KR101965343B1 - 결정질 태양전지용 플라즈마 텍스처링 방법 - Google Patents

결정질 태양전지용 플라즈마 텍스처링 방법 Download PDF

Info

Publication number
KR101965343B1
KR101965343B1 KR1020170159789A KR20170159789A KR101965343B1 KR 101965343 B1 KR101965343 B1 KR 101965343B1 KR 1020170159789 A KR1020170159789 A KR 1020170159789A KR 20170159789 A KR20170159789 A KR 20170159789A KR 101965343 B1 KR101965343 B1 KR 101965343B1
Authority
KR
South Korea
Prior art keywords
plasma
gas
solar cell
crystalline solar
process gas
Prior art date
Application number
KR1020170159789A
Other languages
English (en)
Inventor
양창실
현덕환
Original Assignee
와이아이테크(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 와이아이테크(주) filed Critical 와이아이테크(주)
Priority to KR1020170159789A priority Critical patent/KR101965343B1/ko
Application granted granted Critical
Publication of KR101965343B1 publication Critical patent/KR101965343B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명은 결정질 태양전지용 플라즈마 텍스처링 방법에 관한 것으로서, 특히 플라스마 장치에 사용되는 공정가스에 염소가스 대신에 수소가스를 이용하여 텍스처링하는 결정질 태양전지용 플라즈마 텍스처링 방법에 관한 것이다.
본 발명의 결정질 태양전지용 플라즈마 텍스처링 방법은, 플라즈마를 이용하여 결정질 태양전지를 텍스처링하는 방법에 있어서, 가열된 결정질 태양전지에 공정가스와 플라스마 발생가스를 혼합한 후 공급하여 플라즈마에 의해 결정질 태양전지의 표면을 텍스처링하되, 상기 공정가스는 염소가스(Cl2)가 불포함되어 있고 수소가스(H2)가 포함되어 있는 것을 특징으로 한다.

Description

결정질 태양전지용 플라즈마 텍스처링 방법 { PLASMA TEXTURING METHOD }
본 발명은 결정질 태양전지용 플라즈마 텍스처링 방법에 관한 것으로서, 특히 플라스마 장치에 사용되는 공정가스에 염소가스 대신에 수소가스를 이용하여 텍스처링하는 결정질 태양전지용 플라즈마 텍스처링 방법에 관한 것이다.
대기압 플라즈마 장치 특히 DBD(Deolectric Barrier Discharge, 유전체 장벽 방전) 장치의 경우 장치의 구조 또는 전극 구조에 차이는 있으나, 플라즈마 발생 및 안정화를 위해 사용되는 가스(Ar, He 등)와 식각 또는 도핑 등을 위한 공정가스를 혼합하여 플라즈마 장치에 공급하는 방식을 사용하고 있다.
즉, 기존의 대기압 DVD장치 또는 대기압 Glow Discharge(APGD : Atmospheric Pressure Glow Discharge)의 경우 공정가스만을 이용한 플라즈마 생성이 힘들기 때문에, 플라즈마 발생 및 안정화를 위하여 다량의 Ar, He 또는 CDA(Clean Dry Air)와 함께 공정가스를 혼합하여 플라즈마 장치로 공급함으로써, 가공공정에 이용하는 플라즈마를 생성한다.
한편 결정질 태양전지의 제조할 때에는, 반사율을 최대한 낮추기 위하여 텍스처링 공정을 수행하는데, 이때 대부분 플라즈마를 이용하여 텍스처링 공정을 수행한다.
이러한 플라즈마 텍스처링 공정을 하기 위하여 플라즈마 발생가스와 공정가스를 사용하는데, 종래에는 공정가스를 주로 NF3, SF6, O2, Cl2를 혼합하여 사용하였다.
기존 플라즈마 텍스처링 공정을 하기 위하여 사용하는 Cl2가스는 특성상 부식성이 높아 장비를 부식시켜 장치의 내구성을 악화시키는 문제가 있다.
그럼에도 불구하고, 현재 텍스처링 공정을 수행함에 있어서는 식각률이 우수한 Cl2를 공정가스로 혼합하여 사용하고 있는 실정이다
공개특허 10-2011-0062447
본 발명은 전술한 문제점을 해결하기 위한 것으로써, 플라즈마에 의한 결정질 태양전지의 표면을 텍스처링함에 있어 공정가스에 Cl2(염소가스)를 사용하지 않도록 하여 장치의 부식이 일어나지 않도록 하면서도 결정질 태양전지의 표면의 식각률을 높일 수 있는 결정질 태양전지용 플라즈마 텍스처링 방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명의 결정질 태양전지용 플라즈마 텍스처링 방법은, 플라즈마를 이용하여 결정질 태양전지를 텍스처링하는 방법에 있어서, 가열된 결정질 태양전지에 공정가스와 플라스마 발생가스를 혼합한 후 공급하여 플라즈마에 의해 결정질 태양전지의 표면을 텍스처링하되, 상기 공정가스는 염소가스(Cl2)가 불포함되어 있고 수소가스(H2)가 포함되어 있는 것을 특징으로 한다.
상기 공정가스는 N2, NF3, O2, H2가 혼합되어 이루어진다.
상기 공정가스는 N2 95~99 부피%, NF3 0.5~3 부피%, O2 0.2~1 부피%, H2 0.2~1 부피%가 혼합되어 이루어진다.
상기 공정가스에 포함된 수소가스가 방전되면, 수소가스에서 방전되어 튀어나오는 전자에 의하여 플라즈마 밀도가 증가되어 결정질 태양전지의 표면을 물리적으로 텍스처링한다.
대기압 플라즈마를 이용하도록 함이 바람직하다.
이상에서 설명한 바와 같은 본 발명의 결정질 태양전지용 플라즈마 텍스처링 방법에 따르면 다음과 같은 효과가 있다.
위와 같이 본 발명의 결정질 태양전지용 플라즈마 텍스처링 방법은, 플라즈마 발생장치에 공급하는 공정가스에서 염소가스(Cl2) 대신에 수소가스(H2)를 공급하도록 함으로써, 장치의 부식이 이루어나지 않도록 하면서도 결정질 태양전지의 식각률을 향상시켜 결정질 태양전지의 반사율을 낮출 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 텍스처링 방법에 의해 개질된 결정질 태양전지 표면의 반사율을 표시한 그래프,
도 2는 도 1에 나타나 있는 각 샘플의 표면상태를 나타내는 사진.
본 발명의 결정질 태양전지용 플라즈마 텍스처링 방법은, 플라즈마를 이용하여 결정질 태양전지를 텍스처링하는 방법에 관한 것이다.
먼저 결정질 태양전지를 가열한다.
이때 가열온도는 70~200℃로 가열하도록 한다.
그리고, 가열된 결정질 태양전지에 공정가스와 플라즈마 발생가스를 혼합하여 공급한다.
상기 플라즈마 발생가스는 종래의 플라즈마 장치와 동일하게 Ar, He 등으로 이루어진다.
상기 공정가스는 염소가스(Cl2)가 포함되어 있지 않고, 대신에 수소가스(H2)가 포함되어 있다.
바람직하게는, 상기 공정가스는 N2 95~99 부피%, NF3 0.5~3 부피%, O2 0.2~1 부피%, H2 0.2~1 부피%가 혼합되어 이루어지도록 한다.
본 발명의 상기 공정가스는 위와 같은 여러가스의 배합비율 이외에 종래의 공지된 공정가스에서 염소가스를 대신에 수소가스를 사용할 수 있다면 적용될 수 있다.
본 발명에서는 상기 공정가스에서 염소가스(CL2)를 사용하지 않고 수소가스(H2)를 사용하기 때문에, 플라즈마 텍스처링 공정을 수행할 때 염소가스에 의해 장비가 부식되는 것을 방지할 수 있어 장치의 내구성을 유지시킬 수 있다.
그리고, 공정가스에 수소가스에 혼합되어 있음으로써, 플라즈마 발생시 수소가스가 방전되면서 수소가스에서 튀어나오는 전자에 의하여 플라즈마 밀도가 증가되어 결정질 태양전지의 표면을 물리적으로 텍스처링하게 된다.
즉, 본원발명은 기존의 화학적 텍스처링 방법이 아닌 수소가스에서 방출된 전자가 플라즈마 내부의 전자온도를 증가시키고 플라즈마 내부 입자 운동을 활발하게 하여, 플라즈마 밀도를 증시킴으로써, 물리적으로 결정절 태양전지의 표면을 텍스처링하게 된다.
위와 같이 본원발명은 공정가스에 염소가스를 사용하지 않으면서도 수소가스에서 튀어나오는 전자에 의해 플라즈마의 밀도를 증가시켜, 결정질 태양전지의 표면을 물리적으로 높은 식각률로 텍스처링할 수 있다.
또한, 상기 공정가스에 염소가스를 사용하지 않고 수소가스를 사용하기 때문에, 가스의 방전이 용이하고, 이를 통해 전자 방출에 의한 플라즈마 밀도를 극단적으로 높여 식각률을 향상시킬 수 있다.
본 발명에서 수소가스가 포함된 공정가스를 사용함으로써, 결정질 태양전지 표면을 식각률을 높여, 결정질 태양전지에 필요한 반사율을 확보할 수 있다.
도 1은 본 발명의 실시예에 따른 텍스처링 방법에 의해 개질된 결정질 태양전지 표면의 반사율을 표시한 그래프이고, 도 2는 도 1에 나타나 있는 각 샘플의 표면상태를 나타내는 사진이다.
도 1에서 샘플1은 텍스처링이 안된 결정질 태양전지의 반사율을 나타낸 것이고, 샘플2 및 샘플3은 본 발명의 공정가스를 이용하여 텍스처링한 결정질 태양전지의 반사율을 나타낸 것이다.
샘플2는 염소가스 대신에 수소가스가 포함된 본 발명의 공정가스를 진공 플라즈마장치에 공급하여 텍스처링한 것이고, 샘플3은 염소가스 대신에 수소가스가 포함된 본 발명의 공정가스를 대기압 플라즈마장치에 공급하여 텍스처링한 것이다.
도 1에서 수소가스가 포함된 공정가스를 이용한 샘플2 및 샘플3은 텍스처링이 이루어져, 반사율이 낮게 나오는 것을 볼 수 있다.
반사율이 낮게 나온다는 것은 텍스처링이 잘 이루어졌다는 것을 의미한다.
그리고, 도 2(a)는 샘플2에 의해 텍스처링한 샘플의 표면상태이고, 도 2(b)는 샘플3에 의해 텍스처링한 샘플의 표면상태이다.
도 2에서 볼 수 있는 바와 같이 결정질 태양전지의 표면에는 텍스처링이 잘 이루어져 있음을 확인할 수 있고, 이로 인해 도 1에 도시된 바와 같이 낮은 반사율을 갖게 되는 것을 확인할 수 있다.
특히 본 발명의 공정가스를 대기압 플라즈마에 사용하였을 때에는 약 600~1000nm 파장대에서 더 우수한 반사율을 갖는 것을 확인할 수 있다.
위와 같이 본 발명의 결정질 태양전지용 플라즈마 텍스처링 방법은, 플라즈마 발생장치에 공급하는 공정가스에서 염소가스 대신에 수소가스를 공급하도록 함으로써, 장치의 부식이 이루어나지 않도록 하면서도 결정질 태양전지의 식각률을 향상시켜 결정질 태양전지의 반사율을 낮출 수 있는 효과가 있다.
그 외 다른 사항은 종래의 일반적인 플라즈마 텍스처링 방법과 동일하기 때문에, 이에 대한 자세한 설명은 생략한다.
본 발명인 결정질 태양전지용 플라즈마 텍스처링 방법은 전술한 실시예에 국한하지 않고, 본 발명의 기술 사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.

Claims (5)

  1. 플라즈마를 이용하여 결정질 태양전지를 텍스처링하는 방법에 있어서,
    결정질 태양전지를 가열하고,
    가열된 결정질 태양전지에 공정가스와 플라스마 발생가스를 혼합한 후 공급하여 플라즈마에 의해 결정질 태양전지의 표면을 텍스처링하되,
    상기 공정가스는 염소가스(Cl2)가 불포함되어 있고, N2, NF3, O2, H2가 혼합되어 이루어지며,
    상기 공정가스는 N2 : 95~99부피%, NF3 : 0.5~3부피%, O2 : 0.2~1부피%, H2 : 0.2~1부피%가 혼합되어 이루어지며,
    상기 비율로 혼합된 상기 공정가스는 대기압 플라즈마장치에 공급되고,
    상기 공정가스에 포함된 수소가스가 방전되면, 수소가스에서 방전되어 튀어나오는 전자에 의하여 플라즈마 밀도가 증가되어 결정질 태양전지의 표면을 물리적으로 텍스처링하여 600~1000nm 파장대에서 높은 반사율을 갖도록 하는 것을 특징으로 하는 결정질 태양전지용 플라즈마 텍스처링 방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
KR1020170159789A 2017-11-28 2017-11-28 결정질 태양전지용 플라즈마 텍스처링 방법 KR101965343B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170159789A KR101965343B1 (ko) 2017-11-28 2017-11-28 결정질 태양전지용 플라즈마 텍스처링 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170159789A KR101965343B1 (ko) 2017-11-28 2017-11-28 결정질 태양전지용 플라즈마 텍스처링 방법

Publications (1)

Publication Number Publication Date
KR101965343B1 true KR101965343B1 (ko) 2019-04-03

Family

ID=66165205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170159789A KR101965343B1 (ko) 2017-11-28 2017-11-28 결정질 태양전지용 플라즈마 텍스처링 방법

Country Status (1)

Country Link
KR (1) KR101965343B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120536A1 (en) * 2009-11-20 2011-05-26 Dapeng Wang Roughness control of a wavelength selective reflector layer for thin film solar applications
KR20110062447A (ko) 2009-12-03 2011-06-10 비아이 이엠티 주식회사 공정가스 분리 공급형 대기압 플라즈마 장치
JP2012054438A (ja) * 2010-09-02 2012-03-15 Landmark Technology:Kk シリコン系基板の粗面化方法および装置
KR20140105603A (ko) * 2011-12-22 2014-09-01 토탈 마케팅 서비스 실리콘 기판의 표면 텍스처링 공정, 구조화된 기판 및 그러한 구조화된 기판을 포함하는 광전지 소자
KR20170023396A (ko) * 2015-08-21 2017-03-03 주식회사 쎄코 플라즈마 에칭을 이용한 반사방지 표면의 제조방법 및 반사방지 표면이 형성된 기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120536A1 (en) * 2009-11-20 2011-05-26 Dapeng Wang Roughness control of a wavelength selective reflector layer for thin film solar applications
KR20110062447A (ko) 2009-12-03 2011-06-10 비아이 이엠티 주식회사 공정가스 분리 공급형 대기압 플라즈마 장치
JP2012054438A (ja) * 2010-09-02 2012-03-15 Landmark Technology:Kk シリコン系基板の粗面化方法および装置
KR20140105603A (ko) * 2011-12-22 2014-09-01 토탈 마케팅 서비스 실리콘 기판의 표면 텍스처링 공정, 구조화된 기판 및 그러한 구조화된 기판을 포함하는 광전지 소자
KR20170023396A (ko) * 2015-08-21 2017-03-03 주식회사 쎄코 플라즈마 에칭을 이용한 반사방지 표면의 제조방법 및 반사방지 표면이 형성된 기판

Similar Documents

Publication Publication Date Title
US10825653B2 (en) Method of improving ion beam quality in an implant system
US10290466B2 (en) Boron implanting using a co-gas
CN104637764A (zh) 离子生成装置及离子生成方法
Karakas et al. Optical emission spectroscopy and Langmuir probe diagnostics of CH3F/O2 inductively coupled plasmas
US20180087148A1 (en) Method Of Improving Ion Beam Quality In A Non-Mass-Analyzed Ion Implantation System
CN101667609A (zh) 二氧化硅组合物的选择性蚀刻
KR20160003248A (ko) 연장된 수명의 이온 소스
US9034743B2 (en) Method for implant productivity enhancement
US20130341761A1 (en) Methods for extending ion source life and improving ion source performance during carbon implantation
KR101965343B1 (ko) 결정질 태양전지용 플라즈마 텍스처링 방법
JP5466837B2 (ja) テクスチャーの形成方法
US8603363B1 (en) Compositions for extending ion source life and improving ion source performance during carbon implantation
Lisovskiy et al. Rf discharge dissociative mode in NF3 and SiH4
Entley et al. C 2 F 6/O 2 and C 3 F 8/O 2 Plasmas SiO2 Etch Rates, Impedance Analysis, and Discharge Emissions
Cao et al. Langmuir Probe Measurements of an Expanding Argon Plasma
JP6412573B2 (ja) ワークピースを処理する方法
Jia et al. Optical emission spectroscopy of atmospheric pressure microwave plasmas
US20070243713A1 (en) Apparatus and method for generating activated hydrogen for plasma stripping
Farouk et al. Particle simulation of CH 4/H 2 RF glow discharges for DLC film deposition
Piskin et al. Consequences of photodetachment in pulsed Ar/O 2 and Ar/Cl 2 inductively coupled plasmas
Hori Dynamics of physicochemical reactions in time-modulation of plasmas for advanced semiconductor processes
Chopra et al. Plasma characterization of the atmospheric pressure carbon arc
Huang et al. Remote plasma sources sustained in NF3 mixtures
Chopra et al. Characterization of an atmospheric pressure carbon arc plasma
Bansal et al. Evaluating the Performance of Water Vapor in an ECR Plasma Cathode

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant