用することができ、特に限定されるものではない。例えば、本発明に係るたんぱく質の活性(上述したホスホリパーゼ活性、リポキシゲナーゼ活性、又はシクロオキシゲナーゼ活性)を促進又は阻害するような物質のスクリーニングを挙げることができる。
 また、本発明には、上記スクリーニング方法により得られた遺伝子又は物質も含まれる。
(5-8) Screening Method The screening method according to the present invention is a method for screening a gene that regulates the protein or a substance that regulates the protein, using the protein according to the present invention. As the screening method of the present invention, various conventionally known methods for examining the presence or absence of binding or dissociation between substances can be applied and are not particularly limited. For example, screening for substances that promote or inhibit the activity of the protein according to the present invention (the above-mentioned phospholipase activity, lipoxygenase activity, or cyclooxygenase activity) can be mentioned.
The present invention also includes genes or substances obtained by the above screening methods.
(6)動物由来のエイコサノイド生合成系遺伝子の利用
 上述した本発明に係るホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子の1種又は2種以上と共に、又はこれらの遺伝子の代わりに、動物由来のホスホリパーゼA2遺伝子、動物由来のリポキシゲナーゼ遺伝子及び動物由来のシクロオキシゲナーゼ遺伝子の1種又は2種以上を植物に導入することにより作出される植物形質転換体も、エイコサノイドの生産に好適に利用することができるものである。以下、動物由来のホスホリパーゼA2遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子を、単に「動物由来のエイコサノイド生合成系遺伝子」ともいう。
(6) Use of animal-derived eicosanoid biosynthetic genes One or more of the above-described phospholipase gene, lipoxygenase gene and cyclooxygenase gene according to the present invention, or instead of these genes, an animal-derived phospholipase A2 gene Plant transformants produced by introducing one or more of animal-derived lipoxygenase genes and animal-derived cyclooxygenase genes into plants can also be suitably used for the production of eicosanoids. Hereinafter, the animal-derived phospholipase A2 gene, lipoxygenase gene and cyclooxygenase gene are also simply referred to as “animal-derived eicosanoid biosynthesis genes”.
 動物由来のエイコサノイド生合成系遺伝子を植物に導入する場合には、上述した植物形質転換体の製造方法において、本発明のホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子に代えて、動物由来のエイコサノイド生合成系遺伝子を使用すればよく、形質転換方法及びその好ましい態様は、上述したものと同様である。 When an animal-derived eicosanoid biosynthetic gene is introduced into a plant, an animal-derived eicosanoid biosynthetic system is used instead of the phospholipase gene, lipoxygenase gene and cyclooxygenase gene of the present invention in the above-described method for producing a plant transformant. A gene may be used, and the transformation method and preferred embodiments thereof are the same as those described above.
(6-1)組換え発現ベクター
 動物由来のエイコサノイド生合成系遺伝子は、通常、該遺伝子を植物細胞用ベクターに挿入してなる組換え発現ベクターを用いて植物に導入される。
 動物由来のホスホリパーゼA2遺伝子、リポキシゲナーゼ遺伝子、又はシクロオキシゲナーゼ遺伝子を植物細胞用ベクターに挿入してなる組換え発現ベクターは、本発明の好ましい実施態様の1つである。このような動物由来のエイコサノイド生合成系遺伝子を含む組換え発現ベクターの作製方法は特に限定されず、上述した本発明に係る遺伝子を含む組換え発現ベクターの作製方法と同様に、公知の方法により行うことができる。通常、基礎ベクターとして植物細胞用ベクターを用い、該基礎ベクターのマルチクローニングサイトに、動物由来のエイコサノイド生合成系遺伝子、プロモーター及びターミネーター等を組み込むことにより、組換え発現ベクターを構築することができる。動物由来のエイコサノイド生合成系遺伝子を含む組換え発現ベクターの構築において、基礎ベクターとして用いられる植物細胞用ベクター、植物細胞中で発現できるプロモーター、ターミネーター等は、上述したものと同様である。動物由来のホスホリパーゼA2遺伝子、リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子は、これらの2以上の遺伝子が同一のベクターに含まれてもよく、それぞれが別のベクターに含まれてもよい。
(6-1) Recombinant Expression Vector Animal-derived eicosanoid biosynthetic genes are usually introduced into plants using a recombinant expression vector obtained by inserting the gene into a plant cell vector.
A recombinant expression vector obtained by inserting an animal-derived phospholipase A2 gene, lipoxygenase gene, or cyclooxygenase gene into a plant cell vector is one of the preferred embodiments of the present invention. A method for producing a recombinant expression vector containing such an animal-derived eicosanoid biosynthetic gene is not particularly limited. Similarly to the above-described method for producing a recombinant expression vector containing a gene according to the present invention, a known method can be used. It can be carried out. Usually, a plant cell vector is used as a basic vector, and a recombinant expression vector can be constructed by incorporating an animal-derived eicosanoid biosynthesis gene, promoter, terminator, and the like into the multicloning site of the basic vector. In the construction of a recombinant expression vector containing an eicosanoid biosynthetic gene derived from animals, plant cell vectors used as basic vectors, promoters and terminators that can be expressed in plant cells are the same as those described above. Two or more of these animal-derived phospholipase A2 gene, lipoxygenase gene and cyclooxygenase gene may be contained in the same vector, or may be contained in different vectors.
 動物由来のホスホリパーゼA2遺伝子としては、動物由来の遺伝子であり、かつ上述したホスホリパーゼ活性を有するたんぱく質をコードする遺伝子であればよい。このような動物由来のホスホリパーゼA2遺伝子として、マウス由来のホスホリパーゼA2遺伝子(Cell 65, p1043, 1991)が好ましい。 The animal-derived phospholipase A2 gene may be any gene that is an animal-derived gene and encodes the above-described protein having phospholipase activity. As such an animal-derived phospholipase A2 gene, a mouse-derived phospholipase A2 gene (Cell 65, p1043, 1991) is preferable.
 動物由来のリポキシゲナーゼ遺伝子としては、動物由来の遺伝子であり、かつ上述したリポキシゲナーゼ活性を有するたんぱく質をコードする遺伝子であればよい。このような遺伝子として、マウス由来の5-リポキシゲナーゼ遺伝子(J. Biol. Chem. 270, p17993, 1995)が好ましい。 The animal-derived lipoxygenase gene may be any gene that is an animal-derived gene and encodes the above-described protein having lipoxygenase activity. As such a gene, a mouse-derived 5-lipoxygenase gene (J. Biol. Chem. 270, p17993, 1995) is preferable.
 動物由来のシクロオキシゲナーゼ遺伝子としては、動物由来の遺伝子であり、かつ上述したシクロオキシゲナーゼ活性を有するたんぱく質をコードする遺伝子であればよい。このような遺伝子として、ゼブラフィッシュ由来のシクロオキシゲナーゼ遺伝子(Biochem. Biophys. Res. Commun. 352, p181, 2007)が好ましい。 The animal-derived cyclooxygenase gene may be any gene that is an animal-derived gene and encodes the above-described protein having cyclooxygenase activity. As such a gene, a zebrafish-derived cyclooxygenase gene (Biochem. Biophys. Res. Commun. 352, p181, 2007) is preferable.
 上記マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子、又はゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子を植物細胞用ベクターに挿入してなる組換え発現ベクターも、本発明の1つである。 A recombinant expression vector obtained by inserting the above mouse-derived phospholipase A2 gene, mouse-derived 5-lipoxygenase gene, or zebrafish-derived cyclooxygenase gene into a plant cell vector is also one aspect of the present invention.
(6-2)形質転換体
 動物由来のホスホリパーゼA2遺伝子、5-リポキシゲナーゼ遺伝子及びシクロオキシゲナーゼ遺伝子の1又は2以上を植物に導入することにより、植物形質転換体を得ることができる。少なくとも、上記マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子又はゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上を植物に導入してなる植物形質転換体は、本発明の好ましい実施形態の1つである。より好ましくは、マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子を植物に導入してなる植物形質転換体である。このような植物形質転換体も、エイコサノイドを産生して細胞内に蓄積するため、エイコサノイドの製造に好適に用いることができるものである。植物としては、上述したゼニゴケ目生物が好ましい。植物形質転換の方法等は、上述したものと同様である。
(6-2) Transformant A plant transformant can be obtained by introducing one or more of phospholipase A2 gene, 5-lipoxygenase gene and cyclooxygenase gene derived from animals into a plant. A plant transformant obtained by introducing at least one or more of the mouse-derived phospholipase A2 gene, mouse-derived 5-lipoxygenase gene or zebrafish-derived cyclooxygenase gene into a plant is a preferred embodiment of the present invention. One. More preferably, it is a plant transformant obtained by introducing a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene into a plant. Since such a plant transformant also produces eicosanoid and accumulates it in the cell, it can be suitably used for the production of eicosanoid. As the plant, the above-mentioned genus Coleoptera is preferable. The plant transformation method and the like are the same as those described above.
 マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体も、本発明の好ましい態様の1つである。また、このような植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織も、本発明の植物形質転換体として好ましい。 A plant transformant having a modified eicosanoid composition, in which one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene are introduced so as to be expressed in a plant, This is one of the preferred embodiments of the invention. Moreover, the plant transformant which becomes the descendant of this plant transformant which has the same property as such a plant transformant, or the structure | tissue of this plant transformant is also preferable as a plant transformant of this invention.
 このような動物由来のエイコサノイド生合成系遺伝子を植物に導入してなる植物形質転換体(形質転換植物)により、低コストかつ環境にやさしい生産プロセスでロイコトリエンやプロスタグランジン等のエイコサノイドを生産することができる。 Producing eicosanoids such as leukotrienes and prostaglandins by a low-cost and environmentally friendly production process by using plant transformants (transformed plants) obtained by introducing such an eicosanoid biosynthetic gene derived from animals into plants. Can do.
 ゲノム内に上述した動物由来のエイコサノイド生合成系遺伝子が導入された植物形質転換体が一旦得られれば、該植物形質転換体の植物体から有性生殖又は無性生殖により子孫を得ることができる。また、当該植物形質転換体、又は、その子孫、あるいは、クローンから、上述したような繁殖材料を得て、それらを基に当該植物形質転換体を量産することが可能である。したがって、本発明には、上述した動物由来のエイコサノイド生合成系遺伝子を植物に導入してなる植物形質転換体、該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、及び、該植物形質転換体の組織も含まれる。さらに、本発明には、該植物形質転換体又は該植物形質転換体の組織から得られる繁殖材料も含まれる。該植物形質転換体又は該植物形質転換体の組織から繁殖材料を得る方法としては、上述したものと同様に、公知の方法を使用できる。上記動物由来のエイコサノイド生合成系遺伝子が導入された植物又は植物の組織を増殖又は生育させる方法、植物細胞から植物体を再生させる方法、栽培する方法等も特に限定されるものではなく、植物の種類等に応じた条件を適宜用いることができる。 Once a plant transformant in which the above-described animal-derived eicosanoid biosynthesis gene is introduced into the genome is obtained, offspring can be obtained from the plant body of the plant transformant by sexual reproduction or asexual reproduction. . Moreover, it is possible to obtain the above-mentioned propagation material from the plant transformant, its progeny, or clone, and mass-produce the plant transformant based on them. Therefore, the present invention includes a plant transformant obtained by introducing the above-described animal-derived eicosanoid biosynthesis gene into a plant, and a plant that is a descendant of the plant transformant having the same properties as the plant transformant. The transformant and the tissue of the plant transformant are also included. Furthermore, the present invention also includes a propagation material obtained from the plant transformant or the tissue of the plant transformant. As a method for obtaining a propagation material from the plant transformant or the tissue of the plant transformant, a known method can be used in the same manner as described above. The method for growing or growing a plant or plant tissue introduced with the eicosanoid biosynthetic gene derived from the animal, the method for regenerating a plant from plant cells, the method for cultivating, etc. is not particularly limited. Conditions according to the type and the like can be used as appropriate.
(6-3)エイコサノイド生産方法
 本発明には、動物由来のエイコサノイド生合成系遺伝子で形質転換された植物形質転換体又はその組織を用いてエイコサノイドを生産する方法も含まれる。例えば、上述のようにロイコトリエンやプロスタグランジンの含量が増加した本発明に係る植物形質転換体はロイコトリエンやプロスタグランジンの含量が高く、医薬、薬理活性の高い原料として価値の高いものになる。このような植物形質転換体は、動物用医薬、機能性食品、飼料等の原料としても有用なものである。
(6-3) Eicosanoid Production Method The present invention also includes a method for producing eicosanoid using a plant transformant transformed with an eicosanoid biosynthesis gene derived from an animal or a tissue thereof. For example, as described above, a plant transformant according to the present invention having an increased leukotriene or prostaglandin content has a high leukotriene or prostaglandin content, and is highly valuable as a raw material having high pharmaceutical and pharmacological activity. Such plant transformants are also useful as raw materials for animal drugs, functional foods, feeds, and the like.
 植物形質転換体又はその組織を用いるエイコサノイドの生産においては、該植物体又はその組織の増殖又は生育に伴い、該植物体又はその組織の細胞内でエイコサノイドが効率よく生産される。生産されたエイコサノイドは、植物形質転換体又はその組織の細胞内に蓄積する。植物形質転換体又は植物形質転換体の組織を用いるエイコサノイドの生産方法は、該植物形質転換体又はその組織を、(好ましくは無性生殖(栄養生殖)により)増殖又は生育させる工程を含むことが好ましい。植物形質転換体又はその組織を増殖又は生育させるには、植物形質転換体又はその組織を適宜栽培又は培養すればよい。該植物形質転換体又はその組織を増殖又は生育させる(栽培又は培養する)条件及び時間は、植物の種類により適宜選択すればよい。例えば、動物由来のエイコサノイド生合成系遺伝子で形質転換されたゼニゴケ目生物を用いる場合には、上述したように、ゼニゴケ目生物の繁殖形態として無性生殖(栄養生殖)によることが好ましい。 In the production of an eicosanoid using a plant transformant or a tissue thereof, eicosanoid is efficiently produced in the cells of the plant body or the tissue as the plant body or the tissue grows or grows. The produced eicosanoid accumulates in the cells of the plant transformant or its tissue. The method for producing an eicosanoid using a plant transformant or a tissue of the plant transformant may include a step of growing or growing the plant transformant or the tissue (preferably by asexual reproduction (vegetative reproduction)). preferable. In order to proliferate or grow a plant transformant or tissue thereof, the plant transformant or tissue thereof may be appropriately cultivated or cultured. The conditions and time for growing or growing (cultivating or cultivating) the plant transformant or its tissue may be appropriately selected depending on the type of plant. For example, in the case of using a genus Coleoptera transformed with an eicosanoid biosynthetic gene derived from an animal, as described above, it is preferable to use asexual reproduction (vegetative reproduction) as a breeding form of the genus Coleoptera.
 本発明によりエイコサノイドを生産させた植物形質転換体又はその組織は、エイコサノイドを含有する素材として、そのまま医薬品、食品、動物用医薬、飼料等に用いることができるが、さらに、該植物形質転換体又はその組織から、生成したエイコサノイドを精製する工程を含んでもよい。エイコサノイドの精製方法は特に限定されず、上述した公知の方法により行うことができる。 The plant transformant produced by producing the eicosanoid according to the present invention or the tissue thereof can be used as it is as a material containing eicosanoid as it is for a pharmaceutical, food, veterinary medicine, feed, etc. A step of purifying the produced eicosanoid from the tissue may be included. The eicosanoid purification method is not particularly limited, and can be performed by the above-described known methods.
(6-4)素材
 本発明には、上述のエイコサノイド生産方法により得られた物質、すなわち、ロイコトリエンやプロスタグランジンを少なくとも1つ含む素材も含まれる。この「素材」とは、上述したものと同様に、上述の医薬品原料用途、食品原料用途、動物用医薬原料用途、飼料用途等に利用できる素材全般を意味する。
(6-4) Material The present invention includes a material obtained by the above-described eicosanoid production method, that is, a material containing at least one of leukotriene and prostaglandin. This “raw material” means the same general materials as those described above, which can be used for the above-mentioned pharmaceutical raw material use, food raw material use, veterinary pharmaceutical raw material use, feed use and the like.
(6-5)エイコサノイド組成改変方法
 本発明には、動物由来のエイコサノイド生合成系遺伝子(好ましくは、マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上)を用いて、宿主のエイコサノイド組成を改変する方法が含まれる。例えば、上述のように動物由来のエイコサノイド生合成系遺伝子を導入した形質転換体を作製することにより宿主細胞のエイコサノイド組成を改変することが可能となる。エイコサノイド組成を改変する対象は特に限定されるものではなく、植物以外にも動物、細菌、酵母等、あらゆる生物を対象とすることが可能である。
(6-5) Eicosanoid Composition Modification Method In the present invention, an eicosanoid biosynthetic gene derived from an animal (preferably a phospholipase A2 gene derived from a mouse, a 5-lipoxygenase gene derived from a mouse and a cyclooxygenase gene derived from a zebrafish or 2 or more) is used to modify the eicosanoid composition of the host. For example, it is possible to modify the eicosanoid composition of the host cell by preparing a transformant into which an animal-derived eicosanoid biosynthesis gene is introduced as described above. The target for modifying the eicosanoid composition is not particularly limited, and it is possible to target any organism other than plants, such as animals, bacteria, and yeasts.
 上述したマウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上を植物に導入する工程を含む植物又はその組織のエイコサノイド組成を改変する方法も、本発明の1つである。植物としては、上述したゼニゴケ目生物が好ましい。 A method for modifying the eicosanoid composition of a plant or tissue thereof comprising the step of introducing one or more of the mouse-derived phospholipase A2 gene, mouse-derived 5-lipoxygenase gene and zebrafish-derived cyclooxygenase gene into the plant, It is one of the inventions. As the plant, the above-mentioned genus Coleoptera is preferable.
(6-6)スクリーニング方法
 本発明に係るスクリーニング方法は、上述した動物由来のエイコサノイド生合成系遺伝子にコードされるたんぱく質を用いる、該たんぱく質を調節する遺伝子、又は該たんぱく質を調節する物質をスクリーニングする方法も、本発明の1つである。本発明のスクリーニング方法は、上述した本発明に係るたんぱく質の代わりに動物由来のエイコサノイド生合成系遺伝子にコードされるたんぱく質を用いる以外は、上述したスクリーニンング方法と同様である。
 また、本発明には、上記スクリーニング方法により得られた遺伝子又は物質も含まれる。
(6-6) Screening method The screening method according to the present invention uses a protein encoded by the above-described animal-derived eicosanoid biosynthesis gene to screen for a gene that regulates the protein or a substance that regulates the protein. The method is also one aspect of the present invention. The screening method of the present invention is the same as the screening method described above, except that a protein encoded by an eicosanoid biosynthesis gene derived from an animal is used instead of the protein according to the present invention described above.
The present invention also includes genes or substances obtained by the above screening methods.
 以下にいくつかの実施例、並びに図面を示し、本発明の実施の形態についてさらに詳しく説明する。本発明は以下の実施例に限定されるものでなく、細部については様々な態様が可能であることはいうまでもない。さらに本発明は技術的実施形態に限定されるものではなく、請求項にしめした種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Hereinafter, some embodiments and drawings will be shown to describe the embodiment of the present invention in more detail. The present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Furthermore, the present invention is not limited to the technical embodiments, and various modifications shown in the claims can be made, and the embodiments of the present invention also apply to the embodiments obtained by appropriately combining the disclosed technical means. Included in the scope.
 本実施例において実験手法は、特に断らない限り、Molecular Cloning (Sambrook et al.Cold Spring Harbour Laboratory Press, 1989)に記載されている方法に従った。 In this example, unless otherwise specified, the experimental method was in accordance with the method described in Molecular Cloning (Sambrook et al. Cold Spring Harbor Laboratory Press, 1989).
(実施例1)ゼニゴケ由来のホスホリパーゼ遺伝子の単離
 他生物のクローニングされているホスホリパーゼ遺伝子のアミノ酸配列を鋭意比較検討した結果、ゼニゴケESTライブラリーより動物のホスホリパーゼと相同性を示すクローンを見出した。そして、アミノ酸配列Leu-Gly-Arg-Arg-Asp(配列番号7)とThr-Gly-His-Ser-Leu-Gly(配列番号8)が保存されていることを見出した。そこで、ゼニゴケ由来のホスホリパーゼ遺伝子を単離するために、上記のアミノ酸配列をコードする下記のプライマーを用いた。
PLA1F:5’-CTCGGCCGACGAGAC-3’ (配列番号9)
PLA1R:5’-GCCCAAGCTGTGCCCCGT-3’ (配列番号10)
(Example 1) Isolation of phospholipase gene derived from genus Amanita As a result of intensive comparison and study of the amino acid sequence of the cloned phospholipase gene of other organisms, a clone showing homology with an animal phospholipase was found from the genus moss EST library. It was found that the amino acid sequences Leu-Gly-Arg-Arg-Asp (SEQ ID NO: 7) and Thr-Gly-His-Ser-Leu-Gly (SEQ ID NO: 8) were conserved. Therefore, in order to isolate the phospholipase gene derived from genus Amanita, the following primers encoding the above amino acid sequences were used.
PLA1F: 5'-CTCGGCCGACGAGAC-3 '(SEQ ID NO: 9)
PLA1R: 5'-GCCCAAGCTGTGCCCCGT-3 '(SEQ ID NO: 10)
 試料には、ゼニゴケ(Transgenic Res.9,P179,2000参照)の葉状体を用いた。葉状体からのtotalRNAの単離については、RNA抽出キット RNeasy Plant Mini kit(QIAGEN社製)を用いて製造者の推奨する方法に従い行った。単離したtotalRNA 5μgを、ReverTra Ace(TOYOBO社製)を用いてcDNAに逆転写した。cDNA 1μLを鋳型とし、上記プライマー(PLA1F及びPLA1R)及び酵素(Takara Ex Taq、Takara社製)0.5Uとを用いて、製造者の推奨する方法でPCRを行った。反応液量は20μLとし、PCR Thermal Cycler Dice(Takara社製)を用いて、95℃2分間保持後、95℃で30秒間、55℃で30秒間、72℃で1分間の反応を25回繰り返し、その後4℃に冷却した。 As a sample, a leaf-like body of genus moss (see Transgenic Res. 9, P179, 2000) was used. Isolation of total RNA from the frond was carried out according to the method recommended by the manufacturer using an RNA extraction kit “RNeasy Plant Mini Mini kit” (manufactured by QIAGEN). The isolated total RNA 5 μg was reverse transcribed into cDNA using ReverTra Ace (TOYOBO). Using 1 μL of cDNA as a template, PCR was performed by the method recommended by the manufacturer using the above primers (PLA1F and PLA1R) and 0.5 U of enzyme (Takara Ex Taq, Takara). The reaction volume was 20 μL, and the reaction was repeated 25 times using a PCR-Thermal-Cycler-Dice (Takara), held at 95 ° C. for 2 minutes, then 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 1 minute. Then, it was cooled to 4 ° C.
 得られたPCR産物を0.7%(w/v)アガロースゲルで電気泳動し、従来ホスホリパーゼの塩基配列から予想されるサイズを有する増幅断片を、Gel Extraction kit(QIAGEN社製)を用いてゲルより回収した。回収した増幅断片をpGEM-Teasy(プロメガ社製)に連結し、コンピテント大腸菌DH5αに形質転換した。 The obtained PCR product was electrophoresed on a 0.7% (w / v) agarose gel, and the amplified fragment having the size expected from the base sequence of phospholipase was recovered from the gel using Gel Extraction kit (QIAGEN). did. The recovered amplified fragment was ligated to pGEM-Teasy (Promega) and transformed into competent E. coli DH5α.
 Big Dye Terminator Cycle Sequencing kit(Applied Biosystems社製)及びautomated sequencer ABI PRISM 3100 Genetic Analyzer(Applied Biosystems社製)を用いて、得られた全クローンの塩基配列を決定し、ホスホリパーゼ遺伝子の部分配列を取得した。そこで、完全長cDNA配列を取得するために、下記のプライマーを用いた。
3’ RACE(PLA1):5’-TGACAGCGGGCTTCTGGCAC-3’ (配列番号11)
5’ RACE(PLA1):5’-CCTGGCGCAATACGGAGTCC-3’ (配列番号12)
Using the Big Dye Terminator Cycle Sequencing kit (Applied Biosystems) and automated sequencer ABI PRISM 3100 Genetic Analyzer (Applied Biosystems), the base sequence of all the obtained clones was determined, and the partial sequence of the phospholipase gene was obtained. . Therefore, in order to obtain a full-length cDNA sequence, the following primers were used.
3 'RACE (PLA1): 5'-TGACAGCGGGCTTCTGGCAC-3' (SEQ ID NO: 11)
5 'RACE (PLA1): 5'-CCTGGCGCAATACGGAGTCC-3' (SEQ ID NO: 12)
 上記の方法により、ゼニゴケ葉状体よりtotalRNAを単離し、totalRNA 5μgをSMART RACE cDNA kit(BD Bioscience社製)を用いてcDNAに逆転写した。5’及び3’-RACE PCRは、上記cDNA 1μLを鋳型とし、上記プライマー(3’RACE(PLA1)及び5’RACE(PLA1))及び酵素(Takara Ex Taq、Takara社製)0.5Uとを用いて、製造者の推奨する方法で行った。反応液量は20μLとし、PCR Thermal Cycler Dice(Takara社製)を用いて、95℃2分間保持後、95℃で30秒間、55℃で30秒間、72℃で3分間の反応を30回繰り返し、その後4℃に冷却した。得られたDNA断片をサブクローニングし、塩基配列を決定し、全長cDNA配列を取得した。 By the above method, total RNA was isolated from the genus Amanita, and 5 μg of total RNA was reverse-transcribed into cDNA using SMART® RACE® cDNA® kit (BD Bioscience). 5 ′ and 3′-RACE® PCR uses 1 μL of the above cDNA as a template, the above primers (3′RACE (PLA1) and 5′RACE (PLA1)) and enzyme (Takara® Ex® Taq, manufactured by Takara) 0.5 U. And performed as recommended by the manufacturer. The reaction volume is 20 μL, and the PCR-Thermal-Cycler-Dice (manufactured by Takara) is used and kept at 95 ° C. for 2 minutes. Then, it was cooled to 4 ° C. The obtained DNA fragment was subcloned, the base sequence was determined, and the full-length cDNA sequence was obtained.
 その結果、ゼニゴケのホスホリパーゼ遺伝子として、1種類のクローン(配列番号1)を単離した。このクローンは、配列番号2に示す565個のアミノ酸をコードしていた。なお、配列番号1に示される塩基配列のコード領域は、394~2091番目の塩基配列であった。配列番号2で表わされるアミノ酸配列をコードする長さのクローンを以下の実施例に用いた。 As a result, one type of clone (SEQ ID NO: 1) was isolated as a phospholipase gene of Xenopus. This clone encoded 565 amino acids as shown in SEQ ID NO: 2. The coding region of the base sequence shown in SEQ ID NO: 1 was the 394th to 2091th base sequence. A clone having a length encoding the amino acid sequence represented by SEQ ID NO: 2 was used in the following examples.
 上記で得たゼニゴケ由来のホスホリパーゼ遺伝子がコードする推定アミノ酸配列を、シロイヌナズナの報告されているホスホリパーゼのアミノ酸配列と比較した結果、21%の同一性しか示さなかった。 As a result of comparing the deduced amino acid sequence encoded by the phospholipase gene derived from Xenopus obtained above with the amino acid sequence of phospholipase reported in Arabidopsis thaliana, only 21% identity was shown.
(実施例2)ゼニゴケ由来のリポキシゲナーゼ遺伝子の単離
 他生物のクローニングされているリポキシゲナーゼ遺伝子のアミノ酸配列を鋭意比較検討した結果、ゼニゴケESTライブラリーより動物のリポキシゲナーゼと相同性を示すクローンを見出した。そして、アミノ酸配列Pro-Ile-Ala-Ile-Glu-Leu(配列番号13)とAsn-Phe-Gly-Gln-Tyr(配列番号14)が保存されていることを見出した。そこで、ゼニゴケ由来のリポキシゲナーゼ遺伝子を単離するために、上記のアミノ酸配列をコードする下記のプライマーを用いた。
LOX-F1:5’-CCCATCGCCA TTGAGCTC-3’ (配列番号15)
LOX-R1:5’-GTACTGGCCA AAGTT-3’ (配列番号16)
(Example 2) Isolation of Lipoxygenase Gene Derived from Agaricus As a result of extensive comparison and study of the amino acid sequence of the lipoxygenase gene cloned from other organisms, a clone showing homology with the lipoxygenase of animals was found from the Agaricus EST library. It was found that the amino acid sequences Pro-Ile-Ala-Ile-Glu-Leu (SEQ ID NO: 13) and Asn-Phe-Gly-Gln-Tyr (SEQ ID NO: 14) were conserved. Therefore, the following primers encoding the above amino acid sequences were used in order to isolate the genus Lipoxygenase gene.
LOX-F1: 5'-CCCATCGCCA TTGAGCTC-3 '(SEQ ID NO: 15)
LOX-R1: 5'-GTACTGGCCA AAGTT-3 '(SEQ ID NO: 16)
 上記のプライマーを用いてPCRを行い、得られたDNA断片をサブクローニングした。得られたクローンの塩基配列を決定し、目的のリポキシゲナーゼ遺伝子の部分配列を取得した。そこで、完全長cDNA配列を取得するために、下記のプライマーを用いた。なお、実験材料及び方法は、実施例1と同様である。
3’ RACE(LOX):5’-GAGACAGAAATCCCTACTGG-3’ (配列番号17)
5’ RACE(LOX):5’-ATTCCAGTCGCATTGATGAG-3’ (配列番号18)
PCR was performed using the above primers, and the resulting DNA fragment was subcloned. The base sequence of the obtained clone was determined, and the partial sequence of the target lipoxygenase gene was obtained. Therefore, in order to obtain a full-length cDNA sequence, the following primers were used. The experimental materials and methods are the same as in Example 1.
3 'RACE (LOX): 5'-GAGACAGAAATCCCTACTGG-3' (SEQ ID NO: 17)
5 'RACE (LOX): 5'-ATTCCAGTCGCATTGATGAG-3' (SEQ ID NO: 18)
 その結果、1種類のホモログ遺伝子候補が単離され、この遺伝子をMpLOX遺伝子とした。MpLOX遺伝子は、配列番号3に示される塩基配列のうち127~2994番目の塩基配列からなるDNAである。単離されたMpLOX遺伝子のcDNAの長さ(ポリA部分を除く)は、3,224bpであり、そのコードする推定アミノ酸配列は955残基であった。MpLOX遺伝子のcDNAの塩基配列を配列番号3に、推定アミノ酸配列を配列番号4に、それぞれ示した。 As a result, one type of homologous gene candidate was isolated, and this gene was designated as the MpLOX gene. The MpLOX gene is DNA consisting of the 127th to 2994th base sequences in the base sequence shown in SEQ ID NO: 3. The length of the isolated MpLOX gene cDNA (excluding the poly A portion) was 3,224 bp, and the deduced amino acid sequence encoded was 955 residues. The nucleotide sequence of the MpLOX gene cDNA is shown in SEQ ID NO: 3, and the deduced amino acid sequence is shown in SEQ ID NO: 4, respectively.
 MpLOX cDNAの推定アミノ酸配列をアラビドプシス(Arabidopsis thaliana)のリポキシゲナーゼのアミノ酸配列と比較した結果、36.5%の同一性しか示さなかった。 As a result of comparing the deduced amino acid sequence of MpLOX cDNA with the amino acid sequence of the lipoxygenase of Arabidopsis thaliana, it showed only 36.5% identity.
(実施例3)ゼニゴケ由来のシクロオキシゲナーゼ遺伝子
 他生物のクローニングされているシクロオキシゲナーゼ遺伝子のアミノ酸配列を鋭意比較検討した結果、ゼニゴケESTライブラリーより動物のシクロオキシゲナーゼと相同性を示すクローンを見出した。そして、アミノ酸配列Glu-His-Asn-Leu-Ile-Cys-Asp(配列番号19)とHis-Pro-Leu-Leu-Pro-Glu(配列番号20)が保存されていることを見出した。そこで、ゼニゴケ由来のリポキシゲナーゼ遺伝子を単離するために、上記のアミノ酸配列をコードする下記のプライマーを用いた。
COX-F 5’-GAGCACAACCTTATCTGTGAT-3’(配列番号21)
COX-R 5’-CTCGGGCAGAAGAGGGTG-3’(配列番号22)
(Example 3) Cyoxygenase-derived cyclooxygenase gene As a result of intensive comparison and study of the amino acid sequence of the cyclooxygenase gene cloned from other organisms, a clone showing homology with animal cyclooxygenase was found from the genus Zenigo EST library. It was found that the amino acid sequences Glu-His-Asn-Leu-Ile-Cys-Asp (SEQ ID NO: 19) and His-Pro-Leu-Leu-Pro-Glu (SEQ ID NO: 20) are conserved. Therefore, the following primers encoding the above amino acid sequences were used in order to isolate the genus Lipoxygenase gene.
COX-F 5'-GAGCACAACCTTATCTGTGAT-3 '(SEQ ID NO: 21)
COX-R 5'-CTCGGGCAGAAGAGGGTG-3 '(SEQ ID NO: 22)
 上記のプライマー(COX-F及びCOX-R)を用いてPCRを行い、得られたDNA断片をサブクローニングした。得られたクローンの塩基配列を決定し、目的のシクロオキシゲナーゼ遺伝子の部分配列を取得した。そこで、完全長cDNA配列を取得するために、下記のプライマーを用いた。なお、実験材料及び方法は、実施例1と同様である。
3’RACE(COX):5’-GGATCGTTGGGCACTCGAAG-3’ (配列番号23)
5’RACE(COX):5’-TAACCTTGGCGTGCTTGTAG-3,(配列番号24)
PCR was performed using the above primers (COX-F and COX-R), and the resulting DNA fragment was subcloned. The base sequence of the obtained clone was determined, and the partial sequence of the target cyclooxygenase gene was obtained. Therefore, in order to obtain a full-length cDNA sequence, the following primers were used. The experimental materials and methods are the same as in Example 1.
3'RACE (COX): 5'-GGATCGTTGGGCACTCGAAG-3 '(SEQ ID NO: 23)
5'RACE (COX): 5'-TAACCTTGGCGTGCTTGTAG-3, (SEQ ID NO: 24)
 その結果、1種類のホモログ遺伝子候補が単離され、この遺伝子をMpCOX遺伝子とした。MpCOX遺伝子のcDNAの長さ(ポリA部分を除く)は、2464bpで、推定アミノ酸配列は610残基であった。その塩基配列を配列番号5に、推定アミノ酸配列を配列番号6に示した。 As a result, one type of homologous gene candidate was isolated, and this gene was designated as the MpCOX gene. The length of the MpCOX gene cDNA (excluding the poly A portion) was 2464 bp, and the deduced amino acid sequence was 610 residues. The nucleotide sequence is shown in SEQ ID NO: 5, and the deduced amino acid sequence is shown in SEQ ID NO: 6.
 MpCOX cDNAの推定アミノ酸配列をゼブラフィッシュ及びヒトのシクロオキシゲナーゼのアミノ酸配列と比較した結果、それぞれ13.2%、12.1%の同一性を示すことを見出した。 As a result of comparing the deduced amino acid sequence of MpCOX cDNA with the amino acid sequences of zebrafish and human cyclooxygenase, they were found to show 13.2% and 12.1% identity, respectively.
(実施例4) ゼニゴケに導入するベクターの構築及び当該ベクターのゼニゴケへの導入
 ゼニゴケにおいて、実施例1で得られたゼニゴケ目生物由来のホスホリパーゼ遺伝子、実施例2で得られたゼニゴケ目生物由来のリポキシゲナーゼ遺伝子及び/又は実施例3で得られたゼニゴケ目生物由来のシクロオキシゲナーゼ遺伝子を発現させるために、以下に示す手順で発現コンストラクトを作製した。また、この作製手順を図2に示した。
(Example 4) Construction of a vector to be introduced into the genus Amanita and introduction of the vector into the genus Amanita, a phospholipase gene derived from the genus Amanita, obtained in Example 1, In order to express the lipoxygenase gene and / or the cyclooxygenase gene derived from the genus Coleoptera obtained in Example 3, an expression construct was prepared by the following procedure. Further, this production procedure is shown in FIG.
 図2(A)に、ゼニゴケ目生物由来のホスホリパーゼ遺伝子(MpPLA)をゼニゴケで発現させるためのベクター(プラスミドpBin-Hyg-TX-MpPLA)の作製方法を示す。
 図2(B)に、ゼニゴケ目生物由来のリポリシゲナーゼ遺伝子(MpLOX)をゼニゴケで発現させるためのベクター(プラスミドpBin-Hyg-TX-MpLOX)の作製方法を示す。
 図2(C)に、ゼニゴケ目生物由来のシクロオキシゲナーゼ遺伝子(MpCOX)をゼニゴケで発現させるためのベクター(プラスミドpBin-Hyg-TX-MpCOX)の作製方法を示す。
FIG. 2 (A) shows a method for preparing a vector (plasmid pBin-Hyg-TX-MpPLA) for expressing the phospholipase gene (MpPLA) derived from the genus Coleoptera in Amanita.
FIG. 2 (B) shows a method for producing a vector (plasmid pBin-Hyg-TX-MpLOX) for expressing the repolicigenase gene (MpLOX) derived from the genus Coleoptera in Amanita.
FIG. 2 (C) shows a method for preparing a vector (plasmid pBin-Hyg-TX-MpCOX) for expressing the cyclooxygenase gene (MpCOX) derived from the genus Coleoptera in Amanita.
 図2(A)~(C)に示されるように、pBIN-HYG-TX(Plant J., 2, p397,1992)のカリフラワーモザイクウィルス(CaMV)35Sプロモーター、及び、OCSターミネーター間のSmaI制限酵素切断部位、XbaI制限酵素切断部位(SmaI-Xbal切断部位)に、ゼニゴケ目生物由来のホスホリパーゼ遺伝子のORFを含むcDNAのSmaI-XbaI断片、ゼニゴケ目生物由来のリポキシゲナーゼ遺伝子(MpLOX遺伝子)のORFを含むcDNAのSmaI-XbaI断片、ゼニゴケ目生物由来のシクロオキシゲナーゼ遺伝子(MpCOX遺伝子)のORFを含むcDNAのSmaI-XbaI断片をそれぞれ連結した。 As shown in FIGS. 2 (A) to (C), the SmaI restriction enzyme between the cauliflower mosaic virus (CaMV) 35S promoter of pBIN-HYG-TX (Plant J., 2, p397, 1992) and the OCS terminator Cleavage site, XbaI restriction enzyme cleavage site (SmaI-Xbal cleavage site) contains SmaI-XbaI fragment of cDNA containing ORF of phospholipase gene derived from genus Lepidoptera, ORF of lipoxygenase gene (MpLOX gene) derived from genus Lepidoptera The SmaI-XbaI fragment of the cDNA and the SmaI-XbaI fragment of the cDNA containing the ORF of the cyclooxygenase gene (MpCOX gene) derived from the genus Coleoptera were ligated.
 各ORF増幅には、下線で示す認識配列を含む以下のプライマーを用いた。
ゼニゴケ目生物由来のホスホリパーゼ遺伝子のORF増幅に用いたプライマー
PLA-F5: 5’-AACCCGGGATGCAGTATCCATCAGTG-3’ (配列番号25)
PLA-R4: 5’-GCTCTAGATAATCGTAATCATCAGAG-3’ (配列番号26)
For each ORF amplification, the following primers containing the recognition sequence indicated by the underline were used.
Primers used for ORF amplification of phospholipase genes derived from the genus Pleurotus
PLA-F5: 5'-AA CCCGGG ATGCAGTATCCATCAGTG-3 '(SEQ ID NO: 25)
PLA-R4: 5'-GC TCTAGA TAATCGTAATCATCAGAG-3 '(SEQ ID NO: 26)
ゼニゴケ目生物由来のリポキシゲナーゼ遺伝子のORF増幅に用いたプライマー
LOX-F3: 5’-TACCCGGGATGCTTAGTGTCCGAGCC-3’ (配列番号27)
LOX-R9: 5’-ACTCTAGATCAGATGGATATGCTGTT-3’ (配列番号28)
Primers used for ORF amplification of the lipoxygenase gene derived from the genus Pleurotus
LOX-F3: 5'-TA CCCGGG ATGCTTAGTGTCCGAGCC-3 '(SEQ ID NO: 27)
LOX-R9: 5'-AC TCTAGA TCAGATGGATATGCTGTT-3 '(SEQ ID NO: 28)
ゼニゴケ目生物由来のシクロオキシゲナーゼ遺伝子のORF増幅に用いたプライマー
COX-F5: 5’-CCCGGGATGGGGCTCCTATCGTTTG-3’(配列番号29)
COX-R7: 5’-TCTAGATAGGGAAAGCGAATTAGAG-3’(配列番号30)
Primers used for ORF amplification of cyclooxygenase genes derived from the genus Pleurotus
COX-F5: 5'- CCCGGG ATGGGGCTCCTATCGTTTG-3 '(SEQ ID NO: 29)
COX-R7: 5'- TCTAGA TAGGGAAAGCGAATTAGAG-3 '(SEQ ID NO: 30)
 各遺伝子を増幅させるためのPCRにおいては、PrimeSTAR DNA polymerase(Takara社製)0.5Uを用い、95℃2分間保持後、95℃で30秒間、55℃で30秒間、72℃で2分間の反応を30回繰り返し、その後4℃に冷却した。得られたDNA断片をサブクローニングし、塩基配列を決定し、間違いがないことを確認した。得られたプラスミドを上記の制限酵素で処理し、同じ制限酵素で切断したpBIN-HYG-TXベクターに連結した。これを大腸菌DH5αに形質転換した。得られたコロニーからプラスミドDNA(形質転換用ベクター)を単離した。アグロバクテリウムC58rifRに形質転換した。 In PCR for amplifying each gene, PrimeSTAR DNA polymerase (manufactured by Takara) 0.5U was used and maintained at 95 ° C for 2 minutes, then at 95 ° C for 30 seconds, at 55 ° C for 30 seconds, and at 72 ° C for 2 minutes. The reaction was repeated 30 times and then cooled to 4 ° C. The obtained DNA fragment was subcloned, the base sequence was determined, and it was confirmed that there was no mistake. The obtained plasmid was treated with the above restriction enzymes and ligated to the pBIN-HYG-TX vector cut with the same restriction enzymes. This was transformed into E. coli DH5α. Plasmid DNA (transformation vector) was isolated from the obtained colonies. Agrobacterium C58rifR was transformed.
 上記で得られた形質転換用ベクターの構造を、図3(A)~(C)に模式的に示した。図3(A)は、プラスミドpBin-Hyg-TX-MpPLAの構造を示す模式図である。図3(B)は、プラスミドpBin-Hyg-TX-MpLOXの構造を示す模式図である。図3(C)は、プラスミドpBin-Hyg-TX-MpCOXの構造を示す模式図である。
 図3(A)~(C)中、LBは、左境界配列を表す。RBは、右境界配列を表す。CaMV p35Sは、カリフラワーモザイクウィルス(CaMV)35Sプロモーターを表す。tOCSは、OCS遺伝子ターミネーターを表す。pNOSは、NOS遺伝子プロモーターを表す。HPT IIは、ハイグロマイシン耐性遺伝子を表す。tAG7は、Ag7遺伝子ターミネーターを表す。
 このようにして得られた上記の3種のコンストラクト(形質転換用ベクター)を、公知の方法(Plant Cell Rep. 27, p1467, 2008)で、アグロバクテリウム法でゼニゴケに導入し、形質転換ゼニゴケを取得した。
 この形質転換ゼニゴケを増殖又は生育させることにより、エイコサノイドを生産することができる。
The structure of the transformation vector obtained above is schematically shown in FIGS. 3 (A) to 3 (C). FIG. 3A is a schematic diagram showing the structure of the plasmid pBin-Hyg-TX-MpPLA. FIG. 3B is a schematic diagram showing the structure of the plasmid pBin-Hyg-TX-MpLOX. FIG. 3C is a schematic diagram showing the structure of the plasmid pBin-Hyg-TX-MpCOX.
In FIGS. 3A to 3C, LB represents a left boundary array. RB represents the right boundary array. CaMV p35S represents the cauliflower mosaic virus (CaMV) 35S promoter. tOCS represents the OCS gene terminator. pNOS represents the NOS gene promoter. HPT II represents the hygromycin resistance gene. tAG7 represents an Ag7 gene terminator.
The above-mentioned three kinds of constructs (transformation vectors) thus obtained are introduced into Xenoke by the Agrobacterium method by a known method (Plant Cell Rep. 27, p1467, 2008), and transformed Xenoke Acquired.
Eicosanoids can be produced by proliferating or growing the transformed genus moss.
(実施例5)
 マウス由来のホスホリパーゼ遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子、及びゼブラフィッシュ由来のシクロオキシゲナーゼの遺伝子をゼニゴケに導入するベクターの構築及び当該ベクターのゼニゴケへの導入
 ゼニゴケにおいて、マウス由来のホスホリパーゼA2遺伝子(Cell 65, p1043, 1991)、マウス由来の5-リポキシゲナーゼ遺伝子(J. Biol. Chem. 270, p17993, 1995)及びゼブラフィッシュ由来のシクロオキシゲナーゼ遺伝子(Biochem. Biophys. Res. Commun. 352, p181, 2007)を発現させるために、以下に示す手順で発現コンストラクトを作製した。また、作製手順を図4(A)~(C)に示した。
(Example 5)
Construction of a vector for introducing a mouse-derived phospholipase gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene into the moss and introduction of the vector into the moss. In the moss, the phospholipase A2 gene derived from the mouse (Cell 65 , p1043, 1991), expressing 5-lipoxygenase gene from mouse (J. Biol. Chem. 270, p17993, 1995) and cyclooxygenase gene from zebrafish (Biochem. Biophys. Res. Commun. 352, p181, 2007) Therefore, an expression construct was prepared according to the procedure shown below. In addition, the manufacturing procedure is shown in FIGS.
 図4(A)に、マウス由来のホスホリパーゼA2遺伝子(mPLA2)をゼニゴケで発現させるためのベクター(プラスミドpGWB2-mPLA2)の作製方法を示す。図4(B)に、マウス由来の5-リポキシゲナーゼ遺伝子(mLOX)をゼニゴケで発現させるためのベクター(プラスミドpGWB2-mLOX)の作製方法を示す。図4(C)に、ゼブラフィッシュ由来のシクロオキシゲナーゼ遺伝子(zCOX)をゼニゴケで発現させるためのベクター(プラスミドpGWB2-zCOX)の作製方法を示す。 FIG. 4 (A) shows a method for preparing a vector (plasmid pGWB2-mPLA2) for expressing mouse-derived phospholipase A2 gene (mPLA2) in the moss. FIG. 4 (B) shows a method for preparing a vector (plasmid pGWB2-mLOX) for expressing the mouse-derived 5-lipoxygenase gene (mLOX) in Amanita. FIG. 4 (C) shows a method for producing a vector (plasmid pGWB2-zCOX) for expressing the zebrafish-derived cyclooxygenase gene (zCOX) in the mushroom.
 図4(A)~(C)に示すように、pENTR(インビトロジェン社製)の相同組み換え配列間のEcoRI制限酵素切断部位、XhoI切断部位(EcoRI-XhoI切断部位)に、マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子、及びゼブラフィッシュ由来のシクロオキシゲナーゼ遺伝子それぞれのcDNA(ORF)のEcoRI-XhoI断片を、連結した。ORF増幅には、下線で示す認識配列を含む以下のプライマーを用いた。 As shown in FIGS. 4 (A) to (C), a mouse-derived phospholipase A2 gene is placed at the EcoRI restriction enzyme cleavage site and the XhoI cleavage site (EcoRI-XhoI cleavage site) between homologous recombination sequences of pENTR (manufactured by Invitrogen). The EcoRI-XhoI fragment of the mouse 5-lipoxygenase gene and the zebrafish cyclooxygenase gene cDNA (ORF) were ligated. For ORF amplification, the following primers containing the recognition sequence shown underlined were used.
マウス由来のホスホリパーゼA2遺伝子(mPLA2)の増幅に用いたプライマー
mPLA-1FE: 5’-GGGCCCGAATTCAATGTCTTTCATAGATCCTTATCAG-3’ (配列番号31)
mPLA-1RX: 5’-AACGGGCTCGAGTACACAGTGGGTTTACTTAGAA-3’ (配列番号32)
Primer used for amplification of mouse-derived phospholipase A2 gene (mPLA2)
mPLA-1FE: 5'-GGGCCCGAATTCAATGTCTTTCATAGATCCTTATCAG-3 '(SEQ ID NO: 31)
mPLA-1RX: 5'-AACGGG CTCGAG TACACAGTGGGTTTACTTAGAA-3 '(SEQ ID NO : 32)
マウス由来の5-リポキシゲナーゼ遺伝子(mLOX)の増幅に用いたプライマー
mLOX-1FE: 5’-AAATCCGAATTCCATGCCCTCCTACACGGTCAC-3’ (配列番号33)
mLOX-1RX: 5’-AAGGAACTCGAGATGGCTACGCTGTTGGGAA-3’ (配列番号34)
Primers used to amplify mouse-derived 5-lipoxygenase gene (mLOX)
mLOX-1FE: 5'-AAATCC GAATTC CATGCCCTCCTACACGGTCAC-3 '(SEQ ID NO: 33)
mLOX-1RX: 5'-AAGGAA CTCGAG ATGGCTACGCTGTTGGGAA-3 '(SEQ ID NO : 34)
ゼブラフィッシュ由来のシクロオキシゲナーゼ遺伝子(zCOX)の増幅に用いたプライマー
zCOX-1FE: 5’-ACACGCGAATTCAATGAAAAGTTCAGTATTATTTAT-3’ (配列番号35)
zCOX-1RX: 5’-AGTGTACTCGAGAGCTCAGATGTCCTTTC-3’ (配列番号36)
Primers used for amplification of zebrafish-derived cyclooxygenase gene (zCOX)
zCOX-1FE: 5'-ACACGC GAATTC AATGAAAAGTTCAGTATTATTTAT-3 '(SEQ ID NO: 35)
zCOX-1RX: 5'-AGTGTA CTCGAG AGCTCAGATGTCCTTTC-3 '(SEQ ID NO : 36)
 各遺伝子を増幅させるためのPCRにおいては、PrimeSTAR DNA polymerase(Takara社製)0.5Uを用い、95℃2分間保持後、95℃で30秒間、55℃で30秒間、72℃で2分間の反応を30回繰り返し、その後4℃に冷却した。得られた断片を制限酵素(EcoRI及びXhoI)で処理し、同じ酵素で切断したpENTRベクターに連結した。得られたプラスミドを大腸菌DB3.1に形質転換し、得られたコロニーからプラスミドDNAを単離し、塩基配列を決定し、間違いがないことを確認した。これらのプラスミドとpGWB2(インビトロジェン社製)とを混合し、LR recombinase(インビトロジェン社製)によって組換え反応(LR組換え反応)を行い、pGWB2のカリフラワーモザイクウィルス(CaMV)プロモーター、及び、NOSターミネーター間に各遺伝子のORFを連結した。 In PCR for amplifying each gene, PrimeSTAR DNA polymerase (manufactured by Takara) 0.5U was used and maintained at 95 ° C for 2 minutes, then at 95 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 2 minutes. The reaction was repeated 30 times and then cooled to 4 ° C. The obtained fragment was treated with restriction enzymes (EcoRI and XhoI) and ligated to the pENTR vector cut with the same enzymes. The obtained plasmid was transformed into E. coli DB3.1, plasmid DNA was isolated from the obtained colony, the base sequence was determined, and it was confirmed that there was no mistake. These plasmids and pGWB2 (manufactured by Invitrogen) are mixed, recombination reaction (LR recombination reaction) is performed by LR recombinase (manufactured by Invitrogen), and cauliflower mosaic virus (CaMV) promoter of pGWB2 and NOS terminator The ORF of each gene was ligated to.
 上記で得られた形質転換用ベクターの構造を図5(A)~(C)に模式的に示した。
 図5(A)は、プラスミドpGWB2-mPLA2の構造を示す模式図である。図5(B)は、プラスミドpGWB2-mLOXの構造を示す模式図である。図5(C)は、プラスミドpGWB2-zCOXの構造を示す模式図である。
 図5(A)~(C)中、LBは、左境界配列を表す。RBは、右境界配列を表す。CaMV p35Sは、カリフラワーモザイクウィルス(CaMV)35Sプロモーターを表す。tNOSは、NOS遺伝子ターミネーターを表す。p35Sは、カリフラワーモザイクウィルス(CaMV)35Sプロモーターを表す。HPT IIは、ハイグロマイシン耐性遺伝子を表す。
 このようにして得られた上記のコンストラクトを、公知の方法(Plant Cell Rep. 27, p1467, 2008)で、アグロバクテリウム法でゼニゴケに導入し、形質転換ゼニゴケを取得した。
 この形質転換ゼニゴケを増殖又は生育させることにより、エイコサノイドを生産することができる。
The structure of the transformation vector obtained above is schematically shown in FIGS. 5 (A) to (C).
FIG. 5 (A) is a schematic diagram showing the structure of plasmid pGWB2-mPLA2. FIG. 5 (B) is a schematic diagram showing the structure of plasmid pGWB2-mLOX. FIG. 5 (C) is a schematic diagram showing the structure of plasmid pGWB2-zCOX.
In FIGS. 5A to 5C, LB represents a left boundary array. RB represents the right boundary array. CaMV p35S represents the cauliflower mosaic virus (CaMV) 35S promoter. tNOS represents the NOS gene terminator. p35S represents the cauliflower mosaic virus (CaMV) 35S promoter. HPT II represents the hygromycin resistance gene.
The above-described construct thus obtained was introduced into Xenoke by the Agrobacterium method by a known method (Plant Cell Rep. 27, p1467, 2008), and transformed Xenoke was obtained.
Eicosanoids can be produced by proliferating or growing the transformed genus moss.
 以上のように、本発明の遺伝子及びたんぱく質は、エイコサノイド生産に有用である。また、本発明の遺伝子が発現可能に導入された植物形質転換体は、製薬産業及び各種素材産業等において、エイコサノイドを生産する上で、薬等の原料や試薬の供給に極めて有用である。また本発明の遺伝子が発現可能に導入された植物形質転換体においては、植物体内のエイコサノイドの含量が増加するので、このような植物形質転換体は、製薬分野等において非常に有用である。 As described above, the gene and protein of the present invention are useful for eicosanoid production. Moreover, the plant transformant introduced so that the gene of the present invention can be expressed is extremely useful for supplying raw materials such as drugs and reagents in producing eicosanoids in the pharmaceutical industry and various material industries. In addition, in a plant transformant in which the gene of the present invention has been introduced so that it can be expressed, the content of eicosanoids in the plant body increases, so such a plant transformant is very useful in the pharmaceutical field and the like.

Claims (33)

  1.  ホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子、及びシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる植物形質転換体又はその組織を、増殖又は生育させる工程を含むことを特徴とするエイコサノイド生産方法。 An eicosanoid production method comprising a step of growing or growing a plant transformant or a tissue thereof into which one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene are introduced so as to be expressed in a plant.
  2.  植物が、ゼニゴケ目生物である請求項1に記載の方法。 The method according to claim 1, wherein the plant is a genus Pleurotus.
  3.  植物形質転換体が、ホスホリパーゼ遺伝子、リポキシゲナーゼ遺伝子、及びシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体である請求項1又は2に記載の方法。 A plant transformant having one or more of a phospholipase gene, a lipoxygenase gene, and a cyclooxygenase gene introduced into a plant so that the plant transformant can be expressed, or a plant transformant having a modified eicosanoid composition, or the same as the plant transformant The method according to claim 1 or 2, which is a plant transformant that is a descendant of the plant transformant having the following properties.
  4.  ホスホリパーゼ遺伝子が、以下の(a1)~(a8)のいずれかの遺伝子であり、リポキシゲナーゼ遺伝子が、以下の(b1)~(b8)のいずれかの遺伝子であり、シクロオキシゲナーゼ遺伝子が、以下の(c1)~(c8)のいずれかの遺伝子である請求項1~3のいずれかに記載の方法。
    (a1)配列番号1に示される塩基配列からなるDNAを含む遺伝子
    (a2)配列番号1に示される塩基配列の一部からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
    (a3)配列番号1に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
    (a4)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNAを含む遺伝子
    (a5)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子
    (a6)配列番号2に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子
    (a7)配列番号2に示されるアミノ酸配列において、1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子
    (a8)マウス由来のホスホリパーゼA2遺伝子
    (b1)配列番号3に示される塩基配列からなるDNAを含む遺伝子
    (b2)配列番号3に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
    (b3)配列番号3に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
    (b4)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列を有するDNAを含む遺伝子
    (b5)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子
    (b6)配列番号4に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子
    (b7)配列番号4に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子
    (b8)マウス由来の5-リポキシゲナーゼ遺伝子
    (c1)配列番号5に示される塩基配列からなるDNAを含む遺伝子
    (c2)配列番号5に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
    (c3)配列番号5に示される塩基配列と相補的な塩基配列からなるDNAの全部又は一部とストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNAを含む遺伝子
    (c4)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列を有するDNAを含む遺伝子
    (c5)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNAを含む遺伝子
    (c6)配列番号6に示されるアミノ酸配列からなるたんぱく質をコードする遺伝子
    (c7)配列番号6に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードする遺伝子
    (c8)ゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子
    The phospholipase gene is any one of the following genes (a1) to (a8), the lipoxygenase gene is any one of the following genes (b1) to (b8), and the cyclooxygenase gene is any of the following (c1 The method according to any one of claims 1 to 3, wherein the gene is any one of (1) to (c8).
    (A1) a gene comprising DNA consisting of the base sequence shown in SEQ ID NO: 1 (a2) consisting of a part of the base sequence shown in SEQ ID NO: 1, and arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell A gene containing DNA derived from the genus Coleoptera encoding a protein having a phospholipase activity to be released (a3) A DNA comprising all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1 under stringent conditions And a gene containing a DNA derived from the genus Coleoptera that encodes a protein having a phospholipase activity that liberates arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell (a4) a base represented by SEQ ID NO: 1 DNA comprising the 394th to 2091th nucleotide sequences in the sequence The gene (a5) is hybridized under stringent conditions with either DNA consisting of the 394th to 2091th base sequences of the base sequence shown in SEQ ID NO: 1 or DNA consisting of base sequences complementary to the DNA, And a gene comprising a DNA encoding a protein derived from the genus Coleoptera having a phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell (a6) a protein comprising the amino acid sequence shown in SEQ ID NO: 2 The encoding gene (a7) consists of an amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and / or added in the amino acid sequence shown in SEQ ID NO: 2, and from the cell membrane phospholipid to arachidonic acid or Phospholipa that releases eicosapentaenoic acid into cells A gene encoding a protein derived from the genus Coleoptera having ze activity (a8) a phospholipase A2 gene derived from a mouse (b1) a gene comprising a DNA consisting of the base sequence shown in SEQ ID NO: 3 (b2) a base shown in SEQ ID NO: 3 A gene comprising a part of the sequence and containing a DNA derived from the genus Coleoptera encoding a protein having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate (b3) complementary to the base sequence shown in SEQ ID NO: 3 Including DNA derived from the genus Lepidoptera that hybridizes under stringent conditions with DNA consisting of all or part of a simple nucleotide sequence and encodes a protein having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate Gene (b4) nucleotide sequence shown in SEQ ID NO: 3 A gene comprising DNA having the 127th to 2994th base sequence in the sequence (b5) consisting of DNA consisting of the 127th to 2994th base sequence of the base sequence shown in SEQ ID NO: 3 or a base sequence complementary to the DNA A gene (b6) comprising a DNA that hybridizes with any one of the DNAs under stringent conditions and encodes a protein derived from the genus Coleoptera having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate. A gene encoding a protein comprising the amino acid sequence (b7) comprising the amino acid sequence shown in SEQ ID NO: 4, wherein one or several amino acids are substituted, deleted, inserted and / or added, and arachidone Lipoxy containing acid or eicosapentaenoic acid as substrate A gene encoding a protein derived from the genus Coleoptera having a genease activity (b8) A 5-lipoxygenase gene derived from a mouse (c1) a gene comprising a DNA consisting of the base sequence shown in SEQ ID NO: 5 (c2) shown in SEQ ID NO: 5 A gene comprising a part of the base sequence and containing a DNA derived from the genus Coleoptera encoding a protein having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate (c3) complementary to the base sequence shown in SEQ ID NO: 5 A DNA derived from the genus Amanita which encodes a protein having a cyclooxygenase activity that hybridizes under stringent conditions with all or part of a DNA having a basic nucleotide sequence and that uses arachidonic acid or eicosapentaenoic acid as a substrate. Containing gene (c4) SEQ ID NO: A gene comprising DNA having the 321st to 2153th base sequences in the base sequence shown in (c5) DNA consisting of the 321st to 2153th base sequences in the base sequence shown in SEQ ID NO: 5 or complementary to the DNA A gene (c6) comprising a DNA that hybridizes with any one of DNAs comprising a base sequence under a stringent condition and encodes a protein derived from a genus Coriolis having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate (c6) A gene encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 6 (c7) in the amino acid sequence shown in SEQ ID NO: 6, wherein one or several amino acids are substituted, deleted, inserted, and / or added Arachidonic acid or eicosapentae A gene encoding a protein derived from the genus Coleoptera having cyclooxygenase activity using acid as a substrate (c8) a cyclooxygenase gene derived from zebrafish
  5.  ホスホリパーゼ遺伝子が、前記(a1)~(a7)のいずれかの遺伝子であり、リポキシゲナーゼ遺伝子が、前記(b1)~(b7)のいずれかの遺伝子であり、シクロオキシゲナーゼ遺伝子が、前記(c1)~(c7)のいずれかの遺伝子である請求項4に記載の方法。 The phospholipase gene is any one of the genes (a1) to (a7), the lipoxygenase gene is any one of the genes (b1) to (b7), and the cyclooxygenase gene is any of the above (c1) to (c The method according to claim 4, wherein the gene is any one of c7).
  6.  下記の(a)~(c)のいずれかのDNAを含む遺伝子。
    (a)配列番号1に示される塩基配列からなるDNA
    (b)配列番号1に示される塩基配列の一部からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
    (c)配列番号1に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
    A gene comprising any of the following DNAs (a) to (c):
    (A) DNA comprising the base sequence shown in SEQ ID NO: 1
    (B) a DNA derived from the genus Pleurotus that encodes a protein having a phospholipase activity, which comprises a part of the base sequence represented by SEQ ID NO: 1 and releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into cells.
    (C) Hybridizing under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 1, and arachidonic acid or eicosapentaenoic acid from the cell membrane phospholipid, DNA derived from the genus Pleurotus that encodes a protein having phospholipase activity to be released in the body
  7.  下記の(a)又は(b)のDNAを含む遺伝子。
    (a)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNA
    (b)配列番号1に示される塩基配列のうち394ないし2091番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNA
    A gene comprising the following DNA (a) or (b):
    (A) DNA consisting of the 394th to 2091th base sequences in the base sequence shown in SEQ ID NO: 1
    (B) a cell membrane that hybridizes under stringent conditions with either DNA comprising the 394th to 2091th nucleotide sequences of the nucleotide sequence represented by SEQ ID NO: 1 or DNA comprising a nucleotide sequence complementary to the DNA. DNA that encodes a protein derived from the genus Lepidoptera having phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from phospholipids into cells.
  8.  下記の(A)又は(B)のたんぱく質をコードする遺伝子。
    (A)配列番号2に示されるアミノ酸配列からなるたんぱく質
    (B)配列番号2に示されるアミノ酸配列において、1個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつ細胞膜リン脂質からアラキドン酸又はエイコサペンタエン酸を、細胞内に遊離させるホスホリパーゼ活性を有するゼニゴケ目生物由来のたんぱく質
    A gene encoding the following protein (A) or (B).
    (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 2 (B) an amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 2 And a protein derived from the genus Pleurotus having a phospholipase activity that releases arachidonic acid or eicosapentaenoic acid from cell membrane phospholipids into the cell.
  9.  下記の(a)~(c)のいずれかのDNAを含む遺伝子。
    (a)配列番号3に示される塩基配列からなるDNA
    (b)配列番号3に示される塩基配列の一部からなり、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
    (c)配列番号3に示される塩基配列と相補的な塩基配列の全部又は一部からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、アラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
    A gene comprising any of the following DNAs (a) to (c):
    (A) DNA consisting of the base sequence shown in SEQ ID NO: 3
    (B) a DNA derived from the genus Pleurotus that encodes a protein having a lipoxygenase activity comprising a part of the base sequence shown in SEQ ID NO: 3 and having arachidonic acid or eicosapentaenoic acid as a substrate;
    (C) Lipoxygenase activity that hybridizes under stringent conditions with DNA consisting of all or part of the base sequence complementary to the base sequence shown in SEQ ID NO: 3 and that uses arachidonic acid or eicosapentaenoic acid as a substrate DNA derived from the genus Pleurotus that encodes a protein having
  10.  下記の(a)又は(b)のDNAを含む遺伝子。
    (a)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列からなるDNA
    (b)配列番号3に示される塩基配列のうち127ないし2994番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNA
    A gene comprising the following DNA (a) or (b):
    (A) DNA consisting of the 127th to 2994th nucleotide sequences in the nucleotide sequence shown in SEQ ID NO: 3
    (B) hybridizing under stringent conditions with either DNA comprising the 127th to 2994th nucleotide sequence of the nucleotide sequence shown in SEQ ID NO: 3 or DNA comprising a complementary nucleotide sequence to the DNA, and arachidon DNA encoding a protein derived from the genus Pleurotus having lipoxygenase activity using acid or eicosapentaenoic acid as a substrate
  11.  下記の(A)又は(B)のたんぱく質をコードする遺伝子。
    (A)配列番号4に示されるアミノ酸配列からなるたんぱく質
    (B)配列番号4に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするリポキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質
    A gene encoding the following protein (A) or (B).
    (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 4 (B) from the amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 4 And a protein derived from the genus Pleurotus having lipoxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate
  12.  下記の(a)~(c)のいずれかのDNAを含む遺伝子。
    (a)配列番号5に示される塩基配列からなるDNA
    (b)配列番号5に示される塩基配列の一部からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
    (c)配列番号5に示される塩基配列と相補的な塩基配列からなるDNAの全部又は一部とストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するたんぱく質をコードするゼニゴケ目生物由来のDNA
    A gene comprising any of the following DNAs (a) to (c):
    (A) DNA consisting of the base sequence shown in SEQ ID NO: 5
    (B) a DNA derived from the genus Pleurotus that encodes a protein having a cyclooxygenase activity comprising a part of the base sequence shown in SEQ ID NO: 5 and having arachidonic acid or eicosapentaenoic acid as a substrate;
    (C) Cyclooxygenase activity that hybridizes under stringent conditions with all or part of DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 5 and uses arachidonic acid or eicosapentaenoic acid as a substrate DNA derived from the genus Pleurotus that encodes proteins
  13.  下記の(a)又は(b)のDNAを含む遺伝子。
    (a)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列からなるDNA
    (b)配列番号5に示される塩基配列のうち321ないし2153番目の塩基配列からなるDNA又は該DNAと相補的な塩基配列からなるDNAのいずれかとストリンジェントな条件下でハイブリダイズし、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質をコードするDNA
    A gene comprising the following DNA (a) or (b):
    (A) DNA consisting of nucleotide sequences 321 to 2153 among the nucleotide sequence shown in SEQ ID NO: 5
    (B) hybridizing under stringent conditions with either DNA comprising the 321st to 2153rd base sequences of the base sequence shown in SEQ ID NO: 5 or DNA comprising a base sequence complementary to the DNA; and arachidone DNA encoding a protein derived from the genus Pleurotus having cyclooxygenase activity using acid or eicosapentaenoic acid as a substrate
  14.  下記の(A)又は(B)のたんぱく質をコードする遺伝子。
    (A)配列番号6に示されるアミノ酸配列からなるたんぱく質
    (B)配列番号6に示されるアミノ酸配列において、一個又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加されたアミノ酸配列からなり、かつアラキドン酸又はエイコサペンタエン酸を基質とするシクロオキシゲナーゼ活性を有するゼニゴケ目生物由来のたんぱく質
    A gene encoding the following protein (A) or (B).
    (A) Protein consisting of the amino acid sequence shown in SEQ ID NO: 6 (B) From the amino acid sequence in which one or several amino acids are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 6 And a protein derived from the genus Pleurotus having cyclooxygenase activity using arachidonic acid or eicosapentaenoic acid as a substrate
  15.  請求項6~14の何れか1項に記載の遺伝子にコードされるたんぱく質。 A protein encoded by the gene according to any one of claims 6 to 14.
  16.  請求項6~14の何れか1項に記載の遺伝子にコードされるたんぱく質を認識する抗体。 An antibody that recognizes the protein encoded by the gene according to any one of claims 6 to 14.
  17.  請求項6~14の何れか1項に記載の遺伝子を含む組換え発現ベクター。 A recombinant expression vector comprising the gene according to any one of claims 6 to 14.
  18.  少なくとも請求項6~14の何れか1項に記載の遺伝子を植物に導入してなる植物形質転換体若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。 A plant transformant obtained by introducing at least the gene according to any one of claims 6 to 14 into a plant, or a plant transformant that is a descendant of the plant transformant having the same properties as the plant transformant Body or tissue of the plant transformant.
  19.  植物が、ゼニゴケ目生物である請求項18に記載の植物形質転換体又は植物形質転換体の組織。 The plant transformant or the tissue of the plant transformant according to claim 18, wherein the plant is a genus Coleoptera.
  20.  少なくとも請求項6~14の何れか1項に記載の遺伝子が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。 A plant transformant having a modified eicosanoid composition, wherein the gene according to any one of claims 6 to 14 is introduced into a plant so that the gene can be expressed, or the plant transformant having the same properties as the plant transformant A plant transformant that is a descendant of the plant transformant, or a tissue of the plant transformant.
  21.  請求項18~20の何れか1項に記載の植物形質転換体又は該植物形質転換体の組織から得られる繁殖材料。 21. A propagation material obtained from the plant transformant according to any one of claims 18 to 20 or a tissue of the plant transformant.
  22.  請求項6~14の何れか1項に記載の遺伝子を植物に導入する工程を含むことを特徴とする植物又はその組織のエイコサノイド組成を改変する方法。 A method for modifying the eicosanoid composition of a plant or a tissue thereof, comprising a step of introducing the gene according to any one of claims 6 to 14 into the plant.
  23.  請求項6~14の何れか1項に記載の遺伝子の少なくとも一部の塩基配列又はその相補配列をプローブとして用いる遺伝子検出器具。 A gene detection instrument using, as a probe, at least a partial base sequence of the gene according to any one of claims 6 to 14 or a complementary sequence thereof.
  24.  請求項6~14の何れか1項に記載の遺伝子にコードされるたんぱく質を用いて、該たんぱく質を調節する遺伝子、又は該たんぱく質を調節する物質をスクリーニングする方法。 A method for screening a gene that regulates the protein or a substance that regulates the protein, using the protein encoded by the gene according to any one of claims 6 to 14.
  25.  請求項24に記載のスクリーニング方法により得られる遺伝子又は物質。 A gene or substance obtained by the screening method according to claim 24.
  26.  マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子又はゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子を植物細胞用ベクターに挿入してなる組換え発現ベクター。 A recombinant expression vector obtained by inserting a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene or a zebrafish-derived cyclooxygenase gene into a plant cell vector.
  27.  少なくとも、マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上を植物に導入してなる植物形質転換体、若しくは該植物形質転換体と同じ性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。 A plant transformant obtained by introducing at least one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene and a zebrafish-derived cyclooxygenase gene, or the same property as the plant transformant A plant transformant that is a descendant of the plant transformant, or a tissue of the plant transformant.
  28.  植物が、ゼニゴケ目生物である請求項27に記載の植物形質転換体又は植物形質転換体の組織。 28. The plant transformant or the tissue of the plant transformant according to claim 27, wherein the plant is a genus Coleoptera.
  29.  少なくとも、マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上が植物に発現可能に導入されてなる、エイコサノイド組成が改変された植物形質転換体、若しくは該植物形質転換体と同一の性質を有する該植物形質転換体の子孫となる植物形質転換体、又は該植物形質転換体の組織。 A plant transformant having a modified eicosanoid composition, wherein at least one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene, and a zebrafish-derived cyclooxygenase gene are introduced so as to be expressed in the plant, Or the plant transformant used as the descendant of this plant transformant which has the same property as this plant transformant, or the structure | tissue of this plant transformant.
  30.  請求項27~29の何れか1項に記載の植物形質転換体又は該植物形質転換体の組織から得られる繁殖材料。 A propagation material obtained from the plant transformant according to any one of claims 27 to 29 or a tissue of the plant transformant.
  31.  マウス由来のホスホリパーゼA2遺伝子、マウス由来の5-リポキシゲナーゼ遺伝子及びゼブラフィシュ由来のシクロオキシゲナーゼ遺伝子の1又は2以上を植物に導入する工程を含む植物又はその組織のエイコサノイド組成を改変する方法。 A method for modifying the eicosanoid composition of a plant or its tissue, comprising introducing one or more of a mouse-derived phospholipase A2 gene, a mouse-derived 5-lipoxygenase gene and a zebrafish-derived cyclooxygenase gene into the plant.
  32.  請求項26に記載の組換え発現ベクターにコードされるたんぱく質を用いる、該たんぱく質を調節する遺伝子、又は該たんぱく質を調節する物質をスクリーニングする方法。 A method for screening a gene that regulates the protein or a substance that regulates the protein, wherein the protein encoded by the recombinant expression vector according to claim 26 is used.
  33.  請求項32に記載のスクリーニング方法により得られる遺伝子又は物質。 A gene or substance obtained by the screening method according to claim 32.
PCT/JP2010/053533 2009-07-22 2010-03-04 Process for production of eicosanoid, eicosanoid biosynthesis gene derived from marchantia polymorpha, and use of the gene WO2011010485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009170990 2009-07-22
JP2009-170990 2009-07-22

Publications (1)

Publication Number Publication Date
WO2011010485A1 true WO2011010485A1 (en) 2011-01-27

Family

ID=43498963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053533 WO2011010485A1 (en) 2009-07-22 2010-03-04 Process for production of eicosanoid, eicosanoid biosynthesis gene derived from marchantia polymorpha, and use of the gene

Country Status (1)

Country Link
WO (1) WO2011010485A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125229A (en) * 2010-11-24 2012-07-05 Ishikawa Prefectural Public Univ Corp Gene of cyclooxygenase derived from gracilaria vermiculophylla and method for producing prostagrandin using the gene
WO2017138507A1 (en) * 2016-02-10 2017-08-17 日本電気株式会社 Dna testing chip, dna testing method, dna testing system, and dna testing chip control device
CN110129298A (en) * 2016-06-02 2019-08-16 天津科技大学 A kind of novel phospholipase D mutant and its application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061713A1 (en) * 2003-12-22 2005-07-07 Suntory Limited Unsaturated fatty acid synthase gene originating in marchantiales plant and utilization of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061713A1 (en) * 2003-12-22 2005-07-07 Suntory Limited Unsaturated fatty acid synthase gene originating in marchantiales plant and utilization of the same

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ASAKAWA, Y. ET AL.: "BRYOPHYTES: BIO- AND CHEMICAL DIVERSITY, BIOACTIVITY AND CHEMOSYSTEMATICS", HETEROCYCLES, vol. 77, no. 1, 1 January 2009 (2009-01-01), pages 99 - 150 *
CHEN XS ET AL.: "cDNA cloning, expression, mutagenesis, intracellular localization, and gene chromosomal assignment of mouse 5-lipoxygenase.", J BIOL CHEM., vol. 270, no. 30, 1995, pages 17993 - 17999 *
CLARK JD ET AL.: "A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP.", CELL., vol. 65, no. 6, 1991, pages 1043 - 1051, XP023908720, DOI: doi:10.1016/0092-8674(91)90556-E *
ISHIKAWA TO ET AL.: "The zebrafish genome contains two inducible, functional cyclooxygenase-2 genes.", BIOCHEM BIOPHYS RES COMMUN., vol. 352, no. 1, 2007, pages 181 - 187, XP005727942, DOI: doi:10.1016/j.bbrc.2006.11.007 *
JUN'ICHIRO HATTAN ET AL.: "Zenigoke o Mochiita Yuyo Busshitsu Seisan System no Kaihatsu (3)", NIPPON NOGEI KAGAKUKAI TAIKAI KOEN YOSHISHU, 5 March 2009 (2009-03-05), pages 316 *
KANAMOTO, H. ET AL.: "Detection of 5-Lipoxygenase Activity in the Liverwort Marchantia polymorpha L.", BIOSCI BIOTECHNOL BIOCHEM, vol. 73, no. 11, November 2009 (2009-11-01), pages 2549 - 2551 *
KOSUKE KANEMOTO ET AL.: "Zenigoke o Mochiita Yuyo Busshitsu Seisan System no Kaihatsu (2)", NIPPON NOGEI KAGAKUKAI TAIKAI KOEN YOSHISHU, 5 March 2009 (2009-03-05), pages 316 *
MATSUI, K. ET AL.: "Developmental changes of lipoxygenase and fatty acid hydroperoxide lyase activities in cultured cells of Marchantia polymorpha.", PHYTOCHEMISTRY, vol. 41, no. 1, 1996, pages 177 - 182, XP001000334, DOI: doi:10.1016/0031-9422(95)00560-9 *
MATSUI, K. ET AL.: "Purification and properties of lipoxygenase in Marchantia polymorpha cultured cells.", PHYTOCHEMISTRY, vol. 30, no. 5, 1991, pages 1499 - 1502, XP026631901, DOI: doi:10.1016/0031-9422(91)84196-Y *
TSUTOMU KOHINATA ET AL.: "Zenigoke o Mochiita Yuyo Busshitsu Seisan System no Kaihatsu (1)", NIPPON NOGEI KAGAKUKAI TAIKAI KOEN YOSHISHU, 5 March 2009 (2009-03-05), pages 315 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125229A (en) * 2010-11-24 2012-07-05 Ishikawa Prefectural Public Univ Corp Gene of cyclooxygenase derived from gracilaria vermiculophylla and method for producing prostagrandin using the gene
WO2017138507A1 (en) * 2016-02-10 2017-08-17 日本電気株式会社 Dna testing chip, dna testing method, dna testing system, and dna testing chip control device
GB2563357A (en) * 2016-02-10 2018-12-12 Nec Corp DNA testing chip, DNA testing method, DNA testing system, and DNA testing chip control device
CN110129298A (en) * 2016-06-02 2019-08-16 天津科技大学 A kind of novel phospholipase D mutant and its application
CN110129298B (en) * 2016-06-02 2021-08-03 天津科技大学 Phospholipase D mutant and application thereof

Similar Documents

Publication Publication Date Title
JP5064543B2 (en) Unsaturated Fatty Acid Synthesis Enzyme Genes from Xenopus and Their Uses
EP2862931B1 (en) Lowering saturated fatty acid contents of plant seeds
EP2914726B1 (en) Improved acyltransferase polynucleotides, polypeptides, and methods of use
US20150252378A1 (en) Novel Acyltransferase Polynucleotides, Polypeptides and Methods of Use
WO2011010485A1 (en) Process for production of eicosanoid, eicosanoid biosynthesis gene derived from marchantia polymorpha, and use of the gene
CN113423837A (en) Brassica plants producing increased levels of polyunsaturated fatty acids
JP5641232B2 (en) Ogonori-derived cyclooxygenase gene and method for producing prostaglandins using the gene
EP1780275B1 (en) Polypeptide having a delta 5 fatty acid unsaturating activity, polynucleotide coding for the polypeptide and use thereof
JP7097547B2 (en) Plants with modified cell walls, methods and nucleic acids for obtaining such plants, and methods for producing glucose using such plants.
JP2016127811A (en) Methods for producing plants having bloated stems
CZ300145B6 (en) Method of controlling formation of biomass in plants
Cai et al. Creating yellow seed Camelina sativa with enhanced oil accumulation by CRISPR‐mediated disruption of Transparent Testa 8
TW201300534A (en) Lowering saturated fatty acid content of plant seeds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP