KR101970035B1 - 컨테이너의 무결성을 감시하기 위한 장치,방법 및 시스템 - Google Patents

컨테이너의 무결성을 감시하기 위한 장치,방법 및 시스템 Download PDF

Info

Publication number
KR101970035B1
KR101970035B1 KR1020147016140A KR20147016140A KR101970035B1 KR 101970035 B1 KR101970035 B1 KR 101970035B1 KR 1020147016140 A KR1020147016140 A KR 1020147016140A KR 20147016140 A KR20147016140 A KR 20147016140A KR 101970035 B1 KR101970035 B1 KR 101970035B1
Authority
KR
South Korea
Prior art keywords
container
controller
refractory
measurement
refractory material
Prior art date
Application number
KR1020147016140A
Other languages
English (en)
Other versions
KR20140100522A (ko
Inventor
미쉘 피어 보닌
토마스 로렌스 하빌
자레드 허버트 후그
Original Assignee
프로세스 메트릭스, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프로세스 메트릭스, 엘엘씨 filed Critical 프로세스 메트릭스, 엘엘씨
Publication of KR20140100522A publication Critical patent/KR20140100522A/ko
Application granted granted Critical
Publication of KR101970035B1 publication Critical patent/KR101970035B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D2021/0057Security or safety devices, e.g. for protection against heat, noise, pollution or too much duress; Ergonomic aspects
    • F27D2021/0085Security or safety devices, e.g. for protection against heat, noise, pollution or too much duress; Ergonomic aspects against molten metal, e.g. leakage or splashes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

본 발명은 내화 재료에 의해 보호된 컨테이너의 무결성을 감시하도록 구성되는 장치, 시스템 및 방법에 관한 것으로서, 컨테이너의 외부면 온도를 측정하도록 구성되는 제1 방사선 검출기와, 내화 재료의 두께를 측정하도록 구성되는 제1 방사선원과, 컨테이너의 외부면 온도의 측정 및 내화 재료의 두께의 측정을 사용자에게 표시하도록 구성되는 중앙 제어기를 포함하는, 무결성 감시 장치, 시스템 및 방법에 관한 것이다.

Description

컨테이너의 무결성을 감시하기 위한 장치,방법 및 시스템{APPARATUS,PROCESS,AND SYSTEM FOR MONITORING THE INTEGRITY OF CONTAINERS}
본 발명은 높은 온도를 갖는 재료를 유지하도록 구성된 용기 또는 컨테이너를 감시하기 위한 장치, 방법 및 시스템, 보다 구체적으로는 기구 및 기술에 관한 것이다.
높은 온도에서 재료를 유지하도록 구성된 다양한 크기 및 형상의 금속 용기 또는 컨테이너는 수많은 산업 어플리케이션에서 광범위하게 이용된다. 이런 어플리케이션의 예는 케미컬(chemical) 및 파워(power)의 생성에서의 가스화 공정, 전기 아크로(EAF), 순산소상 취전로(BOF; basic oxygen furnace), 레이들, 용광로, 탈기 장치, 및 강철 제조에서의 아르곤-산소-탈탄로(AOD)를 포함하지만, 이에 제한되지 않는다. 종래 기술에 공지된 바와 같이, 이런 컨테이너는 내부에 배치된 고온의 내용물로부터 용기의 금속 부분을 보호하기 위해 브릭 형태로 설치되거나 모놀리식 블록으로 주조되는 내화 재료로 통상 라이닝되지만, 산화, 부식 및 기계적 마멸의 조합된 효과로 인한 내화 재료의 통상적인 마모로 인해, 용융 금속과 접촉되는 내화물 표면의 일부분이 처리 중에 손실되기 때문에, 전체 용기의 내화물 라이닝의 돌발 파손 및 불필요하거나 때이른 정비를 방지하기 위해 초기의 국부적인 보수를 수행함으로써 사용기간을 연장시키기 위한 검사를 자주 할 필요가 있다.
광학 기초 검사 기술의 개발 이전에, 허용 불가능한 레벨의 라이닝 두께를 검출하기 위한 세라믹 라이닝의 검사는 내화 재료 및 금속 쉘에 대한 국부적인 높은 열전달률 또는 가능성 있는 과도한 마모를 나타내어 라이닝 보수를 필요로 하는 라이닝 내의 다크 스팟을 숙련된 작업자가 눈으로 찾아내는 것이었다. 이런 방법에는 기술과 과학의 조합이 필요하므로, 컨테이너 작업자가 불필요한 산업적 위험에 노출되어 검사 빈도가 감소되고 목표로 한 정확도가 부족하게 된다. 또한, 내화 재료가 어플리케이션 특화 설치를 위해 재구성되고 있기 때문에 세라믹 라이닝의 설치 및 보수와 관련된 비용이 지난 20년 동안에 비해 상당히 증가되고 있다. 더 값비싼 이런 내화 재료의 효율적인 사용을 개선하기 위하여, 내화 재료의 마모를 직접 측정하고 그리고 예컨대 용기에 대한 열전달률의 간접적인 감시와 같이 금속 용기에 대한 내화물 마모의 효과를 측정하는 것을 포함하는 몇몇 종래 기술이 상술된 위험성을 최소화하기 위해 개발되어 왔다. 그러나, 이하에서 기술되는 바와 같이 이런 종래 기술들은 몇몇 한계점을 갖고 있다.
레이저를 이용하여 정량적인 내화물 마모를 직접 측정하도록 구성되는 종래 기술에 있어서는, 예컨대 레이저의 직경이 유한한 크기(예컨대, 몇몇 어플리케이션에선 대략 40 mm 내지 60 mm)를 갖기 때문에, 라이닝 내의 소형 구멍과 같이 레이저 비임의 직경보다 작은 특성 직경을 갖는 잠정적인 내화물 결함은 불가능하지는 않지만 검출하기가 매우 어려워, 없어진 브릭의 일부분도 검출하기가 어려웠다. 또한, 레이저 비임과 레이들 벽 사이의 높은 입사각으로 인해, 구멍의 크기는, 검출되는 경우에도 작업자나 레이저 스캐너를 통해서는 실제보다 더 작게 보였다.
또한, 레이들 내부면 상의 국부적인 슬래그 빌드업으로 인해 라이닝 보수가 필요한 영역을 검출하는 것이 어려워질 수도 있다. 즉, 강철이 레이들로부터 배출될 때, 컨버터 탭핑으로부터 발생되거나 레이들 야금로에 주입된 소량의 슬래그가 레이들의 벽 또는 바닥에 코팅을 형성할 수 있다. 부착된 슬래그의 많은 부분이 다음의 레이들 가열 사이클에서 용해되기 때문에, 히트 투 히트 측정의 비교는 종종 이전 측정에서의 슬래그 축적을 보여줄 수 있다. 그러나, 임의의 단일 히트에 대해서 레이저를 이용하는 기술은 레이들 표면 상의 슬래그 빌드업과 잔류 내화물 사이의 차이를 보여줄 수가 없다. 또한, 슬래그 축적이 있는 경우, 시스템은 라이닝 두께를 실제 값보다 더 높게 예측하거나 내화물의 손실량을 실제 값보다 더 낮게 예측할 것인데, 양쪽 경우 모두 실제에선 바람직하지 않은 한계점이다.
마지막으로, 레이저 기반 시스템에 의해 검출되지 않을 수도 있는 다른 잠정적인 문제점은 피닝의 생성인데, 피닝은 용융강이 내화물 라이닝 용기 내의 브릭들 사이에서 성장되는 소형 간극(예컨대, 대략 1 mm 내지 5 mm의 특성 두께를 갖는 소형 개구)에 자연적으로 유입될 때 형성된다. 당업자들이 알고 있는 바와 같이, 피닝은 최종적으로 레이들 내에 포함된 용융 금속과 금속성 고체 외부 쉘 사이에 금속 브리지를 형성할 가능성이 있다. 작은 피닝은 레이들 쉘의 국부적인 가열만을 야기한다. 그러나, 시간이 지남에 따라 작은 피닝도 심각해져서 레이들의 용융을 야기함으로써 용융강의 누출을 유발할 수도 있다. 따라서, 종래의 컨투어링 시스템은 용기의 내부 프로파일을 특징짓는 데는 유용한 도구이지만, 겉보기 두께 측정만으론 파괴를 방지하는 데에는 충분하지 않을 수도 있는 상황이 존재한다.
금속 용기에 대한 내화물 마모의 정량적인 효과를 측정하도록 구성된 종래 기술의 예는 용기의 외부면의 온도를 추정하도록 구성된다. 내부의 내화 재료가 마모되어 얇아질 때, 중간 영역에 있는 금속 쉘의 온도는 용융 재료로부터 용기로의 상승된 열전달로 인해 증가된다. 이런 측정은, 통상, 레이들이 슬래브 캐스터를 떠난 직후 크레인으로부터 현수되어 있는 레이들과 관련되어 있으며, 언제 컨테이너가 사용 중지되어야만 하는지를 결정하는 데 주로 이용된다. 이런 정량적인 측정은 원인(예컨대, 라이닝 또는 피닝, 또는 라이닝과 피닝 양자 모두의 시닝으로 인한 임박한 파손)과 관계없이 레이들 쉘 상의 핫 스팟을 보여주며, "폐쇄"의 공칭상 양호함을 직접적으로 측정하는 것이다. 그러나, 이런 기술들은 정량적인 정보만을 제공할 뿐 라이닝 자체의 마모율을 특징짓는 상세 정보를 제공할 수 없다는 점을 당업자들은 알 것이다. 내화물 라이닝의 국부적인 두께, 피닝 효과의 존재 가능성, 용융 금속이 레이들 내에 포함되어 있던 시간, 레이들 내에 존재했던 동안의 용융 재료의 온도 히스토리, 레이들 내에 존재했던 동안의(즉, 레이들 야금로를 통한) 용융 재료의 처리 히스토리, 및 레이들 외부면의 방사성 특성은 모두 금속 쉘의 겉보기 온도에 기여한다. 따라서, 외부 온도 측정은 관련된 이유가 있는 경우에만 유용하며, 데이터의 정량적 정보의 부족은 마모율의 결정 및 레이들에서의 내화물 최적화를 불가능하게 한다.
따라서, 본 발명의 목적은 적어도 종래 기술의 상술한 문제점들에 기초하여 금속의 용융점 이상의 온도에서 재료를 운반하도록 구성된 금속 용기의 외부면 온도 및 내화물 라이닝의 측정 데이터에 있어서의 불일치를 최소화하거나 제거할 수 있는 장치, 시스템 및 방법을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 내화 재료에 의해 보호된 컨테이너의 무결성(integrity)을 감시하도록 구성되는 장치로서, 컨테이너의 외부면 온도를 측정하도록 구성되는 제1 방사선 검출기와, 내화 재료의 두께를 측정하도록 구성되는 제1 방사선원과, 컨테이너의 외부면 온도의 측정 및 내화 재료의 두께의 측정을 사용자에게 표시하도록 구성되는 중앙 제어기를 포함하는 무결성 감시 장치가 제공된다.
본 발명의 일 실시예에 따르면, 내화 재료에 의해 보호된 컨테이너의 무결성을 감시하기 위한 시스템으로서, 컨테이너의 외부면 온도를 측정하도록 구성되는 써모그래픽 장치(thermographic device)와, 내화 재료의 두께를 측정하도록 구성되는 내화물 두께 측정 장치와, 컨테이너의 외부면 온도의 측정 및 내화 재료의 두께의 측정을 사용자에게 표시하도록 구성되는 중앙 제어기를 포함하는 무결성 감시 시스템이 제공된다.
본 발명의 일 실시예에 따르면, 내화 재료의 내부층을 갖는 컨테이너의 무결성을 감시하기 위한 방법으로서, 컨테이너의 외부면 온도를 측정하도록 구성되는 제1 방사선 검출기를 제공하는 단계와, 내화 재료의 두께를 측정하도록 구성되는 제1 방사선원을 제공하는 단계와, 컨테이너의 외부면 온도의 측정 및 내화 재료의 두께의 측정을 사용자에게 표시하도록 구성되는 중앙 제어기를 제공하는 단계를 포함하는 무결성 감시 방법이 제공된다.
본 발명에 따르면, 라이닝 파손에 기여할 수 있는 용융 금속 크리프 및 라이닝 내의 소형 구멍을 초기에 검출 및 검사할 수 있어, 작동 안전성을 증가시키면서 비용이 많이 드는 청소 작업 및 장점적인 제조 정지 시간과 관련된 작업 비용을 감소시킬 수 있다.
도 1은 높은 온도에서 재료를 유지하도록 구성된 컨테이너의 도면이다.
도 2는 본 발명의 예시적인 실시예에 따라 도 1의 컨테이너의 무결성을 감시하도록 구성된 장치 또는 시스템의 개략도이다.
도 3은 본 발명의 다른 예시적인 실시예에 따라 도 1의 컨테이너의 무결성을 감시하도록 구성된 장치 또는 시스템의 개략도이다.
도 4는 예시적인 실시예에 따라 모의 라이닝 두께 프로파일 및 모의 외부면 온도 프로파일을 도시하는 도면이다.
도 5는 예시적인 실시예에 따라 모의 라이닝 두께 프로파일 및 모의 외부면 온도 프로파일의 예시적인 일부분을 도시하는 도면이다.
도 6은 보호 내화층을 갖는 컨테이너의 무결성을 감시하기 위한 흐름도 및 방법을 도시하는 도면이다.
도 7은 보호 내화층을 갖는 컨테이너의 무결성을 감시하기 위한 흐름도 및 방법을 도시하는 도면이다.
도 8은 예시적인 실시예에 따라 높은 온도에서 재료를 유지하도록 구성된 용기 내의 잠정적 파손 위치를 확인하도록 구성된 시스템 또는 장치에 대한 제어 장치의 개략도이다.
본 명세서의 일부를 구성하는 첨부 도면(일정한 비율로 도시되지 않음)은 하나 이상의 실시예를 도시하며, 발명의 상세한 설명과 함께 본 발명의 실시예를 설명한다.
예시적인 실시예에 대한 이하의 상세한 설명은 첨부 도면을 참조한다. 다양한 도면에서 동일한 도면부호는 동일하거나 유사한 요소를 나타낸다. 이하의 상세한 설명은 본 발명을 제한하는 것은 아니다. 대신, 본 발명의 범주는 첨부된 특허청구범위에 의해 한정된다. 이하의 실시예들은 단순화를 위해 강철 제조 어플리케이션에서 높은 온도에 대해 컨테이너를 보호하기 위해 라이닝 재료를 갖는 컨테이너 내의 잠정적 파손 위치를 감시할 수 있는 장치, 시스템 또는 방법의 용어 및 구조와 관련하여 기술된다. 그러나, 이하에 기술되는 실시예들은 이런 세트로 제한되지 않으며, 용기가 제조되는 재료의 용융점에 비해 높은 온도에 노출된 라이너 재료를 갖는 다른 컨테이너에 적용될 수도 있는데, 이런 라이너 무결성은 예상치 못한 파손을 방지하기 위해 결정되어야만 한다.
본 명세서 전체에 걸쳐 "일 실시예" 또는 "실시예"라는 용어는 실시예와 관련하여 기술된 특정 구성요소, 구조 또는 특성이 개시된 본 발명의 적어도 하나의 실시예에 포함된다는 것을 의미한다. 따라서, 본 명세서 전체에 걸쳐 "일 실시예에서" 또는 "실시예에서"라는 문구는 동일한 실시예를 나타낼 필요는 없다. 또한, 특정 구성요소, 구조 또는 특성은 하나 이상의 실시예에서 임의의 적절한 방식으로 포함될 수도 있다.
도 1은 높은 온도에서 재료를 유지하도록 구성된 컨테이너(2)를 도시한다. 본 명세서 전체에 걸쳐, 용기 재료의 용융점 미만 또는 용융점 이상일 수도 있는 높은 온도에서 재료를 유지하도록 구성된 다양한 크기 및 형상의 모든 유형의 금속 용기 또는 컨테이너 혹은 비금속 용기 또는 컨테이너를 나타내는 "컨테이너" 또는 "용기"라는 용어는 교환 가능하게 또는 넓게 사용된다. 이런 컨테이너 또는 용기의 예는 케미컬 및 파워의 생성에서의 가스화 공정, 전기 아크로(EAF), 순산소상 취전로(BOF), 레이들(ladle), 용광로, 탈기 장치(degasser), 및 강철 제조에서의 아르곤-산소-탈탄로(AOD)와 같은 어플리케이션에 사용되지만, 이에 제한되지 않는다. 또한, 본 명세서 전체에 걸쳐 사용된 바와 같이, 높은 온도의 재료라는 용어는, 컨테이너의 표면의 적어도 일부분을 덮는 내화 재료의 무결성이 컨테이너가 높은 온도의 재료에 노출되도록 절충될 때, 컨테이너가 일단 높은 온도의 재료에 노출되면, 컨테이너에 손상을 가할 수 있을 만큼 충분히 높은 온도를 가지면서 컨테이너 내부에 배치되도록 구성된 재료를 의미하는 것으로 넓게 사용된다. 도시된 바와 같이, 컨테이너(2)는 쉘(4), 내화 재료(6)의 내부층 및 개구(8)를 갖는다. 도 1의 파선 7은 컨테이너가 사용되도록 배치되기 전의 내화 재료(6)의 원래의 층을 도시한다. 본 발명을 보다 양호하게 설명하기 위해, 컨테이너(2)는 이하에서 기술되는 바와 같이 사용되어 국부적으로 마모된 부분이 내화 재료(6)를 손상시킨 2개의 영역을 갖는 것으로 도시된다.
제1 영역(10)은 소형 개구(12)를 갖는 구멍이 내화 재료(6)에서 성장된 위치를 나타낸다. 당업자들이 알고 있는 바와 같이, 제1 영역(10)은 피닝(finning)이 성장된 내화 재료(6)의 영역, 즉 사용 시 용융 금속이 내화물 라이닝 용기 내의 브릭들 사이에서 성장되는 소형 간극(예컨대, 대략 1 mm 내지 5 mm와 같은 특성 치수를 갖는 소형 개구)에 자연적으로 유입되는 영역을 또한 의미할 수도 있다. 또한, 제2 영역(14)이 도 1에 도시되어 있는데, 제2 영역에서는 내화 재료(6)의 일부가 사용 시 제거되고, 컨테이너(2)의 내부의 슬래그 빌드업(16)이, 제거된 내화 재료에 의해 남겨진 공극을 채운다. 개시된 본 발명의 유리한 특징들 중 하나는 이하에서 기술되는 바와 같이 라이닝 두께 및 외부면 온도 측정에 의해 영역(10, 14)을 보다 양호하게 확인할 수 있는 개선된 능력이다. 영역(10, 14)은 컨테이너(2)의 사용 중에 유발될 수도 있는 문제점의 예로서 도시되었으며, 개시된 본 발명의 범주를 제한하는 것은 아니다. 즉, 당업자들은 본 발명에 의해 검출될 수도 있는 다른 유형의 결함들이 존재할 수도 있으며 예시적인 영역(10, 14)의 감시는 개시된 본 발명의 범주를 제한하지 않는다는 것을 알아야 한다.
도 2는 개시된 본 발명의 예시적인 실시예에 따라 도 1의 컨테이너(2)의 무결성을 감시하도록 구성되는 장치(또는 시스템)의 개략도이다. 도시된 바와 같이, 장치(20)는 용기(2)의 외부면 온도를 감시하기 위한 써모그래픽 시스템 또는 장치(21)와, 컨테이너(2) 내부의 내화 재료(6)의 두께를 감시하도록 구성된 내화물 두께 측정 시스템 또는 장치(25)를 포함한다. 써모그래픽 시스템(21)은 제1 방사선 검출기(22) 및 제1 방사선 검출기와 관련된 제1 제어기(24)를 포함한다. 내화물 두께 측정 시스템(25)은 제1 방사선원(26) 및 제1 방사선원과 관련된 제2 제어기(28)를 포함한다. 도 2의 예시적인 실시예에 도시된 바와 같이, 써모그래픽 시스템(21) 및 내화물 두께 측정 시스템(25)은 중앙 제어기(30)와 통신한다. 도 2에서, 제1 방사선 검출기(22)는 케이블(32)을 사용함으로써 제1 제어기(24)에 연결되는 것으로 도시되어 있다. 유사하게는, 제1 방사선원(26)은 케이블(34)에 의해 제2 제어기(28)에 연결되는 것으로 도시되어 있으며, 제1 제어기(24) 및 제2 제어기(28)는 케이블(36, 38)에 의해 각각 중앙 제어기(30)에 연결되는 것으로 도시되어 있다. 그러나, 당업자들은 이런 연결은 다른 실시예에서 무선으로 이루어질 수도 있으며 제어기(24, 28)는 도시된 바와 같이 개별적으로 제공되거나 중앙 제어기(30)와 함께 단일 장치로 결합되거나 또는 중앙 제어기 내부에 수용될 수도 있음을 알 것이다. 즉, 도 2에 도시된 장치들의 상호연결 및/또는 배치는 개시된 본 발명의 범주를 제한하지 않으며, 본 발명의 실시예의 설명을 위해 제공된다. 또한, 방사선원 및 검출기의 개수는 각각 하나로만 제한되지 않는다. 예컨대, 일 실시예에서 제1 방사선 검출기(22)는 컨테이너(2)에서 외부 검출기(22)로의 복사 열전달에 의해 컨테이너(2)의 외부면 온도를 측정하도록 구성되는 복수의 적외선(IR) 검출기(또는 카메라)를 포함하며, 제1 방사선원(26)은 내부의 내화 재료의 두께를 측정할 수 있도록 컨테이너(2) 내부를 스켄하는 데 사용되는 광원이다. 다른 실시예에서, 제1 방사선원(26)은 시스템(25)의 임의의 위치에서 내화 재료(6)의 표면의 내부 지점까지의 거리를 측정하도록 구성되는 범위 또는 거리 스캐너이다. 또 다른 실시예에서, 제1 방사선원(26)은 선택된 파장 스펙트럼을 갖는 방사선원일 수도 있는데, 이런 스펙트럼은 육안으로 볼 수 있거나 볼 수 없을 수도 있다. 다른 예시적인 실시예에서, 상술된 제어기들 및/또는 다른 구성요소들 사이의 통신은 인터넷, 전파, 마이크로파, 위성 또는 당해 기술 분야에 공지된 다른 수단을 통해 이루어지거나, 제어기들 사이의 연결은 유선으로 또는 무선으로 이루어질 수도 있다.
일 실시예에서, 제1 방사선 검출기 또는 검출기들(22)는 컨테이너(2)가 전체 레이들 시스템의 합성 이미지를 생성하도록 레이들 주위에 위치되는 밀(mill) 내에 설치될 수도 있다. 다른 실시예에서, 제1 제어기(24)는, 복수의 카메라가 이용되는 경우, IR 카메라의 출력을 판독하여 개별 이미지들로부터 함께 합성 이미지를 조합하는 개인 컴퓨터(PC)일 수도 있다. IR 카메라에 의해 제어되는 써모그래픽 데이터는 레이들 또는 컨테이너(2)가 크레인으로부터 현수되는 동안 획득될 수도 있다. 따라서, 이런 실시예에서 IR 카메라(들) 및 레이들의 상대적인 배향은 매 측정마다 공칭상 일정할 수도 있다. 이런 실시예에서 써모그래픽 데이터의 합성 이미지를 사전 처리함으로써, 원통 좌표에서 공간 분해 온도 프로파일을 생성할 수도 있으며, 독립 좌표 변수들은 Z(레이들 립으로부터의 거리) 및 Θ(레이들 원주 둘레의 방위각 위치)이다. R(레이들 중심선으로부터의 반경방향 거리)은 IR 데이터가 컨테이너의 외부면으로부터만 얻어지기 때문에 리던던트(redundant)일 수도 있다. 몇몇 실시예에서, 시스템(21, 25)의 작동은 동시에 유발될 수 있는데, 즉 외부면 온도 및 내부 라이너 두께의 측정이 용기 작동의 동일한 중단 동안 사실상 동시에 이루어져 조합되어 컨테이너(2)의 평가를 위해 사용자에게 표시된다. 다른 실시예에서, 시스템(21, 25)은 용기 작동의 상이한 중단 동안 개별적으로 또는 순차적으로 작동되고 시스템의 개별적인 데이터가 추후에 조합된다.
예시적인 실시예에 따르면, 철강 산업에서 사용되는 레이들의 라이닝 두께를 측정하는 데 이용될 수도 있는 통상적인 구성은 스캐너를 향해 경사진 레이들 입부(mouth)와 함께 측정되는 레이저 스캐너의 전방에 소정의 거리(예컨대, 대략 3 mm 내지 5 mm)에 적절한 스탠드 내에 배치된 레이들을 갖는다(이 경우 스탠드는 소정의 각도 예컨대 360°로 회전되도록 구성될 수도 있다). 다른 실시예에서, 레이들의 내부에 대한 범위 지점은 미국 특허 제6,922,252호(이하에서는 본 명세서의 양수인에게 양도된 '252 특허라고 칭함)에 개시되어 있는 바와 같이 측정된다.
다른 실시예에서, 레이저 시스템(25)은 레이저 헤드에 대한 레이들의 위치를 결정하기 위해 키네마틱(kinematic) 방식 또는 기구장착 방식의 고정 위치 스탠드에 설치될 수도 있다. 당업자들이 알고 있는 바와 같이, 키네마틱 방식의 실시예에서 레이들 스탠드는 레이들이 스탠드에 배치될 때마다 레이들을 동일한 위치에 위치설정시키도록 구성된다. 기구장착 방식의 실시예에서, 단일 지점 레이저 범위 파인더는 스탠드에서의 레이들의 위치를 측정하는 데 사용된다. 이런 실시예에서, 레이저 데이터의 공간적 배향은 대략 ±5 mm의 측정 불확실성을 갖는 것으로 공지되어야 한다. 또한, 레이저 데이터는 원통 좌표로 제공될 수도 있는데, R은 이하에서 기술되는 바와 같이 레이들 내의 소정의 지점에서의 국부적인 라이닝 두께를 나타낸다. 레이저 및 IR 스캐너 데이터가 동일한 좌표 표현인 상태에서, 중앙 제어기(30)는 수치적인 두께 데이터의 명확성을 보존하도록 적절한 그리드 밀도에서 국부적인 라이닝 두께의 수치적인 표현과 컨테이너(2)의 외부면 온도를 나타내는 이미지를 조합한다(예컨대, 일 실시예에선 IR 스캐너의 적외선 컬러 합성 이미지를 이용함). 이하에서 추가로 기술되는 바와 같이, 사용자가 두께 측정 및 온도 측정에 있어서의 불일치가 존재하는지 여부를 신속하고 정확하게 결정하여 잠정적인 컨테이너 파손을 검출할 수 있는 능력을 향상시키기 위해 효율적인 방식으로 내부 측정 및 외부 측정을 조합할 수 있는 몇몇 알고리즘을 고려한다. 본 명세서에 개시된 유리한 특징들 중의 하나는 정량적 IR 스캐너 정보 및 정량적 라이닝 두께 데이터가 각각의 측정 작동의 한계를 독립적으로 제거하거나 사실상 감소시킨다는 점이다. 일반적인 라이닝 시닝(lining thinning) 분석 및 마모율 분석은 레이저 스캐너로부터의 라이닝 두께 데이터에 의해 완성될 수 있다. 피닝은 라이닝 두께가 허용 가능하게 높게 유지되는 영역에서 용이하게 관측될 수 있지만, 높은 외부 레이들 쉘 온도가 주목된다. 얇은 라이닝의 확인은 슬래그 빌드업과는 관계없이 레이저 스캐너가 감소된 라이닝 두께를 나타내고 IR 스캐너가 높은 표면 온도를 나타내는 구역에서 관측될 수 있다.
따라서, 개시된 본 발명의 유리한 특징들 중 하나는 레이들 내부의 레이저 스캐닝으로부터 획득된 라이닝 두께 데이터와 레이들 쉘의 외부면의 IR 써모그래픽 측정의 조합이다. 당업자들은 내부 내화물 두께와 외부 온도와의 상관이 내부 온도 측정을 확인하는 데 도움을 준다는 것을 알 것이다. 본 명세서에 개시된 바와 같이 조합될 때, 측정은 서로를 보완하는데, 즉 하나의 측정의 한계가 다른 측정의 능력에 의해 보완된다. 피닝으로 인한 잠정적인 파손을 검출하는 데 있어서의 레이저 스캐닝의 어려움은 쉘 온도의 초기 상승을 검출할 수 있는 써모그래픽 스캐너에 의해 보완될 수도 있다. 역으로, 라이닝 두께를 나타내는 IR 스캐너 시스템의 부족한 정량적 정보는 레이저 스캐너의 데이터에 생성된다. 그러나, 양 시스템으로부터의 데이터를 조합함으로써, 마모율과 국부적인 라이닝 두께를 특징으로 하는 정량적 정보 및 브레이크아웃 보호를 제공하는 포괄적인 레이들 분석 도구가 생성된다. 이런 시스템은 동시에 또는 순차적으로 작동될 수 있다. 또한, 데이터의 불일치, 예컨대 높은 온도 및 큰 라이닝 두께를 나타내는 영역이 라이닝 내의 용융 금속 크리프 또는 소형 구멍에 대해 신속하고 효율적으로 추가로 검출 및 검사될 수 있는데, 이런 용융 금속 크리프 또는 소형 구멍은 라이닝 파손에 기여할 수 있다. 또한, 개시된 본 발명은 작동 안전성을 향상시킨다. 또한, 임박한 레이들 파손의 향상된 검출은 부가가치 제품의 손실, 비용이 많이 드는 청소 작업, 및 장점적인 제조 정지 시간을 방지함으로써 비용을 상당히 절감시킨다. 또한, 실행의 자동화된 특성으로 인해 시스템은 단순화된 인터페이스를 통해 데이터를 신속히 획득하여 데이터를 사용자에게 신속히 제공할 수 있다.
또한, 조합된 표시는 라이닝 두께의 국부적인 감소와 핫 스팟(hot spot) 사이의 중간 상관 관계를 생성한다. 더 두꺼운 라이닝을 나타내지만 높은 쉘 온도를 나타내는 영역은 슬래그 축적 또는 피닝에 대해, 또는 레이저 스캔에 의해 검출되지 않은 레이들 내의 소형 구멍/없어진 브릭에 대해 즉시 조사될 수 있다. 낮은 온도를 나타내지만 얇은 라이닝을 나타내는 영역은 피닝에 의해 영향을 받지 않을 수도 있지만, 제한된 잔류 라이닝 수명에만 기초하여 처리되어야 한다.
도 3은 개시된 본 발명의 다른 예시적인 실시예에 따라 도 1의 컨테이너(2)의 무결성을 감시하도록 구성된 장치(40)의 개략도이다. 예시적인 실시예에서, 5개의 IR 카메라(42A 내지 42E)[카메라(42D, 42E)는 단순화를 위해 도시 안 됨]가 도시되어 있다. 4개의 카메라(42B 내지 42E)는 컨테이너의 측벽의 4개의 사분면의 컨테이너(2)의 외부면을 감사하는 데 사용되며, 다른 카메라(42A)는 컨테이너의 바닥을 감시한다. 이 실시예에서 내화물 라이닝 두께 측정은 '252 특허에 개시된 바와 같이 트래킹 시스템(46) 및 컨투어링 시스템(contouring system; 48)이 장착된 모바일 카트(44)를 사용하여 이루어진다. 그러나, 개시된 본 발명은 모바일 카트(44) 및/또는 5개의 IR 카메라(42A 내지 42E)의 사용에 제한되지 않는다. 소정의 어플리케이션의 공간 이용 가능성 및 특정 요건을 고려하는 본 발명의 다른 구성도 가능하다. 예컨대, 고정 위치 레이저 측정 장치가 또한 레이들 측정을 위해 사용될 수도 있다. 이런 장치는 이송차 위에 위치설정되거나, 다른 실시예에서는 슬라이드 게이트 유지 스테이션에 인접하게 위치설정될 수도 있다. (도 3에는 도시 안 된) 모바일 카트(44)의 위치설정에 도움을 주도록 구성된 본 발명의 장치는 바닥, 빌딩 칼럼 또는 후드 영역에 고정될 수도 있다. 이동 위치 실시예 또는 고정 위치 실시예에서, 레이저는 시야을 최대화하도록 가능한 한 용기 입부에 인접하게 배치될 수도 있다.
당업자들이 알고 있는 바와 같이, 모바일 스캐너를 사용하는 실시예는 고온 컨테이너에서 또는 고온 컨테이너 근방에서 고정 지점을 이용할 필요가 없어 내화물 두께 데이터를 획득하는 프로세스를 단순화시킬 수도 있다. 또한, 측정 시스템이 이동 가능하고 측정 시스템이 이동되는 지역이 불규칙한 경우, 컨테이너에 대한 측정 시스템의 위치의 정확한 결정이 필요하다. 그러나, 당업자들이 알고 있는 바와 같이, 센서의 배치는 어플리케이션의 성질 및 컨테이너의 설치에 있어서의 자유도에 따라 결정되며, 본 발명의 특허청구범위의 범주를 제한해서는 안 된다. 예컨대, BOF를 특징으로 하도록 구성된 실시예에서 알려지지 않은 자유도는 단지 노의 경사일 수도 있다. 고정 위치 기구를 사용하는 레이들 어플리케이션에서, 개시된 측정은 자동화될 수도 있다. 레이들 어플리케이션에서는 용기가 통상 개시된 측정 장치에 제공될 수도 있지만, BOF/컨버터 어플리케이션에서는 개시된 측정 시스템이 용기에 제공될 수도 있다. 레이들을 포함하는 어플리케이션을 위해, 특정 실시예의 유리한 특징들 중 하나는 단일 버튼 작동일 수도 있는데, 즉 레이들이 측정 위치에 있을 때 작업자가 "측정" 버튼을 누르기만 하면, 시스템이 자동으로 레이들을 스캔하여 결과를 보고할 것이다. 다른 실시예에서, 단일 버튼 작업은 IR 스캐너를 위해 실시될 수도 있지만, 통상 크레인 캡으로부터 제어를 개시할 수도 있다.
도시된 실시예에서, 컨투어링 시스템(48)의 구성요소들 중 하나는 범위, 즉 컨투어링 시스템에서 목표물까지의 거리 및 범위 센서에 대한 목표물의 위치를 측정하는 센서이다. 작동 시, 컨투어링 시스템(48)의 광학 방사선원으로부터의 광학 방사선(50)이 컨테이너의 내부로 발산되고, 컨테이너의 내부로부터 반사된 광학 방사선이 컨투어링 시스템에 의해 다시 검출된다. 컨투어링 시스템을 출발하여 컨투어링 시스템에 도달하는 데 걸리는, 발산된 방사선과 반사된 방사선 사이의 시간 및 방사선원의 특성에 기초하여, 컨투어링 시스템과 방사선을 반사시키는 컨테이너의 표면 사이의 거리가 측정될 수 있다. 통상적인 범위 측정 시스템은 복수의 위치 및 범위를 신속히 기록하기 위해 스캐닝된 비임을 이용한다.
개시된 본 발명의 실시예를 이용하는 예시적인 측정이 도 4 및 도 5에 도시되어 있다. 당업자들이 알고 있는 바와 같이, 본 명세서에 개시된 본 발명은 도 4 및 도 5에 도시된 예시적인 온도 스케일에 의해 제한되지 않는다. 도 4는 용기 깊이 및 각도 위치의 함수로서 내화 재료의 국부 두께에 대응하는 공간적으로 분해된 정량적 값들에 의해 표시된 내화물 두께 프로파일을 도시한다. 밀리미터 단위 또는 인치 단위인 두께는 용기의 소정의 표면에 대해 보고된다. 이런 소정의 표면은 용기의 내부 또는 외부 금속 쉘, 안정 라이닝의 내부면(통상 용기 내에 영구적으로 설치된 상태로 유지되는 백업 내화 브릭), 또는 작업 라이닝의 내부면[정상적인 용기 리라이닝(relining) 동안 교체되는 주요 내화 브릭]일 수 있다. 도면의 범례에 도시된 바와 같이 상이한 온도 레벨을 나타내는 상이한 그레이 스케일 컬러를 갖는 등고선을 이용하는 표면 온도 측정이 또한 도 4에 도시되어 있다. 도 5는 유사한 결과를 도시하지만 컨테이너의 더 작은 부분에 대한 것이다.
도 4에 도시된 바와 같이, 외부 온도가 높은 값에 도달된 적어도 2개의 구역(도 4에 도면부호 52로 표시됨)이 존재하지만, 이런 구역에서의 작업 라이닝의 내화물 두께는 좌측에 위치된 도면부호 52로 표시된 구역에서는 평균 49 mm이며, 우측에 위치된 도면부호 52로 표시된 구역에서는 대략 76 mm이다. 이런 용기에 대해서, 작업 라이닝의 초기 두께 값은 110 mm이였으며, 레이들은 라이닝 두께가 10 mm에 도달될 때 제거될 것이다. 상술된 바와 같이, 도 4의 2개의 구역(52)은 피닝이 가장 많이 생성될 것 같고 그리고 내화물 두께 측정이 이런 문제점을 검출하지 못한 예시적인 구역[예컨대, 도 1에 도시된 영역(10)]이다. 즉, 이전의 용융 사이클로부터의 용융강은 내화물 스캐닝 시스템에 의해 검출되지 않은 컨테이너 브릭들 사이의 소형 간극(예컨대, 방사선원의 직경에 대해 소형인 개구)에 자연적으로 유입된다. 또한, 이런 문제점을 검출하기 위해 스캐닝 시스템만을 이용하는 것은 피닝이 추가로 성장되어 스캐닝 시스템이 내화 재료 내의 개구를 검출할 때까지 더 오래 걸릴 것이며, 스캐닝 시스템이 피닝을 검출하지 못할 가능성이 더 높을 수도 있다. 도 5의 결과는, 외부면 온도가 높고 그리고 내화물 두께가 얇은 컨테이너의 구역에서의 측정을 도시하고 있는데, 용기의 라이닝 내의 구멍이 특정 위치[예컨대, 도 1에 도시된 영역(14)]에 존재하는 것으로 나타나 있다.
다른 예시적인 실시예에 따르면, 내화 재료의 내부층을 갖는 컨테이너의 무결성을 감시하기 위한 프로세스 또는 방법이 도 6에 도시된 흐름도에 도시된 바와 같이 개시되어 있다. 본 발명의 프로세스는 가능한 한 완전한 것으로 간주되어야 하기 때문에, 모든 단계들이 컨테이너의 무결성을 감시하기 위해 수행될 필요는 없다. 즉, 이하에 기술되는 몇몇 단계들은 선택 사항일 수도 있다.
도 6에 도시된 바와 같이, 내화 재료의 내부층을 갖는 컨테이너의 무결성을 감시하기 위한 방법은 컨테이너의 외부면 온도를 측정하도록 구성되는 제1 방사선 검출기를 제공하는 단계(62)와, 내화 재료의 두께를 측정하도록 구성되는 제1 방사선원을 제공하는 단계(62)와, 컨테이너의 외부면 온도의 측정 및 내화 재료의 두께의 측정을 사용자에게 표시하도록 구성되는 중앙 제어기를 제공하는 단계(66)를 포함한다.
다른 예시적인 실시예에 따르면, 내화 재료의 내부층을 갖는 컨테이너의 무결성을 감시하기 위한 프로세스 또는 방법은 도 7에 도시된 흐름도에 도시된 바와 같이 개시되어 있다. 본 발명의 프로세스는 가능한 한 완전한 것으로 간주되어야 하기 때문에, 모든 단계들이 컨테이너의 무결성을 감시하기 위해 수행될 필요는 없다. 즉, 이하에 기술되는 몇몇 단계들은 선택 사항일 수도 있다. 도 7에 도시된 바와 같이, 내화 재료의 내부층을 갖는 금속 컨테이너의 무결성을 감시하기 위한 방법은 제1 방사선 검출기를 이용하여 컨테이너의 외부면 온도를 측정하는 단계(72)와, 제1 방사선원을 이용하여 내화 재료의 두께를 측정하는 단계(74)와, 컨테이너의 외부면 온도 측정 및 내화 재료의 두께의 측정을 사용자에게 표시하는 단계(76)를 포함한다.
마지막으로, 상술된 예시적인 실시예에 따라 작업을 수행할 수 있는 대표적인 제어 장치 또는 제어기(100)가 도 8에 도시되어 있다. 하드웨어, 펌웨어, 소프트웨어 또는 이들의 조합은 본 명세서에 개시된 다양한 단계 또는 작업을 수행하는 데 이용될 수도 있다. 개시된 본 발명의 다양한 예에서, 도 2의 중앙 제어기(30), 제1 제어기(24) 및/또는 제2 제어기(28)는 개별적으로 또는 임의의 조합으로, 이런 시스템과 함께 사용될 수도 있는 컴퓨팅 구조의 형태인 제어 장치 또는 제어기(100)를 포함하는 시스템의 일부분이다.
예시적인 실시예에 개시된 작동을 수행하기에 적절한 예시적인 중앙 제어기(100)는 도 2의 임의의 제어기(24, 28 및/또는 30)에 대응할 수도 있는 서버(102)를 포함할 수도 있다. 이런 서버(102)는 랜덤 액세스 메모리(RAM)(106) 및 읽기 전용 메모리(ROM)(108)에 연결된 중앙 프로세서(CPU)(104)를 포함할 수도 있다. 또한, ROM(108)은 프로그램 가능 ROM(PROM), 소거 가능 ROM(EPROM) 등과 같이 프로그램을 저장하기 위한 다른 유형의 저장 매체일 수도 있다. 프로세서(104)는 제어 신호 등을 제공하기 위해 입력/출력(I/O) 회로(110) 및 버스(112)를 통해 다른 내부 구성요소 및 외부 구성요소와 통신할 수도 있다. 프로세서(104)는 소프트웨어 및/또는 펌웨어 지시에 의해 명령되는 바와 같은 당해 기술 분야에 공지된 다양한 기능을 수행한다.
또한, 서버(102)는 예컨대 하드 디스크 드라이브 및 플로피 디스크 드라이브(114), CD-ROM 드라이브(116) 및/또는 DVD 등과 같이 정보를 판독하고 그리고/또는 저장할 수 있는 다른 하드웨어를 포함하는 하나 이상의 데이터 저장 장치를 포함할 수도 있다. 일 실시예에서, 상술된 단계를 수행하기 위한 소프트웨어는 CD-ROM(118), 디스켓(120) 또는 다른 형태의 휴대용 정보 저장 매체에 저장 및 분배될 수도 있다. 이런 저장 매체는 CD-ROM 드라이브(116), 디스크 드라이브(114) 등과 같은 장치에 삽입되고 그리고 이런 장치에 의해 판독될 수도 있다. 서버(102)는 LCD 디스플레이, 플라즈마 디스플레이, 브라운관(CRT) 등과 같은 임의의 유형의 공지된 디스플레이 또는 프레젠테이션 스크린일 수도 있는 디스플레이(122)에 연결될 수도 있다. 마우스, 키보드, 마이크로폰, 터치 패드, 터치 스크린, 음성 인식 시스템 등과 같은 하나 이상의 사용자 인터페이스 기구를 포함하는 사용자 입력 인터페이스(124)가 제공될 수도 있다.
서버(102)는 네트워크를 통해 지상선(landline) 및/또는 무선 단말기 및 관련 어플리케이션과 같은 다른 컴퓨팅 장치에 연결될 수도 있다. 서버는 다양한 지상선 및/또는 모바일 클라이언트 장치에 대한 최종 연결을 가능케 하는 인터넷(126)과 같은 세계 정보망(GAN)의 더 큰 네트워크 구성의 일부일 수도 있다.
예시적인 실시예에 대한 상세한 설명에서, 수많은 특정 상세 사항들이 본 발명의 특허청구범위의 포괄적인 이해를 위해 개시되어 있다. 그러나, 당업자들은 다양한 실시예들이 이런 특정 상세 사항들 없이도 실시될 수 있음을 알 것이다.
또한 당업자들이 알고 있는 바와 같이, 예시적인 실시예들은 방법으로서 또는 컴퓨터 프로그램 제품으로 무선 통신 장치 또는 전기 통신망에서 실시될 수도 있다. 따라서, 예시적인 실시예들은 전체적으로 하드웨어 실시예의 형태를 취하거나, 하드웨어와 소프트웨어 유형을 조합한 실시예의 형태를 취할 수도 있다. 또한, 예시적인 실시예들은 매체에 포함된 컴퓨터 판독가능 지지를 갖는 컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램 제품의 형태를 취할 수도 있다. 하드 디스크, CD-ROM, 디지털 다기능 디스크(DVD), 광기억 장치, 또는 플로피 디스크나 자기 테이프와 같은 자기 저장 장치를 포함하는 임의의 적절한 컴퓨터 판독 가능 매체가 이용될 수도 있다. 컴퓨터 판독 가능 매체의 다른 비제한적인 예는 플래쉬 메모리 또는 다른 공지된 유형의 메모리를 포함한다.
개시된 예시적인 실시예들은 높은 온도에서 재료를 유지하도록 구성된 금속 컨테이너의 잠정적인 파손 위치를 확인하기 위한 장치, 시스템 및 방법을 제공한다. 개시된 설명은 본 발명을 제한하는 것이 아니다. 그와는 반대로, 예시적인 실시예들은 첨부된 특허청구범위에 의해 한정되는 바와 같은 본 발명의 기술 사상 및 범주 내에 포함되는 대체예, 변형예 및 등가예를 포함한다.
본 발명의 예시적인 실시예들의 특징부 및 구성요소들이 특정한 조합으로 실시예에서 기술되었지만, 각각의 특징부 및 구성요소는 실시예들의 다른 특징부 및 구성요소 없이 단독으로 사용되거나, 본 명세서에 개시된 다른 특징부 및 구성요소와 조합되거나 이런 특징부 및 구성요소 없이 사용될 수 있다.
본 명세서의 내용은 당업자들이 임의의 장치 또는 시스템을 제조하여 이용하는 것과 본 발명의 임의의 방법을 수행하는 것을 포함하여 본 발명의 예를 실시할 수 있게 해준다. 본 발명의 특허 가능한 범주는 첨부된 특허청구범위에 의해 한정되며, 당업자들이 실시하는 다른 예들도 포함할 수도 있다. 이런 다른 예들은 첨부된 특허청구범위의 범주 내에 있는 것으로 간주되어야 한다.
2 : 컨테이너 20 : 무결성 감시 장치
21 : 써모그래픽 시스템 22 : 제1 방사선 검출기
24 : 제1 제어기 25 : 내화물 두께 측정 시스템
26 : 제1 방사선원 28 : 제2 제어기
30 : 중앙 제어기 32, 36 : 케이블

Claims (20)

  1. 내화 재료에 의해 보호된 컨테이너의 무결성을 감시하도록 구성되는 장치로서,
    복수의 검출기를 포함하는 제1 방사선 검출기를 구비한 써모그래픽(thermographic) 시스템으로서, 상기 컨테이너의 외부면의 공간 분해 온도 측정을 행하도록 구성되는 써모그래픽 시스템과,
    제1 방사선원을 구비한 내화물 두께 측정 시스템으로서, 상기 내화 재료의 공간 분해 두께 측정을 행하도록 구성되는 내화물 두께 측정 시스템과,
    상기 컨테이너의 외부면의 공간 분해 온도 측정 및 상기 내화 재료의 공간 분해 두께 측정을 사용자에게 표시하도록 구성되는 중앙 제어기
    를 포함하고,
    상기 내화 재료의 결함은 상기 컨테이너의 외부면의 공간 분해 온도 측정 및 상기 내화 재료의 공간 분해 두께 측정의 조합에 의해 확인되는 무결성 감시 장치.
  2. 제1항에 있어서, 상기 써모그래픽 시스템은 제1 제어기를 포함하고, 상기 제1 제어기는 상기 중앙 제어기와 통신하도록 구성되는 것인 무결성 감시 장치.
  3. 제1항에 있어서, 상기 써모그래픽 시스템은 제1 제어기를 각각 포함하는 복수의 써모그래픽 시스템이며, 각각의 상기 제1 제어기는 상기 중앙 제어기와 통신하도록 구성되는 것인 무결성 감시 장치.
  4. 제1항에 있어서, 상기 컨테이너의 외부면의 공간 분해 온도 측정 및 상기 내화 재료의 공간 분해 두께 측정은 동시에 이루어지는 것인 무결성 감시 장치.
  5. 제1항에 있어서, 상기 감시는 상기 공간 분해 두께 측정을 행하기 전에 컨테이너를 소정의 위치에 배치하거나 또는 상기 공간 분해 두께 측정을 행하기 전에 스탠드 상에 컨테이너의 위치를 결정함으로써, 스탠드 상에 키네마틱 방식으로(kinematically) 배치된 컨테이너로 수행되도록 구성되는 것인 무결성 감시 장치.
  6. 제1항에 있어서, 상기 내화물 두께 측정 시스템은 제2 제어기를 포함하며, 상기 내화물 두께 측정 시스템 및 제2 제어기는 모바일 유닛(mobile unit)에 배치되고, 상기 제2 제어기는 상기 중앙 제어기와 통신하는 것인 무결성 감시 장치.
  7. 제1항에 있어서, 상기 써모그래픽 시스템은 제1 제어기를 포함하고, 상기 내화물 두께 측정 시스템은 제2 제어기를 포함하고, 상기 제1 제어기 및 제2 제어기는 상기 중앙 제어기와 통신하는 것인 무결성 감시 장치.
  8. 제1항에 있어서, 상기 컨테이너의 내부의 위치에 있는 피닝(finning)은, 높은 온도값을 갖는 컨테이너의 외부면의 국부적인 온도 측정에 의해 그리고 더 두꺼운 값을 갖는 내화 재료의 대응하는 국부적인 두께 측정에 의해 검출되는 것인 무결성 감시 장치.
  9. 제1항에 있어서, 상기 컨테이너의 내부의 위치에 있는 내화 재료의 용융 금속 크리프 또는 소형 구멍은, 높은 온도값을 갖는 컨테이너의 외부면의 국부적인 온도 측정에 의해 그리고 더 두꺼운 값을 갖는 내화 재료의 대응하는 국부적인 두께 측정에 의해 검출되는 것인 무결성 감시 장치.
  10. 제1항에 있어서, 상기 내화물 두께 측정 시스템은 모바일 카트(mobile cart)에 배치되고, 상기 모바일 카트에 장착된 트래킹 시스템(tracking system) 및 컨투어링 시스템(contouring system)을 더 포함하는 무결성 감시 장치.
  11. 제1항에 있어서, 상기 내화물 두께 측정 시스템은 컨투어링 시스템으로부터 내화 재료의 내부면까지 범위 데이터를 측정하도록 구성되는 상기 컨투어링 시스템을 더 포함하는 무결성 감시 장치.
  12. 제1항에 있어서, 상기 컨테이너는 케미컬(chemical) 및 파워(power) 중 하나 또는 양자 모두의 생성 시의 가스화 공정, 전기 아크로, 순산소상 취전로(BOF; basic oxygen furnace), 레이들, 용광로, 탈기 장치, 또는 아르곤-산소-탈탄로에 사용되도록 구성되는 것인 무결성 감시 장치.
  13. 제7항에 있어서, 상기 제1 제어기, 상기 제2 제어기 및 상기 중앙 제어기는 단일 제어 유닛에 배치되는 것인 무결성 감시 장치.
  14. 제1항에 있어서,
    상기 내화물 두께 측정 시스템은 제2 제어기를 포함하며, 상기 내화물 두께 측정 시스템 및 제2 제어기는 고정 위치 스탠드에 배치되고, 상기 제2 제어기는 상기 중앙 제어기와 통신하는 것인 무결성 감시 장치.
  15. 내화 재료의 내부층을 갖는 컨테이너의 무결성을 감시하기 위한 방법으로서,
    써모그래픽 시스템으로 컨테이너의 외부면의 공간 분해 온도 측정을 행하는 것,
    내화물 두께 측정 시스템으로 상기 내화 재료의 공간 분해 두께 측정을 행하는 것, 그리고
    상기 컨테이너의 외부면의 공간 분해 온도 측정 및 상기 내화 재료의 공간 분해 두께 측정의 조합에 의해 상기 내화 재료의 결함을 검출하는 것
    을 포함하는 방법.
  16. 제15항에 있어서, 상기 검출은 높은 온도값을 갖는 컨테이너의 외부면의 국부적인 온도 측정 및 더 두꺼운 값을 갖는 내화 재료의 대응하는 국부적인 두께 측정을 확인함으로써 상기 컨테이너의 내부의 위치에 있는 피닝을 검출하는 것을 더 포함하는 것인 방법.
  17. 제15항에 있어서, 상기 검출은 높은 온도값을 갖는 컨테이너의 외부면의 국부적인 온도 측정 및 더 두꺼운 값을 갖는 내화 재료의 대응하는 국부적인 두께 측정을 확인함으로써 상기 컨테이너의 내부의 위치에 있는 내화 재료의 용융 금속 크리프 또는 소형 구멍을 검출하는 것을 더 포함하는 것인 방법.
  18. 제15항에 있어서, 상기 내화 재료의 공간 분해 두께 측정을 행하는 것은, 상기 컨테이너를 스탠드 상에 위치설정시키고 소정의 위치에 유지되는 컨테이너로 두께 측정을 행하거나 또는 상기 공간 분해 두께 측정을 행하기 전에 상기 스탠드 상에 컨테이너의 위치를 결정하는 것을 포함하는 것인 방법.
  19. 제15항에 있어서, 상기 써모그래픽 시스템은 제1 제어기를 포함하며, 상기 써모그래픽 시스템 및 제1 제어기는 고정 위치 스탠드에 배치되는 것인 방법.
  20. 제15항에 있어서, 상기 써모그래픽 시스템은 제1 제어기를 포함하며, 상기 써모그래픽 시스템 및 제1 제어기는 모바일 유닛에 배치되는 것인 방법.
KR1020147016140A 2011-11-15 2012-11-12 컨테이너의 무결성을 감시하기 위한 장치,방법 및 시스템 KR101970035B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/296,301 US8958058B2 (en) 2011-11-15 2011-11-15 Apparatus, process, and system for monitoring the integrity of containers
US13/296,301 2011-11-15
PCT/US2012/064727 WO2013074464A2 (en) 2011-11-15 2012-11-12 Apparatus, process, and system for monitoring the integrity of containers

Publications (2)

Publication Number Publication Date
KR20140100522A KR20140100522A (ko) 2014-08-14
KR101970035B1 true KR101970035B1 (ko) 2019-04-17

Family

ID=48280341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147016140A KR101970035B1 (ko) 2011-11-15 2012-11-12 컨테이너의 무결성을 감시하기 위한 장치,방법 및 시스템

Country Status (19)

Country Link
US (1) US8958058B2 (ko)
EP (1) EP2780663B1 (ko)
JP (1) JP6174594B2 (ko)
KR (1) KR101970035B1 (ko)
CN (1) CN104081152B (ko)
AU (1) AU2012339861A1 (ko)
BR (1) BR112014011750B1 (ko)
CA (1) CA2855892C (ko)
CL (1) CL2014001264A1 (ko)
EA (1) EA027851B1 (ko)
ES (1) ES2662906T3 (ko)
MX (1) MX2014005907A (ko)
MY (1) MY171543A (ko)
NO (1) NO2874857T3 (ko)
PL (1) PL2780663T3 (ko)
SI (1) SI2780663T1 (ko)
UA (1) UA115658C2 (ko)
WO (1) WO2013074464A2 (ko)
ZA (1) ZA201403518B (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958058B2 (en) * 2011-11-15 2015-02-17 Process Metrix Apparatus, process, and system for monitoring the integrity of containers
WO2015099001A1 (ja) 2013-12-28 2015-07-02 株式会社Sumco 石英ガラスルツボ及びその歪み測定装置
US9279773B2 (en) * 2014-07-18 2016-03-08 Process Metrix Crack detection and measurement in a metallurgical vessels
CN104457306B (zh) * 2014-12-30 2016-05-25 合肥金星机电科技发展有限公司 阳极炉温度监控系统
US10175040B2 (en) * 2015-03-20 2019-01-08 Process Metrix Characterization of refractory lining of metallurgical vessels using autonomous scanners
CN104907511B (zh) * 2015-06-19 2017-01-04 武汉钢铁(集团)公司 一种铁水罐的检测装置
JP6644137B2 (ja) * 2015-10-29 2020-02-12 パネラテック・インコーポレイテッドPaneraTech, Inc. 資産耐用年数の最適化および監視システム
ITUB20159279A1 (it) * 2015-12-17 2017-06-17 Tenova Spa Metodo ed apparecchiatura per l'ispezione o l'osservazione operativa di spazi pericolosi, inospitali o spazi con condizioni ambientali ostili
KR101920421B1 (ko) * 2016-05-29 2019-02-08 엑셀로 주식회사 내화물 어셈블리, 이를 이용한 내화물 통합관리 시스템 및 내화물 어셈블리 관리방법
EP4303621A3 (de) * 2016-11-10 2024-04-10 Leica Geosystems Ag Laserscanner
US10060725B2 (en) 2016-11-20 2018-08-28 Process Metrix Scanning laser range finder with surface temperature measurement using two-color pyrometry
JP7344124B2 (ja) 2017-03-24 2023-09-13 コーニング インコーポレイテッド 管変換中にガラスの温度を測定するためのシステム及び方法
CN107643125A (zh) * 2017-08-14 2018-01-30 中车青岛四方机车车辆股份有限公司 设备故障的确定方法和装置
CN109813433A (zh) * 2018-12-01 2019-05-28 湖北理工学院 Lf精炼炉钢水温度的连续测温方法
CN111238411B (zh) * 2019-07-18 2021-09-21 河北国亮新材料股份有限公司 一种利用激光测距仪测量钢包内部尺寸的设备及其操作方法
US10859316B1 (en) 2019-09-26 2020-12-08 Harbisonwalker International, Inc. Predictive refractory performance measurement system
US11237124B2 (en) 2019-09-26 2022-02-01 Harbisonwalker International, Inc. Predictive refractory performance measurement system
CN111238384A (zh) * 2020-02-27 2020-06-05 无锡市振华开祥科技有限公司 一种薄不锈钢零件镀层定性测厚方法
EP3968120A1 (en) 2020-09-10 2022-03-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude System and method for monitoring and controlling furnaces
CN114235164B (zh) * 2021-12-03 2024-04-19 北京科技大学 一种用于钢包空包及出钢过程的热状态监测系统及方法
US20230289625A1 (en) * 2022-03-10 2023-09-14 Paneratech, Inc. System and method for prediction of operational safety of metallurgical vessels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518628A (ja) 2005-12-02 2009-05-07 スペシャルティ ミネラルズ (ミシガン) インク. 治金熔融炉の耐火性内張りにおける磨耗測定方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127736A (en) * 1982-02-22 1992-07-07 Armco Inc. Apparatus for measuring wear in the lining of refractory furnaces
US4893933A (en) * 1987-09-30 1990-01-16 Armco Inc. Automatic BOF vessel remaining lining profiler and method
JPH03139474A (ja) * 1989-10-24 1991-06-13 Mazda Motor Corp 車両の車体前部構造
JPH03169474A (ja) * 1989-11-29 1991-07-23 Nkk Corp 耐熱容器内張りの残厚測定方法
JPH07311098A (ja) * 1994-05-18 1995-11-28 Kawasaki Steel Corp 製鋼炉からの出鋼温度管理方法
JPH0972852A (ja) 1995-09-04 1997-03-18 Nisshin Steel Co Ltd 溶融金属受湯容器の内張り耐火物の亀裂検出方法並びに亀裂の補修方法
US6198102B1 (en) 1998-06-17 2001-03-06 Owens-Brockway Glass Container Inc. Inspection of container mouth using infrared energy emitted by the container bottom
JP2000161943A (ja) * 1998-11-26 2000-06-16 Hitachi Ltd 配管の肉厚測定装置
US6188079B1 (en) * 1999-01-12 2001-02-13 Owens-Brockway Glass Container Inc. Measurement of hot container wall thickness
US6367969B1 (en) * 1999-07-21 2002-04-09 General Electric Company Synthetic reference thermal imaging method
US6837616B2 (en) * 2002-08-27 2005-01-04 Ircon, Inc. Method and system for determining the rotational position of a molten metal vehicle
US6922252B2 (en) * 2002-09-19 2005-07-26 Process Matrix, Llc Automated positioning method for contouring measurements using a mobile range measurement system
JP2004271367A (ja) * 2003-03-10 2004-09-30 Ngk Insulators Ltd キャニスタ検査方法
US7214941B2 (en) 2004-12-16 2007-05-08 The Gillette Company Crack detection in razor blades
JP2008157806A (ja) * 2006-12-25 2008-07-10 Nippon Steel Corp 赤外線配管診断方法及び装置
JP5068559B2 (ja) * 2007-03-01 2012-11-07 新日本製鐵株式会社 容器壁状態の管理方法、装置、及びコンピュータプログラム
JP4392449B2 (ja) * 2008-01-08 2010-01-06 新日本製鐵株式会社 耐火物厚み測定方法及びその装置
US8958058B2 (en) * 2011-11-15 2015-02-17 Process Metrix Apparatus, process, and system for monitoring the integrity of containers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518628A (ja) 2005-12-02 2009-05-07 スペシャルティ ミネラルズ (ミシガン) インク. 治金熔融炉の耐火性内張りにおける磨耗測定方法

Also Published As

Publication number Publication date
US8958058B2 (en) 2015-02-17
EP2780663A2 (en) 2014-09-24
WO2013074464A2 (en) 2013-05-23
KR20140100522A (ko) 2014-08-14
US20130120738A1 (en) 2013-05-16
CN104081152A (zh) 2014-10-01
EA201490785A1 (ru) 2014-11-28
JP6174594B2 (ja) 2017-08-02
ZA201403518B (en) 2015-07-29
CN104081152B (zh) 2017-09-29
EA027851B1 (ru) 2017-09-29
MY171543A (en) 2019-10-17
CA2855892C (en) 2019-01-08
CL2014001264A1 (es) 2015-01-16
SI2780663T1 (en) 2018-08-31
PL2780663T3 (pl) 2018-08-31
NO2874857T3 (ko) 2018-01-13
EP2780663A4 (en) 2015-06-24
BR112014011750A2 (pt) 2017-05-09
MX2014005907A (es) 2014-11-12
ES2662906T3 (es) 2018-04-10
AU2012339861A1 (en) 2014-06-05
UA115658C2 (uk) 2017-12-11
EP2780663B1 (en) 2018-01-24
JP2015504153A (ja) 2015-02-05
BR112014011750B1 (pt) 2020-10-20
WO2013074464A3 (en) 2013-07-18
CA2855892A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
KR101970035B1 (ko) 컨테이너의 무결성을 감시하기 위한 장치,방법 및 시스템
US9279773B2 (en) Crack detection and measurement in a metallurgical vessels
US11590578B2 (en) Internal defect detection system, three-dimensional additive manufacturing device, internal defect detection method, method of manufacturing three-dimensional additive manufactured product, and three-dimensional
JP2013221659A (ja) 漏鋼位置の予測方法
Lamm et al. Optimization of ladle refractory lining, gap and crack detection, lining surface temperature and sand-filling of the ladle-tap hole by means of a 3d-laserprofile-measurement system that is immersed into a hot ladle to evaluate the entire condition
RU2366936C2 (ru) Способ диагностики эксплуатационного состояния фурменной или опасной зоны пирометаллургического агрегата
AU2015258297B2 (en) Apparatus, process, and system for monitoring the integrity of containers
JP2013107127A (ja) 溶削異常検出装置および溶削異常検出方法
US20230289625A1 (en) System and method for prediction of operational safety of metallurgical vessels
US20240085114A1 (en) System and method for prediction of operational safety of manufacturing vessels
Banerjee et al. Laser contouring of steelmaking vessels
Isei et al. Development of refractory thickness meter for torpedo ladle car
Green Condition monitoring: its impact on plant performance at British Steel, Scunthorpe works
Ageev et al. Development of a system for monitoring the freeboard in a ladle during tapping from a converter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant