KR101974221B1 - 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법 - Google Patents

유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법 Download PDF

Info

Publication number
KR101974221B1
KR101974221B1 KR1020120093324A KR20120093324A KR101974221B1 KR 101974221 B1 KR101974221 B1 KR 101974221B1 KR 1020120093324 A KR1020120093324 A KR 1020120093324A KR 20120093324 A KR20120093324 A KR 20120093324A KR 101974221 B1 KR101974221 B1 KR 101974221B1
Authority
KR
South Korea
Prior art keywords
coa
microorganism
present
acid
hexanoic acid
Prior art date
Application number
KR1020120093324A
Other languages
English (en)
Other versions
KR20140026208A (ko
Inventor
권대혁
서진호
박진병
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020120093324A priority Critical patent/KR101974221B1/ko
Publication of KR20140026208A publication Critical patent/KR20140026208A/ko
Application granted granted Critical
Publication of KR101974221B1 publication Critical patent/KR101974221B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/011573-Hydroxybutyryl-CoA dehydrogenase (1.1.1.157)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01038Trans-2-enoyl-CoA reductase (NADPH) (1.3.1.38)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01042-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate reductase (1.3.1.40)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01017Enoyl-CoA hydratase (4.2.1.17), i.e. crotonase

Abstract

본 발명은 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ), 크로토네이즈(Crotonase), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase), 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)의 활성이 강화된 유기산 생산용 미생물 및 미생물 제조방법에 관한 것이다. 또한, 본 발명은 상기 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 유기산을 회수하는 단계를 포함하는, 유기산 제조방법 및 이를 통해 제조된 유기산에 관한 것이다. 본 발명에 의하면, 기존에 헥산산(hexanoic acid) 제조방법이 오랜 시간의 발효에도 불구하고 생산량이 낮아, 헥산산의 생합성 산업에 걸림돌이 되고 있었으나, 본 발명에서 제시하고 있는 유전자를 도입함으로 인해 발효 시간 및 생산량 측면에서 크게 발전된 미생물을 제공한다. 이로 인해, 본 발명의 미생물을 이용할 경우 헥산산 생합성 및 이로 인한 바이오 플라스틱 산업의 성장에 크게 이바지할 것으로 사료되며, 새로운 간편하고 비용이 적게 드는 바이오 플라스틱의 제조방법에 도움이 될 것이다.오 플라스틱 산업의 성장에 크게 이바지할 것으로 사료된다.

Description

유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법{Recombinant micro-organisms for producing organic aicd and the method for producing organic acid by using thereof}
본 발명은 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ), 크로토네이즈(Crotonase), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase), 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)의 활성이 강화된 유기산 생산용 미생물 및 상기 미생물 제조방법에 관한 것이다. 또한, 본 발명은 상기 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 유기산을 회수하는 단계를 포함하는, 유기산 제조방법 및 이를 통해 제조된 유기산에 관한 것이다.
인류의 오랜 에너지원인 화석에너지원이 고갈됨에 따라, 원유의 지속적인 가격 상승과 가채량의 한계를 극복하고, 석유화학제품 제조 및 사용으로 인한 이산화탄소 방출과 환경오염 방지를 위해 기존의 석유화학기반 산업에서 바이오매스를 이용하려는 바이오 기반 경제로의 이동이 활발히 진행되고 있다.
또한, 석유유래 제품의 사용으로 인한 이산화탄소 배출량이 계속 증가함에 따라서 이의 감축을 목표로 했던 교토의정서의 발효에 따라 많은 국가들이 이산화탄소 배출량 감소를 위한 정책수립과 기술발전을 모색하고 있으며, 바이오 화학 산업과 이를 이용한 바이오 화학 제품이 하나의 해결책 방안으로 인식되어 개발 및 상업화가 진행중이다.
이 중 바이오 매스는 재생가능한 유기물질로 식물, 동물, 미생물 모두를 포함하며, 여기에는 작물과 나무, 농산품과 사료작물, 농업 및 산림 폐기물, 조류(Algae), 도시 폐기물 등에서 추출된 재생가능한 유기물질이 포함된다. 바이오 매스는 기존 석유 유래 물질과 달리 화석 연료에 비의존적이며, 다양한 공급원을 포함하고, 친환경적이라는 장점이 있다.
이러한 바이오 매스를 원료로 생명공학 기술을 이용하여 바이오 연료와 바이오 기반 화학제품을 생산하는 기술이 연구 개발되고 있으며, 바이오 연료 분야에서는 수송연료 대체를 위한 바이오에탄올, 바이오디젤, 바이오부탄올 등의 바이오 연료가, 바이오케미컬분야에서는 PLA, 1,3-PDO, 바이오 에틸렌과 부타디엔과 같은 C2~C4계 빌딩블럭 등을 이용한 다양한 바이오플라스틱 및 바이오케미컬이 연구 개발 및 생산되어 출시되고 있다.
특히, 바이오 플라스틱은 대사-발효 공정으로 이용하여 얻어지는 C3, C4, C5, C6 등의 플라스틱 단량체 및 이로부터 화학적 또는 생물학적 방법에 의해 생산되는, 인체 및 화학산업용 고분자물질을 통칭하는 것이다. 이는 식물에서 유래되거나 생분해 가능한 바이오 플라스틱 산업은 소비자의 친환경 제품에 대한 선호도 증가, 난분해성 플라스틱에 대한 사용 규제 증대, 석유 기반 제품의 가격 상승 등으로 인해 시장 경쟁력이 향상됨에 따라 빠른 성장율을 보이고 있다. 이에 따라, 바이오 플라스틱의 2013년 세계수요는 90만톤, 가격으로는 26억 달러에 이를 것으로 예상되고 있으며, 2015년에는 전체 플라스틱 시장의 1.5-4.8%를 차지하고 시장규모가 400만~1,250만 톤에 달할 것으로 예상된다.
현재 C3, C4, C5, C6 단량체를 기반으로 한 바이오 플라스틱 생산기술은 기술적 성숙도가 매우 높은 상태이나, C5, C6 단량체 생산기술은 현재 기술적으로 낮은 단계에 머물러 있다. 특히, C3나 C4 단량체를 이용한 바이오 플라스틱은 이미 산업화가 진행중이나 C5 및 C6 단량체를 이용한 바이오 플라스틱은 단량체 생산기술의 미비로 인해 산업화에 난항을 겪고 있었다. 따라서, C5 및 C6 단량체 생산기술 및 이를 이용한 바이오 플라스틱 생산 기술은 바이오 플라스틱 산업에서 추후 주력 발달 분야로 주목받고 있으며 이를 위해 효율적인 C5 및 C6 단량체 생산기술이 필요한 실정이다.
이러한 배경하에서, 본 발명자들은 바이오 플라스틱의 전구체로 사용되는 C6 단량체인 헥산산(hexanoic acid)을 보다 고수율로 생합성할 수 있는 균주를 개발하기 위하여 예의 연구 노력한 결과, 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ), 크로토네이즈(Crotonase), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase), 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)를 발현하는 유전자를 도입시킨 균주에서 헥산산이 높은 수율로 수득되는 것을 확인하였으며, 이에 추가로 티오에스터라아제 Ⅱ(Thioesterase Ⅱ), 또는 베타-케토티올라제 Ⅰ(ß-Ketothiolase Ⅰ)를 발현하는 유전자를 도입시킨 균주에서 최종 산물인 헥산산이 높은 수율로 수득되는 동시에 부산물로 C4 유기산을 생산되는 것을 확인하여, 본 발명을 완성하였다.
본 발명의 하나의 목적은 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ), 크로토네이즈(Crotonase), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase), 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)의 활성이 강화된 것인 유기산 생산용 미생물을 제공하는 것이다.
본 발명의 다른 목적은 아세틸 CoA 아세틸전이효소, 베타-케토티올라제 Ⅱ, 크로토네이즈, 3-히드록시부티릴-CoA 탈수소효소, 및 트랜스-이노일-CoA 환원효소를 발현하는 벡터를 미생물 내로 도입하는 단계를 포함하는, 상기 미생물의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 유기산을 회수하는 단계를 포함하는, 유기산 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 방법에 의해 제조된 유기산을 제공하는 것이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ), 크로토네이즈(Crotonase), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase), 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)의 활성이 강화된 유기산 생산용 미생물을 제공한다.
본 발명의 용어, "아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase, AtoB)"는 아세틸 CoA(Acetyl-coenzyme A)에 아세틸기를 전이시켜 acetyl-CoA 두 개로부터 acetoacetyl-CoA를 생성하는 효소를 의미한다. 구체적으로는 미토콘드리아에 존재하면서 케톤 bodies의 형성과 분해에 작용하며, isoleucine의 적절한 대사과정에 필요한 효소이다(NCBI Accession No. NC_012971.2).
본 발명의 용어, "베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ, BktB)"는 탄소수 C2 짜리의 CoA 화합물을 중합시켜(condensation) 이를 탄소수 C4 또는 C6 등의 화합물로 생산하는 효소를 뜻한다. 본 발명에서 β-ketothiolase Ⅱ (bktB)는 대사과정의 중간 대사물질인 butyryl-CoA에 두 개의 acetyl-CoA가 추가하여 β-ketohexanoyl-CoA(C6)를 생산하는 효소를 의미한다(NCBI Accession No. AF026544).
본 발명의 용어, "크로토네이즈(Crotonase)"는 다른 표현으로는 이노일-CoA 수화효소(enoyl-CoA hydratase)로 물분자를 enoyl-CoA 화합물에 결합시키는 효소를 의미하며, 가역적으로 hydroxy 그룹을 가진 CoA 화합물에서 물분자를 분해해서 enoyl-coA 화합물을 생성하는 작용도 매개하는 효소이다. 본 발명에서는 3-hydroxybutyryl-CoA에 작용하여 crotonyl-CoA를 생성하는 방향으로 이용된다(NCBI Accession No. U17110.1).
본 발명의 용어, "3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase)"는 3-히드록시부티릴-CoA에서 수소를 이탈시키는 작용을 매개하며, 이는 일종의 산화반응으로 해석될 수 있다. 다만, 본 반응도 가역적인 반응으로 되려 Acetoacetyl-CoA에 수소를 부착시켜 3-히드록시부티릴-CoA를 생성하는 일종의 환원작용도 매개할 수 있다. 본 발명에서 3-히드록시부티릴-CoA 탈수소효소는 아세토아세틸-CoA에 수소를 결합시켜 3-히드록시부티릴-CoA를 생성하는 방향으로 이용된다(NCBI Accession No. P52041).
본 발명의 용어, "트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)"는 트랜스-이노일-CoA에 수소를 부착시켜 환원시키는 효소를 의미한다. 본 발명에서는 crotonyl-CoA에 두 개의 수소를 부착시켜 부티릴-CoA를 생성하는 작용을 하며, 이는 비가역적인 반응이다(NCBI Accession No. Q73Q47).
상기 효소들의 서열은 공지의 데이터 베이스 등에서 얻을 수 있으나, 이에 제한되지는 않는다. 상기 BktB, phbA, AtoB, TesB, Crt, Hbd, Ter, 또는 MCT1를 코딩하는 아미노산은 NCBI GenBank에 개시된 상기 Accession No.에 해당하는 서열과 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 보다 더욱 바람직하게는 95% 이상, 더욱더 바람직하게는 98% 이상, 가장 바람직하게는 99% 이상의 유사성을 나타내는 아미노산 서열로서 실질적으로 상기 기재된 각각 유전자의 활성을 갖는 단백질이라면 제한없이 포함하며, 또한 이러한 유사성을 갖는 서열로서 실질적으로 동일하거나 상응하는 생물학적 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 또는 부가된 아미노산 서열을 갖는 단백질 변이체도 본 발명의 범위 내에 포함됨은 자명하다.
본 발명의 용어, "활성"은 효소가 가진 기능을 의미하며, 본 발명에서는 생체 내(in vivo)에서 효소들이 본래 가지고 있는 기능 또는 in vitro 상에서 나타내는 기능을 모두 포함한다. 이에 따라, 본 발명에서 "활성 강화"는 해당 효소들의 활성이 기존보다 향상되는 것을 의미하며, 이는 반응속도 측면, 화학 평형 측면, 반응 에너지 측면 등 어떤 일 측면에서라도 효소들의 활성이 유익하게 변화되는 것을 의미한다.
본 발명에서 상기 활성을 강화(또는 증가)시키는 방법은 당해 분야에서 잘 알려진 다양한 방법의 적용이 가능하다. 그 방법의 예는, 이로 제한되는 것은 아니지만, 특정 효소를 코딩하는 염기서열을 포함하는 폴리뉴클레오타이드를 추가로 염색체에 삽입하는 방법 또는 상기 폴리뉴클레오타이드를 벡터 시스템에 도입하는 방법 등에 의하여 특정 효소를 코딩하는 염기서열의 카피수를 증가시키는 방법, 강한 프로모터로 교체하는 방법, 프로모터에 변이를 도입하는 방법, 및 유전자 변이에 의한 방법 등이 있다. 하나의 구체적 실시에서, 클루이베로마이세스속 미생물에서 상기 효소들의 활성을 강화시키기 위해 효소를 암호화하는 유전자를 벡터에 도입하고 미생물을 형질전환시킴으로써 상기 유전자의 카피수를 증가시키는 방법을 사용할 수 있다.
본 발명의 용어, "유기산"은 산성을 띠는 유기화합물의 총칭이며 카복시기와 설폰기가 들어 있는 유기화합물이 대표적이다. 미생물의 작용에 의해 탄소화합물, 주로 탄수화물이 불완전 산화되어 각종 유기산이 생성, 축적되는 현상이 흔히 일어나며 이를 유기산 발효라고 칭한다. 생성되는 유기산의 종류는 락트산, 아세트산, 시트르산, 글루콘산 등으로 발효법에 의한 공업적 생산을 하고 있다. 유기산이 생성되는 기작으로는 탄소화합물이 생화학적 분해를 받을 때의 대사중간체인 것이 많지만, 탄소골격이 변화를 받지 않는 단순한 산화생성물인 것도 있다.
본 발명에서 상기 유기산은 바람직하게는 탄소수 6의 유기산인 헥산산(hexanoic acid), 또는 C4의 유기산인 부티릴산(butyryl acid)일 수 있으며, 가장 바람직하게는 헥산산일 수 있다. 헥산산은 바이오 플라스틱의 제조에 있어서 전구체로 사용될 수 있다. 즉, 본 발명의 미생물에 의해 제조된 헥산산은 바이오 플라스틱의 전구체로 이용되며, 바이오, 화학적 방법에 의해 바이오 플라스틱을 대량으로 제조할 수 있는 기반이 된다.
본 발명의 용어, "미생물"은 조류(algae), 세균류(bacteria), 원생동물류(protozoa), 사상균류(fungi), 효모류(yeast)와 한계적 생물이라고 할 수 있는 바이러스(virus) 등이 이에 속한다. 최소 생활단위임에 따라 생명을 유지하기 위한 최소한의 대사과정을 수행하고 있으며, 이러한 대사과정에 유전공학적인 방법을 이용하여 특정 대사과정을 촉진 또는 저해하거나 하는 방법으로 원하는 방향으로 조절할 수 있다.
본 발명에서 상기 미생물은 대장균(E. coli)일 수 있다. 대장균은 사람을 포함해서 포유류의 장관을 기생장소로 하고 있는 장내세균으로, 통성혐기성 그람음성의 간균이며 글루코오스를 분해하여 산을 생산한다. 특히 대장균 K12주(E. coli K-12)는 분자생물학과 생물공학의 연구재료 및 생합성 산업의 숙주세포로써 널리 이용되어 왔다.
또한, 본 발명에서 상기 미생물은 효모(yeast)일 수 있다. 효모(yeast)는 각종 발효에 이용되는 미생물로 가장 간단한 형태의 진핵생물이다. 바람직하게는 상기 효모는 사카로마이세스(Saccharomyces)속, 칸디다(Candida)속, 클루이베로마이세스(Kluyveromyces)속, 또는 토룰라스포라(Torulaspora)속일 수 있으며, 가장 바람직하게는 클루이베로마이세스 막시아누스(Klluyveromyces marxianus)일 수 있다.
본 발명에서 클루이베로마이세스 막시아누스는 다양한 탄소원을 사용할 수 있는 능력, 고온에서의 성장 능력, 빠른 성장율 및 과량의 당에 노출되었을 때 에탄올을 생산하는 경향이 적은(크렙트리 음성형) 특성을 갖는 효모 균주이다. 일반적인 효모 균주와 달리 클루이베로마이세스 막시아누스는 많은 strain이 보고 되어 있다.
본 발명에서 상기 미생물은 추가로 티오에스터라아제 Ⅱ(Thioesterase Ⅱ)의 활성이 강화된 것인 미생물일 수 있다.
본 발명의 용어, "티오에스터라아제 Ⅱ(Thioesterase Ⅱ, TesB)"는 thioester 결합을 분해하는 효소로서, 본 발명에서는 hexanoyl-CoA에서 CoA 부분을 끊어내어 끊어낸 말단에 알코올기 OH가 존재하도록 작용하여 헥산산(hexanoic acid)를 생성하는 효소를 의미한다(NCBI Accession No. P0AGG2).
본 발명의 유기산 생산용 미생물을 제작하기 위해서는 대장균을 기반으로 하였을 때, AtoB, BktB, TesB, Crt, Hbd, 및 Ter 유전자 조합의 활성을 강화시키는 것이 가장 바람직하다.
본 발명에서 상기 미생물은 추가로 알코올 탈수소효소(Alcohol dehydrogenase), 락테이트 탈수소효소(Lactate dehydrogenase), 푸말레이트 환원효소(fumarate reductase), 및 인산전이아세틸라제(phosphotransacetylase)의 활성이 내재적 활성에 비하여 약화된 것인 미생물일 수 있다.
본 발명에서 알코올 탈수소효소(alcohol dehydrogenase)는 알코올에서 수소를 이탈시키는 작용을 매개하는 효소로, 일종의 산화반응으로 해석될 수 있다. 다만, 본 효소에 의한 상기 반응은 가역적인 반응이다. 본 발명에서 락테이트 탈수소효소(Lactate dehydrogenase)"는 락테이트에서 수소를 이탈시키는 작용을 매개하며 이는 일종의 산화반응으로 해석될 수 있다. 를 의미한다. 본 발명의 용어, "푸말레이트 환원효소(fumarate reductase)"는 푸말레이트를 숙신산으로 전환하는 효소로, 미생물의 무산소 호흡 대사에 중요한 역할을 하는 효소이다. 본 발명의 용어, "인산전이아세틸라제(phosphotransacetylase)"는 아세틸-CoA와 인산에서 CoA와 인산 아세틸로의 전환 반응을 매개하는 효소로서 상기 반응은 가역 반응이다.
본 발명에서 용어, "내재적 활성"이란 미생물이 천연의 상태로 가지고 있는 효소의 활성 상태를 의미한다.
본 발명에서 “내재적 활성 약화”는 내재적 단백질을 코딩하는 염기서열이 포함된 미생물의 염색체상에서 상기 염기서열 전체 또는 일부의 결실, 상기 염기서열 일부의 치환 또는 상기 염기서열 내로 하나 이상의 염기쌍의 삽입으로 구성되는 군으로부터 선택되는 하나 이상의 방법으로 돌연변이 시킴으로써 이루어질 수 있다. 또한, 상기 내재적 단백질을 코딩하는 염기서열의 발현조절서열 전체 또는 일부의 결실, 일부의 치환 또는 삽입에 의하여 돌연변이 되어 발현유도활성이 저하 또는 파괴됨으로써 내재적 활성이 약화될 수 있다. 상기 발현조절서열은 염색체상의 염기서열의 상부 또는 하부에 위치할 수 있으며, 바람직하게는 프로모터, 인핸서 등이 있으나, 이에 제한되지 않는다. 상기 유전자의 염색체 내로의 돌연변이는 당업계에 알려진 임의의 방법, 예를 들면, 상동 재조합에 의하여 이루어질 수 있다. 곧, 유전자의 결손 또는 돌연변이에 의해 효소가 정상적으로 작용하지 않아 미생물이 천연의 상태로 가지고 있는 효소들의 활성이 약해진 상태를 의미한다.
본 발명에서 상기 티오에스테라제 Ⅱ의 활성 강화나 알코올 탈수소효소, 락테이트 탈수소효소, 푸말레이트 환원효소, 및 인산전이아세틸라제의 활성 약화된 미생물은 대장균(E.coli)일 수 있다.
본 발명의 한 실시예에서는 대장균에 atoBbktB 유전자는 pET duet-1 벡터로, crthbd 유전자는 pCOLA duet-1벡터로, tertesB 유전자는 pACYC duet-1 벡터로 각각 도입하였다(도 2). 또한, 본 발명의 한 실시예에서는 대장균에 내재적으로 존재하는 알코올 탈수소효소, 락테이트 탈수소효소, 푸말레이트 환원효소, 및 인산전이아세틸라제를 2000년도 PNAS에 게재된 "one-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products"에 개시된 방법으로 유전자 파쇄하였다. 구체적으로는, red recombinase를 이용하여 genomic DNA의 homologous recombination system을 촉진시키고, kanamycin resistance 시스템을 이용하여 타겟으로 하는 유전자 부위와 kanamycin cassette를 교체하면서 타겟 유전자가 제거된 균주만을 선별하고, 최종적으로 kanamycin cassette를 제거하여 상기 유전자들을 파쇄한 균주를 수득하였다.
본 발명에서 상기 미생물은 베타-케토티올라제 Ⅰ(ß-Ketothiolase Ⅰ)의 활성이 강화된 미생물일 수 있다.
본 발명의 용어, "베타-케토티올라제 Ⅰ(ß-Ketothiolase Ⅰ, PhdA)"은 상기 설명한 베타-케토티올라제 Ⅱ와 함께 탄소수 C2 짜리의 CoA 화합물을 중합시켜(condensation) 이를 탄소수 C4 또는 C6 등의 화합물로 생산하는 효소를 뜻한다. 본 발명에서 베타-케토티올라제 Ⅰ (phdA)은 대사과정의 중간 대사물질인 butyryl-CoA에 두 개의 acetyl-CoA가 추가하여 β-ketohexanoyl-CoA(C6)를 생산하는 효소를 의미한다(NCBI Accession No. AF026544).
본 발명에서 상기 베타-케토티올라제 Ⅰ의 활성이 강화된 미생물은 효모(yeast)일 수 있다. 본 발명의 유기산 생산용 미생물을 제작하기 위해서는 효모를 기반으로 하였을 때, AtoB, PhdA, BktB, Crt, Hbd, 및 Ter 유전자 조합의 활성을 강화시키는 것이 가장 바람직하다.
본 발명에서, 상기 미생물은 기탁번호 KACC 93153P인 것인 미생물일 수 있다.
본 발명의 한 실시예에서는 클루이베로마이세스 막시아누스에 베타-케토티올라제 Ⅰ 및 Ⅱ, 아세틸-CoA 아세틸전이효소, 크로토네이즈, 3-히드록시부티릴-CoA 탈수소효소 및 트랜스-이노일-CoA 환원효소를 클루이베로마이세스 막시아누스 균주에서 발현되는 pJSKM316GPD 벡터를 통해 도입하였다(도 3).
본 발명에서 상기 유기산 생성 효소들의 유래들은 베타-케토티올라제 Ⅰ 및 베타-케토티올라제 Ⅱ는 랄스토니아 유트로파(Ralstonia eutropha) 유래이고; 아세틸 CoA 아세틸전이효소 및 티오에스테라제는 에스체리키아 콜라이(Escherichia coli)유래이며; 크로토네이즈 및 3-히드록시부티릴-CoA 탈수소효소는 클로스트리듐 아세토부틸리쿰(Clostridium acetobutylicum) 유래이고; 트랜스-이노일-CoA 환원효소는 트레포네마 덴터코울러(Treponema denticola) 유래일 수 있다.
또 하나의 양태로서, 본 발명은 아세틸 CoA 아세틸전이효소, 베타-케토티올라제 Ⅱ, 크로토네이즈, 3-히드록시부티릴-CoA 탈수소효소, 및 트랜스-이노일-CoA 환원효소를 발현하는 벡터를 미생물 내로 도입하는 단계를 포함하는, 상기 미생물의 제조방법을 제공한다.
본 발명의 용어, "벡터"는 특정 유전자를 숙주세포 내로 전달하는 목적을 가진 모든 핵산분자가 될 수 있으며, 일반적으로는 자가복제서열, 게놈삽입서열, 파지 또는 뉴클레오티드 서열, 선형 또는 원형, 단일 또는 이중가닥의 DNA 혹은 RNA이다. 특히, 외래 유전자를 가지고 있으며 외래 유전자 외에 특정 숙주세포의 형질전환을 용이하게 하는 인자를 갖는 것일 수 있다. 일반적으로 벡터에는 적당한 유전자의 전사 및 번역을 지시하는 서열, 선택마커, 및 자가복제 또는 염색체 삽입을 허용하는 서열이 포함된다. 벡터의 구체적인 예로는, 플라스미드 벡터(pSE계, pBR계, pUC계,pBluscriptII계, pGEM계, pTZ계, pET계, pJSKM316GPD계, pCOLA계, pACYC계)와 파지 또는 코스미드 벡터(pWE15, M13, EMBL3, EMBL4, FIX II, DASH II,ZAP II, gt11, Charon4A, Charon21A) 등이 있으나, 이에 제한되는 것은 아니다. 특히, 대장균 발현 벡터인 pET, pCOLA, 또는 pACYC 벡터는 두 가지 목적 단백질을 동시에 미생물 내로 도입시키고 발현시킬 수 있는 duet 발현 구조를 가질 수 있다.
본 발명의 일실시예에서는, atoBbktB 유전자는 pET duet-1 벡터로, crthbd 유전자는 pCOLA duet-1벡터로, tertesB 유전자는 pACYC duet-1 벡터로 각각 도입하였다(도 2).
본 발명에서 상기 벡터는 효모에서 목적 단백질을 발현시킬 수 있는 효모 발현용 벡터일 수 있다. 바람직하게는 상기 효모 발현용 벡터는 효모의 genome 상에 목적 단백질을 도입(integration)시키는 것인 벡터일 수 있다. 한편, 상기 효모 발현용 벡터는 바람직하게는 클루이베로마이세스 막시아누스 균주에서 발현되는 pJSKM316GPD 벡터일 수 있다.
본 발명의 일실시예에서는, 클루이베로마이세스 막시아누스에 베타-케토티올라제 Ⅰ 및 Ⅱ, 아세틸-CoA 아세틸전이효소, 크로토네이즈, 3-히드록시부티릴-CoA 탈수소효소 및 트랜스-이노일-CoA 환원효소를 클루이베로마이세스 막시아누스 균주에서 발현되는 pJSKM316GPD 벡터를 통해 도입하였다(도 3).
본 발명의 용어, "도입"은 외부에 존재하던 유전자가 벡터나 숙주세포 등에 포함되도록 하는 어떤 방법도 포함한다. 해당 유전자를 벡터로 도입하거나, 벡터 등을 숙주세포 등에 도입하는 방법은 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 특히, 본 발명에서 벡터를 미생물에 도입하는 방법은 당업계에 공지된 임의의 방법을 선택하여 사용할 수 있으며, 이에 제한되지는 않으나, 미세주입법(microijection), 전기천공법(electroporation), 입자분사법(particle bombardment), 직접근육주입법, 인슐레이터(insulator) 및 트랜스포존을 이용한 방법 중에서 적절하게 선택하여 적용할 수 있다.
본 발명의 구체적인 실시예에 따르면, 상기 대장균에 추가되는 6개의 유전자들은 atoBbktB 유전자는 pET duet-1 벡터로, crthbd 유전자는 pCOLA duet-1벡터로, tertesB 유전자는 pACYC duet-1 벡터로 각각 삽입되었다(도 2). 이를 대장균에 도입하였다. 또한, 상기 헥산산 발현관련 유전자들이 대장균 내에서 정상적으로 발현되는지 여부를 SDS-PAGE 및 coommassie blue staining을 통해 확인하였다(도 6).
본 발명의 구체적인 실시예에 따르면, 상기 효모에 추가되는 6개의 유전자들은 클루이베로마이세스 막시아누스에서 발현가능한 pJSKM316GPD 벡터에 삽입되었다(도 3). 이를 클루이베로마이세스 막시아누스에 도입하였다. 또한, 상기 헥산산 발현관련 유전자들은 숙주 미생물의 genome상에 random integration되는 과정을 통하여 genome에 내재적으로 포함되었다(도 4). 이는 colony PCR 확인과 RT-PCR을 통한 mRNA 분석을 통해 genome 내에 도입된 것과 정상적으로 발현된 것을 확인하였다(도 5).
또 하나의 양태로서, 본 발명은 상기 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 유기산을 회수하는 단계를 포함하는, 유기산 제조방법을 제공한다.
본 발명에서 재조합 효모 균주의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 산소가 유입되지 않은 혐기 상태에서 배양하는 것이 바람직하다. 또한, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 적절한 배양 방법으로는 유가식 배양(fed-batch culture), 회분식 배양(batch culture) 및 연속식 배양(cintinuous culture) 등이 가능하며, 바람직하게는 유가식 배양이지만, 이에 제한되는 것은 아니다.
사용되는 배양 배지는 특정한 균주의 요구 조건을 적절하게 충족시켜야 한다. 다양한 미생물에 대한 배양 배지는 공지되어 있다(예를 들면, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., USA, 1981)). 배지 내 탄소 공급원은 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알코올(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 이용할 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 질소 공급원은 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄)을 이용할 수 있으며, 이들 물질 또한 개별적으로 또는 혼합물로서 사용될 수 있다. 인 공급원으로서 인산이수소칼륨 또는, 인산수소이칼륨 또는 상응하는 나트륨 함유 염을 이용할 수 있다. 또한, 배양 배지는 성장에 필수적인 금속염(예: 황산마그네슘 또는 황산철)을 함유할 수 있으며, 최종적으로, 아미노산 및 비타민과 같은 필수 성장-촉진 물질을 상기 언급한 물질 외에 사용할 수 있다. 적합한 전구체를 상기 배양 배지에 추가로 가할 수 있다. 상기 공급 물질은 배양물에 한번에 모두 가하거나, 배양중 적절하게 공급할 수 있다.
배양물의 pH는 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 적절히 사용하여 조절할 수 있다. 발포는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 조절할 수 있다. 배양 온도는 통상적으로 20 내지 45℃, 바람직하게는 25 내지 40℃이다, 가장 바람직하게는 30℃이다. 배양은 원하는 목적 물질의 생성량이 최대로 얻어질 때까지 계속될 수 있으며, 목적 물질은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.
따라서, 본 발명의 용어, "배양물"은 미생물과 그 미생물을 배양한 배양기 내에 존재하는 모든 물질을 포함한다. 일반적으로 미생물 자체와 미생물이 배지에 배설한 각종 효소, 대사물질 등을 함유하는 물질을 의미한다.
본 발명의 용어, "회수"는 특정 물질을 혼합물에서 분리해내는 과정을 의미한다. 특히, "유기산을 회수하는 단계"는 상기 배양물 및 미생물 등에 대사산물로 다른 물질들과 혼합되어 있는 유기산을 분리해 내는 과정을 의미하며, 이는 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 분리해낼 수 있다. 헥산올 회수는 유기산의 물리, 화학적 특성에 따라 적합한 공지의 방법을 이용할 수 있으며, 예를 들면, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등의 방법이 가능하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 유기산은 본 발명의 대사과정상 부틸산(butyric acid)이나 헥산산(hexanoic acid)인 것이 바람직하다.
본 발명의 구체적인 실시예에 따르면, 상기 미생물을 배양하여 생성되는 헥산산은 YL 6100 series 모델의 Gas Chromatography를 이용하여 분석하였다. 컬럼은 HP-FFAP(30m x 0.25 mm ID, 0.25μm)를 사용하였으며 운반기체로는 헬륨가스를 사용하였다. 오븐은 초기에 100℃로 5분간 유지하였으며 100℃부터 240℃까지 분당 10℃도씩 증가시켰으며 240℃에서 12분간 유지하였다. 주입기는 1:50 분할모드로 검출기는 300℃로 설정하였다. 각각 butyric acid, valeric acid, hexanoic acid는 10분, 11분, 12분의 retention time을 보였다. 다만, 본 실시예에서 사용한 기체 크로마토그래피는 헥산산을 상업적으로 이용하기 위한 실시가 아닌 실험적으로 얼마만큼의 양이 생산될 수 있는지 검출하는 목적으로 사용되었다. 이런 점에서, 상기 유기산을 분리해 내는 단계는 유기산, 특히 헥산산을 상업적 사용가능하도록 고순도 및 대량으로 분리해낼 수 있는 방법이 적절하다.
또 하나의 양태로서, 본 발명은 상기 유기산 제조방법에 의해 제조된 유기산을 제공한다.
본 발명에서 상기 유기산은 본 발명의 대사과정상 부틸산(butyric acid)이나 헥산산(hexanoic acid)인 것이 바람직하다. 본 발명에서 제조된 유기산은 바이오 플라스틱의 전구체로 이용될 수 있다.
본 발명에 의하면, 기존에 헥산산(hexanoic acid) 제조방법이 오랜 시간의 발효에도 불구하고 생산량이 낮아, 헥산산의 생합성 산업에 걸림돌이 되고 있었으나, 본 발명에서 제시하고 있는 유전자를 도입함으로 인해 발효 시간 및 생산량 측면에서 크게 발전된 미생물을 제공한다. 이로 인해, 본 발명의 미생물을 이용할 경우 헥산산 생합성 및 이로 인한 바이오 플라스틱 산업의 성장에 크게 이바지할 것으로 사료되며, 새로운 간편하고 비용이 적게 드는 바이오 플라스틱의 제조방법에 도움이 될 것이다.
도 1은 유기산, 특히 헥산산 생산을 위한 생합성 경로 모식도이다.
도 2는 대장균(E.coli )내 유기산, 특히 헥산산 1-hexanol 생합성 경로에 필요한 유전자의 구축 발현벡터를 도시하는 도면이다.
도 3은 K. marxianus 내 유기산, 특히 헥산산 1-hexanol 생합성 경로에 필요한 유전자의 구축 발현벡터를 도시하는 도면이다.
도 4는 유기산, 특히 헥산산 1-hexanol 생합성 경로에 필요한 유전자를 미생물 genome에 Random integration 형질전환하는 기작을 설명하는 모식도이다.
도 5는 K. marxianus에 형질전환된 생합성 유전자를 확인하는 도면이다.
도 6은 E.coli에 형질전환된 생합성 유전자를 확인하는 도면이다.
도 7은 E. coli의 genomic DNA의 유전자 파쇄 방법을 도시하는 모식도이다.
도 8은 E. coli의 genomic DNA의 유전자 파쇄를 확인하는 도면이다.
도 9는 E. coli 의 발효 조건 및 균주별로 헥산산(C6) 생성량을 분석하는 도면이다.
도 10a는 K. marxianus의 발효 조건 및 균주별로 헥산산(C6) 생성량을 분석하는 도면이다.
도 10b는 K. marxianus의 발효 조건 및 균주별로 헥산산(C6) 생성량을 분석하는 도면이다.
이하, 하기 실시예에 의하여 본 발명을 보다 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들로 한정되는 것은 아니다.
실시예 1. 헥산산(hexanoic acid) 생합성 유전자 도입 균주 제작
천연형 대장균(Escherichia coli) 및 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)는 자체적으로 헥산산(hexanoic acid)를 생산할 수 없기 때문에 유전자를 도입하거나 파쇄하여 헥산산을 생합성하는 균주를 제작하였다.
실시예 1-1. 헥산산(hexanoic acid) 생합성 대사경로 설계
천연형 대장균에 최종적으로 C6 (hexanoic acid)를 생산하는 효소인 Ralstonia eutropha 유래의 β-ketothiolase I과 Ⅱ (phbA, bktB)를 도입하였음에도 해당 재조합 균주는 발효생성물로 C6의 카르복실산을 생산하지 않았다. 이는 acetyl-CoA를 butyryl-CoA로 전환시켜주는 β-ketothiolase가 활성이 없기 때문이었는바, 이후 헥산산을 생산하는 대사경로로 기존 β-ketothiolase를 이용하는 경로가 아닌 별도의 경로를 설계하였다.
상기 문제를 해결하기 위해서, 대사공학적으로 다른 생합성 경로에 있는 크로토네이즈(Crotonase, Crt), 트랜스-이노일-CoA(Trans-enoyl-CoA reductase, Ter)를 이용하여 중간 산물인 Butyryl-CoA를 대량 생산을 유도하고, 이에 상기에서 도입한 베타-케토티올라제 I과 Ⅱ (phbA, bktB)이 기능하여 최종적으로 C6 (hexanoic acid)를 대량 생산할 수 있었다.
상기 과정을 도입한 대사경로는 다음과 같다. Glucose에서 Acetyl-CoA가 생산되며, 두 개의 Acetyl-CoA에 아세틸-CoA 아세틸전이효소(acetyl-CoA acetyltransferase, AtoB)에 의해 acetyl-CoA 한 분자가 더 결합하여, acetoacetyl-CoA로 전환되었다. Acetoacetyl-CoA는 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyl-CoA dehydrogenase, Hbd)에 의해 NADH가 환원되어 3-hydroxybutyl-CoA로 전환되었다. 3-hydroxybutyl-CoA는 Crt에 의해 butyric acid 중간 산물인 crotonyl-CoA로 전환되었다. Crotonyl-CoA는 Ter에 의해 butyryl-CoA로 전환되는데 이 유전자들은 NADP+, NAD+를 acceptor로 하여 CH-CH 결합 내에서 oxidoreductase로 작용하였다. Butyryl-CoA는 bktB에 의해 acetyl-CoA가 추가됨으로 3-ketohexanoyl-CoA가 생산되며 Hbd, Crt, Ter유전자가 앞의 반응과 같이 작용함으로써 Hexanol-CoA로 전환된다. 이에 티오에스테라제 Ⅱ (thioesterase Ⅱ, tesB)가 작용하여 최종적으로 헥산산(C6)를 생산하였다.
여기에 추가적으로, atoB 유전자가 acetyl-CoA에서 acetoacetyl-CoA 반응이 아닌 β-oxidation 반응을 통해 acetoacetyl-CoA를 두 분자의 acetyl-CoA로 전환시키는 문제점을 해결하기 위해 직접적으로 acetyl-CoA에서 acetoacetyl-CoA를 생산하는 경로가 아닌 malonyl-CoA를 경유하여 acetoacetyl-CoA로 가는 우회 경로를 구축하였다. 이 반응에 관여하는 유전자는 말로일-CoA 캐리어 단백질(malonyl-CoA carrier protein, MCT1)이며 Saccharomyces cerevisiae 로부터 분리하여 도입하였다.
실시예 1-2. 헥산산(hexanoic acid) 생합성 대사경로 유전자 동정
상기 설계된 헥산산 생합성 대사경로를 균주내에 도입하기 위해 도입한 유전자들은 하기 표 1과 같다.
도입 유전자 유래 및 크기
유전자 유래 서열번호 크기
BktB
(β-ketothiolase Ⅱ)
Ralstonia eutropha 1 394 a.a (1182bp)
phbA
(β-ketothiolase Ⅰ)
Ralstonia eutropha 2 393 a.a (1179 bp)
AtoB
(acetyl-CoA acetyltransferase)
Escherichia coli 3 394 a.a (1185bp)
TesB
(Thioesterase Ⅱ)
Escherichia coli 4 287 a.a (861bp)
Crt
(Crotonase)
Clostridium acetobutylicum 5 261 a.a (861bp)
Hbd
(3-hydroxybutyryl-CoA dehydrogenase)
Clostridium acetobutylicum 6 282 a.a (848bp)
Ter
(trans-enoyl-CoA reductase)
Treponema denticola 7 398 a.a (1194bp)
MCT1
(malonyl-CoA carrier protein)
Saccharomyces cerevisiae 8 361 a.a (1083bp)
다만, K. marxianus에는 내재적으로 충분한 TesB 유전자의 활성이 있어, TesB 유전자는 별도로 도입하지 않았다.
실시예 1-3. E. coli 내 헥산산( C6 ) 생합성 유전자 발현 시스템 구축
E. coli에서 헥산산(hexanoic acid)를 생합성 하기 위한 6가지의 유전자를 세 가지의 발현용 벡터로 도입하였다. atoBbktB 유전자는 pET duet-1 벡터로, crthbd 유전자는 pCOLA duet-1벡터로, tertesB 유전자는 pACYC duet-1 벡터로 각각 도입하였다. 이에 사용되었던 프라이머들은 하기 표 2와 같다.
E. coli 도입용 프라이머
유전자 제한효소 프라이머 서열 서열번호
atoB 5'BamHⅠ CGGGATCCGAAAAATTGTGTCATCGTCAGTGCG 9
3'HindⅢ CCCAAGCTTTTAATTCAACCGTTCAATCACCATC 10
bktB 5'NdeⅠ GGAATTCCATATGACGCGTGAAGTGGTAGTGG 11
3'XhoⅠ CCGGCTCGAGTCAGATACGCTCGAAGATGG 12
crt 5'NcoⅠ CATGCCATGGGCGAACTAAACAATGTCATCCTTGAAAAG 13
3'HindⅢ CCCAAGCTTCTATCTATTTTTGAAGCCTTCAATTTTTCTT 14
hbd 5'NdeⅠ GGAATTCCATATGAAAAAGGTATGTGTTATAGGTGCAGG 15
3'XhoⅠ CCGCTCGAGTTATTTTGAATAATCGTAGAAACCTTTTCCT 16
ter 5'NcoⅠ CATGCCATGGGCATCGTCAAGCCAATGGTGCG 17
3'HindⅢ CCCAAGCTTTTAAATACGATCGAAACGTTCAACT 18
tesB 5'NdeⅠ CATATGTTAATTGTGATTACGCATCA 19
3'XhoⅠ CTCGAGATGAGTCAGGCGCTAAAAAATTTAC 20
E. coli에 상기 헥산산 생합성 유전자들이 정상적으로 형질전환되었는지 확인하기 위하여 단백질의 발현 여부를 SDS-PAGE를 통해 확인하였다. 구축 되어진 균주는 100 mL flask 에서 37℃, 250 rpm의 조건으로 배양하였으며 단백질의 발현을 유도하기 위하여 OD600가 0.5에서 0.1 mM IPTG를 첨가하여 단백질 발현을 유도하였고, IPTG 첨가 이후 호기적인 조건으로 4시간 배양하였다. E.coli 배양액을 회수하여 SDS-PAGE를 통해 단백질을 분리하였고, 이에 coommassie blue staining을 통해 단백질의 발현을 확인하였다. AtoBBktB 도입시 과발현된 AtoBBktB 단백질이 약 40 kDa에서 확인되었고, HbdCrt 도입시 과발현된 HbdCrt 단백질이 약 30 kDa과 28 kDa에서 확인되었다. 또한, 각각 도입된 Ter은 43 kDa, TesB는 30 kDa에서 확인되었다(도 6).
실시예 1-4. K. marxianus 내 헥산산( C6 ) 생합성 유전자 발현 시스템 구축
기존 K. marxianus에서 형질전환 하기 위한 발현용 벡터인 pJSKM316GPD 벡터에 실시예 1-2에서 동정해낸 유전자를 도입하여 헥산산 (C6) 생합성 유전자들을 구축하였다. 이에 사용되었던 프라이머들은 하기 표 3과 같다.
K. marxianus 도입 프라이머
유전자 제한효소 프라이머 서열 서열번호
atoB 5'XbaⅠ CGGGATCCGAAAAATTGTGTCATCGTCAGTGCG 21
3'BamHⅠ CCCAAGCTTTTAATTCAACCGTTCAATCACCATC 22
phbA 5'BamHⅠ GGAATTCCATATGACGCGTGAAGTGGTAGTGG 23
3'XmaⅠ CCGGCTCGAGTCAGATACGCTCGAAGATGG 24
bktB 5'BamH CATGCCATGGGCGAACTAAACAATGTCATCCTTGAAAAG 25
3'XmaⅠ CCCAAGCTTCTATCTATTTTTGAAGCCTTCAATTTTTCTT 26
crt 5'BamH GGAATTCCATATGAAAAAGGTATGTGTTATAGGTGCAGG 27
3'EcoRⅠ CCGCTCGAGTTATTTTGAATAATCGTAGAAACCTTTTCCT 28
hbd 5'BamH CATGCCATGGGCATCGTCAAGCCAATGGTGCG 29
3'EcoRⅠ CCCAAGCTTTTAAATACGATCGAAACGTTCAACT 30
ter 5'BamH CATATGTTAATTGTGATTACGCATCA 31
3'EcoRⅠ CTCGAGATGAGTCAGGCGCTAAAAAATTTAC 32
K. marxianus에 상기 헥산산 생합성 유전자들을 형질전환하기 위하여 genome 상에 상기 도입 유전자들을 random integration 방법으로 도입하였다. 구체적으로는, K. marxianus에 형질전환하기 위한 발현용 벡터 pJSKM316GPD에 구축되어진 헥산산 생합성 유전자들을 삽입한 플라스미드를 URA3 auxotroph 부터 CYC terminator 까지 PCR로 증폭한 후 동일한 농도 (한 플라스미드 당 50~100 ng/㎕)로 맞추어 형질전환 하였다. 도입되어진 헥산산 생합성 유전자들은 플레이트상에서의 colony PCR 확인과 RT-PCR을 통한 mRNA 분석을 통해 genome내에 도입된 것과 정상적으로 발현됨을 확인하였다(도 5).
실시예 2. 관련 유전자 파쇄 E. coli 균주 제작
Hexanoic acid 생산 생합성 경로의 flux 확보를 위하여 부산물로 생성이 되는 ethanol, lactic acid, succinic acid, acetic acid를 생산하는 알코올 탈수소효소(Alcohol dehydrogenase,Adh), 락테이트 탈수소효고(Lactate dehydrogenase, Ldh), 푸말레이트 환원효소(fumarate reductase, Frd), 인산전이아세틸라제(phosphotransacetylase, Pta )에 대하여 파쇄를 실시하였다. 유전자를 파쇄하는 방법으로 2000년도 PNAS에 게재된 "one-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products"에 개시된 방법을 이용하였다. 구체적으로는, red recombinase를 이용하여 genomic DNA의 homologous recombination system을 촉진시키고, kanamycin resistance 시스템을 이용하여 타겟으로 하는 유전자 부위와 kanamycin cassette를 교체하면서 타겟 유전자가 제거된 균주만을 선별하였다. 최종적으로 kanamycin cassette를 제거하여 타겟 유전자가 파쇄된 균주를 얻었다(도 7).
수득한 균주타겟으로 하는 유전자 주위의 염기서열을 참고하여 확인 프라이머를 통해 kanamycin cassette 교체, 유전자 파쇄를 확인하였다(도 8).
실시예 3. 생성 균주의 발효 조건 및 헥산산 생성 분석
실시예 3-1. E. coli 균주 발효 조건 및 헥산산 생성 분석
상기 실시예 1-3에서 구축된 헥산산(C6) 생합성 유전자 발현 재조합 E.coli 균주는 하기와 같은 단계로 발효가 진행되었다.
먼저, 상기 균주를 5 ml의 LB (10 g NaCl, 10 g tryptone, 5 g yeast extract/L) 배지에서 하룻밤 동안(overnight) 전배양(pre-culture)하였다. 이를 100 ml의 LB (1% yeast extract, 2% peptone) 배지에서 배양하고, glucose 20 g/L를 포함하는 1 L 의 TB (12 g tryptone, 24 g yeast extract, 2.31 g KH2PO4, 12.54 g K2HPO4, 4 ml glycerol/L) 배지에서 OD600가 0.1이 되도록 초기 접종을 하였다. OD600가 0.5로 증가되면 IPTG 0.1 mM로 Induction 을 하였으며 7시간을 호기적인 조건 (산소 1 vvm, 600 rpm)으로 발효를 진행하였다. 이 후 발효는 혐기적인 조건 (질소 1 vvm, 250 rpm)에서 37℃, pH 6.8로 진행하였다. 생성물의 변화를 확인 위해 시간마다 샘플을 채취하였다.
생성되는 헥산산(hexanoic acid)는 YL 6100 series 모델의 Gas Chromatography를 이용하여 분석하였다. 컬럼은 HP-FFAP(30m x 0.25 mm ID, 0.25μm)를 사용하였으며 운반기체로는 헬륨가스를 사용하였다. 오븐은 초기에 100℃로 5분간 유지하였으며 100℃부터 240℃까지 분당 10℃도씩 증가시켰으며 240℃에서 12분간 유지하였다. 주입기는 1:50 분할모드로 검출기는 300℃로 설정하였다. 각각 butyric acid, valeric acid, hexanoic acid는 10분, 11분, 12분의 retention time을 보였다. 시간마다 채취한 샘플을 분석한 결과 190시간째 샘플에서 헥산산(C6)가 약38 mg/L검출되는 것을 확인하였고, butyric acid(C4)가 200 mg/L 검출되었다.
실시예 3-2. K. marxianus 균주 발효 조건 및 헥산산 생성 분석
상기 실시예 1-4에서 구축된 헥산산(C6) 생합성 유전자 발현 재조합 K.marxianus 균주는 하기와 같은 단계로 발효가 진행되었다.
먼저, 상기 균주를 5 ml의 YPD (1% yeast extract, 2% peptone, 2% glucose) 배지에 하룻밤 동안(overnight) 전배양(pre-culture)하였고, 이를 각각 pH4.5와 pH7.0으로 맞춘 50ml의 YP(1% yeast extract, 2% peptone, Galactose 20g/L 또는 Glucose 20g/L) 배지에 각각 micro-aerobic과 oxygen limited 조건에서 37℃, 100rpm에서 발효하였다. 지방산의 변화량을 확인 위해 시간마다 샘플을 채취하였다. 생성되는 헥산산은 Gas Chromatography를 이용하여 분석하였다. 배지에서 소모되는 glucose와 galactos양은 환원당 정량방법인 DNS을 이용하여 측정하였다. 시간마다 채취한 샘플을 분석한 결과 pH 4.5에 micro-aerobic 조건의 24시간째 샘플에서 헥산산 (C6)가 약 354 mg/L 검출되었고, 8 시간째 oxygen limited 조건 하에서 149 mg/L, 191 mg/L 생산되는 것을 확인하였다. pH7.0에 20g/L galactose를 첨가한 경우 micro-aerobic과 oxygen limited 조건에서 16시간과 24시간째에서 헥산산(C6)가 각각 150mg/L 와 200 mg/L 검출되었다. 이후 샘플들은 생산되는 양이 검출 시간째에 비해 줄어들거나 검출되지 않았다.
상기의 결과에 따르면, 실시예 1에 의해 제조된 균주들은 일정 조건하에서 헥산산(hexanoic acid)를 과량 생성하는 능력을 가지고 있음을 알 수 있다. 특히, 기존의 기술에서는 200시간에 걸친 발효를 통해 약 20mM의 헥산산을 생성할 뿐이나, 본 발명은 이의 1/10 내지 1/8에 해당하는 24 시간의 발효만으로 약 354 mg/L의 헥산산을 생성하였으며, 고온성 균주에서 헥산산을 생산할 수 있음으로 인해서 제조과정상 이점을 가질 수 있다. 따라서, 상기 균주를 이용한 헥산산 생산방법은 기존의 기술에 비해 시간, 생산량 및 제조과정 측면에서 우월한 효과를 가짐을 확인할 수 있었다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
농업생명공학연구원 KACC93153P 20120823
<110> Research & Business Foundation SUNGKYUNKWAN UNIVERSITY <120> Recombinant micro-organisms for producing organic aicd and the method for producing organic acid by using thereof <130> PA120770KR <160> 32 <170> KopatentIn 2.0 <210> 1 <211> 1185 <212> DNA <213> Ralstonia eutropha beta-KETOTHIOLASE II <400> 1 atgacgcgtg aagtggtagt ggtaagcggt gtccgtaccg cgatcgggac ctttggcggc 60 agcctgaagg atgtggcacc ggcggagctg ggcgcactgg tggtgcgcga ggcgctggcg 120 cgcgcgcagg tgtcgggcga cgatgtcggc cacgtggtat tcggcaacgt gatccagacc 180 gagccgcgcg acatgtatct gggccgcgtc gcggccgtca acggcggggt gacgatcaac 240 gcccccgcgc tgaccgtgaa ccgcctgtgc ggctcgggcc tgcaggccat tgtcagcgcc 300 gcgcagacca tcctgctggg cgataccgac gtcgccatcg gcggcggcgc ggaaagcatg 360 agccgcgcac cgtacctggc gccggcagcg cgctggggcg cacgcatggg cgacgccggc 420 ctggtcgaca tgatgctggg tgcgctgcac gatcccttcc atcgcatcca catgggcgtg 480 accgccgaga atgtcgccaa ggaatacgac atctcgcgcg cgcagcagga cgaggccgcg 540 ctggaatcgc accgccgcgc ttcggcagcg atcaaggccg gctacttcaa ggaccagatc 600 gtcccggtgg tgagcaaggg ccgcaagggc gacgtgacct tcgacaccga cgagcacgtg 660 cgccatgacg ccaccatcga cgacatgacc aagctcaggc cggtcttcgt caaggaaaac 720 ggcacggtca cggccggcaa tgcctcgggc ctgaacgacg ccgccgccgc ggtggtgatg 780 atggagcgcg ccgaagccga gcgccgcggc ctgaagccgc tggcccgcct ggtgtcgtac 840 ggccatgccg gcgtggaccc gaaggccatg ggcatcggcc cggtgccggc gacgaagatc 900 gcgctggagc gcgccggcct gcaggtgtcg gacctggacg tgatcgaagc caacgaagcc 960 tttgccgcac aggcgtgcgc cgtgaccaag gcgctcggtc tggacccggc caaggttaac 1020 ccgaacggct cgggcatctc gctgggccac ccgatcggcg ccaccggtgc cctgatcacg 1080 gtgaaggcgc tgcatgagct gaaccgcgtg cagggccgct acgcgctggt gacgatgtgc 1140 atcggcggcg ggcagggcat tgccgccatc ttcgagcgta tctga 1185 <210> 2 <211> 1182 <212> DNA <213> Ralstonia eutropha beta-ketothiolase I <400> 2 atgaccgatg tagtgatcgt atcggcggtc cgtaccgccg tgggcaagtt tggcggttcg 60 ctggcgaaaa tccccgcgcc ggagctgggt gcggccgtga tccgcgaagc gctgtcgcgc 120 gccaaggtgg cgccggatca ggtcagcgaa gtcatcatgg gccaggtgct gaccgcgggt 180 tcgggccaga acccggcgcg ccaggcgttg atcaaggccg gcctgcccga catggtgccg 240 ggcatgacca tcaacaaggt gtgcggctcg ggcctgaagg ccgtgatgct ggccgccaac 300 gccatcgtcg ccggggatgc cgacatcgtc gtggccggcg ggcaggagaa catgtccgcc 360 gcgccgcacg tgctgcccgg ctcgcgcgac ggtttccgca tgggcgacac caagctcatc 420 gactcgatga tcgtggatgg gctgtgggac gtctacaacc agtaccacat gggcatcacc 480 gccgagaatg tcgccaagca gtacggcatc acgcgcgagg cccaggacgc attcgccgtg 540 gcttcgcaga acaaggcgga agccgcgcag aagtccggtc gcttcaatga cgagatcgtt 600 cccatcctga ttccgcagcg caagggcgac ccgatcgcct tcgcgcagga cgagttcgtc 660 cgccatggcg ccacgctgga atcgatgacg ggcctgaagc cggcattcga caaagccggc 720 acggtgacgg ccgccaatgc ctcgggcctc aacgacggcg gcgccgccgt ggtggtcatg 780 tcggccgccc gcgccaagga actgggtctg accccgctgg ccaccatccg cgcctacgcc 840 aatgccggcg tggacccgaa ggtgatgggc atgggcccgg tgccggcttc caagcgctgc 900 ctgtcgcgcg ccggctggtc ggtgggcgac ctggacctga tggagatcaa cgaggcgttt 960 gccgcccagg cgctggccgt gcaccagcag atgggctggg ataccgccaa ggtcaacgtc 1020 aacggcggcg cgattgccat cggtcacccc atcggcgcgt cgggctgccg catcctggtg 1080 acgctgctgc acgagatgca gaagcgcgac gcgaagaagg gcctggcctc gctgtgcatc 1140 ggcggcggca tgggcgtggc gctggcggtc gagcgcccgt ga 1182 <210> 3 <211> 1185 <212> DNA <213> Escherichia coli acetyl-CoA acetyltransferase <400> 3 atgaaaaatt gtgtcatcgt cagtgcggta cgtactgcta tcggtagttt taacggttca 60 ctcgcttcca ccagcgccat cgacctgggg gcgacagtaa ttaaagccgc cattgaacgt 120 gcaaaaatcg attcacaaca cgttgatgaa gtgattatgg gtaacgtgtt acaagccggg 180 ctggggcaaa atccggcgcg tcaggcactg ttaaaaagcg ggctggcaga aacggtgtgc 240 ggattcacgg tcaataaagt atgtggttcg ggtcttaaaa gtgtggcgct tgccgcccag 300 gccattcagg caggtcaggc gcagagcatt gtggcggggg gtatggaaaa tatgagttta 360 gccccctact tactcgatgc aaaagcacgc tctggttatc gtcttggaga cggacaggtt 420 tatgacgtaa tcctgcgcga tggcctgatg tgcgccaccc atggttatca tatggggatt 480 accgccgaaa acgtggctaa agagtacgga attacccgtg aaatgcagga tgaactggcg 540 ctacattcac agcgtaaagc ggcagccgca attgagtccg gtgcttttac agccgaaatc 600 gtcccggtaa atgttgtcac tcgaaagaaa accttcgtct tcagtcaaga cgaattcccg 660 aaagcgaatt caacggctga agcgttaggt gcattgcgcc cggccttcga taaagcagga 720 acagtcaccg ctgggaacgc gtctggtatt aacgacggtg ctgccgctct ggtgattatg 780 gaagaatctg cggcgctggc agcaggcctt acccccctgg ctcgcattaa aagttatgcc 840 agcggtggcg tgccccccgc attgatgggt atggggccag tacctgccac gcaaaaagcg 900 ttacaactgg cggggctgca actggcggat attgatctca ttgaggctaa tgaagcattt 960 gctgcacagt tccttgccgt tgggaaaaac ctgggctttg attctgagaa agtgaatgtc 1020 aacggcgggg ccatcgcgct cgggcatcct atcggtgcca gtggtgctcg tattctggtc 1080 acactattac atgccatgca ggcacgcgat aaaacgctgg ggctggcaac actgtgcatt 1140 ggcggcggtc agggaattgc gatggtgatt gaacggttga attaa 1185 <210> 4 <211> 861 <212> DNA <213> Escherichia coli Thioesterase II <400> 4 ttaattgtga ttacgcatca ccccttcctg aacggtcgag gcaaccagta cgccgtcttg 60 ggtataaaac tcaccgcgca caaagccacg tgcgctggac gccgaggtgc tctccacgct 120 atacagcagc cattcattca aattaaacgg gcgatggaac cacatggaat ggtcaatggt 180 ggcaatctga atccccggtt cgagaaaacc gatgccgtgc ggctgtagag ctaccggcag 240 gaagttaaga tcagaagcgt aaccgagcag atactgatga acgcgcaggt catccggcac 300 gctaccattt gcgcggatcc acacctgacg atgtggttct gcgacgtgac ctttcagtgg 360 gttatgaaac tccaccggac ggacttccag cggacgatcg cagatgaatt tatctttcag 420 cactggcggc agcaggtgcg ccagcgattg ggcgatttgc gtttccgaag ggaggccatc 480 aggcgctggc gcggacggca ttgttttttg atgttcgaaa cccgcttctg gtgcctggaa 540 agaggcagtc atataaaaaa tcggtttgcc gttttgaata gcagcaaccc ggcgggcgct 600 gaagctgtta ccgtcacgca gcgtttcgac atcataaata atcggcttct tactatcgcc 660 agggcgaaga aagtagctgt gaaacgaatg taccagccgc tcttcaggga cggtctcttt 720 tgcagcatac aaggcctgac ccacgacctg gccgccaaac acctggcgta aacctaaatc 780 ttcactctgg ccgcgaaaga gtccttcctc aattttttcc agatttaaca atgtcagtaa 840 attttttagc gcctgactca t 861 <210> 5 <211> 861 <212> DNA <213> Clostridium acetobutylicum Crotonase <400> 5 ggatccttga cggctagctc agtcctaggt acagtgctag ctcattctaa aaaaggagca 60 tctgtgatgg aactaaacaa tgtcatcctt gaaaaggaag gtaaagttgc tgtagttacc 120 attaacagac ctaaagcatt aaatgcgtta aatagtgata cactaaaaga aatggattat 180 gttataggtg aaattgaaaa tgatagcgaa gtacttgcag taattttaac tggagcagga 240 gaaaaatcat ttgtagcagg agcagatatt tctgagatga aggaaatgaa taccattgaa 300 ggtagaaaat tcgggatact tggaaataaa gtgtttagaa gattagaact tcttgaaaag 360 cctgtaatag cagctgttaa tggttttgct ttaggaggcg gatgcgaaat agctatgtct 420 tgtgatataa gaatagcttc aagcaacgca agatttggtc aaccagaagt aggtctcgga 480 ataacacctg gttttggtgg tacacaaaga ctttcaagat tagttggaat gggcatggca 540 aagcagctta tatttactgc acaaaatata aaggcagatg aagcattaag aatcggactt 600 gtaaataagg tagtagaacc tagtgaatta atgaatacag caaaagaaat tgcaaacaaa 660 attgtgagca atgctccagt agctgttaag ttaagcaaac aggctattaa tagaggaatg 720 cagtgtgata ttgatactgc tttagcattt gaatcagaag catttggaga atgcttttca 780 acagaggatc aaaaggatgc aatgacagct ttcatagaga aaagaaaaat tgaaggcttc 840 aaaaatagat agtgagtcga c 861 <210> 6 <211> 921 <212> DNA <213> Clostridium acetobutylicum 3-hydroxybutyryl-CoA dehydrogenase <400> 6 gtcgacttga cggctagctc agtcctaggt acagtgctag ctggcaagtc taaaggagca 60 tcacgaatga aaaaggtatg tgttataggt gcaggtacta tgggttcagg aattgctcag 120 gcatttgcag ctaaaggatt tgaagtagta ttaagagata ttaaagatga atttgttgat 180 agaggattag attttatcaa taaaaatctt tctaaattag ttaaaaaagg aaagatagaa 240 gaagctacta aagttgaaat cttaactaga atttccggaa cagttgacct taatatggca 300 gctgattgcg atttagttat agaagcagct gttgaaagaa tggatattaa aaagcagatt 360 tttgctgact tagacaatat atgcaagcca gaaacaattc ttgcatcaaa tacatcatca 420 ctttcaataa cagaagtggc atcagcaact aaaagacctg ataaggttat aggtatgcat 480 ttctttaatc cagctcctgt tatgaagctt gtagaggtaa taagaggaat agctacatca 540 caagaaactt ttgatgcagt taaagagaca tctatagcaa taggaaaaga tcctgtagaa 600 gtagcagaag caccaggatt tgttgtaaat agaatattaa taccaatgat taatgaagca 660 gttggtatat tagcagaagg aatagcttca gtagaagaca tagataaagc tatgaaactt 720 ggagctaatc acccaatggg accattagaa ttaggtgatt ttataggtct tgatatatgt 780 cttgctataa tggatgtttt atactcagaa actggagatt ctaagtatag accacataca 840 ttacttaaga agtatgtaag agcaggatgg cttggaagaa aatcaggaaa aggtttctac 900 gattattcaa aataactcga g 921 <210> 7 <211> 1286 <212> DNA <213> Treponema denticola trans-enoyl-CoA reductase <400> 7 ctcgagttga cggctagctc agtcctaggt acagtgctag ctacattaag gaggaagccg 60 atgatcgtca agccaatggt gcgcaataat atctgtctga acgctcaccc gcagggttgt 120 aaaaagggtg tagaagacca gattgaatac actaagaaac gcatcaccgc agaagttaaa 180 gcaggtgcca aagcaccgaa aaacgtcctg gtgctgggct gcagcaacgg ctacggtctg 240 gcaagccgca ttacggctgc attcggttac ggcgctgcta ctattggtgt tagcttcgaa 300 aaggcgggtt ctgaaaccaa atacggcact ccaggctggt acaacaacct ggcattcgac 360 gaagcagcga agcgtgaggg tctgtactct gttaccatcg acggtgacgc gttctctgac 420 gagatcaaag ctcaggttat cgaggaagct aaaaagaaag gtatcaaatt cgacctgatt 480 gtgtactccc tggcctctcc ggttcgtacc gacccggata ccggcatcat gcacaaaagc 540 gtactgaagc cgtttggcaa aaccttcact ggtaaaaccg ttgatccttt caccggcgag 600 ctgaaggaaa tctccgccga gccagctaac gatgaggagg ctgctgcgac cgttaaagtg 660 atgggtggcg aagactggga acgttggatc aaacaactgt ccaaggaagg tctgctggag 720 gagggctgta ttactctggc atattcttac atcggcccgg aggcgactca ggcactgtat 780 cgtaagggca ccatcggtaa agcgaaagaa catctggagg ccaccgctca ccgtctgaac 840 aaggaaaacc cgagcatccg tgctttcgtg tccgttaaca agggcctggt tacgcgcgct 900 tccgcagtaa ttccggtcat tccgctgtac ctggcttccc tgtttaaagt catgaaagaa 960 aaaggcaacc acgaaggttg tatcgaacaa attactcgcc tgtatgcgga gcgcctgtac 1020 cgtaaggatg gcactatccc ggttgatgaa gagaaccgca tccgcattga cgattgggaa 1080 ctggaagagg atgtacagaa agcggtttcc gcgctgatgg aaaaagtgac gggcgaaaac 1140 gcggaatccc tgacggatct ggcaggttac cgtcacgact ttctggcgtc taatggtttc 1200 gacgttgagg gtattaacta cgaggcagaa gttgaacgtt tcgatcgtat ttaatctaga 1260 acgccagggc atgagctctt aattaa 1286 <210> 8 <211> 1083 <212> DNA <213> Saccharomyces cerevisiae malonyl-CoA carrier protein <400> 8 atgaagctac taaccttccc aggtcaaggg acctccatct ccatttcgat attaaaagcg 60 ataataagaa acaaatcaag agaattccaa acaatactga gtcagaacgg caaggaatca 120 aatgatctat tgcagtacat cttccagaac ccttccagcc ccggaagcat tgcagtctgc 180 tccaaccttt tctatcaatt gtaccagata ctctcgaatc cttctgatcc tcaagatcaa 240 gcaccaaaaa atatgactaa gatcgattcc cccgacaaga aagacaatga acaatgttac 300 cttttgggtc actcgctagg cgagttaaca tgtctgagtg ttaattcact gttttcgtta 360 aaggatcttt ttgatattgc taattttaga aataagttaa tggtaacatc tactgaaaag 420 tacttagtag cccacaatat caacagatcc aacaaatttg aaatgtgggc actctcttct 480 ccgagggcca cagatttacc gcaagaagtg caaaaactac taaattcccc taatttatta 540 tcatcttcac aaaataccat ttctgtagca aatgcaaatt cagtaaagca atgtgtagtc 600 accggtctgg ttgatgattt agagtcctta agaacagaat tgaacttaag gttcccgcgt 660 ttaagaatta cagaattaac taacccatac aacatcccct tccataatag cactgtgttg 720 aggcccgttc aggaaccact ctatgactac atttgggata tattaaagaa aaacggaact 780 cacacgttga tggagttgaa ccatccaata atagctaact tagatggtaa tatatcttac 840 tatattcatc atgccctaga tagattcgtt aagtgttcaa gcaggactgt gcaattcacc 900 atgtgttatg ataccataaa ctctggaacc ccagtggaaa ttgataagag tatttgcttt 960 ggcccgggca atgtgattta taaccttatt cggagaaatt gtccccaagt ggacactata 1020 gaatacacct ctttagcaac tatagacgct tatcacaagg cggcagagga gaacaaagat 1080 tga 1083 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> E.col AtoB 5'BamHI <400> 9 cgggatccga aaaattgtgt catcgtcagt gcg 33 <210> 10 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> E.col AtoB 3'HindIII <400> 10 cccaagcttt taattcaacc gttcaatcac catc 34 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> E.col bktB 5'NdeI <400> 11 ggaattccat atgacgcgtg aagtggtagt gg 32 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> E.col bktB 3'XhoI <400> 12 ccggctcgag tcagatacgc tcgaagatgg 30 <210> 13 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> E.col crt 5'NcoI <400> 13 catgccatgg gcgaactaaa caatgtcatc cttgaaaag 39 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> E.col crt 3'HindIII <400> 14 cccaagcttc tatctatttt tgaagccttc aatttttctt 40 <210> 15 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> E.col hbd 5'NdeI <400> 15 ggaattccat atgaaaaagg tatgtgttat aggtgcagg 39 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> E.col hbd 3'XhoI <400> 16 ccgctcgagt tattttgaat aatcgtagaa accttttcct 40 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> E.col ter 5'NcoI <400> 17 catgccatgg gcatcgtcaa gccaatggtg cg 32 <210> 18 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> E.col ter 3'HindIII <400> 18 cccaagcttt taaatacgat cgaaacgttc aact 34 <210> 19 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> E.col tesB 5'NdeI <400> 19 catatgttaa ttgtgattac gcatca 26 <210> 20 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> E.col tesB 3'XhoI <400> 20 ctcgagatga gtcaggcgct aaaaaattta c 31 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus atoB 5'XbaI <400> 21 cgggatccga aaaattgtgt catcgtcagt gcg 33 <210> 22 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus atoB 3'BamHI <400> 22 cccaagcttt taattcaacc gttcaatcac catc 34 <210> 23 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus phbA 5'BamHI <400> 23 ggaattccat atgacgcgtg aagtggtagt gg 32 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus phbA 53'XmaI <400> 24 ccggctcgag tcagatacgc tcgaagatgg 30 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus bktB 5'BamHI <400> 25 catgccatgg gcgaactaaa caatgtcatc cttgaaaag 39 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus bktB 3'XmaI <400> 26 cccaagcttc tatctatttt tgaagccttc aatttttctt 40 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus crt 5'BamHI <400> 27 ggaattccat atgaaaaagg tatgtgttat aggtgcagg 39 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus crt 3'EcoRI <400> 28 ccgctcgagt tattttgaat aatcgtagaa accttttcct 40 <210> 29 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus hbd 5'BamHI <400> 29 catgccatgg gcatcgtcaa gccaatggtg cg 32 <210> 30 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus hbd 3'EcoRI <400> 30 cccaagcttt taaatacgat cgaaacgttc aact 34 <210> 31 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus ter 5'BamHI <400> 31 catatgttaa ttgtgattac gcatca 26 <210> 32 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus ter 3'EcoRI <400> 32 ctcgagatga gtcaggcgct aaaaaattta c 31

Claims (19)

  1. 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ), 크로토네이즈(Crotonase), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase), 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)의 활성이 강화된 것인 헥산산(hexanoic acid) 생산용 미생물로서,
    상기 미생물은 클루이베로마이세스속 효모인 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)인 것을 특징으로 하는, 미생물.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제1항에 있어서, 추가로 베타-케토티올라제 Ⅰ(ß-Ketothiolase Ⅰ)의 활성이 강화된 것인 미생물.
  6. 제5항에 있어서, 상기 미생물은 기탁번호 KACC 93153P인 것인 미생물.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 제1항 또는 제5항 중 어느 한 항에 있어서, 베타-케토티올라제 Ⅰ 및 베타-케토티올라제 Ⅱ는 랄스토니아 유트로파(Ralstonia eutropha) 유래이고; 아세틸 CoA 아세틸전이효소는 에스체리키아 콜라이(Escherichia coli)유래이며; 크로토네이즈 및 3-히드록시부티릴-CoA 탈수소효소는 클로스트리듐 아세토부틸리쿰(Clostridium acetobutylicum) 유래이고; 트랜스-이노일-CoA 환원효소는 트레포네마 덴터코울러(Treponema denticola) 유래인 것인 미생물.
  12. 아세틸 CoA 아세틸전이효소, 베타-케토티올라제 Ⅱ, 크로토네이즈, 3-히드록시부티릴-CoA 탈수소효소, 및 트랜스-이노일-CoA 환원효소를 발현하는 벡터를 미생물 내로 도입하는 단계를 포함하는, 제1항의 미생물의 제조방법으로서,
    상기 미생물은 클루이베로마이세스속 효모인 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)인 것을 특징으로 하는, 방법.
  13. 삭제
  14. 삭제
  15. 제12항에 있어서, 베타-케토티올라제 Ⅰ(ß-Ketothiolase Ⅰ)를 발현하는 벡터를 미생물 내로 도입하는 단계를 추가로 포함하는, 방법.
  16. 제1항, 제5항, 또는 제6항 중 어느 한 항의 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 헥산산(hexanoic acid)을 회수하는 단계를 포함하는, 헥산산(hexanoic acid) 제조방법.
  17. 삭제
  18. 삭제
  19. 삭제
KR1020120093324A 2012-08-24 2012-08-24 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법 KR101974221B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120093324A KR101974221B1 (ko) 2012-08-24 2012-08-24 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120093324A KR101974221B1 (ko) 2012-08-24 2012-08-24 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법

Publications (2)

Publication Number Publication Date
KR20140026208A KR20140026208A (ko) 2014-03-05
KR101974221B1 true KR101974221B1 (ko) 2019-04-30

Family

ID=50641026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120093324A KR101974221B1 (ko) 2012-08-24 2012-08-24 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법

Country Status (1)

Country Link
KR (1) KR101974221B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194900A1 (ko) * 2014-06-20 2015-12-23 한국생명공학연구원 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009419A1 (en) * 2008-06-17 2010-01-14 Burk Mark J Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate
KR100971791B1 (ko) * 2006-12-15 2010-07-23 바이오퓨얼켐 주식회사 부탄올 생성능이 개선된 재조합 변이 미생물 및 이를이용한 부탄올의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971791B1 (ko) * 2006-12-15 2010-07-23 바이오퓨얼켐 주식회사 부탄올 생성능이 개선된 재조합 변이 미생물 및 이를이용한 부탄올의 제조방법
US20100009419A1 (en) * 2008-06-17 2010-01-14 Burk Mark J Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate

Also Published As

Publication number Publication date
KR20140026208A (ko) 2014-03-05

Similar Documents

Publication Publication Date Title
JP6905518B2 (ja) エネルギー発生発酵経路を含む遺伝子操作細菌
Straathof Transformation of biomass into commodity chemicals using enzymes or cells
US20120244588A1 (en) Method of producing 3-hydroxypropionic acid using malonic semialdehyde reducing pathway
US10174349B2 (en) Recombinant cell producing 2-hydroxyisobutyric acid
US9102958B2 (en) Methods of producing 6-carbon chemicals via CoA-dependent carbon chain elongation associated with carbon storage
US11060079B2 (en) Methods and microorganisms for producing flavors and fragrance chemicals
Garrigues et al. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor
AU2010241185B2 (en) Cells and method for producing acetone
US20220041998A1 (en) Process And Microorganism For Synthesis Of Adipic Acid From Carboxylic Acids
CN104508136A (zh) 重组微生物及其用途
EP2791347A2 (en) METHODS OF PRODUCING 6-CARBON CHEMICALS VIA CoA-DEPENDENT CARBON CHAIN ELONGATION ASSOCIATED WITH CARBON STORAGE
US20100184173A1 (en) Microorganisms for the production of methyl ethyl ketone and 2-butanol
CN104903455A (zh) 用于异丁烯生物合成的方法
JP2012506716A5 (ko)
EP3230462B1 (en) Genetically modified phenylpyruvate decarboxylase, processes to prepare, and uses thereof
WO2015193348A1 (en) Improved production of vanilloids by fermentation
US20130288317A1 (en) Increased yields of phas from hydrogen feeding and diverse carbon fixation pathways
Habe et al. Microbial and enzymatic conversion of levulinic acid, an alternative building block to fermentable sugars from cellulosic biomass
Song et al. Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering
Ingram et al. Anabolism of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator DSM 545 from spent coffee grounds oil
KR20150006412A (ko) 미생물에 의한 n-부티르알데하이드의 생성
KR101985021B1 (ko) 헥산올 생산을 위한 재조합 미생물 및 이를 이용한 헥산올 제조방법
KR101974221B1 (ko) 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법
JP2008086238A (ja) ポリヒドロキシアルカノエートの製造方法
KR20020029369A (ko) 형질전환체 및 이것을 이용한 폴리에스테르의 제조방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant