KR101960382B1 - Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same - Google Patents

Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same Download PDF

Info

Publication number
KR101960382B1
KR101960382B1 KR1020160143113A KR20160143113A KR101960382B1 KR 101960382 B1 KR101960382 B1 KR 101960382B1 KR 1020160143113 A KR1020160143113 A KR 1020160143113A KR 20160143113 A KR20160143113 A KR 20160143113A KR 101960382 B1 KR101960382 B1 KR 101960382B1
Authority
KR
South Korea
Prior art keywords
butanol
gene encoding
gene
dna
dehydrogenase
Prior art date
Application number
KR1020160143113A
Other languages
Korean (ko)
Other versions
KR20180047228A (en
Inventor
오민규
정휘민
허민지
엄재용
이상우
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020160143113A priority Critical patent/KR101960382B1/en
Publication of KR20180047228A publication Critical patent/KR20180047228A/en
Application granted granted Critical
Publication of KR101960382B1 publication Critical patent/KR101960382B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/011573-Hydroxybutyryl-CoA dehydrogenase (1.1.1.157)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99002Butyryl-CoA dehydrogenase (1.3.99.2), i.e. short chain acyl-CoA dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03001Citrate (Si)-synthase (2.3.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01017Enoyl-CoA hydratase (4.2.1.17), i.e. crotonase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 혐기조건에서 글루코오스로부터 부탄올 생성능을 가지는 변이 미생물에서 알코올 디하이드로게네이즈를 코딩하는 유전자와 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자가 호기성 미생물 유래 유전자로 치환되어 있고, 시트레이트 신타아제 유전자의 발현이 하향조절되어 있는 변이 미생물 및 이를 이용한 부탄올의 제조방법에 관한 것으로, 발명에 따르면, 저가의 배양배지를 이용할 수 있는 호기발효를 통하여 부탄올을 고 수율로 제조할 수 있어, 원료비용 절감효과를 얻을 수 있으며, 종래 필수적이었던 혐기조건에 구애받지 않아 부탄올 제조공정의 다양성을 꾀할 수 있다. The present invention provides a mutant microorganism having an ability to produce butanol from glucose under anaerobic conditions, wherein a gene encoding an alcohol dehydrogenase and a gene encoding a propionaldehyde dehydrogenase are substituted with an aerobic microorganism-derived gene, and a citrate synthase gene The present invention relates to a mutant microorganism whose expression is down-regulated and a method for producing butanol using the same. According to the invention, it is possible to produce butanol with high yield through aerobic fermentation using a low-cost culture medium, And the diversity of the butanol manufacturing process can be achieved without being dependent on the conventional anaerobic conditions.

Description

호기조건에서 부탄올을 생성하는 변이 미생물 및 이를 이용한 부탄올의 제조방법{Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same} TECHNICAL FIELD The present invention relates to a mutant microorganism that produces butanol in an aerobic condition and a method for producing butanol using the same,

본 발명은 호기조건에서 부탄올 생성능을 가지는 변이 미생물에 관한 것으로, 더욱 자세하게는 혐기조건에서 글루코오스로부터 부탄올 생성능을 가지는 변이 미생물에서 알코올 디하이드로게네이즈를 코딩하는 유전자와 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자가 호기성 미생물 유래 유전자로 치환되어 있고, 시트레이트 신타아제 유전자의 발현이 하향조절되어 있는 변이 미생물 및 이를 이용한 부탄올의 제조방법에 관한 것이다. The present invention relates to a mutant microorganism having an ability to produce butanol in an aerobic condition, and more particularly to a mutant microorganism having an ability to produce butanol from glucose under anaerobic conditions and a gene encoding an alcohol dehydrogenase and a propionaldehyde dehydrogenase Wherein the gene is replaced by a gene derived from an aerobic microorganism, and the expression of the citrate synthase gene is down-regulated, and a method for producing butanol using the mutant microorganism.

n-부탄올은 가솔린과 비슷한 에너지밀도를 가지는 알코올로서 가솔린과 혼합하여 바이오연료로 활용될 수 있는 물질이다. n-부탄올은 자연적으로 Clostridium 종에서 아세톤-부탄올-에탄올 발효를 통해 생산되는 것으로 잘 알려져 있으며, 많은 연구가 선행되어 왔다. 하지만 Clostridium 종은 대사공학적 접근이 제한적이며, 혐기조건에서만 배양할 수 있는 특징을 지닌다. 따라서 E. coli를 포함한 다양한 종의 미생물에서 n-부탄올 생산을 위한 연구가 진행되어 왔다. 예를 들어 E. coli로부터 n-부탄올을 생산하기 위해서 Coenzyme A 기반의 대사회로나 reverse beta oxidative 대사회로, ACS 기반의 대사회로등이 개발되어왔다(Lan, E. I., and Liao, J. C., Bioresour.Technol. 135:339, 2013).n-Butanol is an alcohol with an energy density similar to that of gasoline and can be used as a biofuel by mixing with gasoline. It is well known that n-butanol is produced naturally by Clostridium species through acetone-butanol-ethanol fermentation, and many studies have been conducted. However, Clostridium species has a limited metabolic engineering approach and can be cultured only in anaerobic conditions. Thus, studies have been conducted on the production of n-butanol in microorganisms of various species including E. coli . For example, in order to produce n-butanol from E. coli , Coenzyme A-based metabolism circuits, reverse beta oxidative metabolism circuits and ACS-based metabolism circuits have been developed ( Lan, EI, and Liao, JC , Bioresour.Technol . 135: 339, 2013).

대표적으로 E. coli에서 아세트산, 젖산, 에탄올, 숙신산등의 부산물 대사회로를 제거하여 30g/L 이상의 부탄올을 생산한 연구 성과가 발표되었으며, 또한 세포내의 redox 정도를 조절하는 것이 부탄올 생산에 도움이 된다는 연구 결과가 존재한다(Lim, JH et al., Metab. Eng. 20:56, 2013; Sani, M.et al., Biotechnol. Biofuels 9:69. 2016).It has been reported that the by-product metabolism circuit of acetic acid, lactic acid, ethanol, succinic acid and the like has been removed from E. coli to produce more than 30 g / L of butanol. Also, controlling the degree of redox in the cells has been shown to be beneficial for the production of butanol (Lim, JH et al., Metab. Eng. 20:56, 2013, Sani, M. et al., Biotechnol. Biofuels 9:69, 2016).

대사공학적 도구로 특정 유전자의 발현을 높이기 위해 플라스미드를 사용하는 방법이 주로 사용되어왔다. 하지만 플라스미드 기반의 유전자 과발현 방법은 수반되는 비용과 불안정성 문제로 인해 산업적으로 활용되기 힘든 측면이 있다. 따라서 플라스미드가 아닌 미생물의 지놈을 직접 편집하는 기술이 필요로 된다. 전통적으로 미생물의 지놈 상에 목적 유전자 삽입하는 낙인(Knock in) 혹은 불필요한 유전자를 삭제하는 낙 아웃(Knock out) 방법이 사용되어왔다. 또한 최근 유전자 조작 도구의 발전으로 여러 유전자들의 발현을 효율적으로 조절하는 것이 가능해 졌으며, 유전자 발현의 정도를 예측하고 구현하는 기술이 주목받고 있다. 이 방법을 통해서는 유전자의 발현을 On-Off가 아닌 적정 수준으로 조절할 수 있기에 대사회로 최적화에 효과적으로 활용될 수 있다. 대장균에서 small RNA와 Hfq 단백질을 활용하여 유전자의 발현량을 조절하는 기술이나 dCas9을 활용하여 유전자를 낙다운(Knock down) 하려는 연구가 시도되어왔다. small RNA나 dCas9을 활용한 유전자 낙다운 방법은 hfq 및 dCas9과 같은 부가적인 단백질의 발현이 필수적이기 때문에 세포 생장에 불리한 면이 존재하며, 정확도가 높지 않아 세포 내 여러 부위를 표적하여 예상치 못한 문제점을 발생시킬 수 있다. 따라서 5` UTR 부근의 유전적 염기서열을 임의로 조작 및 치환하여 외부 단백질의 발현 없이도 여러 유전자의 발현을 조절하는 기술이 유리하다. 5` UTR 부근을 조작하는 방법은 CRISPR/Cas9을 활용한 지놈 편집방법을 통해 구현 가능하다. The use of plasmids to increase the expression of specific genes has been used as a metabolic engineering tool. However, the plasmid-based gene overexpression method is difficult to be industrially used due to the accompanying cost and instability problem. Therefore, there is a need for a technique for directly editing the genome of a microorganism other than a plasmid. Traditionally, knock-in methods have been used to insert target genes into microbial genomes or knock out methods to eliminate unnecessary genes. Recent development of gene manipulation tools has made it possible to efficiently control the expression of various genes, and the technology to predict and implement the degree of gene expression has been attracting attention. In this way, gene expression can be controlled to an appropriate level, not on-off, so that it can be effectively used for metabolic optimization. Studies have been made on the use of small RNA and Hfq proteins in Escherichia coli to regulate gene expression levels or to knock down genes using dCas9. The gene knockdown method using small RNA or dCas9 is disadvantageous to cell growth because of the necessity of expression of additional proteins such as hfq and dCas9 and is not accurate enough to target various sites in the cell to unexpected problems . Therefore, it is advantageous to control the expression of various genes without expressing the external protein by arbitrarily manipulating and replacing the genetic base sequence near the 5 'UTR. The method of manipulating the vicinity of the 5` UTR can be implemented by the GNOME editing method using CRISPR / Cas9.

CRISPR/Cas 시스템은 박테리아나 고세균류(archaea)가 바이러스의 공격 또는 다른 미생물로부터 전해지는 접합 플라스미드(conjugated plasmid) 로부터 스스로를 방어하기 위한 면역기작이다. 세포에 유입된 외래 유전자는 endonuclease인 Cas protein에 의해 30 bp 내외로 잘리게 되고, 이것은 박테리아 게놈 내에 여러 개의 짧은 염기서열이 반복되는 구간인 CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)에 sequence로 보존하게 된다. 이렇게 CRISPR 에 삽입된 DNA를 spacer 라 명명하며, 재차 같은 염기서열을 지니는 DNA 혹은 RNA가 침입했을 때 그것을 인식하는 역할을 한다. CRISPR에 해당되는 DNA 서열은 우선 전사기작을 통해 precursor-crRNA(pre-crRNA)로 발현되고, 이는 다시 cas nuclease에 의해 mature-crRNA (crRNA)로 변형된 후, Cas protein과 결합하여 인식된 유전자 서열을 절단하게 된다. CRISPR/Cas9 시스템은 유전자 편집 가위로 실험자가 원하는 유전자 서열을 목표화 할 수 있다는 장점을 가지고 있다(Bikard, D et al., Nucleic Acids Res. 41, 7429, 2013; Cleto, S et al.,.ACS Synth. Biol. 5, 375, 2016). The CRISPR / Cas system is an immune mechanism for bacteria or archaea to defend themselves from the attack of viruses or conjugated plasmids that are transmitted from other microorganisms. The foreign gene introduced into the cell is cleaved to about 30 bp by the endonuclease Cas protein, which is stored as a sequence in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), which is a region where several short nucleotide sequences are repeated in the bacterial genome . The DNA inserted into the CRISPR is called spacer, and plays a role in recognizing the DNA or RNA having the same nucleotide sequence when it invades again. The DNA sequence corresponding to CRISPR is first expressed as a precursor-crRNA (pre-crRNA) through a transcription mechanism, which is then transformed into a mature-crRNA (crRNA) by cas nuclease, . The CRISPR / Cas9 system has the advantage of allowing the experimenter to target the desired gene sequence with genetic editing scissors (Bikard, D et al. , Nucleic Acids Res. 41, 7429, 2013; Cleto, S et al . ACS Synth. Biol ., 5, 375, 2016).

위 시스템을 활용하여 목적하는 염기서열에 이중가닥 절단을 만들고 세포가 가지는 DNA 복구 기작을 활용하여 지놈 편집이 가능하다. 세포는 비상동 말단접합 이라는 기작을 활용하여 손상된 DNA를 주형 가닥 없이 복구가 가능하며 그 결과 염기서열의 삽입이나 삭제가 일어나게 된다. 또한 상동재조합이라는 기작을 통해 손상된 DNA 수복이 가능하며 그 과정에서 주형 DNA와 같은 염기서열이 손상된 부위에 삽입된다. 이와 같이, CRISPR/Cas9과 세포가 가지는 DNA 복구기작을 활용하여 유전자의 낙인, 낙 아웃, 치환 등 다소 긴 유전서열을 편집할 수 있을 뿐만아니라 점 돌연번이(oaint mutation)와 같은 짧은 유전자 서열 또한 편집 가능하다.By using the above system, it is possible to edit the nucleotide by making double strand break in the desired nucleotide sequence and utilizing the DNA repair mechanism of the cell. The cells can recover the damaged DNA without the template strand by utilizing the mechanism of the asymmetric terminal junction, resulting in insertion or deletion of the nucleotide sequence. In addition, homologous recombination allows repair of damaged DNA, and in the process, DNA sequences such as template DNA are inserted into the damaged region. In this way, it is possible not only to edit a rather long genetic sequence such as stigmatization, dropout, substitution, etc. of DNA using the CRISPR / Cas9 and the DNA repair mechanism of the cell, but also to short gene sequence such as ount mutation It is editable.

한편, 지금까지 연구된 부탄올 생산균주는 Coenzyme A 대사회로를 통한 혐기조건에서 생산되어 왔다. 미생물의 혐기발효를 통해서는 세포 내 높은 수준의 NADH 농도 기대할 수 있어 대사회로에 요구되는 다량의 NADH를 충족시킬 수 있는 장점이 있다. 또한 대사회로에 사용되는 효소들 (Clostridium 유래의 alcohol dehydrogenase)이 산소에 민감한 특징을 지니기 때문에 혐기조건의 발효가 진행되어 왔다. 하지만 혐기발효에서는 TCA 회로 및 산화적 인산화가 작동되지 않기 때문에 세포 내 낮은 에너지 수준이 문제가 될 수 있으며, 대사회로에 관련된 여러 단백질을 발현 시 미생물 성장에 저해를 가져오게 된다. 이러한 이유로 대부분의 부탄올 생산균주는 효모추출물이나 트립톤과 같은 단백질 수화물이 포함된 고 영양배지 조건에서 진행되어 왔다. 이와 같이 복합배지를 사용한 바이오 부탄올 생산 공정은 원료로 사용되는 배지의 비용의 증가를 가져올 뿐만 아니라 배양 후 불순물 정제를 하는 단계에 있어서 경제적으로 불리한 요소로 작용되어 왔다.On the other hand, the butanol - producing strains studied so far have been produced under anaerobic conditions through the Coenzyme A metabolic pathway. Through the anaerobic fermentation of microorganisms, a high level of NADH in the cell can be expected, which is advantageous in meeting a large amount of NADH required for metabolic circuits. In addition, the enzymes used in metabolic circuits (alcohol dehydrogenase from Clostridium) are oxygen sensitive, so anaerobic fermentation has progressed. However, since anaerobic fermentation does not activate TCA and oxidative phosphorylation, low energy level in the cell may be a problem and it may inhibit microbial growth when expressing various proteins involved in metabolic circuits. For this reason, most of the butanol-producing strains have been carried out under high nutrient medium conditions including protein extracts such as yeast extract and tryptone. As described above, the biobutanol production process using the complex medium not only increases the cost of the culture medium used as a raw material, but also serves as an economically disadvantageous factor in the step of purifying impurities after cultivation.

이에, 본 발명자들은 호기발효를 통하여 저가의 배지에서 부탄올을 제조하는 방법을 개발하고자 예의 노력한 결과, 혐기조건에서 글루코오스로부터 부탄올 생성능을 가지는 변이 미생물에서 알코올 디하이드로게네이즈를 코딩하는 유전자와 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자를 호기성 미생물 유래 유전자로 치환하고, 시트레이트 신타아제 유전자의 발현이 하향조절시키는 경우, 호기조건에서도 높은 수율로 부탄올을 생성시킬 수 있다는 것을 확인하고 본 발명을 완성하게 되었다. Accordingly, the present inventors have made intensive efforts to develop a method for producing butanol in a low-cost medium through aerobic fermentation. As a result, it has been found that a mutant microorganism having an ability to produce butanol from glucose under anaerobic conditions, It was confirmed that when the gene coding for hydrogenase is replaced with an aerobic microorganism-derived gene and the expression of the citrate synthase gene is down-regulated, butanol can be produced in a high yield even under exhalation conditions, thereby completing the present invention .

본 발명의 목적은 호기조건에서 부탄올 생성능을 가지는 변이 미생물을 제공하는데 있다. It is an object of the present invention to provide a mutant microorganism having an ability to produce butanol under exhalation conditions.

본 발명이 다른 목적은 상기 변이 미생물을 이용한 부탄올의 제조방법을 제공하는데 있다. Another object of the present invention is to provide a process for producing butanol using the mutant microorganism.

상기 목적을 달성하기 위하여, 본 발명은 글루코오스로부터 아세틸-CoA를 생성하는 경로를 가지는 미생물에서 다음 유전자가 도입되어 있는 호기조건에서 부탄올 생성능을 가지는 변이 미생물을 제공한다:In order to achieve the above object, the present invention provides a mutant microorganism having a butanol-producing ability in an aerobic condition in which the following gene is introduced in a microorganism having a pathway for producing acetyl-CoA from glucose:

(a) 호기성 균주 유래 알코올 디하이드로게네이즈를 코딩하는 유전자;(a) a gene encoding an aerobic strain-derived alcohol dehydrogenase;

(b) 호기성 균주 유래의 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자;(b) a gene encoding a propionaldehyde dehydrogenase derived from an aerobic strain;

(c) 부틸-CoA 디하이드로게네이즈를 코딩하는 유전자;(c) a gene encoding butyl-CoA dehydrogenase;

(d) 크로토네이즈(crotonase)를 코딩하는 유전자; (d) a gene encoding crotonase;

(e) 하이드록시부티릴-CoA 디하이드로게네이즈를 코딩하는 유전자; 및(e) a gene encoding hydroxybutyryl-CoA dehydrogenase; And

(f) 티올레이즈(thiolase)를 코딩하는 유전자.(f) a gene encoding thiolase.

본 발명은 또한, 글루코오스로부터 아세틸-CoA를 생성하는 경로를 가지는 미생물에서 다음 유전자가 도입되어 있고, 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자의 발현이 하향조절되어 있는 호기조건에서 부탄올 생성능을 가지는 변이 미생물을 제공한다:The present invention also provides a microorganism having the pathway for producing acetyl-CoA from glucose, wherein the following gene is introduced in the microorganism and the expression of the gene coding for citrate synthase is down-regulated, The branch provides mutant microorganisms:

(a) 호기성 균주 유래 알코올 디하이드로게네이즈를 코딩하는 유전자;(a) a gene encoding an aerobic strain-derived alcohol dehydrogenase;

(b) 호기성 균주 유래의 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자;(b) a gene encoding a propionaldehyde dehydrogenase derived from an aerobic strain;

(c) 부틸-CoA 디하이드로게네이즈를 코딩하는 유전자;(c) a gene encoding butyl-CoA dehydrogenase;

(d) 크로토네이즈(crotonase)를 코딩하는 유전자; (d) a gene encoding crotonase;

(e) 하이드록시부티릴-CoA 디하이드로게네이즈를 코딩하는 유전자; 및(e) a gene encoding hydroxybutyryl-CoA dehydrogenase; And

(f) 티올레이즈(thiolase)를 코딩하는 유전자.(f) a gene encoding thiolase.

본 발명은 또한, (a) 상기 변이 미생물을 배양하여 부탄올을 생성시키는 단계; 및 (b) 생성된 부탄올을 수득하는 단계를 포함하는 부탄올의 제조방법을 제공한다. (A) culturing the mutant microorganism to produce butanol; And (b) obtaining the produced butanol.

본 발명에 따르면, 저가의 배양배지를 이용할 수 있는 호기발효를 통하여 부탄올을 고 수율로 제조할 수 있어, 원료비용 절감효과를 얻을 수 있으며, 종래 필수적이었던 혐기조건에 구애받지 않아 부탄올 제조공정의 다양성을 꾀할 수 있다. According to the present invention, butanol can be produced at a high yield through aerobic fermentation using an inexpensive culture medium, and it is possible to obtain the effect of reducing the cost of raw materials, and the variety of butanol manufacturing process .

도 1은 EMJ40 균주의 부탄올 대사회로를 나타낸 것이다.
도 2는 EMJ50 균주의 부탄올 대사회를 나타낸 것이다.
도 3의 a는 호기와 혐기조건에서 EMJ40의 성장과 부탄올 생산성을 확인한 결과를 나타낸 것이고, b는 EMJ40 균주와 EMJ50의 부탄올 생산과 수율 비교한 결과를 나타낸 것이다.
도 4는 인공의 염기서열로 치환된 citrate synthase의 5`UTR 과 예상되는 발현정도를 나타낸 것이다.
도 5의 a는 EMJ50~EMJ55의 생장곡선을 비교한 결과를 나타낸 것이고, b는 EMJ50~EMJ55의Citrate synthase의 활성정도를 비교한 결과를 나타낸 것이고, c는 EMJ50~EMJ55의 부탄올 생산성과 수율을 비교한 결과를 나타낸 것이다.
Figure 1 shows the butanol metabolism circuit of the EMJ40 strain.
Figure 2 shows the butanol-versus-society of the EMJ50 strain.
FIG. 3 (a) shows the results of confirming the growth and butanol productivity of EMJ40 under aerobic and anaerobic conditions, and (b) shows the results of comparing butanol production and yield of EMJ40 and EMJ50.
Figure 4 shows the 5'UTR and predicted expression levels of citrate synthase substituted with an artificial nucleotide sequence.
5a shows the results of comparing the growth curves of EMJ50 to EMJ55, b shows the results of comparing activity of citrate synthase of EMJ50 to EMJ55, and c shows the yield and yield of butanol productivity of EMJ50 to EMJ55 .

종래에는 혐기발효를 통해 부탄올을 생산하였으며, 혐기조건에서의 에너지 부족 현상을 극복하기 위해 고영양 배지를 사용하여 배양을 진행했다. 본 발명에서는 최소 영양배지에서 부탄올을 생산하였으며, 호기조건에서 실험을 진행하여 부족한 에너지를 산화적 인산화를 통해 충족시켰다. 또한 기존의 부탄올 대사회로에 관여하는 효소들 중 호기성 조건에서 활성이 낮아지는 Clostridium 유래의 알코올 디하이드로게네이즈(adhE2)를 Salmonella 유래의 CoA 의존성 프로피온알데하이드 디하이드로게네이즈(CoA dependent propionaldehyde dehydrogenase, pduP)와 lactococcus 유래의 알콜 디하이드로게네이즈(adhA)로 대체해 주어 호기성 조건에서도 활성을 지니는 대사회로를 구축하였다. 더불어 호기성 조건에서 부탄올의 전구체인 acetyl-CoA가 TCA 회로로 과량 유입되는 문제를 해결하기 위해 TCA 회로에 관여하는 첫 번째 효소인 citrate synthase(gltA)의 발현을 조절하였다. CRISPR/Cas9 시스템을 활용한 지놈 편집기술을 통해 대장균 지놈상에 존재하는 gltA의 5` untranslated region (UTR) 유전적 염기서열의 변형하였다. 다양한 인공의 UTR 서열을 합성하여 gltA의 5`UTR 부분을 조작하였고, 생산 균주의 생장과 목표물질인 부탄올의 생산이 최적으로 발생하는 균주를 개발하였다. Conventionally, butanol was produced through anaerobic fermentation and cultivation was carried out using a high nutrient medium to overcome the energy shortage in anaerobic conditions. In the present invention, butanol was produced from minimal nutrient medium and the experiment was carried out under aerobic conditions to satisfy the insufficient energy through oxidative phosphorylation. In addition, CoA-dependent propionaldehyde dehydrogenase (pduP) derived from Salmonella, which is an alcohol dehydrogenase (adhE2) derived from Clostridium and whose activity is lowered under aerobic conditions among the enzymes involved in the conventional butanol metabolism circuit, And an alcoholic dihydrogenase (adhA) derived from lactococcus, thereby constructing a metabolic circuit having an activity under aerobic conditions. In addition, to overcome the problem of acetyl-CoA, which is a precursor of butanol in aerobic condition, to TCA circuit, we controlled the expression of citrate synthase (gltA), the first enzyme involved in the TCA cycle. The genomic sequence of the 5 'untranslated region (UTR) of gltA on the E. coli genome was modified by a genome editing technique utilizing the CRISPR / Cas9 system. A variety of artificial UTR sequences were synthesized to manipulate the 5'UTR region of gltA and developed a strain in which the production of the strain and the production of the target butanol were optimized.

따라서, 본 발명은 일 관점에서,글루코오스로부터 아세틸-CoA를 생성하는 경로를 가지는 미생물에서 다음 유전자가 도입되어 있는 호기조건에서 부탄올 생성능을 가지는 변이 미생물에 관한 것이다:Accordingly, in one aspect, the present invention relates to a mutant microorganism having a butanol-producing ability in an aerobic condition in which the following gene is introduced in a microorganism having a pathway for producing acetyl-CoA from glucose:

(a) 호기성 균주 유래 알코올 디하이드로게네이즈를 코딩하는 유전자(adhA);(a) a gene (adhA) encoding an aerobic strain-derived alcohol dehydrogenase;

(b) 호기성 균주 유래의 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자(pduP);(b) a gene (pduP) encoding a pathogenic strain-derived propionaldehyde dehydrogenase;

(c) 부틸-CoA 디하이드로게네이즈를 코딩하는 유전자(ter);(c) a gene (ter) encoding a butyl-CoA dehydrogenase;

(d) 크로토네이즈(crotonase)를 코딩하는 유전자(crt); (d) a gene (crt) encoding crotonase;

(e) 하이드록시부티릴-CoA 디하이드로게네이즈를 코딩하는 유전자(hbd); 및(e) a gene (hbd) encoding hydroxybutyryl-CoA dehydrogenase; And

(f) 티올레이즈(thiolase)를 코딩하는 유전자(atoB).(f) a gene (atoB) that codes for thiolase.

본 발명에서는 고 영양배지가 아닌 조건에서도 세포 내 높은 수준의 에너지 레벨을 유지하고자 호기 조건에서의 부탄올 생산을 시도했다. 호기조건에서는 해당과정과 TCA 회로로부터 생성된 NADH가 ATP로 전환되는 산화적 인산화가 진행되기 때문에 세포 내 높은 ATP를 형성할 수 있다. 하지만 이를 구현하기 위해서는 앞서 언급한 바와 같이 호기조건에서 발생할 수 있는 효소의 비활성화 문제를 해결해야 한다. 이를 위해 산소에 민감한 alcohol dehydrogenase를 대체 할 수 있는 효소를 도입하였다. 또한 호기조건에서 부탄올의 전구체인 acetyl-CoA가 TCA 회로로 과량 유입되어 부탄올 생산성이 저해될 수 있기 때문에 세포의 생장과 부탄올 생산성이 모두 최적이 되는 TCA 회로 작동이 필수적이다. TCA 회로의 첫 번째 스텝에 관여하는 효소의 발현량을 지놈 편집도구를 활용하여 정교하게 조절함으로써 최적의 TCA 회로 속도를 결정할 수 있다.  In the present invention, try to produce butanol under exhalation conditions to maintain a high level of energy level in the cell even under the condition of not being high nutrient medium. In the aerobic condition, oxidative phosphorylation of the NADH produced from the corresponding process and the TCA circuit is converted to ATP, which leads to formation of high ATP in the cell. However, in order to achieve this, it is necessary to solve the problem of inactivation of enzymes which may occur in the exhalation condition as mentioned above. For this purpose, an enzyme capable of replacing oxygen-sensitive alcohol dehydrogenase was introduced. In addition, since acetyl-CoA, which is a precursor of butanol, may be excessively introduced into the TCA circuit in the aerobic condition, butanol productivity may be impaired, it is essential to operate the TCA circuit in which the cell growth and the butanol productivity are both optimized. The optimal TCA circuit speed can be determined by finely adjusting the expression level of the enzyme involved in the first step of the TCA circuit using a genome editing tool.

본 발명의 변이미생물은 숙신산, 락테이트, 에탄올 및 아세테이트로 구성된 군에서 선택되는 부산물의 생합성에 관여하는 효소를 코딩하는 유전자가 결실되어 있는 것을 특징으로 할 수 있으며, 바람직하게는 푸마레이트 리덕테이즈, 락테이트 디하이드로 게네이즈, 포스페이트 아세틸 트랜스퍼레이즈 및 아세트알데하이드/알코올 디하이드로게네이즈로 구성된 군에서 선택되는 효소를 코딩하는 유전자가 결실되어 있는 것을 특징으로 할 수 있다. The mutant microorganism of the present invention may be characterized in that a gene coding for an enzyme involved in biosynthesis of a by-product selected from the group consisting of succinic acid, lactate, ethanol and acetate is deleted. Preferably, the mutant microorganism is fumarate reductase , Lactate dehydrogenase, phosphate acetyltransferase and acetaldehyde / alcohol dehydrogenase are deleted from the gene encoding the enzyme.

본 발명에 있어서, 상기 알코올 디하이드로게네이즈를 코딩하는 유전자는 살모넬라 유래인 것을 특징으로 할 수 있으며, 상기 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자는 락토코커스 유래인 것을 특징으로 할 수 있다. In the present invention, the gene coding for the alcohol dehydrogenase may be characterized by being derived from Salmonella, and the gene encoding the propionaldehyde dehydrogenase may be characterized in that the gene encoding the alcohol dehydrogenase is derived from Lactococcus.

본 발명에 있어서, NADH 공급을 위하여, 폴메이트 디하이드로게네이즈(formate dehydrogenase)를 코딩하는 유전자(fdh)가 추가로 도입되어 있는 것을 특징으로 할 수 있다. In the present invention, a gene (fdh) encoding polmate dihydrogenase may be further introduced for supplying NADH.

본 발명의 일 양태에서, EMJ40 균주는 포도당으로부터 부탄올 생산을 생산하기 위한 대사회로가 도입된 대장균으로서, 부산물인 숙신산, 젖산, 에탄올, 아세트산의 생산 유전자가 제거된 돌연변이 균주에 atoB, hbd, crt, ter adhE2 및 NADH 공급을 위한 fdh가 도입된 균주이고(도 1), EMJ50 균주는 부탄올 대사회로의 마지막 두 단계를 clostridium 유래의 adhE2가 아닌 salmonella 유래의 pduP, lactococcus 유래의 adhA로 교체한 균주이다. clostridium 유래의 adhE2는 산소에 민감성을 지니는 효소이기 때문에 호기 발효를 위해 pduP와 adhA로 교체하였다 (도 2). In one embodiment of the present invention, the EMJ40 strain is Escherichia coli having a metabolic pathway for producing butanol production from glucose. The Escherichia coli strain, EMJ40, is a mutant strain in which a production gene of succinic acid, lactic acid, ethanol, (Fig. 1). The EMJ50 strain is a strain in which the last two steps of the butanol metabolism circuit are replaced with adhA derived from salmonella, which is not clostridium-derived, but from pduP and lactococcus derived from salmonella. Since adhE2 from clostridium is an oxygen-sensitive enzyme, it was replaced with pduP and adhA for aerobic fermentation (Fig. 2).

EMJ40을 혐기조건과 호기조건에서 배양한 결과를 보면, 혐기조건에서의 부탄올 생산성이 호기조건에서보다 3.6배 높은 것을 확인할 수 있다. 하지만 호기조건에서의 균주생장이 혐기조건에 비해서 46배 더 높은 것을 확인할 수 있었다 (도3a). 산소에 대한 내성을 가지는 대사회로를 도입한 EMJ50 균주를 호기조건에서 배양 했을 시 호기조건에서 배양한 EMJ40에 비해 59배 많은 양의 부탄올이 생산된 것을 확인할 수 있었다. 이로서 EMJ50에 도입한 대사회로가 산소에 대한 내성을 가지는 것을 추론할 수 있다. 하지만 부탄올의 생산성이 증대 되었음에도 불구하고 여전히 호기조건에서의 부탄올 수율은 혐기조건의 수율에 비해 여전히 낮다는 것을 확인할 수 있었다(도 3b). 이는 호기조건에서 TCA 회로가 활성화 된다는 생물학적 이론에 미루어 볼 때 부탄올의 전구체인 acetyl-CoA가 부탄올 대사회로 보다 TCA회로로 다량 유입된다는 사실을 유추해 볼 수 있다.EMJ40 was cultivated under anaerobic conditions and aerobic conditions, indicating that butanol productivity in anaerobic conditions was 3.6 times higher than in aerobic conditions. However, it was confirmed that the growth of the strain in the aerobic condition was 46 times higher than that in the anaerobic condition (Fig. 3A). When the EMJ50 strain, which introduced a metabolic pathway resistant to oxygen, was cultured under aerobic conditions, it was confirmed that 59 - fold more butanol was produced than EMJ40 cultured under aerobic conditions. It can be deduced that the metabolic circuit introduced into EMJ50 has resistance to oxygen. However, despite the increased productivity of butanol, the butanol yield in still aerobic conditions was still lower than the yield of the anaerobic cases (FIG. 3b). This suggests that acetyl-CoA, a precursor of butanol, is abundantly introduced into the TCA circuit rather than the butanol metabolism circuit, in view of biological theory that TCA circuit is activated under exhalation conditions.

따라서 TCA 회로의 첫 번째 단계인 citrate synthase (gltA)의 발현량을 조절하여 TCA 회로로 유입되는 acetyl-CoA 양을 줄이면서 부탄올 대사회로로의 대사체 흐름을 증가시키고자 하였다. Therefore, we aimed to increase the metabolite flow to the butanol metabolism circuit by decreasing the amount of acetyl-CoA introduced into the TCA circuit by controlling the expression level of citrate synthase (gltA), the first step of the TCA circuit.

다른 관점에서, 본 발명은 본 발명은 또한, 글루코오스로부터 아세틸-CoA를 생성하는 경로를 가지는 미생물에서 다음 유전자가 도입되어 있고, 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자의 발현이 하향조절되어 있는 호기조건에서 부탄올 생성능을 가지는 변이 미생물에 관한 것이다:In another aspect, the present invention relates to a method for producing a microorganism having a pathway for producing acetyl-CoA from glucose, wherein the following gene is introduced and the expression of a gene encoding citrate synthase is down-regulated Lt; RTI ID = 0.0 > butanol-producing < / RTI >

(a) 호기성 균주 유래 알코올 디하이드로게네이즈를 코딩하는 유전자;(a) a gene encoding an aerobic strain-derived alcohol dehydrogenase;

(b) 호기성 균주 유래의 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자;(b) a gene encoding a propionaldehyde dehydrogenase derived from an aerobic strain;

(c) 부틸-CoA 디하이드로게네이즈를 코딩하는 유전자;(c) a gene encoding butyl-CoA dehydrogenase;

(d) 크로토네이즈(crotonase)를 코딩하는 유전자; (d) a gene encoding crotonase;

(e) 하이드록시부티릴-CoA 디하이드로게네이즈를 코딩하는 유전자; 및(e) a gene encoding hydroxybutyryl-CoA dehydrogenase; And

(f) 티올레이즈(thiolase)를 코딩하는 유전자.(f) a gene encoding thiolase.

본 발명에 있어서, 상기 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자의 발현의 하향조절은 CRISPR/Cas9 시스템에 의하여 수행되는 것을 특징으로 할 수 있다. 상기 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자의 5'-UTR 부분이 서열번호 1~4 중 어느 하나로 표시되는 올리고뉴클레오티드로 치환된 것을 특징으로 할 수 있다.In the present invention, the down-regulation of the expression of the gene coding for citrate synthase may be performed by the CRISPR / Cas9 system. The 5'-UTR portion of the gene coding for citrate synthase may be substituted with an oligonucleotide represented by any one of SEQ ID NOS: 1 to 4.

박테리아 내의 단백질 발현을 조절하는 방법 중 하나로 해당 유전자의 5`UTR 염기서열을 조작하는 방법이 알려져 있다. gltA의 5`UTR의 발현세기를 “UTR designer”라는 툴을 활용해 예측하였을 때 그 값이 273860이라는 것을 확인했고, 이보다 낮은 세기의 발현을 위한 인공의 UTR 염기서열을 제작하여 균주내로 도입하고자 하였다. CRISPR/Cas9 시스템을 활용한 게놈편집 기술을 통해 EMJ50 균주의 gltA 5`UTR 염기서열에 4가지 인공의 UTR 염기서열을 치환 시켜 주었고, 발현양에 따라 EMJ51,52,53,54라고 명명했다. 또한 gltA가 제거된 돌연변이를 제작하여 EMJ55라고 명명했다 (도 4) One method of regulating protein expression in bacteria is known to manipulate the 5'UTR sequence of the gene of interest. When the expression intensity of 5 'UTR of gltA was predicted by using a tool called "UTR designer", it was confirmed that the value was 273860, and artificial UTR nucleotide sequence for lower intensity expression was prepared and introduced into the strain . Through the genome editing technology utilizing the CRISPR / Cas9 system, four artificial UTR nucleotide sequences were substituted for the gltA 5 'UTR sequence of the EMJ50 strain and named EMJ51, 52, 53 and 54 according to the expression level. In addition, a glutA-deleted mutant was produced and named EMJ55 (Figure 4)

다른 관점에서, 본 발명은 (a) 상기 변이 미생물을 배양하여 부탄올을 생성시키는 단계; 및 (b) 생성된 부탄올을 수득하는 단계를 포함하는 부탄올의 제조방법에 관한 것이다. In another aspect, the present invention provides a method for producing butanol, comprising: (a) culturing the mutant microorganism to produce butanol; And (b) obtaining the produced butanol.

본 발명의 일 양태에서 EMJ50~EMJ55 까지 6개의 균주를 호기조건에서 배양하고 균주들의 생장곡선, citrate synthase 발현 양, 부탄올 생산성 및 수율을 측정하였을 때, EMJ50의 citrate synthase 발현양을 기준으로 했을 때 EMJ51~EMJ55에서 각각 74%, 54%, 45%, 33%, 17%의 citrate synthase 활성도가 관찰되었다 (도 5b). EMJ50-EMJ55 생장패선에 대해서 EMJ50-EMJ53까지는 배양 시 생장이 저해되는 것을 발견하지 못했지만 EMJ54의 경우 EMJ50에 비해 약 33% 감소된 생장을 확인 할 수 있었으며, EMJ55에서는 생장이 89% 감소한 것을 확인하였다(도 5a). EMJ50-55의 부탄올 생산성에 대해서는 아치형 그래프를 얻을 수 있었으며, EMJ52에서 가장 높은 부탄올 생산성을 확인했다. 또한 부탄올 수율에 대해서는 citrate synthase가 낙 다운 됨에 따라서 증가하는 현상을 관찰할 수 있었다 (도 5c).  In one embodiment of the present invention, when six strains of EMJ50 to EMJ55 were cultured under aerobic conditions and the growth curves, citrate synthase expression, butanol productivity and yield of the strains were measured, EMJ50 expression level of citrate synthase (Fig. 5B), 74%, 54%, 45%, 33%, and 17% of the activity of the citrate synthase was observed in the EMJ55. About EMJ50-EMJ55 growth line EMJ50-EMJ53 did not inhibit growth during cultivation, but EMJ54 showed about 33% less growth than EMJ50 and 89% reduction in EMJ55 5A). For the butanol productivity of EMJ50-55, an arcuate graph was obtained and EMJ52 showed the highest butanol productivity. As to the butanol yield, citrate synthase increased as the concentration of the citrate synthase decreased (FIG. 5c).

본 발명에서, 용어 “벡터 (vector)”는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 “플라스미드 (plasmid)” 및 “벡터 (vector)”는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다. 포유동물 세포 배양물 발현을 위한 전형적인 발현 벡터는 예를 들면 pRK5 (EP 307,247호), pSV16B (WO 91/08291호) 및 pVL1392 (Pharmingen)을 기초로 한다. In the present invention, the term " vector " means a DNA product containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in an appropriate host. The vector may be a plasmid, phage particle, or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms " plasmid " and " vector " are sometimes used interchangeably in the context of the present invention. However, the present invention includes other forms of vectors having functions equivalent to those known or known in the art. Typical expression vectors for mammalian cell culture expression are based on, for example, pRK5 (EP 307,247), pSV16B (WO 91/08291) and pVL1392 (Pharmingen).

“발현 조절 서열 (expression control sequence)”이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. 고 발현용의 프로모터로서 SRα 프로모터와 사이토메가로바이러스 (cytomegalovirus) 유래 프로모터 등이 바람직하게 사용된다. The expression " expression control sequence " means a DNA sequence that is essential for the expression of a coding sequence operably linked to a particular host organism. Such regulatory sequences include promoters for carrying out transcription, any operator sequences for regulating such transcription, sequences encoding suitable mRNA ribosome binding sites, and sequences controlling the termination of transcription and translation. For example, regulatory sequences suitable for prokaryotes include promoters, optionally operator sequences, and ribosome binding sites. Eukaryotic cells include promoters, polyadenylation signals and enhancers. The most influential factor on the expression level of the gene in the plasmid is the promoter. As the promoter for high expression, SRα promoter and cytomegalovirus-derived promoter are preferably used.

본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열의 예에는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다. T7 RNA 폴리메라아제 프로모터 Φ10은 이. 콜라이에서 단백질 NSP를 발현시키는데 유용하게 사용될 수 있다.In order to express the DNA sequences of the present invention, any of a wide variety of expression control sequences may be used in the vector. Examples of useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter regions of phage lambda, fd A regulatory region of a coding protein, a promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, a promoter of said phosphatase, such as Pho5, a promoter of yeast alpha-mating system and a prokaryotic or eukaryotic cell or a virus And other sequences known to modulate the expression of the gene of < RTI ID = 0.0 > SEQ ID < / RTI > The T7 RNA polymerase promoter < RTI ID = 0.0 > 10 < / RTI > Can be useful for expressing protein NSP in E. coli.

핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결 (operably linked)”된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, “작동가능하게 연결된”은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다. A nucleic acid is " operably linked " when placed in a functional relationship with another nucleic acid sequence. This may be the gene and regulatory sequence (s) linked in such a way that the appropriate molecule (e. G., Transcriptional activator protein) is capable of gene expression when bound to the regulatory sequence (s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a whole protein participating in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; Or the ribosome binding site is operably linked to a coding sequence if it affects the transcription of the sequence; Or a ribosome binding site is operably linked to a coding sequence if positioned to facilitate translation. Generally, " operably linked " means that the linked DNA sequences are in contact and, in the case of a secretory leader, are in contact and present in the reading frame. However, the enhancer need not be in contact. The linkage of these sequences is carried out by ligation (linkage) at convenient restriction sites. If such a site does not exist, a synthetic oligonucleotide adapter or a linker according to a conventional method is used.

본원 명세서에 사용된 용어 “발현 벡터”는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어 (recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.As used herein, the term " expression vector " is usually a recombinant carrier into which a fragment of different DNA is inserted, and generally means a fragment of double-stranded DNA. Herein, the heterologous DNA means a heterologous DNA that is not naturally found in the host cell. Once an expression vector is in a host cell, it can replicate independently of the host chromosomal DNA, and several copies of the vector and its inserted (heterologous) DNA can be generated.

당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, to increase the level of expression of a transfected gene in a host cell, the gene must be operably linked to a transcriptional and detoxification regulatory sequence that functions in the selected expression host. Preferably the expression control sequence and the gene are contained within an expression vector containing a bacterial selection marker and a replication origin. If the expression host is a eukaryotic cell, the expression vector should further comprise a useful expression marker in the eukaryotic expression host.

본 발명에서 도입되는 효소의 유전자를 발현시키기 위해 매우 다양한 발현 숙주/벡터 조합이 이용될 수 있다. 진핵 숙주에 적합한 발현 벡터에는, 예를 들어 SV40, 소 유두종바이러스, 아네노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스로부터 유래된 발현 조절 서열을 포함한다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pBluescript, pGEX2T, pUC벡터, col E1, pCR1, pBR322, pMB9 및 이들의 유도체와 같이 E. coli에서 얻는 것을 예시할 수 있는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현 벡터는 2μ 플라스미드 및 그의 유도체이다. 곤충 세포에 유용한 벡터는 pVL 941이다.A wide variety of expression host / vector combinations can be used to express the gene of the enzyme introduced in the present invention. Suitable expression vectors for eukaryotic hosts include, for example, expression control sequences derived from SV40, cow papilloma virus, anenovirus, adeno-associated virus, cytomegalovirus and retrovirus. Expression vectors that can be used for bacterial hosts include bacterial plasmids, such as those obtained from E. coli, such as pBluescript, pGEX2T, pUC vector, col E1, pCR1, pBR322, pMB9 and derivatives thereof, , Phage DNAs that can be exemplified by a wide variety of phage lambda derivatives such as lambda gt10 and lambda gt11, NM989, and other DNA phages such as M13 and filamentous single stranded DNA fragments. A useful expression vector for yeast cells is the 2 [mu] plasmid and its derivatives. The vector useful for insect cells is pVL 941.

상술한 발현 벡터에 의해 형질전환 또는 형질감염된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 “형질전환”은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 “형질감염”은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다. Host cells transformed or transfected with the above expression vectors constitute another aspect of the present invention. As used herein, the term " transformation " means introducing DNA into a host and allowing the DNA to replicate as an extrachromosomal factor or by chromosomal integration. As used herein, the term " transfection " means that an expression vector, whether or not any coding sequence is actually expressed, is accepted by the host cell.

발명의 숙주 세포는 원핵 또는 진핵생물 세포일 수 있다. 또한, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 이. 콜라이, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO 및 생쥐 세포같은 동물 세포, COS 1, COS 7, BSC 1, BSC 40 및 BMT 10과 같은 아프리카 그린 원숭이 세포, 및 조직배양된 인간 세포는 사용될 수 있는 숙주 세포의 예이다. 본 발명의 NSP 단백질을 코딩하는 cDNA를 클로닝할 때에는 동물세포를 숙주로 하는 것이 바람직하다. 본 발명에서는 어류 기원의 CHSE-214, FHM, RTG-2 및 EPC를 예시하였으나 물론 이에 제한되는 것은 아니다. COS 세포를 이용하는 경우에는 COS 세포에서 SV40 라지 T안티겐(large T antigen)이 발현하고 있으므로 SV40의 복제개시점을 갖는 플라스미드는 세포중에서 다수 카피(copy)의 에피솜(episome)으로 존재하도록 되고 통상보다 고 발현이 기대될 수 있다. 도입된 DNA 서열은 숙주 세포와 동일한 종으로부터 얻을 수 있거나, 숙주 세포와 다른 종의 것일 수 있거나, 또는 그것은 어떠한 이종 또는 상동성 DNA를 포함하는 하이브리드 DNA 서열일 수 있다. The host cell of the invention may be a prokaryotic or eukaryotic cell. In addition, a host having high efficiency of introduction of DNA and high efficiency of expression of the introduced DNA is usually used. this. Known eukaryotic and prokaryotic hosts such as E. coli, Pseudomonas, Bacillus, Streptomyces, fungi, and yeast, insect cells such as Spodoptera prougiperata (SF9), animal cells such as CHO and mouse cells, COS 1, COS 7, BSC 1, BSC 40 and BMT 10, and tissue cultured human cells are examples of host cells that can be used. When the cDNA encoding the NSP protein of the present invention is cloned, the animal cell is preferably used as a host. In the present invention, CHSE-214, FHM, RTG-2 and EPC of fish origin are exemplified, but the present invention is not limited thereto. When COS cells are used, SV40 large T antigen is expressed in COS cells. Therefore, the plasmid having the replication origin of SV40 is present as a multiple copy episome in the cells, Higher expression can be expected. The introduced DNA sequence may be obtained from the same species as the host cell, or it may be of a different species from the host cell, or it may be a hybrid DNA sequence comprising any heterologous or homologous DNA.

물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. 발현 클로닝에 의해 NSP 단백질의 cDNA를 클로닝 하려고 할 때의 스크리닝법으로서 바인딩법(binding법), 페닝법(panning법), 필름에멀션법(film emulsion 법)등이 적용될 수 있다.Of course, it should be understood that not all vectors and expression control sequences function equally well in expressing the DNA sequences of the present invention. Likewise, not all hosts function identically for the same expression system. However, those skilled in the art will be able to make appropriate selections among a variety of vectors, expression control sequences, and hosts without undue experimentation and without departing from the scope of the present invention. For example, in selecting a vector, the host should be considered because the vector must be replicated within it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered. In selecting the expression control sequence, a number of factors must be considered. For example, the relative strength of the sequence, controllability and compatibility with the DNA sequences of the present invention should be considered in relation to particularly possible secondary structures. The single cell host may be selected from a selected vector, the toxicity of the product encoded by the DNA sequence of the present invention, the secretion characteristics, the ability to fold the protein correctly, the culture and fermentation requirements, the product encoded by the DNA sequence of the invention And ease of purification. Within the scope of these variables, one skilled in the art can select various vector / expression control sequences / host combinations that can express the DNA sequences of the invention in fermentation or in large animal cultures. A binding method, a panning method, a film emulsion method, or the like can be applied as a screening method for cloning cDNA of NSP protein by expression cloning.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실시예 1: 글루코오스로부터 부탄올 생성능을 가지는 균주의 제작Example 1: Production of a strain having a butanol-producing ability from glucose

글루코오스로부터 부탄올을 생성할 때에 부산물인 숙신산, 젖산 에탄올, 아세트산의 생산을 억제하기 위하여, 대장균 MG1655(DE3)에서 frd 유전자, ldhA 유전자, pta 유전자 및 adhE 유전자가 결실된 대장균 DSM101 균주(Baek, J.M et al.,Biotechnol. Bioeng.110:2790-2794, 2013)에서 atoB 유전자, hbd 유전자 crt 유전자, ter 유전자, adhE2 유전자 및 NADH 공급을 위한 fdh 유전자를 도입하여, EMJ 40균주를 제작하였다.Escherichia coli strain DSM101 (Baek, JM et al. (2001)) in which frd gene, ldhA gene, pta gene and adhE gene were deleted in Escherichia coli MG1655 (DE3) in order to inhibit the production of succinic acid, lactic acid ethanol and acetic acid as byproducts in producing butanol from glucose al, Biotechnol Bioeng .110:.. 2790-2794, 2013) by introducing the fdh gene for atoB gene, hbd gene crt genes, ter gene, adhE2 gene and NADH feed, was produced EMJ 40 strain.

표 1에는 본 발명에서 제작된 균주와 플라스미드의 특징을 기재하였다. Table 1 shows the characteristics of the strains and plasmids prepared in the present invention.

EMJ40 균주는 도 1에 나타난 바와 같이, 글루코오스로부터 부탄올을 생성하는 생합성 경로가 도입된 균주이다.As shown in Fig. 1, the strain EMJ40 is a strain into which a biosynthetic pathway for producing butanol from glucose is introduced.

상기 EMJ40 균주에서 도입된 외래 유전자는 atoB 유전자는 대장균 유래 유전자를 도입하였고, adhE2, crt 및 hbd는 클로스트리디윰 아세토부틸리쿰(Clostridium acetobutylicum) 유래 유전자를 도입하였으며, ter은 트렙포네마 덴티콜라(Treponema denticola) 유래 유전자를 도입하였고, fdh1은 캔디다 보이디니(Candida boidinii) 유래 유전자를 도입하였다. Escherichia coli-derived genes were introduced into the atoB gene, adhE2, crt and hbd were introduced into Clostridium acetobutylicum- derived gene, and ter-phosphatidylserine Treponema denticola ), and fdh1 introduced the gene derived from Candida boidinii .

atoB(서열번호 39), adhE2 및 fdh1(서열번호 38)는 각각의 균주의 게놈을 해당 프라이머(서열번호 6~11)를 이용하여 PCR로 증폭한 단편을 pACYCDuet(Novagen, USA)에 도입하여, pACYC-AEF를 제작한 후 도입하였다. The fragments obtained by amplifying the genomes of the respective strains by PCR using corresponding primers (SEQ ID NOS: 6 to 11) were introduced into pACYCDuet (Novagen, USA) pACYC-AEF was prepared and introduced.

대사경로의 효율을 높이기 위한 스캐폴드 단백질(GBD1SH31PDZ2)을 코딩하는 유전자는 pJD758에 삽입하여 도입하였다(Dueber, J. E. et al. ,Nat. Biotechnol.27:753, 2009).The gene coding for the scaffold protein (GBD1SH31PDZ2) was inserted into pJD758 to enhance the efficiency of the metabolic pathway (Dueber, JE et al ., Nat. Biotechnol. 27: 753, 2009).

ter(서열번호 44), crt(서열번호 43) 및 hbd(서열번호 42)는 pCDF-HCT의 형태로 도입하였다(Baek, J.M et al.,Biotechnol. Bioeng.110:2790-2794, 2013).ter (SEQ ID NO: 44), crt (SEQ ID NO: 43) and hbd (SEQ ID NO: 42) were introduced in the form of pCDF-HCT (Baek, JM et al. , Biotechnol. Bioeng. 110: 2790-2794, 2013).

Figure 112016105958863-pat00001
Figure 112016105958863-pat00001

atoB-F tatagtcgacaaggagatataATGAAAAATTGTGTCATCGTC(서열번호 6)atoB-F tatagtcgacaaggagatataATGAAAAATTGTGTCATCGTC (SEQ ID NO: 6)

atoB-R tatagcggccgcTTAATTCAACCGTTCAATCA(서열번호 7)atoB-R tatagcggccgcTTAATTCAACCGTTCAATCA (SEQ ID NO: 7)

adhE2-F ggagatatacatatggcaATGAAAGTTACAAATCAAAAAGAAC(서열번호 8)adhE2-F ggagatatacatatggcaATGAAAGTTACAAATCAAAAAGAAC (SEQ ID NO: 8)

adhE2-R atatctccttTTAAAATGATTTTATATAGATATCCTTAAG(서열번호 9)adhE2-R atatctccttTTAAAATGATTTATATAGATATCCTTAAG (SEQ ID NO: 9)

fdh1-F aatcattttaaaaggagatataATGAAGATCGTTTTAGTCTTATATG(서열번호 10)fdh1-F aatcattttaaaaggagatataATGAAGATCGTTTTAGTCTTATATG (SEQ ID NO: 10)

fdh1-R cggtttctttaccagacTTATTTCTTATCGTGTTTACCG(서열번호 11)fdh1-R cggtttctttaccagacTTATTTCTTATCGTGTTTACCG (SEQ ID NO: 11)

EMJ50 균주는 호기성 조건에서 부탄올 생성을 증가시키기 위하여, 부탄올 대사회로의 마지막 두 단계를 클로스트리디윰 유래의 adhE2가 아닌 살모넬라 엔테리카(Salmonella enterica)유래의 pduP, lactococcus 유래의 adhA로 교체한 균주이다. 클로스트리디움 아세토부틸리쿰 유래의 adhE2는 산소에 민감성을 지니는 효소이기 때문에 호기 발효를 위해 pduP(서열번호 41)와 adhA(서열번호 40)로 교체하였다 (도 2).The EMJ50 strain is a strain in which the last two steps of the butanol metabolism circuit are replaced by adhA derived from pduP and lactococcus derived from Salmonella enterica, but not adhE2 derived from Clostridium to increase butanol production under aerobic conditions. AdhE2 from Clostridium acetobutyrylchum was replaced with pduP (SEQ ID NO: 41) and adhA (SEQ ID NO: 40) for aerobic fermentation because it is an oxygen sensitive enzyme (FIG. 2).

pduP, adhA, atoB 및 fdh1 유전자는 각각의 유래 균주의 게놈에서 해당 프라이머(서열번호 6~15)를 이용하여 PCR로 증폭하였으며, pACUCDuet 벡터(Novagen, USA)에 도입시켜, pACYC-APAF(서열번호 35)를 제작하였으며, DSM101 균주에 상기 pACYC-APAF, pJD758(서열번호 37) 및 pCDF-HCT(서열번호 36)을 도입하여 EMJ 50을 제작하였다.The pduP, adhA, atoB and fdh1 genes were amplified by PCR using the respective primers (SEQ ID NOS: 6 to 15) in the genome of each strain and introduced into pACUCDuet vector (Novagen, USA) to obtain pACYC-APAF 35). EMJ 50 was prepared by introducing pACYC-APAF, pJD758 (SEQ ID NO: 37) and pCDF-HCT (SEQ ID NO: 36) into the DSM101 strain.

pduP-F tataggatccaaggagatataATGAATACTTCTGAACTCGAAACC(서열번호 12)pduP-F tataggatccaaggagatataATGAATACTTCTGAACTCGAAACC (SEQ ID NO: 12)

pduP-R tatagagctcTTAGCGAATAGAAAAGCCGTTG(서열번호 13)pduP-R tatagagctcTTAGCGAATAGAAAAGCCGTTG (SEQ ID NO: 13)

adhA-F tataagaaggagatatacaATGAAAGCAGCAGTAGTAAGAC(서열번호 14)adhA-F tataagaaggagatatacaATGAAAGCAGCAGTAGTAAGAC (SEQ ID NO: 14)

adhA-R gatcttcattatatctccttTTATTTAGTAAAATCAATGACCATTC(서열번호 15)adhA-R gatcttcattatatctccttTTATTTAGTAAAATCAATGACCATTC (SEQ ID NO: 15)

실시예 2: EMJ40 및 EMJ50 균주를 이용한 부탄올의 생산Example 2 Production of Butanol Using EMJ40 and EMJ50 Strains

EJM 40의 부탄올 생성능을 확인하기 위하여, 5 mL M9G 배지에서 하룻밤 전배양한 후, 250mL 플라스크에서 50mL M9G 배지로 배양하였다. 플라스크는 호기성 또는 혐기조건에서 37℃, 250 rpm 에서 0.05 mM IPTG 및 108 nM anhydrotetracycline (aTc) 을 첨가하고 6시간 배양하였다  To confirm the butanol production ability of EJM 40, the cells were cultured overnight in 5 mL of M9G medium and then cultured in 50 mL of M9G medium in a 250 mL flask. The flask was incubated at 37 ° C, 250 rpm under aerobic or anaerobic conditions with 0.05 mM IPTG and 108 nM anhydrotetracycline (aTc) for 6 hours

M9G 배지의 조성은 다음과 같다:The composition of the M9G medium is as follows:

12.8 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2, 10 mg/L thiamine,25 g/L glucose, 0.5 g/L yeast extract, and 1000 X trace elements(27 g/L FeCl3·6H2O, 2 g/L ZnCl2·4H2O,· 2 g/L CaCl2·2H2O,2 g/L Na2MoO4·2H2O, 1.9 g/L CuSO4·5H2O, and 0.5 g/L H3BO3)) 50 μg/mL ampicillin, 50 μg/mL chloramphenicol 및 100 μg/mL spectinomycin. 12.8 g / L Na 2 HPO 4 , 3 g / L KH 2 PO 4, 0.5 g / L NaCl, 1 g / L NH4Cl, 1 mM MgSO 4, 0.1 mM CaCl 2, 10 mg / L thiamine, 25 g / L glucose, 0.5 g / L yeast extract, and 1000 X trace elements (27 g / L FeCl 3 .6H 2 O, 2 g / L ZnCl 2 .4H 2 O, 2 g / L CaCl 2 .2H 2 O, / L Na 2 MoO 4 .2H 2 O, 1.9 g / L CuSO 4 .5H 2 O, and 0.5 g / LH 3 BO 3 )) 50 μg / mL ampicillin, 50 μg / mL chloramphenicol and 100 μg / mL spectinomycin.

도 3의 a에 나타난 바와 같이, EMJ40 균주를 혐기조건과 호기조건에서 배양한 결과를 보면, 혐기조건에서의 부탄올 생산성이 호기조건에서보다 3.6배 높았다. As shown in FIG. 3 (a), when the EMJ40 strain was cultured under anaerobic conditions and aerobic conditions, the butanol productivity in the anaerobic condition was 3.6 times higher than in the aerobic condition.

하지만 호기조건에서의 균주생장이 혐기조건에 비해서 46배 더 높은 것을 확인할 수 있었다. However, it was confirmed that the growth of the strain in the aerobic condition was 46 times higher than that in the anaerobic condition.

산소에 대한 내성을 가지는 대사회로를 도입한 EMJ50 균주를 호기조건에서 배양 했을 시 호기조건에서 배양한 EMJ40에 비해 59배 많은 양의 부탄올이 생산된 것을 확인할 수 있다(도 3 b).When the EMJ50 strain which introduced the metabolic pathway resistant to oxygen was cultured under aerobic conditions, 59-fold higher amount of butanol was produced than EMJ40 cultured under aerobic conditions (FIG. 3 b).

이로서 EMJ50에 도입한 대사회로가 산소에 대한 내성을 가지는 것을 추론할 수 있다. 하지만 부탄올의 생산성이 증대되었음에도 불구하고 여전히 호기조건에서의 부탄올 수율은 혐기조건의 수율에 비해 여전히 낮다는 것을 확인할 수 있다 (도3b). It can be deduced that the metabolic circuit introduced into EMJ50 has resistance to oxygen. However, despite the increased productivity of butanol, the butanol yield in still aerobic conditions is still low compared to the yield of the anaerobic cases (FIG. 3b).

실시예 3: CRISPR/Cas9 시스템을 활용 이용한 TCA 회로가 조절된 변이균주의 제작Example 3: Production of TCA-regulated mutants using CRISPR / Cas9 system

호기조건에서 TCA 회로가 활성화 된다는 생물학적 이론에 미루어 볼 때 부탄올의 전구체인 acetyl-CoA가 부탄올 대사회로보다 TCA회로로 다량 유입된다는 사실을 유추해 볼 수 있다.Based on the biological theory that the TCA circuit is activated under exhalation conditions, it can be inferred that acetyl-CoA, the precursor of butanol, is introduced into the TCA circuit more than the butanol metabolism circuit.

따라서 TCA 회로의 첫 번째 단계인 citrate synthase (gltA)의 발현량을 조절하여 TCA 회로로 유입되는 acetyl-CoA 양을 줄여 부탄올 대사회로로의 대사체 흐름을 증가시키고자 하였다. Therefore, the amount of acetyl-CoA introduced into the TCA circuit was reduced by controlling the expression level of citrate synthase (gltA), the first step of the TCA circuit, to increase the metabolite flow to the butanol metabolism circuit.

박테리아 내의 단백질 발현을 조절하는 방법 중 하나로 해당 유전자의 5`UTR 염기서열을 조작하는 방법이 알려져 있다. gltA의 5`UTR의 발현세기를 “UTR designer”라는 툴을 활용해 예측하였을 때 그 값이 273860이라는 것을 확인했고, 이보다 낮은 세기의 발현을 위한 인공의 UTR 염기서열을 제작하여 균주내로 도입하하였다. One method of regulating protein expression in bacteria is known to manipulate the 5'UTR sequence of the gene of interest. When the expression intensity of 5 'UTR of gltA was predicted by using a tool called "UTR designer", it was confirmed that the value was 273860, and artificial UTR nucleotide sequence for the expression of lower intensity was prepared and introduced into the strain .

pCas9 plasmid (Addgene, Cambridge, MA,USA)의 cas9, crRNA 및 tracrRNA 부위를 프라이머들을 이용하여, PCR로 증폭시켰으며, sacB는 Bacillus subtilis 게놈 DNA를 이용하여 증폭하였다. cas9 및 sacB의 PCR 산물을 Gibson assembly (New England Biolabs, USA)를 이용하여,pZA31MCS(EXPRESSSYS)에 삽입하고, pZA-Cas9 로 명명하였다(표 1). The cas9, crRNA and tracrRNA sites of pCas9 plasmid (Addgene, Cambridge, MA, USA) were amplified by PCR using primers and sacB was amplified using Bacillus subtilis genomic DNA. The PCR products of cas9 and sacB were inserted into pZA31MCS (EXPRESSSYS) using Gibson assembly (New England Biolabs, USA) and named pZA-Cas9 (Table 1).

이와 유사하게, crRNA, tracrRNA 및 sacB를 pZS21MCS에 삽입하고, pZS-CRISPR로 명명하였다(표 1). gltA 타겟팅-crRNA sequence에 gltA를 삽입하기 위하여 gltA 5′-UTR sequence (gltA crRNA-S 및 gltA crRNA-A)의 양 가닥을 합성하였다(Bioneer Inc., 한국) 합성된 DNA를 pZS-CRISPR에 어닐링시키고, 라이게이션 한 후, BsaI로 절단하여, crRNA targeting gltA-5′-UTR을 포함하는 pZS-CRISPRgltA를 제작하였다. Similarly, crRNA, tracrRNA and sacB were inserted into pZS21MCS and designated pZS-CRISPR (Table 1). Both strands of gltA 5'-UTR sequence (gltA crRNA-S and gltA crRNA-A) were synthesized to insert gltA into gltA targeting-cRNA sequence (Bioneer Inc., Korea). The synthesized DNA was annealed to pZS-CRISPR After ligation and digestion with BsaI, pZS-CRISPRgltA containing crRNA targeting gltA-5'-UTR was prepared.

Cas9 뉴클레이즈에의한 분해 후의 상동성 재조합을 위한 레스큐 DNA는 Rescue DNA for homologous recombination after degradation by Cas9 nuclease

22개의 오버랩핑 서열을 가지는 올리고머 DNA를 합성하였으며, 올리고머 쌍은 다음과 같다: gltA Rescue F 및 0.6R, gltA Rescue F 및 0.3R, gltAOligomer DNA with 22 overlapping sequences was synthesized and the oligomer pairs were as follows: gltA Rescue F and 0.6R, gltA Rescue F and 0.3R, gltA

Rescue F2 및 0.5R, gltA Rescue F2 및 0.4R.Rescue F2 and 0.5R, gltA Rescue F2 and 0.4R.

합성된 올리고머는 96℃에서 변성 후, 천천히 냉각시켜 어닐링시키고, Klenow fragment (Takara Bio,Japan)를 이용하여, 신장시켜 DNA를 합성하였다. The synthesized oligomer was denatured at 96 ° C, annealed slowly by cooling, and elongated using Klenow fragment (Takara Bio, Japan) to synthesize DNA.

숙주세포로는 DSM01균주를 사용하였으며, 먼저, 일렉트로포레이션으로 pKD46(Red recombinase espression vector,Datsenko, KA.and Wanner, BL. Proc. Natl. Acad. Sci. U S A. 97: 6640, 2000)과 pZA-Cas9를 차례로 DSM01에 도입시키고, 상기 균주에 gltA Rescue DNA와 pZS-CRISPRgltA를 함께 형질전환시킨 후, 카나마이신(50 μg/mL) 및 클로람페니콜(50 μg/mL)을 포함하는 LB 고체 배지에서 스크리닝하였다. As a host cell, the DSM01 strain was used. First, pKD46 (Red recombinase expression vector, Datsenko, KA and Wanner, BL. Proc. Natl. Acad Sci. pZA-Cas9 were sequentially introduced into DSM01. The strain was transformed with gltA Rescue DNA and pZS-CRISPRgltA together and screened in LB solid medium containing kanamycin (50 μg / mL) and chloramphenicol (50 μg / Respectively.

CRISPR/Cas9을 위한 플라스미드를을 포함하는 스크리닝된 변이균주는 40 g/L의 수크로오즈를 포함하는 LB 배지에 도말하여 37℃에서 하룻밤 배양하였으며, 두 가지 항생제에 대하여 내성이 있는 콜로니를 선별하였다. 선별된 균주의 게놈이 변이는 결과는 gltA-5′-F 및 gltA-5′-R 프라이머(서열번호 32 및 32)를 이용하여 PCR을 수행한 후, PCR 산물을 CosmoGenetech (Seoul, Korea)에서 시퀀싱하여 확인하였다.  The screened mutant strains containing the plasmid for CRISPR / Cas9 were plated on LB medium containing 40 g / L sucrose and incubated overnight at 37 ° C to select colonies resistant to both antibiotics . The genomic variation of the selected strains was confirmed by performing PCR using gltA-5'-F and gltA-5'-R primers (SEQ ID NOS: 32 and 32), and then PCR products were isolated from CosmoGenetech (Seoul, Korea) And confirmed by sequencing.

cas9 F aaaagtcgacATGGATAAGAAATACTCAATAGGCT(서열번호 16)cas9 F aaaagtcgacATGGATAAGAAATACTCAATAGGCT (SEQ ID NO: 16)

cas9 R aaaactgcagTCAGTCACCTCCTAGCTGAC(서열번호 17)cas9 R aaaactgcagTCAGTCACCTCCTAGCTGAC (SEQ ID NO: 17)

tracrRNA F ataaaagcttTTACGAAATCATCCTGTGGAG(서열번호 18)tracrRNA F ataaaagcttTTACGAAATCATCCTGTGGAG (SEQ ID NO: 18)

tracrRNA R taatggatccTTTTGCCTCCTAAAATAAAAAGTT(서열번호 19)tracrRNA R taatggatccTTTTGCCTCCTAAAATAAAAAGTT (SEQ ID NO: 19)

crRNA F aattggtaccAGTATATTTTAGATGAAGATTATTTCTTA(서열번호 20)crRNA F aattggtaccAGTATATTTTAGATGAAGATTATTTCTTA (SEQ ID NO: 20)

crRNA R attaaagcttATCACACTACTCTTCTTTTGCCTA(서열번호 21)crRNA R attaaagcttATCACACTACTCTTCTTTTGCCTA (SEQ ID NO: 21)

gltA crRNA S aaacAGGTTGATGTGCGAAGGCAAATTTAAGTTCg(서열번호 22)gltA crRNA S aaacAGGTTGATGTGCGAAGGCAAATTTAAGTTCg (SEQ ID NO: 22)

gltA crRNA A aaaacGAACTTAAATTTGCCTTCGCACATCAACCT(서열번호 23)gltA < / RTI > crRNA AaaacGAACTTAAATTTGCCTTCGCACATCAACCT (SEQ ID NO: 23)

sacB F ataagcagcatcgcctgtTACCTGCCGTTCACTATTATTTAG(서열번호24)sacB F ataagcagcatcgcctgtTACCTGCCGTTCACTATTATTTAG (SEQ ID NO: 24)

sacB R cacatagacagcctgaATCGGCATTTTCTTTTGC(서열번호25)sacB R cacatagacagcctgaATCGGCATTTTCTTTTGC (SEQ ID NO: 25)

gltA Rescue Uni FgltA Rescue Uni F

ccaaataacaaacgggtaaagccaggttgatgtgcgaaggcaaatttaagttcccgcagtcttacgctgtaggttaaaaggagcat(서열번호 26)ccaaataacaaacgggtaaagccaggttgatgtgcgaaggcaaatttaagttcccgcagtcttacgctgtaggttaaaaggagcat (SEQ ID NO: 26)

gltA Rescue 0.6 RgltA Rescue 0.6 R

tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatctctgatgctccttttaacctacagcg(서열번호 27)tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatctctgatgctccttttaacctacagcg (SEQ ID NO: 27)

gltA Rescue 0.3 RgltA Rescue 0.3 R

tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatcaacgatgctccttttaacctacagcg(서열번호 28)tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatcaacgatgctccttttaacctacagcg (SEQ ID NO: 28)

gltA Rescue Uni F2gltA Rescue Uni F2

ccaaataacaaacgggtaaagccaggttgatgtgcgaaggcaaatttaagttcccgcagtcttacgcggctggtgtaaaggagcat(서열번호 29)ccaaataacaaacgggtaaagccaggttgatgtgcgaaggcaaatttaagttcccgcagtcttacgcggctggtgtaaaggagcat (SEQ ID NO: 29)

gltA Rescue 0.5 RgltA Rescue 0.5 R

tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatggccgatgctcctttacaccagccgcg(서열번호 30)tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatggccgatgctcctttacaccagccgcg (SEQ ID NO: 30)

gltA Rescue 0.4 R gltA Rescue 0.4 R

tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatctcagatgctcctttacaccagccgcg(서열번호 31)tcaacagctgtgtccccgttgagggtgagttttgcttttgtatcagccatctcagatgctcctttacaccagccgcg (SEQ ID NO: 31)

gltA-5′-F AAAGTTGTTACAAACATTACCAGGAA(서열번호 32)gltA-5'-F AAAGTTGTTACAAACATTACCAGGAA (SEQ ID NO: 32)

gltA-5′-R TTCACCATTCAGCAGGATGTA(서열번호 33)gltA-5'-R TTCACCATTCAGCAGGATGTA (SEQ ID NO: 33)

gltA-5′-seq TACCCAGGTTTTCCCCTCTT(서열번호 34)gltA-5'-seq TACCCAGGTTTTCCCCTCTT (SEQ ID NO: 34)

CRISPR/Cas9 시스템을 활용한 게놈편집 기술을 통해 EMJ50 균주의 gltA 5`UTR 염기서열(서열번호 5)에 4가지 인공의 UTR 염기서열(서열번호 1~4)을 치환시켜 주었고, 발현양에 따라 각각 EMJ51, EMJ52, EMJ53 및 EMJ54라고 명명했다. 또한 gltA가 제거된 돌연변이를 제작하여 EMJ55라고 명명했다 (도 4)Four artificial UTR sequences (SEQ ID NOS: 1 to 4) were substituted for the gltA 5'UTR nucleotide sequence (SEQ ID NO: 5) of the EMJ50 strain through the genome editing technology utilizing the CRISPR / Cas9 system, EMJ51, EMJ52, EMJ53 and EMJ54, respectively. In addition, a glutA-deleted mutant was produced and named EMJ55 (Figure 4)

실시예 4: 게놈편집 균주의 부탄올 생성능 확인Example 4: Determination of the ability of genomic editing strain to produce butanol

실시예 3에서 제작된 EMJ50-55의 6개의 균주를 실시예 2와 동일한 호기조건에서 배양하고 균주들의 생장곡선, citrate synthase 발현 양, 부탄올 생산성 및 수율을 측정하였다. Six strains of EMJ50-55 prepared in Example 3 were cultured under the same aerobic conditions as in Example 2, and the growth curves, citrate synthase expression levels, butanol productivity and yield were measured.

먼저 EMJ50의 citrate synthase 발현양을 기준으로 했을 때 EMJ51, EMJ52, EMJ53, EMJ54 및 EMJ55에서 각각 74%, 54%, 45%, 33% 및 17%의 citrate synthase 활성도가 관찰되었다 (도 5b). EMJ50~EMJ55의 생장 패선을 확인한 결과, EMJ50~EMJ53까지는 배양 시 생장이 저해되는 것을 발견하지 못했지만 EMJ54의 경우 EMJ50에 비해 약 33% 생장이 감소하는 것을 확인할 수 있었으며, EMJ55에서는 생장이 89% 감소한 것을 확인하였다(도 5a). EMJ50~EMJ55의 부탄올 생산성에 대해서는 아치형 그래프를 얻을 수 있었으며, EMJ52에서 가장 높은 부탄올 생산성을 확인하였다. 또한 부탄올 수율에 대해서는 citrate synthase가 낙 다운 됨에 따라서 증가하는 현상을 관찰할 수 있었다 (도 5c). 74%, 54%, 45%, 33% and 17% of citrate synthase activity was observed in EMJ51, EMJ52, EMJ53, EMJ54 and EMJ55, respectively, based on the amount of citrate synthase expressed in EMJ50 (FIG. As a result of confirming the growth line of EMJ50 to EMJ55, it was found that EMJ50 to EMJ53 did not inhibit growth during cultivation, but EMJ54 showed a decrease of about 33% compared to EMJ50, and EMJ55 showed a decrease of 89% (Fig. 5A). For the butanol productivity of EMJ50 to EMJ55, an arcuate graph was obtained and EMJ52 showed the highest butanol productivity. As to the butanol yield, citrate synthase increased as the concentration of the citrate synthase decreased (FIG. 5c).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

<110> Korea University Research & Business Foundation <120> Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same <130> P16-B294 <160> 44 <170> KopatentIn 2.0 <210> 1 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ51 <400> 1 atttaagttc cggcagtctt acgctgtagg ttaaaaggag catcagag 48 <210> 2 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ52 <400> 2 atttaagttc cggcagtctt acgctgtagg ttaaaaggag catcgttg 48 <210> 3 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ53 <400> 3 atttaagttc cggcagtctt acgcggctgg tgtaaaggag catctgag 48 <210> 4 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ54 <400> 4 atttaagttc cggcagtctt acgcggctgg tgtaaaggag catcggcc 48 <210> 5 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ50 <400> 5 atttaagttc cggcagtctt acgcaataag gcgctaagga gacctta 47 <210> 6 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tatagtcgac aaggagatat aatgaaaaat tgtgtcatcg tc 42 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 tatagcggcc gcttaattca accgttcaat ca 32 <210> 8 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggagatatac atatggcaat gaaagttaca aatcaaaaag aac 43 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atatctcctt ttaaaatgat tttatataga tatccttaag 40 <210> 10 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 aatcatttta aaaggagata taatgaagat cgttttagtc ttatatg 47 <210> 11 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 cggtttcttt accagactta tttcttatcg tgtttaccg 39 <210> 12 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tataggatcc aaggagatat aatgaatact tctgaactcg aaacc 45 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 tatagagctc ttagcgaata gaaaagccgt tg 32 <210> 14 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tataagaagg agatatacaa tgaaagcagc agtagtaaga c 41 <210> 15 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gatcttcatt atatctcctt ttatttagta aaatcaatga ccattc 46 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 aaaagtcgac atggataaga aatactcaat aggct 35 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aaaactgcag tcagtcacct cctagctgac 30 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 ataaaagctt ttacgaaatc atcctgtgga g 31 <210> 19 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 taatggatcc ttttgcctcc taaaataaaa agtt 34 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 aattggtacc agtatatttt agatgaagat tatttctta 39 <210> 21 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 attaaagctt atcacactac tcttcttttg ccta 34 <210> 22 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 aaacaggttg atgtgcgaag gcaaatttaa gttcg 35 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 aaaacgaact taaatttgcc ttcgcacatc aacct 35 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ataagcagca tcgcctgtta cctgccgttc actattattt ag 42 <210> 25 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 cacatagaca gcctgaatcg gcattttctt ttgc 34 <210> 26 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 26 ccaaataaca aacgggtaaa gccaggttga tgtgcgaagg caaatttaag ttcccgcagt 60 cttacgctgt aggttaaaag gagcat 86 <210> 27 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 27 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat ctctgatgct 60 ccttttaacc tacagcg 77 <210> 28 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 28 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat caacgatgct 60 ccttttaacc tacagcg 77 <210> 29 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 29 ccaaataaca aacgggtaaa gccaggttga tgtgcgaagg caaatttaag ttcccgcagt 60 cttacgcggc tggtgtaaag gagcat 86 <210> 30 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 30 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat ggccgatgct 60 cctttacacc agccgcg 77 <210> 31 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 31 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat ctcagatgct 60 cctttacacc agccgcg 77 <210> 32 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aaagttgtta caaacattac caggaa 26 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 ttcaccattc agcaggatgt a 21 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 tacccaggtt ttcccctctt 20 <210> 35 <211> 8677 <212> DNA <213> Artificial Sequence <220> <223> pACYC APAF <400> 35 cgccagggtg gtttttcttt tcaccagtga gacgggcaac agctgattgc ccttcaccgc 60 ctggccctga gagagttgca gcaagcggtc cacgctggtt tgccccagca ggcgaaaatc 120 ctgtttgatg gtggttaacg gcgggatata acatgagctg tcttcggtat cgtcgtatcc 180 cactaccgag atgtccgcac caacgcgcag cccggactcg gtaatggcgc gcattgcgcc 240 cagcgccatc tgatcgttgg caaccagcat cgcagtggga acgatgccct cattcagcat 300 ttgcatggtt tgttgaaaac cggacatggc actccagtcg ccttcccgtt ccgctatcgg 360 ctgaatttga ttgcgagtga gatatttatg ccagccagcc agacgcagac gcgccgagac 420 agaacttaat gggcccgcta acagcgcgat ttgctggtga cccaatgcga ccagatgctc 480 cacgcccagt cgcgtaccgt cttcatggga gaaaataata ctgttgatgg gtgtctggtc 540 agagacatca agaaataacg ccggaacatt agtgcaggca gcttccacag caatggcatc 600 ctggtcatcc agcggatagt taatgatcag cccactgacg cgttgcgcga gaagattgtg 660 caccgccgct ttacaggctt cgacgccgct tcgttctacc atcgacacca ccacgctggc 720 acccagttga tcggcgcgag atttaatcgc cgcgacaatt tgcgacggcg cgtgcagggc 780 cagactggag gtggcaacgc caatcagcaa cgactgtttg cccgccagtt gttgtgccac 840 gcggttggga atgtaattca gctccgccat cgccgcttcc actttttccc gcgttttcgc 900 agaaacgtgg ctggcctggt tcaccacgcg ggaaacggtc tgataagaga caccggcata 960 ctctgcgaca tcgtataacg ttactggttt cacattcacc accctgaatt gactctcttc 1020 cgggcgctat catgccatac cgcgaaaggt tttgcgccat tcgatggtgt ccgggatctc 1080 gacgctctcc cttatgcgac tcctgcatta ggaaattaat acgactcact ataggggaat 1140 tgtgagcgga taacaattcc cctgtagaaa taattttgtt taactttaat aaggagatat 1200 accatgggca gcagccatca ccatcatcac cacagccagg atccaaggag atataatgaa 1260 gatcgtttta gtcttatatg atgctggtaa gcacgctgct gatgaagaaa aattatatgg 1320 ttgtactgaa aataaattag gtattgctaa ttggttaaaa gatcaaggtc atgaactaat 1380 tactacttct gataaagaag gtgaaacaag tgaattggat aaacatatcc cagatgctga 1440 tattatcatc accactcctt tccatcctgc ttatatcact aaggaaagac ttgacaaggc 1500 taagaactta aaatcagtcg ttgtcgctgg tgttggttct gatcacattg atttagatta 1560 tattaatcaa acaggtaaga aaatctcagt cctggaagtt acaggttcta atgttgtctc 1620 tgttgctgaa cacgttgtca tgaccatgct tgtcttggtt agaaatttcg ttccagcaca 1680 tgaacaaatt attaaccacg attgggaggt tgctgctatc gctaaggatg cttacgatat 1740 cgaaggtaaa actatcgcta ccattggtgc tggtagaatt ggttacagag tcttggaaag 1800 attactccca tttaatccaa aagaattatt atactacgat tatcaagctt taccaaaaga 1860 agctgaagaa aaagttggtg ctagaagagt tgaaaatatt gaagaattag ttgctcaagc 1920 tgatatcgtt acagttaatg ctccattaca cgcaggtaca aaaggtttaa ttaataagga 1980 attattatct aaatttaaaa aaggtgcttg gttagtcaat accgcaagag gtgctatttg 2040 tgttgctgaa gatgttgcag cagctttaga atctggtcaa ttaagaggtt acggtggtga 2100 tgtttggttc ccacaaccag ctccaaagga tcacccatgg agagatatga gaaataaata 2160 tggtgctggt aatgccatga ctcctcacta ctctggtact actttagacg ctcaaacaag 2220 atacgctgaa ggtactaaaa atattttgga atcattcttt accggtaaat ttgattacag 2280 accacaagat attatcttat taaatggtga atacgttact aaagcttacg gtaaacacga 2340 taagaaataa gagctcggcg cgcctgcagg tcgacaagga gatataatga aaaattgtgt 2400 catcgtcagt gcggtacgta ctgctatcgg tagttttaac ggttcactcg cttccaccag 2460 cgccatcgac ctgggggcga cagtaattaa agccgccatt gaacgtgcaa aaatcgattc 2520 acaacacgtt gatgaagtga ttatgggtaa cgtgttacaa gccgggctgg ggcaaaatcc 2580 ggcgcgtcag gcactgttaa aaagcgggct ggcagaaacg gtgtgcggat tcacggtcaa 2640 taaagtatgt ggttcgggtc ttaaaagtgt ggcgcttgcc gcccaggcca ttcaggcagg 2700 tcaggcgcag agcattgtgg cggggggtat ggaaaatatg agtttagccc cctacttact 2760 cgatgcaaaa gcacgctctg gttatcgtct tggagacgga caggtttatg acgtaatcct 2820 gcgcgatggc ctgatgtgcg ccacccatgg ttatcatatg gggattaccg ccgaaaacgt 2880 ggctaaagag tacggaatta cccgtgaaat gcaggatgaa ctggcgctac attcacagcg 2940 taaagcggca gccgcaattg agtccggtgc ttttacagcc gaaatcgtcc cggtaaatgt 3000 tgtcactcga aagaaaacct tcgtcttcag tcaagacgaa ttcccgaaag cgaattcaac 3060 ggctgaagcg ttaggtgcat tgcgcccggc cttcgataaa gcaggaacag tcaccgctgg 3120 gaacgcgtct ggtattaacg acggtgctgc cgctctggtg attatggaag aatctgcggc 3180 gctggcagca ggccttaccc ccctggctcg cattaaaagt tatgccagcg gtggcgtgcc 3240 ccccgcattg atgggtatgg ggccagtacc tgccacgcaa aaagcgttac aactggcggg 3300 gctgcaactg gcggatattg atctcattga ggctaatgaa gcatttgctg cacagttcct 3360 tgccgttggg aaaaacctgg gctttgattc tgagaaagtg aatgtcaacg gcggggccat 3420 cgcgctcggg catcctatcg gtgccagtgg tgctcgtatt ctggtcacac tattacatgc 3480 catgcaggca cgcgataaaa cgctggggct ggcaacactg tgcattggcg gcggtcaggg 3540 aattgcgatg gtgattgaac ggttgaatta agcggccgca taatgcttaa gtcgaacaga 3600 aagtaatcgt attgtacacg gccgcataat cgaaattaat acgactcact ataggggaat 3660 tgtgagcgga taacaattcc ccatcttagt atattagtta agtataagaa ggagatatac 3720 aatgaaagca gcagtagtaa gacacaatcc agatggttat gcggaccttg ttgaaaagga 3780 acttcgagca atcaaaccta atgaagcttt gcttgacatg gagtattgtg gagtctgtca 3840 taccgatttg cacgttgcag caggtgatta tggcaacaaa gcagggactg ttcttggtca 3900 tgaaggaatt ggaattgtca aagaaattgg aactgatgta agctcgcttc aagttggtga 3960 tcgggtttca gtggcttggt tctttgaagg atgtggtcac tgtgaatact gtgtatctgg 4020 taatgaaact ttttgtcgag aagttaaaaa tgcaggatat tcagttgatg gcggaatggc 4080 tgaagaagca attgttgttg ccgattatgc tgtcaaagtt cctgacggac ttgacccaat 4140 tgaagctagc tcaattactt gtgctggagt aacaacttac aaagcaatca aagtatcagg 4200 agtaaaacct ggtgattggc aagtaatttt tggtgctgga ggacttggaa atttagcaat 4260 tcaatatgct aaaaatgttt ttggagcaaa agtaattgct gttgatatta atcaagataa 4320 attaaattta gctaaaaaaa ttggagctga tgtgattatc aattctggtg atgtaaatcc 4380 agttgatgaa attaaaaaaa taactggcgg cttaggagca caaagtgcaa tagtttgtgc 4440 tgttgcaagg attgcttttg aacaagcggt tgcttctttg aaacctatgg gcaaaatggt 4500 tgctgtggca cttcccaata ctgagatgac tttatcagtt ccaacagttg tttttgacgg 4560 agtggaggtt gcaggttcac ttgtcggaac aagacttgac ttggcagaag cttttcaatt 4620 tggagcagag ggtaaggtaa aaccaattgt tgcgacacgc aaactggaag aaatcaatga 4680 tattattgat gaaatgaagg caggaaaaat tgaaggccga atggtcattg attttactaa 4740 ataaaaggag atataatgaa tacttctgaa ctcgaaacat taatcagaac cattcttagc 4800 gagcagttaa ccacgccggc acaaacgccg gtccagcctc aaggcaaagg gatttttcag 4860 tccgttagcg aggccatcga tgccgcccac caagcgtttt tacgttatca gcagtgtccg 4920 ctaaaaactc gtagtgctat aataagcgcg atgagacaag agctgacgcc tctgctggcg 4980 cccctggcgg aagaaagtgc caatgaaacg gggatgggca acaaagaaga taagtttctc 5040 aaaaacaagg ctgcattgga caatacaccg ggggtagaag atctcaccac aacagctctt 5100 accggcgacg gcggtatggt tctgtttgag tactcaccgt ttggagttat aggttcggtc 5160 gcccctagca ccaaccccac tgaaactata atcaataaca gtatctctat gctagcagcg 5220 ggcaatagta tttatttttc ccctcatccg ggagctaaaa aagtttctct gaagctgatt 5280 agcttgattg aagaaatagc cttcaggtgc tgtggaatcc gcaatttagt ggtgaccgtg 5340 gcggaaccaa ccttcgaggc tacccagcag atgatggccc atccacgaat cgcagtactt 5400 gccattacag gcggcccggg cattgttgca atgggaatga aaagcggtaa gaaagtgata 5460 ggagctggtg cgggtaatcc gccatgtatc gttgacgaga cggcggacct ggtgaaagcg 5520 gcggaagaca tcatcaacgg ggcttcattc gattacaatc tgccctgcat tgccgaaaag 5580 agccttattg ttgtggagag tgtagcagaa cggctggtgc agcaaatgca aacatttggt 5640 gcactgttgt tatcacctgc agataccgat aaattacgcg ctgtctgcct gcctgaagga 5700 caggcaaata aaaaacttgt cggcaaaagt ccatcggcaa tgctggaagc cgcaggaatt 5760 gctgtccctg caaaagcgcc gcgtctttta attgctctgg ttaacgctga tgatccgtgg 5820 gtcacaagcg aacagttgat gcctatgctg ccagtggtaa aagtttcaga tttcgattcc 5880 gcactggcgc tggccttgaa ggttgaagag gggctgcatc atactgctat tatgcactcg 5940 cagaacgtgt cacgcctgaa tctcgcggca cgcactttac aaacatctat tttcgtaaaa 6000 aatggtccct catatgccgg gattggtgtt ggcggcgaag gctttaccac cttcactatt 6060 gcaacgccaa caggtgaagg gacaacatct gcgcgtactt ttgctcgttc ccggcgctgt 6120 gtactgacga atggtttttc tattcgttaa gtaccctcga gtctggtaaa gaaaccgctg 6180 ctgcgaaatt tgaacgccag cacatggact cgtctactag cgcagcttaa ttaacctagg 6240 ctgctgccac cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga 6300 ggggtttttt gctgaaacct caggcatttg agaagcacac ggtcacactg cttccggtag 6360 tcaataaacc ggtaaaccag caatagacat aagcggctat ttaacgaccc tgccctgaac 6420 cgacgaccgg gtcgaatttg ctttcgaatt tctgccattc atccgcttat tatcacttat 6480 tcaggcgtag caccaggcgt ttaagggcac caataactgc cttaaaaaaa ttacgccccg 6540 ccctgccact catcgcagta ctgttgtaat tcattaagca ttctgccgac atggaagcca 6600 tcacagacgg catgatgaac ctgaatcgcc agcggcatca gcaccttgtc gccttgcgta 6660 taatatttgc ccatagtgaa aacgggggcg aagaagttgt ccatattggc cacgtttaaa 6720 tcaaaactgg tgaaactcac ccagggattg gctgagacga aaaacatatt ctcaataaac 6780 cctttaggga aataggccag gttttcaccg taacacgcca catcttgcga atatatgtgt 6840 agaaactgcc ggaaatcgtc gtggtattca ctccagagcg atgaaaacgt ttcagtttgc 6900 tcatggaaaa cggtgtaaca agggtgaaca ctatcccata tcaccagctc accgtctttc 6960 attgccatac ggaactccgg atgagcattc atcaggcggg caagaatgtg aataaaggcc 7020 ggataaaact tgtgcttatt tttctttacg gtctttaaaa aggccgtaat atccagctga 7080 acggtctggt tataggtaca ttgagcaact gactgaaatg cctcaaaatg ttctttacga 7140 tgccattggg atatatcaac ggtggtatat ccagtgattt ttttctccat tttagcttcc 7200 ttagctcctg aaaatctcga taactcaaaa aatacgcccg gtagtgatct tatttcatta 7260 tggtgaaagt tggaacctct tacgtgccga tcaacgtctc attttcgcca aaagttggcc 7320 cagggcttcc cggtatcaac agggacacca ggatttattt attctgcgaa gtgatcttcc 7380 gtcacaggta tttattcggc gcaaagtgcg tcgggtgatg ctgccaactt actgatttag 7440 tgtatgatgg tgtttttgag gtgctccagt ggcttctgtt tctatcagct gtccctcctg 7500 ttcagctact gacggggtgg tgcgtaacgg caaaagcacc gccggacatc agcgctagcg 7560 gagtgtatac tggcttacta tgttggcact gatgagggtg tcagtgaagt gcttcatgtg 7620 gcaggagaaa aaaggctgca ccggtgcgtc agcagaatat gtgatacagg atatattccg 7680 cttcctcgct cactgactcg ctacgctcgg tcgttcgact gcggcgagcg gaaatggctt 7740 acgaacgggg cggagatttc ctggaagatg ccaggaagat acttaacagg gaagtgagag 7800 ggccgcggca aagccgtttt tccataggct ccgcccccct gacaagcatc acgaaatctg 7860 acgctcaaat cagtggtggc gaaacccgac aggactataa agataccagg cgtttcccct 7920 ggcggctccc tcgtgcgctc tcctgttcct gcctttcggt ttaccggtgt cattccgctg 7980 ttatggccgc gtttgtctca ttccacgcct gacactcagt tccgggtagg cagttcgctc 8040 caagctggac tgtatgcacg aaccccccgt tcagtccgac cgctgcgcct tatccggtaa 8100 ctatcgtctt gagtccaacc cggaaagaca tgcaaaagca ccactggcag cagccactgg 8160 taattgattt agaggagtta gtcttgaagt catgcgccgg ttaaggctaa actgaaagga 8220 caagttttgg tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc 8280 agagaacctt cgaaaaaccg ccctgcaagg cggttttttc gttttcagag caagagatta 8340 cgcgcagacc aaaacgatct caagaagatc atcttattaa tcagataaaa tatttctaga 8400 tttcagtgca atttatctct tcaaatgtag cacctgaagt cagccccata cgatataagt 8460 tgtaattctc atgttagtca tgccccgcgc ccaccggaag gagctgactg ggttgaaggc 8520 tctcaagggc atcggtcgag atcccggtgc ctaatgagtg agctaactta cattaattgc 8580 gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat 8640 cggccaacgc gcggggagag gcggtttgcg tattggg 8677 <210> 36 <211> 6590 <212> DNA <213> Artificial Sequence <220> <223> pCDF HCT <400> 36 taatacgact cactataggg gaattgtgag cggataacaa ttcccctcta gaaataattt 60 tgtttaactt taagaaggag atataccatg gaactaaaca atgtcatcct tgaaaaggaa 120 ggtaaagttg ctgtagttac cattaacaga cctaaagcat taaatgcgtt aaatagtgat 180 acactaaaag aaatggatta tgttataggt gaaattgaaa atgatagcga agtacttgca 240 gtaattttaa ctggagcagg agaaaaatca tttgtagcag gagcagatat ttctgagatg 300 aaggaaatga ataccattga aggtagaaaa ttcgggatac ttggaaataa agtgtttaga 360 agattagaac ttcttgaaaa gcctgtaata gcagctgtta atggttttgc tttaggaggc 420 ggatgcgaaa tagctatgtc ttgtgatata agaatagctt caagcaacgc aagatttggt 480 caaccagaag taggtctcgg aataacacct ggttttggtg gtacacaaag actttcaaga 540 ttagttggaa tgggcatggc aaagcagctt atatttactg cacaaaatat aaaggcagat 600 gaagcattaa gaatcggact tgtaaataag gtagtagaac ctagtgaatt aatgaataca 660 gcaaaagaaa ttgcaaacaa aattgtgagc aatgctccag tagctgttaa gttaagcaaa 720 caggctatta atagaggaat gcagtgtgat attgatactg ctttagcatt tgaatcagaa 780 gcatttggag aatgcttttc aacagaggat caaaaggatg caatgacagc tttcatagag 840 aaaagaaaaa ttgaaggctt caaaaataga taggaggtaa ggatccgaat tcaaggagct 900 gtttaatgaa aaaggtatgt gttataggtg caggtactat gggttcagga attgctcagg 960 catttgcagc taaaggattt gaagtagtat taagagatat taaagatgaa tttgttgata 1020 gaggattaga ttttatcaat aaaaatcttt ctaaattagt taaaaaagga aagatagaag 1080 aagctactaa agttgaaatc ttaactagaa tttccggaac agttgacctt aatatggcag 1140 ctgattgcga tttagttata gaagcagctg ttgaaagaat ggatattaaa aagcagattt 1200 ttgctgactt agacaatata tgcaagccag aaacaattct tgcatcaaat acatcatcac 1260 tttcaataac agaagtggca tcagcaacta aaagacctga taaggttata ggtatgcatt 1320 tctttaatcc agctcctgtt atgaagcttg tagaggtaat aagaggaata gctacatcac 1380 aagaaacttt tgatgcagtt aaagagacat ctatagcaat aggaaaagat cctgtagaag 1440 tagcagaagc accaggattt gttgtaaata gaatattaat accaatgatt aatgaagcag 1500 ttggtatatt agcagaagga atagcttcag tagaagacat agataaagct atgaaacttg 1560 gagctaatca cccaatggga ccattagaat taggtgattt tataggtctt gatatatgtc 1620 ttgctataat ggatgtttta tactcagaaa ctggagattc taagtataga ccacatacat 1680 tacttaagaa gtatgtaaga gcaggatggc ttggaagaaa atcaggaaaa ggtttctacg 1740 attattcaaa ataagagctc ggcgcgcctg caggtcgaca agcttgcggc cgcataatgc 1800 ttaagtcgaa cagaaagtaa tcgtattgta cacggccgca taatcgaaat taatacgact 1860 cactataggg gaattgtgag cggataacaa ttccccatct tagtatatta gttaagtata 1920 agaaggagat atacatatga ttgtaaaacc aatggttagg aacaatattt gtctaaacgc 1980 tcatccgcaa ggatgcaaaa aaggcgttga ggatcaaata gagtacacaa aaaagagaat 2040 taccgctgag gtaaaagccg gagcaaaagc ccctaaaaac gtgctggttc tcggctgctc 2100 gaacggttac ggacttgcaa gccggataac ggcagcattc ggctatgggg ccgccactat 2160 cggcgtttcc tttgaaaaag ccggaagcga aacaaagtac ggcacacccg gctggtacaa 2220 caacctggcc tttgacgagg ctgccaaaag ggaaggcctt tattccgtaa ctatagacgg 2280 agacgccttt tccgatgaaa tcaaggcaca agtaatcgaa gaagccaaaa agaaaggaat 2340 taaattcgat cttatagttt acagcttggc aagccctgta agaaccgatc ccgacacagg 2400 cataatgcac aagtccgtct taaaaccctt cggtaaaaca tttacaggca agacagtcga 2460 tccctttacg ggagaactaa aagaaatctc cgccgaacct gcaaacgatg aagaagccgc 2520 tgcaaccgtt aaggttatgg gaggagaaga ctgggaacgc tggataaagc agctttcaaa 2580 agaaggtctt ttagaagaag gctgcattac cctagcctat tcctatatcg gccctgaggc 2640 cactcaagcc ctctaccgaa agggcaccat aggaaaggca aaagaacacc ttgaagcaac 2700 tgcccaccgc ctaaacaaag aaaacccgtc aatacgggcc ttcgtttcgg tgaacaaggg 2760 cttggtaaca agggcaagtg cggtaatccc cgtaattccc ctatacctcg cttccttgtt 2820 taaggttatg aaagaaaaag gaaaccacga gggctgtatc gagcagatta cccgccttta 2880 tgccgaaaga ctctaccgta aagacggcac catccccgtc gatgaagaaa acagaatccg 2940 tatcgacgac tgggagcttg aagaagacgt tcaaaaggcg gtttcggctt taatggaaaa 3000 agtaaccggc gaaaatgccg aaagcctaac cgaccttgca ggctaccgcc acgacttttt 3060 agcctcaaac ggctttgatg tagaaggcat caactacgaa gccgaggtag aaaggttcga 3120 caggatttaa agatctcaat tggatatcgg ccggccacgc gatcgctgac gtcggtaccc 3180 tcgagtctgg taaagaaacc gctgctgcga aatttgaacg ccagcacatg gactcgtcta 3240 ctagcgcagc ttaattaacc taggctgctg ccaccgctga gcaataacta gcataacccc 3300 ttggggcctc taaacgggtc ttgaggggtt ttttgctgaa acctcaggca tttgagaagc 3360 acacggtcac actgcttccg gtagtcaata aaccggtaaa ccagcaatag acataagcgg 3420 ctatttaacg accctgccct gaaccgacga ccgggtcatc gtggccggat cttgcggccc 3480 ctcggcttga acgaattgtt agacattatt tgccgactac cttggtgatc tcgcctttca 3540 cgtagtggac aaattcttcc aactgatctg cgcgcgaggc caagcgatct tcttcttgtc 3600 caagataagc ctgtctagct tcaagtatga cgggctgata ctgggccggc aggcgctcca 3660 ttgcccagtc ggcagcgaca tccttcggcg cgattttgcc ggttactgcg ctgtaccaaa 3720 tgcgggacaa cgtaagcact acatttcgct catcgccagc ccagtcgggc ggcgagttcc 3780 atagcgttaa ggtttcattt agcgcctcaa atagatcctg ttcaggaacc ggatcaaaga 3840 gttcctccgc cgctggacct accaaggcaa cgctatgttc tcttgctttt gtcagcaaga 3900 tagccagatc aatgtcgatc gtggctggct cgaagatacc tgcaagaatg tcattgcgct 3960 gccattctcc aaattgcagt tcgcgcttag ctggataacg ccacggaatg atgtcgtcgt 4020 gcacaacaat ggtgacttct acagcgcgga gaatctcgct ctctccaggg gaagccgaag 4080 tttccaaaag gtcgttgatc aaagctcgcc gcgttgtttc atcaagcctt acggtcaccg 4140 taaccagcaa atcaatatca ctgtgtggct tcaggccgcc atccactgcg gagccgtaca 4200 aatgtacggc cagcaacgtc ggttcgagat ggcgctcgat gacgccaact acctctgata 4260 gttgagtcga tacttcggcg atcaccgctt ccctcatact cttccttttt caatattatt 4320 gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa 4380 ataaacaaat agctagctca ctcggtcgct acgctccggg cgtgagactg cggcgggcgc 4440 tgcggacaca tacaaagtta cccacagatt ccgtggataa gcaggggact aacatgtgag 4500 gcaaaacagc agggccgcgc cggtggcgtt tttccatagg ctccgccctc ctgccagagt 4560 tcacataaac agacgctttt ccggtgcatc tgtgggagcc gtgaggctca accatgaatc 4620 tgacagtacg ggcgaaaccc gacaggactt aaagatcccc accgtttccg gcgggtcgct 4680 ccctcttgcg ctctcctgtt ccgaccctgc cgtttaccgg atacctgttc cgcctttctc 4740 ccttacggga agtgtggcgc tttctcatag ctcacacact ggtatctcgg ctcggtgtag 4800 gtcgttcgct ccaagctggg ctgtaagcaa gaactccccg ttcagcccga ctgctgcgcc 4860 ttatccggta actgttcact tgagtccaac ccggaaaagc acggtaaaac gccactggca 4920 gcagccattg gtaactggga gttcgcagag gatttgttta gctaaacacg cggttgctct 4980 tgaagtgtgc gccaaagtcc ggctacactg gaaggacaga tttggttgct gtgctctgcg 5040 aaagccagtt accacggtta agcagttccc caactgactt aaccttcgat caaaccacct 5100 ccccaggtgg ttttttcgtt tacagggcaa aagattacgc gcagaaaaaa aggatctcaa 5160 gaagatcctt tgatcttttc tactgaaccg ctctagattt cagtgcaatt tatctcttca 5220 aatgtagcac ctgaagtcag ccccatacga tataagttgt aattctcatg ttagtcatgc 5280 cccgcgccca ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc 5340 ccggtgccta atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc 5400 agtcgggaaa cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg 5460 gtttgcgtat tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga 5520 ttgcccttca ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc 5580 agcaggcgaa aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg 5640 gtatcgtcgt atcccactac cgagatgtcc gcaccaacgc gcagcccgga ctcggtaatg 5700 gcgcgcattg cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg 5760 ccctcattca gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc 5820 cgttccgcta tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc 5880 agacgcgccg agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat 5940 gcgaccagat gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg 6000 atgggtgtct ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc 6060 acagcaatgg catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc 6120 gcgagaagat tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac 6180 accaccacgc tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac 6240 ggcgcgtgca gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc 6300 agttgttgtg ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt 6360 tcccgcgttt tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa 6420 gagacaccgg catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg 6480 aattgactct cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg 6540 gtgtccggga tctcgacgct ctcccttatg cgactcctgc attaggaaat 6590 <210> 37 <211> 7316 <212> DNA <213> Artificial Sequence <220> <223> pJD758 <400> 37 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accacgcttt tcaattcaat tcatcatttt ttttttattc ttttttttga tttcggtttc 240 tttgaaattt ttttgattcg gtaatctccg aacagaagga agaacgaagg aaggagcaca 300 gacttagatt ggtatatata cgcatatgta gtgttgaaga aacatgaaat tgcccagtat 360 tcttaaccca actgcacaga acaaaaacct gcaggaaacg aagataaatc atgtcgaaag 420 ctacatataa ggaacgtgct gctactcatc ctagtcctgt tgctgccaag ctatttaata 480 tcatgcacga aaagcaaaca aacttgtgtg cttcattgga tgttcgtacc accaaggaat 540 tactggagtt agttgaagca ttaggtccca aaatttgttt actaaaaaca catgtggata 600 tcttgactga tttttccatg gagggcacag ttaagccgct aaaggcatta tccgccaagt 660 acaatttttt actcttcgaa gacagaaaat ttgctgacat tggtaataca gtcaaattgc 720 agtactctgc gggtgtatac agaatagcag aatgggcaga cattacgaat gcacacggtg 780 tggtgggccc aggtattgtt agcggtttga agcaggcggc agaagaagta acaaaggaac 840 ctagaggcct tttgatgtta gcagaattgt catgcaaggg ctccctatct actggagaat 900 atactaaggg tactgttgac attgcgaaga gcgacaaaga ttttgttatc ggctttattg 960 ctcaaagaga catgggtgga agagatgaag gttacgattg gttgattatg acacccggtg 1020 tgggtttaga tgacaaggga gacgcattgg gtcaacagta tagaaccgtg gatgatgtgg 1080 tctctacagg atctgacatt attattgttg gaagaggact atttgcaaag ggaagggatg 1140 ctaaggtaga gggtgaacgt tacagaaaag caggctggga agcatatttg agaagatgcg 1200 gccagcaaaa ctaaaaaact gtattataag taaatgcatg tatactaaac tcacaaatta 1260 gagcttcaat ttaattatat cagttattac cctgcggtgt gaaataccgc acagatgcgt 1320 aaggagaaaa taccgcatca ggaaattgta aacgttaata ttttgttaaa attcgcgtta 1380 aatttttgtt aaatcagctc attttttaac caataggccg aaatcggcaa aatcccttat 1440 aaatcaaaag aatagaccga gatagggttg agtgttgttc cagtttggaa caagagtcca 1500 ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc 1560 ccactacgtg aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta 1620 aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg 1680 gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg 1740 gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg cgccgctaca gggcgcgtcc 1800 attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 1860 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 1920 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt gtaatacgac tcactatagg 1980 gcgaattgga gctccaccgc ggtggcggcc gctctagaac tagtggatcc actagttcta 2040 gagcggccga aagatgccga tttgggcgcg aatcctttat tttggcttca ccctcatact 2100 attatcaggg ccagaaaaag gaagtgtttc cctccttctt gaattgatgt taccctcata 2160 aagcacgtgg cctcttatcg agaaagaaat taccgtcgct cgtgatttgt ttgcaaaaag 2220 aacaaaactg aaaaaaccca gacacgctcg acttcctgtc ttcctattga ttgcagcttc 2280 caatttcgtc acacaacaag gtcctagcga cggctcacag gttttgtaac aagcaatcga 2340 aggttctgga atggcgggaa agggtttagt accacatgct atgatgccca ctgtgatctc 2400 cagagcaaag ttcgttcgat cgtactgtta ctctctctct ttcaaacaga attgtccgaa 2460 tcgtgtgaca acaacagcct gttctcacac actcttttct tctaaccaag ggggtggttt 2520 agtttagtag aacctcgtga aacttacatt tacatatata taaacttgca taaattggtc 2580 aatgcaagaa atacatattt ggtcttttct aattcgtagt ttttcaagtt cttagatgct 2640 ttctttttct cttttttaca gatcatcaag gaagtaatta tctacttttt acaacaaata 2700 taaaacaatg tctttatctt caaagttgtc tgtccaagat ttggacttga aggacaagcg 2760 tgtcttcatc agagttgact tcaacgtccc attggacggt aagaagatca cttctaacca 2820 aagaattgtt gctgctttgc caaccatcaa gtacgttttg gaacaccacc caagatacgt 2880 tgtcttggct tctcacttgg gtagaccaaa cggtgaaaga aacgaaaaat actctttggc 2940 tccagttgct aaggaattgc aatcattgtt gggtaaggat gtcaccttct tgaacgactg 3000 tgtcggtcca gaagttgaag ccgctgtcaa ggcttctgcc ccaggttccg ttattttgtt 3060 ggaaaacttg cgttaccaca tcgaagaaga aggttccaga aaggtcgatg gtcaaaaggt 3120 caaggcttcc aaggaagatg ttcaaaagtt cagacacgaa ttgagctctt tggctgatgt 3180 ttacatcaac gatgccttcg gtacctcgtt cgttgagcga gttctcaaaa atgaacaaat 3240 gtcgacgggc acgatgagag aaagtagttt taactctttt ttaggagatt catcgggtat 3300 ttcctttgcg aaattagtct tcacggcaac taattttcgt caagattccg gagatgacgt 3360 tctggatgaa gatattaaac aaagggaaca gaaatacaat ggatatgcag aggctgaaaa 3420 caatccagga tcccccgggg agctcatgga agacgccggt accgctcaca gagctcactc 3480 ttctatggtc ggtttcgact tgccacaacg tgctgccggt ttcttgttgg aaaaggaatt 3540 gaagtacttc ggtaaggctt tggagaaccc aaccagacca ttcttggcca tcttaggtgg 3600 tgccaaggtt gctgacaaga ttcaattgat tgacaacttg ttggacaagg tcgactctat 3660 catcattggt ggtggtatgg ctttcacctt caagaaggtt ttggaaaaca ctgaaatcgg 3720 tgactccatc ttcgacaagg ctggtgctga aatcgttcca aagttgatgg aaaaggccaa 3780 ggccaagggt gtcgaagtcg tcttgccagt cgacttcatc attgctgatg ctttctctgc 3840 tgatgccaac accaagactg tcactgacaa ggaaggtatt ccagctggct ggcaagggtt 3900 ggacaatggt ccagaatcta gaaagttgtt tgctgctact gttgcaaagg ctaagaccat 3960 tgtctggaac ggtccaccag gtgttttcga attcgaaaag ttcgctgctg gtactaaggc 4020 tttgttagac gaagttgtca agagctctgc tgctggtaac accgtcatca ttggtggtgg 4080 tgacactgcc actgtcgcta agaagtacgg tgtcactgac aagatctccc atgtctctac 4140 tggtggtggt gcttctttgg aattattgga aggtaaggaa ttgccaggtg ttgctttctt 4200 atccgaaaag aaataaattg aattgaattg aaatcgatag atcaattttt ttcttttctc 4260 tttccccatc ctttacgcta aaataatagt ttattttatt ttttgaatat tttttattta 4320 tatacgtata tatagactat tatttatctt ttaatgatta ttaagatttt tattaaaaaa 4380 aaattcgctc ctcttttaat gcctttatgc agtttttttt tcccattcga tatttctatg 4440 ttcgggttca gcgtatttta agtttaataa ctcgaaaatt ctgcgttcgt taaagcttat 4500 cgataccgtc gacctcgagg gggggcccgc agcttttgtt ccctttagtg agggttaatt 4560 ccgagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca 4620 attccacaca acataggagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg 4680 aggtaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg 4740 tgccagctgc attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc 4800 tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta 4860 tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 4920 aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 4980 tttttccata ggctcggccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 5040 tggcgaaacc cgacaggact ataaagatac caggcgttcc cccctggaag ctccctcgtg 5100 cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 5160 agcgtggcgc tttctcaatg ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 5220 tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 5280 aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 5340 ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg 5400 cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt 5460 accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt 5520 ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 5580 ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg 5640 gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt 5700 aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 5760 gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg actgcccgtc 5820 gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg 5880 cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc 5940 gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg 6000 gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca 6060 ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga 6120 tcaaggcgag ttacatgatc ccccatgttg tgaaaaaaag cggttagctc cttcggtcct 6180 ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg 6240 cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca 6300 accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata 6360 cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct 6420 tcggggcgaa aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact 6480 cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa 6540 acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc 6600 atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga 6660 tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga 6720 aaagtgccac ctgggtcctt ttcatcacgt gctataaaaa taattataat ttaaattttt 6780 taatataaat atataaatta aaaatagaaa gtaaaaaaag aaattaaaga aaaaatagtt 6840 tttgttttcc gaagatgtaa aagactctag ggggatcgcc aacaaatact accttttatc 6900 ttgctcttcc tgctctcagg tattaatgcc gaattgtttc atcttgtctg tgtagaagac 6960 cacacacgaa aatcctgtga ttttacattt tacttatcgt taatcgaatg tatatctatt 7020 taatctgctt ttcttgtcta ataaatatat atgtaaagta cgctttttgt tgaaattttt 7080 taaacctttg tttatttttt tttcttcatt ccgtaactct tctaccttct ttatttactt 7140 tctaaaatcc aaatacaaaa cataaaaata aataaacaca gagtaaattc ccaaattatt 7200 ccatcattaa aagatacgag gcgcgtgtaa gttacaggca agcgatccgt cctaagaaac 7260 cattattatc atgacattaa cctataaaaa taggcgtatc acgaggccct ttcgtc 7316 <210> 38 <211> 1095 <212> DNA <213> Artificial Sequence <220> <223> Fdh1 from C. boidinii <400> 38 atgaagatcg ttttagtctt atatgatgct ggtaagcacg ctgctgatga agaaaaatta 60 tatggttgta ctgaaaataa attaggtatt gctaattggt taaaagatca aggtcatgaa 120 ctaattacta cttctgataa agaaggtgaa acaagtgaat tggataaaca tatcccagat 180 gctgatatta tcatcaccac tcctttccat cctgcttata tcactaagga aagacttgac 240 aaggctaaga acttaaaatc agtcgttgtc gctggtgttg gttctgatca cattgattta 300 gattatatta atcaaacagg taagaaaatc tcagtcctgg aagttacagg ttctaatgtt 360 gtctctgttg ctgaacacgt tgtcatgacc atgcttgtct tggttagaaa tttcgttcca 420 gcacatgaac aaattattaa ccacgattgg gaggttgctg ctatcgctaa ggatgcttac 480 gatatcgaag gtaaaactat cgctaccatt ggtgctggta gaattggtta cagagtcttg 540 gaaagattac tcccatttaa tccaaaagaa ttattatact acgattatca agctttacca 600 aaagaagctg aagaaaaagt tggtgctaga agagttgaaa atattgaaga attagttgct 660 caagctgata tcgttacagt taatgctcca ttacacgcag gtacaaaagg tttaattaat 720 aaggaattat tatctaaatt taaaaaaggt gcttggttag tcaataccgc aagaggtgct 780 atttgtgttg ctgaagatgt tgcagcagct ttagaatctg gtcaattaag aggttacggt 840 ggtgatgttt ggttcccaca accagctcca aaggatcacc catggagaga tatgagaaat 900 aaatatggtg ctggtaatgc catgactcct cactactctg gtactacttt agacgctcaa 960 acaagatacg ctgaaggtac taaaaatatt ttggaatcat tctttaccgg taaatttgat 1020 tacagaccac aagatattat cttattaaat ggtgaatacg ttactaaagc ttacggtaaa 1080 cacgataaga aataa 1095 <210> 39 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> atoB from E. coli <400> 39 atgaaaaatt gtgtcatcgt cagtgcggta cgtactgcta tcggtagttt taacggttca 60 ctcgcttcca ccagcgccat cgacctgggg gcgacagtaa ttaaagccgc cattgaacgt 120 gcaaaaatcg attcacaaca cgttgatgaa gtgattatgg gtaacgtgtt acaagccggg 180 ctggggcaaa atccggcgcg tcaggcactg ttaaaaagcg ggctggcaga aacggtgtgc 240 ggattcacgg tcaataaagt atgtggttcg ggtcttaaaa gtgtggcgct tgccgcccag 300 gccattcagg caggtcaggc gcagagcatt gtggcggggg gtatggaaaa tatgagttta 360 gccccctact tactcgatgc aaaagcacgc tctggttatc gtcttggaga cggacaggtt 420 tatgacgtaa tcctgcgcga tggcctgatg tgcgccaccc atggttatca tatggggatt 480 accgccgaaa acgtggctaa agagtacgga attacccgtg aaatgcagga tgaactggcg 540 ctacattcac agcgtaaagc ggcagccgca attgagtccg gtgcttttac agccgaaatc 600 gtcccggtaa atgttgtcac tcgaaagaaa accttcgtct tcagtcaaga cgaattcccg 660 aaagcgaatt caacggctga agcgttaggt gcattgcgcc cggccttcga taaagcagga 720 acagtcaccg ctgggaacgc gtctggtatt aacgacggtg ctgccgctct ggtgattatg 780 gaagaatctg cggcgctggc agcaggcctt acccccctgg ctcgcattaa aagttatgcc 840 agcggtggcg tgccccccgc attgatgggt atggggccag tacctgccac gcaaaaagcg 900 ttacaactgg cggggctgca actggcggat attgatctca ttgaggctaa tgaagcattt 960 gctgcacagt tccttgccgt tgggaaaaac ctgggctttg attctgagaa agtgaatgtc 1020 aacggcgggg ccatcgcgct cgggcatcct atcggtgcca gtggtgctcg tattctggtc 1080 acactattac atgccatgca ggcacgcgat aaaacgctgg ggctggcaac actgtgcatt 1140 ggcggcggtc agggaattgc gatggtgatt gaacggttga attaa 1185 <210> 40 <211> 1023 <212> DNA <213> Artificial Sequence <220> <223> adhA from L. lactis <400> 40 atgaaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 cttcgagcaa tcaaacctaa tgaagctttg cttgacatgg agtattgtgg agtctgtcat 120 accgatttgc acgttgcagc aggtgattat ggcaacaaag cagggactgt tcttggtcat 180 gaaggaattg gaattgtcaa agaaattgga actgatgtaa gctcgcttca agttggtgat 240 cgggtttcag tggcttggtt ctttgaagga tgtggtcact gtgaatactg tgtatctggt 300 aatgaaactt tttgtcgaga agttaaaaat gcaggatatt cagttgatgg cggaatggct 360 gaagaagcaa ttgttgttgc cgattatgct gtcaaagttc ctgacggact tgacccaatt 420 gaagctagct caattacttg tgctggagta acaacttaca aagcaatcaa agtatcagga 480 gtaaaacctg gtgattggca agtaattttt ggtgctggag gacttggaaa tttagcaatt 540 caatatgcta aaaatgtttt tggagcaaaa gtaattgctg ttgatattaa tcaagataaa 600 ttaaatttag ctaaaaaaat tggagctgat gtgattatca attctggtga tgtaaatcca 660 gttgatgaaa ttaaaaaaat aactggcggc ttaggagcac aaagtgcaat agtttgtgct 720 gttgcaagga ttgcttttga acaagcggtt gcttctttga aacctatggg caaaatggtt 780 gctgtggcac ttcccaatac tgagatgact ttatcagttc caacagttgt ttttgacgga 840 gtggaggttg caggttcact tgtcggaaca agacttgact tggcagaagc ttttcaattt 900 ggagcagagg gtaaggtaaa accaattgtt gcgacacgca aactggaaga aatcaatgat 960 attattgatg aaatgaaggc aggaaaaatt gaaggccgaa tggtcattga ttttactaaa 1020 taa 1023 <210> 41 <211> 1395 <212> DNA <213> Artificial Sequence <220> <223> pduP from S. enterica <400> 41 atgaatactt ctgaactcga aacattaatc agaaccattc ttagcgagca gttaaccacg 60 ccggcacaaa cgccggtcca gcctcaaggc aaagggattt ttcagtccgt tagcgaggcc 120 atcgatgccg cccaccaagc gtttttacgt tatcagcagt gtccgctaaa aactcgtagt 180 gctataataa gcgcgatgag acaagagctg acgcctctgc tggcgcccct ggcggaagaa 240 agtgccaatg aaacggggat gggcaacaaa gaagataagt ttctcaaaaa caaggctgca 300 ttggacaata caccgggggt agaagatctc accacaacag ctcttaccgg cgacggcggt 360 atggttctgt ttgagtactc accgtttgga gttataggtt cggtcgcccc tagcaccaac 420 cccactgaaa ctataatcaa taacagtatc tctatgctag cagcgggcaa tagtatttat 480 ttttcccctc atccgggagc taaaaaagtt tctctgaagc tgattagctt gattgaagaa 540 atagccttca ggtgctgtgg aatccgcaat ttagtggtga ccgtggcgga accaaccttc 600 gaggctaccc agcagatgat ggcccatcca cgaatcgcag tacttgccat tacaggcggc 660 ccgggcattg ttgcaatggg aatgaaaagc ggtaagaaag tgataggagc tggtgcgggt 720 aatccgccat gtatcgttga cgagacggcg gacctggtga aagcggcgga agacatcatc 780 aacggggctt cattcgatta caatctgccc tgcattgccg aaaagagcct tattgttgtg 840 gagagtgtag cagaacggct ggtgcagcaa atgcaaacat ttggtgcact gttgttatca 900 cctgcagata ccgataaatt acgcgctgtc tgcctgcctg aaggacaggc aaataaaaaa 960 cttgtcggca aaagtccatc ggcaatgctg gaagccgcag gaattgctgt ccctgcaaaa 1020 gcgccgcgtc ttttaattgc tctggttaac gctgatgatc cgtgggtcac aagcgaacag 1080 ttgatgccta tgctgccagt ggtaaaagtt tcagatttcg attccgcact ggcgctggcc 1140 ttgaaggttg aagaggggct gcatcatact gctattatgc actcgcagaa cgtgtcacgc 1200 ctgaatctcg cggcacgcac tttacaaaca tctattttcg taaaaaatgg tccctcatat 1260 gccgggattg gtgttggcgg cgaaggcttt accaccttca ctattgcaac gccaacaggt 1320 gaagggacaa catctgcgcg tacttttgct cgttcccggc gctgtgtact gacgaatggt 1380 ttttctattc gttaa 1395 <210> 42 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> hbd from C. acetobutyricum with GBD tag <400> 42 aactaaacaa tgtcatcctt gaaaaggaag gtaaagttgc tgtagttacc attaacagac 60 ctaaagcatt aaatgcgtta aatagtgata cactaaaaga aatggattat gttataggtg 120 aaattgaaaa tgatagcgaa gtacttgcag taattttaac tggagcagga gaaaaatcat 180 ttgtagcagg agcagatatt tctgagatga aggaaatgaa taccattgaa ggtagaaaat 240 tcgggatact tggaaataaa gtgtttagaa gattagaact tcttgaaaag cctgtaatag 300 cagctgttaa tggttttgct ttaggaggcg gatgcgaaat agctatgtct tgtgatataa 360 gaatagcttc aagcaacgca agatttggtc aaccagaagt aggtctcgga ataacacctg 420 gttttggtgg tacacaaaga ctttcaagat tagttggaat gggcatggca aagcagctta 480 tatttactgc acaaaatata aaggcagatg aagcattaag aatcggactt gtaaataagg 540 tagtagaacc tagtgaatta atgaatacag caaaagaaat tgcaaacaaa attgtgagca 600 atgctccagt agctgttaag ttaagcaaac aggctattaa tagaggaatg cagtgtgata 660 ttgatactgc tttagcattt gaatcagaag catttggaga atgcttttca acagaggatc 720 aaaaggatgc aatgacagct ttcatagaga aaagaaaaat tgaaggcttc aaaaatagat 780 aggaggtaa 789 <210> 43 <211> 862 <212> DNA <213> Artificial Sequence <220> <223> crt from C acetobutyricum with SH3 tag <400> 43 aaggagctgt ttaatgaaaa aggtatgtgt tataggtgca ggtactatgg gttcaggaat 60 tgctcaggca tttgcagcta aaggatttga agtagtatta agagatatta aagatgaatt 120 tgttgataga ggattagatt ttatcaataa aaatctttct aaattagtta aaaaaggaaa 180 gatagaagaa gctactaaag ttgaaatctt aactagaatt tccggaacag ttgaccttaa 240 tatggcagct gattgcgatt tagttataga agcagctgtt gaaagaatgg atattaaaaa 300 gcagattttt gctgacttag acaatatatg caagccagaa acaattcttg catcaaatac 360 atcatcactt tcaataacag aagtggcatc agcaactaaa agacctgata aggttatagg 420 tatgcatttc tttaatccag ctcctgttat gaagcttgta gaggtaataa gaggaatagc 480 tacatcacaa gaaacttttg atgcagttaa agagacatct atagcaatag gaaaagatcc 540 tgtagaagta gcagaagcac caggatttgt tgtaaataga atattaatac caatgattaa 600 tgaagcagtt ggtatattag cagaaggaat agcttcagta gaagacatag ataaagctat 660 gaaacttgga gctaatcacc caatgggacc attagaatta ggtgatttta taggtcttga 720 tatatgtctt gctataatgg atgttttata ctcagaaact ggagattcta agtatagacc 780 acatacatta cttaagaagt atgtaagagc aggatggctt ggaagaaaat caggaaaagg 840 tttctacgat tattcaaaat aa 862 <210> 44 <211> 1191 <212> DNA <213> Artificial Sequence <220> <223> Ter from T. denticola with PDZ tag <400> 44 attgtaaaac caatggttag gaacaatatt tgtctaaacg ctcatccgca aggatgcaaa 60 aaaggcgttg aggatcaaat agagtacaca aaaaagagaa ttaccgctga ggtaaaagcc 120 ggagcaaaag cccctaaaaa cgtgctggtt ctcggctgct cgaacggtta cggacttgca 180 agccggataa cggcagcatt cggctatggg gccgccacta tcggcgtttc ctttgaaaaa 240 gccggaagcg aaacaaagta cggcacaccc ggctggtaca acaacctggc ctttgacgag 300 gctgccaaaa gggaaggcct ttattccgta actatagacg gagacgcctt ttccgatgaa 360 atcaaggcac aagtaatcga agaagccaaa aagaaaggaa ttaaattcga tcttatagtt 420 tacagcttgg caagccctgt aagaaccgat cccgacacag gcataatgca caagtccgtc 480 ttaaaaccct tcggtaaaac atttacaggc aagacagtcg atccctttac gggagaacta 540 aaagaaatct ccgccgaacc tgcaaacgat gaagaagccg ctgcaaccgt taaggttatg 600 ggaggagaag actgggaacg ctggataaag cagctttcaa aagaaggtct tttagaagaa 660 ggctgcatta ccctagccta ttcctatatc ggccctgagg ccactcaagc cctctaccga 720 aagggcacca taggaaaggc aaaagaacac cttgaagcaa ctgcccaccg cctaaacaaa 780 gaaaacccgt caatacgggc cttcgtttcg gtgaacaagg gcttggtaac aagggcaagt 840 gcggtaatcc ccgtaattcc cctatacctc gcttccttgt ttaaggttat gaaagaaaaa 900 ggaaaccacg agggctgtat cgagcagatt acccgccttt atgccgaaag actctaccgt 960 aaagacggca ccatccccgt cgatgaagaa aacagaatcc gtatcgacga ctgggagctt 1020 gaagaagacg ttcaaaaggc ggtttcggct ttaatggaaa aagtaaccgg cgaaaatgcc 1080 gaaagcctaa ccgaccttgc aggctaccgc cacgactttt tagcctcaaa cggctttgat 1140 gtagaaggca tcaactacga agccgaggta gaaaggttcg acaggattta a 1191 <110> Korea University Research & Business Foundation <120> Variant Microorganism Producing Butanol in Aerobic Condition and          Method for Preparing Butanol Using the Same &Lt; 130 > P16-B294 <160> 44 <170> Kopatentin 2.0 <210> 1 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ51 <400> 1 atttaagttc cggcagtctt acgctgtagg ttaaaaggag catcagag 48 <210> 2 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ52 <400> 2 atttaagttc cggcagtctt acgctgtagg ttaaaaggag catcgttg 48 <210> 3 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ53 <400> 3 atttaagttc cggcagtctt acgcggctgg tgtaaaggag catctgag 48 <210> 4 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ54 <400> 4 atttaagttc cggcagtctt acgcggctgg tgtaaaggag catcggcc 48 <210> 5 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> 5`UTR of EMJ50 <400> 5 atttaagttc cggcagtctt acgcaataag gcgctaagga gacctta 47 <210> 6 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tatagtcgac aaggagatat aatgaaaaat tgtgtcatcg tc 42 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 tatagcggcc gcttaattca accgttcaat ca 32 <210> 8 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggagatatac atatggcaat gaaagttaca aatcaaaaag aac 43 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atatctcctt ttaaaatgat tttatataga tatccttaag 40 <210> 10 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 aatcatttta aaaggagata taatgaagat cgttttagtc ttatatg 47 <210> 11 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 cggtttcttt accagactta tttcttatcg tgtttaccg 39 <210> 12 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tataggatcc aaggagatat aatgaatact tctgaactcg aaacc 45 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 tatagagctc ttagcgaata gaaaagccgt tg 32 <210> 14 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tataagaagg agatatacaa tgaaagcagc agtagtaaga c 41 <210> 15 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gatcttcatt atatctcctt ttatttagta aaatcaatga ccattc 46 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 aaaagtcgac atggataaga aatactcaat aggct 35 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aaaactgcag tcagtcacct cctagctgac 30 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 ataaaagctt ttacgaaatc atcctgtgga g 31 <210> 19 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 taatggatcc ttttgcctcc taaaataaaa agtt 34 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 aattggtacc agtatatttt agatgaagat tatttctta 39 <210> 21 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 attaaagctt atcacactac tcttcttttg ccta 34 <210> 22 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 aaacaggttg atgtgcgaag gcaaatttaa gttcg 35 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 aaaacgaact taaatttgcc ttcgcacatc aacct 35 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ataagcagca tcgcctgtta cctgccgttc actattattt ag 42 <210> 25 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 cacatagaca gcctgaatcg gcattttctt ttgc 34 <210> 26 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 26 ccaaataaca aacgggtaaa gccaggttga tgtgcgaagg caaatttaag ttcccgcagt 60 cttacgctgt aggttaaaag gagcat 86 <210> 27 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 27 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat ctctgatgct 60 ccttttaacc tacagcg 77 <210> 28 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 28 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat caacgatgct 60 ccttttaacc tacagcg 77 <210> 29 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 29 ccaaataaca aacgggtaaa gccaggttga tgtgcgaagg caaatttaag ttcccgcagt 60 cttacgcggc tggtgtaaag gagcat 86 <210> 30 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 30 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat ggccgatgct 60 cctttacacc agccgcg 77 <210> 31 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> gltA Rescue oligomer <400> 31 tcaacagctg tgtccccgtt gagggtgagt tttgcttttg tatcagccat ctcagatgct 60 cctttacacc agccgcg 77 <210> 32 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aaagttgtta caaacattac caggaa 26 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 ttcaccattc agcaggatgt a 21 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 tacccaggtt ttcccctctt 20 <210> 35 <211> 8677 <212> DNA <213> Artificial Sequence <220> <223> pACYC APAF <400> 35 cgccagggtg gtttttcttt tcaccagtga gacgggcaac agctgattgc ccttcaccgc 60 ctggccctga gagagttgca gcaagcggtc cacgctggtt tgccccagca ggcgaaaatc 120 ctgtttgatg gtggttaacg gcgggatata acatgagctg tcttcggtat cgtcgtatcc 180 cactaccgag atgtccgcac caacgcgcag cccggactcg gtaatggcgc gcattgcgcc 240 cagcgccatc tgatcgttgg caaccagcat cgcagtggga acgatgccct cattcagcat 300 ttgcatggtt tgttgaaaac cggacatggc actccagtcg ccttcccgtt ccgctatcgg 360 ctgaatttga ttgcgagtga gatatttatg ccagccagcc agacgcagac gcgccgagac 420 agaacttaat gggcccgcta acagcgcgat ttgctggtga cccaatgcga ccagatgctc 480 cacgcccagt cgcgtaccgt cttcatggga gaaaataata ctgttgatgg gtgtctggtc 540 agagacatca agaaataacg ccggaacatt agtgcaggca gcttccacag caatggcatc 600 ctggtcatcc agcggatagt taatgatcag cccactgacg cgttgcgcga gaagattgtg 660 caccgccgct ttacaggctt cgacgccgct tcgttctacc atcgacacca ccacgctggc 720 acccagttga tcggcgcgag atttaatcgc cgcgacaatt tgcgacggcg cgtgcagggc 780 cagactggag gtggcaacgc caatcagcaa cgactgtttg cccgccagtt gttgtgccac 840 gcggttggga atgtaattca gctccgccat cgccgcttcc actttttccc gcgttttcgc 900 agaaacgtgg ctggcctggt tcaccacgcg ggaaacggtc tgataagaga caccggcata 960 ctctgcgaca tcgtataacg ttactggttt cacattcacc accctgaatt gactctcttc 1020 cgggcgctat catgccatac cgcgaaaggt tttgcgccat tcgatggtgt ccgggatctc 1080 gacgctctcc cttatgcgac tcctgcatta ggaaattaat acgactcact ataggggaat 1140 tgtgagcgga taacaattcc cctgtagaaa taattttgtt taactttaat aaggagatat 1200 accatgggca gcagccatca ccatcatcac cacagccagg atccaaggag atataatgaa 1260 gatcgtttta gtcttatatg atgctggtaa gcacgctgct gatgaagaaa aattatatgg 1320 ttgtactgaa aataaattag gtattgctaa ttggttaaaa gatcaaggtc atgaactaat 1380 tactacttct gataaagaag gtgaaacaag tgaattggat aaacatatcc cagatgctga 1440 tattatcatc accactcctt tccatcctgc ttatatcact aaggaaagac ttgacaaggc 1500 taagaactta aaatcagtcg ttgtcgctgg tgttggttct gatcacattg atttagatta 1560 tattaatcaa acaggtaaga aaatctcagt cctggaagtt acaggttcta atgttgtctc 1620 tgttgctgaa cacgttgtca tgaccatgct tgtcttggtt agaaatttcg ttccagcaca 1680 tgaacaaatt attaaccacg attgggaggt tgctgctatc gctaaggatg cttacgatat 1740 cgaaggtaaa actatcgcta ccattggtgc tggtagaatt ggttacagag tcttggaaag 1800 attactccca tttaatccaa aagaattatt atactacgat tatcaagctt taccaaaaga 1860 agctgaagaa aaagttggtg ctagaagagt tgaaaatatt gaagaattag ttgctcaagc 1920 tgatatcgtt acagttaatg ctccattaca cgcaggtaca aaaggtttaa ttaataagga 1980 attattatct aaatttaaaa aaggtgcttg gttagtcaat accgcaagag gtgctatttg 2040 tgttgctgaa gatgttgcag cagctttaga atctggtcaa ttaagaggtt acggtggtga 2100 tgtttggttc ccacaaccag ctccaaagga tcacccatgg agagatatga gaaataaata 2160 tggtgctggt aatgccatga ctcctcacta ctctggtact actttagacg ctcaaacaag 2220 atacgctgaa ggtactaaaa atattttgga atcattcttt accggtaaat ttgattacag 2280 accacaagat attatcttat taaatggtga atacgttact aaagcttacg gtaaacacga 2340 taagaaataa gagctcggcg cgcctgcagg tcgacaagga gatataatga aaaattgtgt 2400 catcgtcagt gcggtacgta ctgctatcgg tagttttaac ggttcactcg cttccaccag 2460 cgccatcgac ctgggggcga cagtaattaa agccgccatt gaacgtgcaa aaatcgattc 2520 acaacacgtt gatgaagtga ttatgggtaa cgtgttacaa gccgggctgg ggcaaaatcc 2580 ggcgcgtcag gcactgttaa aaagcgggct ggcagaaacg gtgtgcggat tcacggtcaa 2640 taaagtatgt ggttcgggtc ttaaaagtgt ggcgcttgcc gcccaggcca ttcaggcagg 2700 tcaggcgcag agcattgtgg cggggggtat ggaaaatatg agtttagccc cctacttact 2760 cgatgcaaaa gcacgctctg gttatcgtct tggagacgga caggtttatg acgtaatcct 2820 gcgcgatggc ctgatgtgcg ccacccatgg ttatcatatg gggattaccg ccgaaaacgt 2880 ggctaaagag tacggaatta cccgtgaaat gcaggatgaa ctggcgctac attcacagcg 2940 taaagcggca gccgcaattg agtccggtgc ttttacagcc gaaatcgtcc cggtaaatgt 3000 tgtcactcga aagaaaacct tcgtcttcag tcaagacgaa ttcccgaaag cgaattcaac 3060 ggctgaagcg ttaggtgcat tgcgcccggc cttcgataaa gcaggaacag tcaccgctgg 3120 gaacgcgtct ggtattaacg acggtgctgc cgctctggtg attatggaag aatctgcggc 3180 gctggcagca ggccttaccc ccctggctcg cattaaaagt tatgccagcg gtggcgtgcc 3240 ccccgcattg atgggtatgg ggccagtacc tgccacgcaa aaagcgttac aactggcggg 3300 gctgcaactg gcggatattg atctcattga ggctaatgaa gcatttgctg cacagttcct 3360 tgccgttggg aaaaacctgg gctttgattc tgagaaagtg aatgtcaacg gcggggccat 3420 cgcgctcggg catcctatcg gtgccagtgg tgctcgtatt ctggtcacac tattacatgc 3480 catgcaggca cgcgataaaa cgctggggct ggcaacactg tgcattggcg gcggtcaggg 3540 aattgcgatg gtgattgaac ggttgaatta agcggccgca taatgcttaa gtcgaacaga 3600 aagtaatcgt attgtacacg gccgcataat cgaaattaat acgactcact ataggggaat 3660 tgtgagcgga taacaattcc ccatcttagt atattagtta agtataagaa ggagatatac 3720 aatgaaagca gcagtagtaa gacacaatcc agatggttat gcggaccttg ttgaaaagga 3780 acttcgagca atcaaaccta atgaagcttt gcttgacatg gagtattgtg gagtctgtca 3840 taccgatttg cacgttgcag caggtgatta tggcaacaaa gcagggactg ttcttggtca 3900 tgaaggaatt ggaattgtca aagaaattgg aactgatgta agctcgcttc aagttggtga 3960 tcgggtttca gtggcttggt tctttgaagg atgtggtcac tgtgaatact gtgtatctgg 4020 taatgaaact ttttgtcgag aagttaaaaa tgcaggatat tcagttgatg gcggaatggc 4080 tgaagaagca attgttgttg ccgattatgc tgtcaaagtt cctgacggac ttgacccaat 4140 tgaagctagc tcaattactt gtgctggagt aacaacttac aaagcaatca aagtatcagg 4200 agtaaaacct ggtgattggc aagtaatttt tggtgctgga ggacttggaa atttagcaat 4260 tcaatatgct aaaaatgttt ttggagcaaa agtaattgct gttgatatta atcaagataa 4320 attaaattta gctaaaaaaa ttggagctga tgtgattatc aattctggtg atgtaaatcc 4380 agttgatgaa attaaaaaaa taactggcgg cttaggagca caaagtgcaa tagtttgtgc 4440 tgttgcaagg attgcttttg aacaagcggt tgcttctttg aaacctatgg gcaaaatggt 4500 tgctgtggca cttcccaata ctgagatgac tttatcagtt ccaacagttg tttttgacgg 4560 agtggaggtt gcaggttcac ttgtcggaac aagacttgac ttggcagaag cttttcaatt 4620 tggagcagag ggtaaggtaa aaccaattgt tgcgacacgc aaactggaag aaatcaatga 4680 tattattgat gaaatgaagg caggaaaaat tgaaggccga atggtcattg attttactaa 4740 ataaaaggag atataatgaa tacttctgaa ctcgaaacat taatcagaac cattcttagc 4800 gagcagttaa ccacgccggc acaaacgccg gtccagcctc aaggcaaagg gatttttcag 4860 tccgttagcg aggccatcga tgccgcccac caagcgtttt tacgttatca gcagtgtccg 4920 ctaaaaactc gtagtgctat aataagcgcg atgagacaag agctgacgcc tctgctggcg 4980 cccctggcgg aagaaagtgc caatgaaacg gggatgggca acaaagaaga taagtttctc 5040 aaaaacaagg ctgcattgga caatacaccg ggggtagaag atctcaccac aacagctctt 5100 accggcgacg gcggtatggt tctgtttgag tactcaccgt ttggagttat aggttcggtc 5160 gcccctagca ccaaccccac tgaaactata atcaataaca gtatctctat gctagcagcg 5220 ggcaatagta tttatttttc ccctcatccg ggagctaaaa aagtttctct gaagctgatt 5280 agcttgattg aagaaatagc cttcaggtgc tgtggaatcc gcaatttagt ggtgaccgtg 5340 gcggaaccaa ccttcgaggc tacccagcag atgatggccc atccacgaat cgcagtactt 5400 gccattacag gcggcccggg cattgttgca atgggaatga aaagcggtaa gaaagtgata 5460 ggagctggtg cgggtaatcc gccatgtatc gttgacgaga cggcggacct ggtgaaagcg 5520 gcggaagaca tcatcaacgg ggcttcattc gattacaatc tgccctgcat tgccgaaaag 5580 agccttattg ttgtggagag tgtagcagaa cggctggtgc agcaaatgca aacatttggt 5640 gcactgttgt tatcacctgc agataccgat aaattacgcg ctgtctgcct gcctgaagga 5700 caggcaaata aaaaacttgt cggcaaaagt ccatcggcaa tgctggaagc cgcaggaatt 5760 gctgtccctg caaaagcgcc gcgtctttta attgctctgg ttaacgctga tgatccgtgg 5820 gtcacaagcg aacagttgat gcctatgctg ccagtggtaa aagtttcaga tttcgattcc 5880 gcactggcgc tggccttgaa ggttgaagag gggctgcatc atactgctat tatgcactcg 5940 cagaacgtgt cacgcctgaa tctcgcggca cgcactttac aaacatctat tttcgtaaaa 6000 aatggtccct catatgccgg gattggtgtt ggcggcgaag gctttaccac cttcactatt 6060 gcaacgccaa caggtgaagg gacaacatct gcgcgtactt ttgctcgttc ccggcgctgt 6120 gtactgacga atggtttttc tattcgttaa gtaccctcga gtctggtaaa gaaaccgctg 6180 ctgcgaaatt tgaacgccag cacatggact cgtctactag cgcagcttaa ttaacctagg 6240 ctgctgccac cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga 6300 ggggtttttt gctgaaacct caggcatttg agaagcacac ggtcacactg cttccggtag 6360 tcaataaacc ggtaaaccag caatagacat aagcggctat ttaacgaccc tgccctgaac 6420 cgacgaccgg gtcgaatttg ctttcgaatt tctgccattc atccgcttat tatcacttat 6480 tcaggcgtag caccaggcgt ttaagggcac caataactgc cttaaaaaaa ttacgccccg 6540 ccctgccact catcgcagta ctgttgtaat tcattaagca ttctgccgac atggaagcca 6600 tcacagacgg catgatgaac ctgaatcgcc agcggcatca gcaccttgtc gccttgcgta 6660 taatatttgc ccatagtgaa aacgggggcg aagaagttgt ccatattggc cacgtttaaa 6720 tcaaaactgg tgaaactcac ccagggattg gctgagacga aaaacatatt ctcaataaac 6780 cctttaggga aataggccag gttttcaccg taacacgcca catcttgcga atatatgtgt 6840 agaaactgcc ggaaatcgtc gtggtattca ctccagagcg atgaaaacgt ttcagtttgc 6900 tcatggaaaa cggtgtaaca agggtgaaca ctatcccata tcaccagctc accgtctttc 6960 attgccatac ggaactccgg atgagcattc atcaggcggg caagaatgtg aataaaggcc 7020 ggataaaact tgtgcttatt tttctttacg gtctttaaaa aggccgtaat atccagctga 7080 acggtctggt tataggtaca ttgagcaact gactgaaatg cctcaaaatg ttctttacga 7140 tgccattggg atatatcaac ggtggtatat ccagtgattt ttttctccat tttagcttcc 7200 ttagctcctg aaaatctcga taactcaaaa aatacgcccg gtagtgatct tatttcatta 7260 tggtgaaagt tggaacctct tacgtgccga tcaacgtctc attttcgcca aaagttggcc 7320 cagggcttcc cggtatcaac agggacacca ggatttattt attctgcgaa gtgatcttcc 7380 gtcacaggta tttattcggc gcaaagtgcg tcgggtgatg ctgccaactt actgatttag 7440 tgtatgatgg tgtttttgag gtgctccagt ggcttctgtt tctatcagct gtccctcctg 7500 ttcagctact gacggggtgg tgcgtaacgg caaaagcacc gccggacatc agcgctagcg 7560 gagtgtatac tggcttacta tgttggcact gatgagggtg tcagtgaagt gcttcatgtg 7620 gcaggagaaa aaaggctgca ccggtgcgtc agcagaatat gtgatacagg atatattccg 7680 cttcctcgct cactgactcg ctacgctcgg tcgttcgact gcggcgagcg gaaatggctt 7740 acgaacgggg cggagatttc ctggaagatg ccaggaagat acttaacagg gaagtgagag 7800 ggccgcggca aagccgtttt tccataggct ccgcccccct gacaagcatc acgaaatctg 7860 acgctcaaat cagtggtggc gaaacccgac aggactataa agataccagg cgtttcccct 7920 ggcggctccc tcgtgcgctc tcctgttcct gcctttcggt ttaccggtgt cattccgctg 7980 ttatggccgc gtttgtctca ttccacgcct gacactcagt tccgggtagg cagttcgctc 8040 caagctggac tgtatgcacg aaccccccgt tcagtccgac cgctgcgcct tatccggtaa 8100 ctatcgtctt gagtccaacc cggaaagaca tgcaaaagca ccactggcag cagccactgg 8160 taattgattt agaggagtta gtcttgaagt catgcgccgg ttaaggctaa actgaaagga 8220 caagttttgg tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc 8280 agagaacctt cgaaaaaccg ccctgcaagg cggttttttc gttttcagag caagagatta 8340 cgcgcagacc aaaacgatct caagaagatc atcttattaa tcagataaaa tatttctaga 8400 tttcagtgca atttatctct tcaaatgtag cacctgaagt cagccccata cgatataagt 8460 tgtaattctc atgttagtca tgccccgcgc ccaccggaag gagctgactg ggttgaaggc 8520 tctcaagggc atcggtcgag atcccggtgc ctaatgagtg agctaactta cattaattgc 8580 gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat 8640 cggccaacgc gcggggagag gcggtttgcg tattggg 8677 <210> 36 <211> 6590 <212> DNA <213> Artificial Sequence <220> <223> pCDF HCT <400> 36 taatacgact cactataggg gaattgtgag cggataacaa ttcccctcta gaaataattt 60 tgtttaactt taagaaggag atataccatg gaactaaaca atgtcatcct tgaaaaggaa 120 ggtaaagttg ctgtagttac cattaacaga cctaaagcat taaatgcgtt aaatagtgat 180 acactaaaag aaatggatta tgttataggt gaaattgaaa atgatagcga agtacttgca 240 gtaattttaa ctggagcagg agaaaaatca tttgtagcag gagcagatat ttctgagatg 300 aaggaaatga ataccattga aggtagaaaa ttcgggatac ttggaaataa agtgtttaga 360 agattagaac ttcttgaaaa gcctgtaata gcagctgtta atggttttgc tttaggaggc 420 ggatgcgaaa tagctatgtc ttgtgatata agaatagctt caagcaacgc aagatttggt 480 caaccagaag taggtctcgg aataacacct ggttttggtg gtacacaaag actttcaaga 540 ttagttggaa tgggcatggc aaagcagctt atatttactg cacaaaatat aaaggcagat 600 gaagcattaa gaatcggact tgtaaataag gtagtagaac ctagtgaatt aatgaataca 660 gcaaaagaaa ttgcaaacaa aattgtgagc aatgctccag tagctgttaa gttaagcaaa 720 caggctatta atagaggaat gcagtgtgat attgatactg ctttagcatt tgaatcagaa 780 gcatttggag aatgcttttc aacagaggat caaaaggatg caatgacagc tttcatagag 840 aaaagaaaaa ttgaaggctt caaaaataga taggaggtaa ggatccgaat tcaaggagct 900 gtttaatgaa aaaggtatgt gttataggtg caggtactat gggttcagga attgctcagg 960 catttgcagc taaaggattt gaagtagtat taagagatat taaagatgaa tttgttgata 1020 gaggattaga ttttatcaat aaaaatcttt ctaaattagt taaaaaagga aagatagaag 1080 aagctactaa agttgaaatc ttaactagaa tttccggaac agttgacctt aatatggcag 1140 ctgattgcga tttagttata gaagcagctg ttgaaagaat ggatattaaa aagcagattt 1200 ttgctgactt agacaatata tgcaagccag aaacaattct tgcatcaaat acatcatcac 1260 tttcaataac agaagtggca tcagcaacta aaagacctga taaggttata ggtatgcatt 1320 tctttaatcc agctcctgtt atgaagcttg tagaggtaat aagaggaata gctacatcac 1380 aagaaacttt tgatgcagtt aaagagacat ctatagcaat aggaaaagat cctgtagaag 1440 tagcagaagc accaggattt gttgtaaata gaatattaat accaatgatt aatgaagcag 1500 ttggtatatt agcagaagga atagcttcag tagaagacat agataaagct atgaaacttg 1560 gagctaatca cccaatggga ccattagaat taggtgattt tataggtctt gatatatgtc 1620 ttgctataat ggatgtttta tactcagaaa ctggagattc taagtataga ccacatacat 1680 tacttaagaa gtatgtaaga gcaggatggc ttggaagaaa atcaggaaaa ggtttctacg 1740 attattcaaa ataagagctc ggcgcgcctg caggtcgaca agcttgcggc cgcataatgc 1800 ttaagtcgaa cagaaagtaa tcgtattgta cacggccgca taatcgaaat taatacgact 1860 cactataggg gaattgtgag cggataacaa ttccccatct tagtatatta gttaagtata 1920 agaaggagat atacatatga ttgtaaaacc aatggttagg aacaatattt gtctaaacgc 1980 tcatccgcaa ggatgcaaaa aaggcgttga ggatcaaata gagtacacaa aaaagagaat 2040 taccgctgag gtaaaagccg gagcaaaagc ccctaaaaac gtgctggttc tcggctgctc 2100 gaacggttac ggacttgcaa gccggataac ggcagcattc ggctatgggg ccgccactat 2160 cggcgtttcc tttgaaaaag ccggaagcga aacaaagtac ggcacacccg gctggtacaa 2220 caacctggcc tttgacgagg ctgccaaaag ggaaggcctt tattccgtaa ctatagacgg 2280 agacgccttt tccgatgaaa tcaaggcaca agtaatcgaa gaagccaaaa agaaaggaat 2340 taaattcgat cttatagttt acagcttggc aagccctgta agaaccgatc ccgacacagg 2400 cataatgcac aagtccgtct taaaaccctt cggtaaaaca tttacaggca agacagtcga 2460 tccctttacg ggagaactaa aagaaatctc cgccgaacct gcaaacgatg aagaagccgc 2520 tgcaaccgtt aaggttatgg gaggagaaga ctgggaacgc tggataaagc agctttcaaa 2580 agaaggtctt ttagaagaag gctgcattac cctagcctat tcctatatcg gccctgaggc 2640 cactcaagcc ctctaccgaa agggcaccat aggaaaggca aaagaacacc ttgaagcaac 2700 tgcccaccgc ctaaacaaag aaaacccgtc aatacgggcc ttcgtttcgg tgaacaaggg 2760 cttggtaaca agggcaagtg cggtaatccc cgtaattccc ctatacctcg cttccttgtt 2820 taaggttatg aaagaaaaag gaaaccacga gggctgtatc gagcagatta cccgccttta 2880 tgccgaaaga ctctaccgta aagacggcac catccccgtc gatgaagaaa acagaatccg 2940 tatcgacgac tgggagcttg aagaagacgt tcaaaaggcg gtttcggctt taatggaaaa 3000 agtaaccggc gaaaatgccg aaagcctaac cgaccttgca ggctaccgcc acgacttttt 3060 agcctcaaac ggctttgatg tagaaggcat caactacgaa gccgaggtag aaaggttcga 3120 caggatttaa agatctcaat tggatatcgg ccggccacgc gatcgctgac gtcggtaccc 3180 tcgagtctgg taaagaaacc gctgctgcga aatttgaacg ccagcacatg gactcgtcta 3240 ctagcgcagc ttaattaacc taggctgctg ccaccgctga gcaataacta gcataacccc 3300 ttggggcctc taaacgggtc ttgaggggtt ttttgctgaa acctcaggca tttgagaagc 3360 acacggtcac actgcttccg gtagtcaata aaccggtaaa ccagcaatag acataagcgg 3420 ctatttaacg accctgccct gaaccgacga ccgggtcatc gtggccggat cttgcggccc 3480 ctcggcttga acgaattgtt agacattatt tgccgactac cttggtgatc tcgcctttca 3540 cgtagtggac aaattcttcc aactgatctg cgcgcgaggc caagcgatct tcttcttgtc 3600 caagataagc ctgtctagct tcaagtatga cgggctgata ctgggccggc aggcgctcca 3660 ttgcccagtc ggcagcgaca tccttcggcg cgattttgcc ggttactgcg ctgtaccaaa 3720 tgcgggacaa cgtaagcact acatttcgct catcgccagc ccagtcgggc ggcgagttcc 3780 atagcgttaa ggtttcattt agcgcctcaa atagatcctg ttcaggaacc ggatcaaaga 3840 gttcctccgc cgctggacct accaaggcaa cgctatgttc tcttgctttt gtcagcaaga 3900 tagccagatc aatgtcgatc gtggctggct cgaagatacc tgcaagaatg tcattgcgct 3960 gccattctcc aaattgcagt tcgcgcttag ctggataacg ccacggaatg atgtcgtcgt 4020 gcacaacaat ggtgacttct acagcgcgga gaatctcgct ctctccaggg gaagccgaag 4080 tttccaaaag gtcgttgatc aaagctcgcc gcgttgtttc atcaagcctt acggtcaccg 4140 taaccagcaa atcaatatca ctgtgtggct tcaggccgcc atccactgcg gagccgtaca 4200 aatgtacggc cagcaacgtc ggttcgagat ggcgctcgat gacgccaact acctctgata 4260 gttgagtcga tacttcggcg atcaccgctt ccctcatact cttccttttt caatattatt 4320 gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa 4380 ataaacaaat agctagctca ctcggtcgct acgctccggg cgtgagactg cggcgggcgc 4440 tgcggacaca tacaaagtta cccacagatt ccgtggataa gcaggggact aacatgtgag 4500 gcaaaacagc agggccgcgc cggtggcgtt tttccatagg ctccgccctc ctgccagagt 4560 tcacataaac agacgctttt ccggtgcatc tgtgggagcc gtgaggctca accatgaatc 4620 tgacagtacg ggcgaaaccc gacaggactt aaagatcccc accgtttccg gcgggtcgct 4680 ccctcttgcg ctctcctgtt ccgaccctgc cgtttaccgg atacctgttc cgcctttctc 4740 ccttacggga agtgtggcgc tttctcatag ctcacacact ggtatctcgg ctcggtgtag 4800 gtcgttcgct ccaagctggg ctgtaagcaa gaactccccg ttcagcccga ctgctgcgcc 4860 ttatccggta actgttcact tgagtccaac ccggaaaagc acggtaaaac gccactggca 4920 gcagccattg gtaactggga gttcgcagag gatttgttta gctaaacacg cggttgctct 4980 tgaagtgtgc gccaaagtcc ggctacactg gaaggacaga tttggttgct gtgctctgcg 5040 aaagccagtt accacggtta agcagttccc caactgactt aaccttcgat caaaccacct 5100 ccccaggtgg ttttttcgtt tacagggcaa aagattacgc gcagaaaaaa aggatctcaa 5160 gaagatcctt tgatcttttc tactgaaccg ctctagattt cagtgcaatt tatctcttca 5220 aatgtagcac ctgaagtcag ccccatacga tataagttgt aattctcatg ttagtcatgc 5280 cccgcgccca ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc 5340 ccggtgccta atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc 5400 agtcgggaaa cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg 5460 gtttgcgtat tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga 5520 ttgcccttca ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc 5580 agcaggcgaa aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg 5640 gtatcgtcgt atcccactac cgagatgtcc gcaccaacgc gcagcccgga ctcggtaatg 5700 gcgcgcattg cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg 5760 ccctcattca gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc 5820 cgttccgcta tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc 5880 agacgcgccg agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat 5940 gcgaccagat gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg 6000 atgggtgtct ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc 6060 acagcaatgg catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc 6120 gcgagaagat tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac 6180 accaccacgc tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac 6240 ggcgcgtgca gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc 6300 agttgttgtg ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt 6360 tcccgcgttt tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa 6420 gagacaccgg catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg 6480 aattgactct cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg 6540 gtgtccggga tctcgacgct ctcccttatg cgactcctgc attaggaaat 6590 <210> 37 <211> 7316 <212> DNA <213> Artificial Sequence <220> <223> pJD758 <400> 37 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accacgcttt tcaattcaat tcatcatttt ttttttattc ttttttttga tttcggtttc 240 tttgaaattt ttttgattcg gtaatctccg aacagaagga agaacgaagg aaggagcaca 300 gacttagatt ggtatatata cgcatatgta gtgttgaaga aacatgaaat tgcccagtat 360 tcttaaccca actgcacaga acaaaaacct gcaggaaacg aagataaatc atgtcgaaag 420 ctacatataa ggaacgtgct gctactcatc ctagtcctgt tgctgccaag ctatttaata 480 tcatgcacga aaagcaaaca aacttgtgtg cttcattgga tgttcgtacc accaaggaat 540 tactggagtt agttgaagca ttaggtccca aaatttgttt actaaaaaca catgtggata 600 tcttgactga tttttccatg gagggcacag ttaagccgct aaaggcatta tccgccaagt 660 acaatttttt actcttcgaa gacagaaaat ttgctgacat tggtaataca gtcaaattgc 720 agtactctgc gggtgtatac agaatagcag aatgggcaga cattacgaat gcacacggtg 780 tggtgggccc aggtattgtt agcggtttga agcaggcggc agaagaagta acaaaggaac 840 ctagaggcct tttgatgtta gcagaattgt catgcaaggg ctccctatct actggagaat 900 atactaaggg tactgttgac attgcgaaga gcgacaaaga ttttgttatc ggctttattg 960 ctcaaagaga catgggtgga agagatgaag gttacgattg gttgattatg acacccggtg 1020 tgggtttaga tgacaaggga gacgcattgg gtcaacagta tagaaccgtg gatgatgtgg 1080 tctctacagg atctgacatt attattgttg gaagaggact atttgcaaag ggaagggatg 1140 ctaaggtaga gggtgaacgt tacagaaaag caggctggga agcatatttg agaagatgcg 1200 gccagcaaaa ctaaaaaact gtattataag taaatgcatg tatactaaac tcacaaatta 1260 gagcttcaat ttaattatat cagttattac cctgcggtgt gaaataccgc acagatgcgt 1320 aaggagaaaa taccgcatca ggaaattgta aacgttaata ttttgttaaa attcgcgtta 1380 aattcggcaa aatcctctc attattttaac caataggccg aaatcggcaa aatcccttat 1440 aaatcaaaag aatagaccga gatagggttg agtgttgttc cagtttggaa caagagtcca 1500 ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc 1560 ccactacgtg aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta 1620 aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg 1680 gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg 1740 gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg cgccgctaca gggcgcgtcc 1800 attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 1860 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 1920 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt gtaatacgac tcactatagg 1980 gcgaattgga gctccaccgc ggtggcggcc gctctagaac tagtggatcc actagttcta 2040 gagcggccga aagatgccga tttgggcgcg aatcctttat tttggcttca ccctcatact 2100 attatcaggg ccagaaaaag gaagtgtttc cctccttctt gaattgatgt taccctcata 2160 aagcacgtgg cctcttatcg agaaagaaat taccgtcgct cgtgatttgt ttgcaaaaag 2220 aacaaaactg aaaaaaccca gacacgctcg acttcctgtc ttcctattga ttgcagcttc 2280 caatttcgtc acacaacaag gtcctagcga cggctcacag gttttgtaac aagcaatcga 2340 aggttctgga atggcgggaa agggtttagt accacatgct atgatgccca ctgtgatctc 2400 cagagcaaag ttcgttcgat cgtactgtta ctctctctct ttcaaacaga attgtccgaa 2460 tcgtgtgaca acaacagcct gttctcacac actcttttct tctaaccaag ggggtggttt 2520 agtttagtag aacctcgtga aacttacatt tacatatata taaacttgca taaattggtc 2580 aatgcaagaa atacatattt ggtcttttct aattcgtagt ttttcaagtt cttagatgct 2640 ttctttttct cttttttaca gatcatcaag gaagtaatta tctacttttt acaacaaata 2700 taaaacaatg tctttatctt caaagttgtc tgtccaagat ttggacttga aggacaagcg 2760 tgtcttcatc agagttgact tcaacgtccc attggacggt aagaagatca cttctaacca 2820 aagaattgtt gctgctttgc caaccatcaa gtacgttttg gaacaccacc caagatacgt 2880 tgtcttggct tctcacttgg gtagaccaaa cggtgaaaga aacgaaaaat actctttggc 2940 tccagttgct aaggaattgc aatcattgtt gggtaaggat gtcaccttct tgaacgactg 3000 tgtcggtcca gaagttgaag ccgctgtcaa ggcttctgcc ccaggttccg ttattttgtt 3060 ggaaaacttg cgttaccaca tcgaagaaga aggttccaga aaggtcgatg gtcaaaaggt 3120 caaggcttcc aaggaagatg ttcaaaagtt cagacacgaa ttgagctctt tggctgatgt 3180 ttacatcaac gatgccttcg gtacctcgtt cgttgagcga gttctcaaaa atgaacaaat 3240 gtcgacgggc acgatgagag aaagtagttt taactctttt ttaggagatt catcgggtat 3300 ttcctttgcg aaattagtct tcacggcaac taattttcgt caagattccg gagatgacgt 3360 tctggatgaa gatattaaac aaagggaaca gaaatacaat ggatatgcag aggctgaaaa 3420 caatccagga tcccccgggg agctcatgga agacgccggt accgctcaca gagctcactc 3480 ttctatggtc ggtttcgact tgccacaacg tgctgccggt ttcttgttgg aaaaggaatt 3540 gaagtacttc ggtaaggctt tggagaaccc aaccagacca ttcttggcca tcttaggtgg 3600 tgccaaggtt gctgacaaga ttcaattgat tgacaacttg ttggacaagg tcgactctat 3660 catcattggt ggtggtatgg ctttcacctt caagaaggtt ttggaaaaca ctgaaatcgg 3720 tgactccatc ttcgacaagg ctggtgctga aatcgttcca aagttgatgg aaaaggccaa 3780 ggccaagggt gtcgaagtcg tcttgccagt cgacttcatc attgctgatg ctttctctgc 3840 tgatgccaac accaagactg tcactgacaa ggaaggtatt ccagctggct ggcaagggtt 3900 ggacaatggt ccagaatcta gaaagttgtt tgctgctact gttgcaaagg ctaagaccat 3960 tgtctggaac ggtccaccag gtgttttcga attcgaaaag ttcgctgctg gtactaaggc 4020 tttgttagac gaagttgtca agagctctgc tgctggtaac accgtcatca ttggtggtgg 4080 tgacactgcc actgtcgcta agaagtacgg tgtcactgac aagatctccc atgtctctac 4140 tggtggtggt gcttctttgg aattattgga aggtaaggaa ttgccaggtg ttgctttctt 4200 atccgaaaag aaataaattg aattgaattg aaatcgatag atcaattttt ttcttttctc 4260 tttccccatc ctttacgcta aaataatagt ttattttatt ttttgaatat tttttattta 4320 tatacgtata tatagactat tattatatctt ttaatgatta ttaagatttt tattaaaaaa 4380 aaattcgctc ctcttttaat gcctttatgc agtttttttt tcccattcga tatttctatg 4440 ttcgggttca gcgtatttta agtttaataa ctcgaaaatt ctgcgttcgt taaagcttat 4500 cgataccgtc gacctcgagg gggggcccgc agcttttgtt ccctttagtg agggttaatt 4560 ccgagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca 4620 attccacaca acataggagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg 4680 aggtaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg 4740 tgccagctgc attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc 4800 tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta 4860 tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 4920 aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 4980 tttttccata ggctcggccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 5040 tggcgaaacc cgacaggact ataaagatac caggcgttcc cccctggaag ctccctcgtg 5100 cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 5160 agcgtggcgc tttctcaatg ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 5220 tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 5280 aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 5340 ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg 5400 cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt 5460 accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt 5520 ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 5580 ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg 5640 gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt 5700 aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 5760 gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg actgcccgtc 5820 gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg 5880 cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc 5940 gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg 6000 gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca 6060 ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga 6120 tcaaggcgag ttacatgatc ccccatgttg tgaaaaaaag cggttagctc cttcggtcct 6180 ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg 6240 cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca 6300 accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata 6360 cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct 6420 tcggggcgaa aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact 6480 cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa 6540 acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc 6600 atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga 6660 tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga 6720 aaagtgccac ctgggtcctt ttcatcacgt gctataaaaa taattataat ttaaattttt 6780 taatataaat atataaatta aaaatagaaa gtaaaaaaag aaattaaaga aaaaatagtt 6840 tttgttttcc gaagatgtaa aagactctag ggggatcgcc aacaaatact accttttatc 6900 ttgctcttcc tgctctcagg tattaatgcc gaattgtttc atcttgtctg tgtagaagac 6960 cacacacgaa aatcctgtga ttttacattt tacttatcgt taatcgaatg tatatctatt 7020 taatctgctt ttcttgtcta ataaatatat atgtaaagta cgctttttgt tgaaattttt 7080 taaacctttg tttatttttt tttcttcatt ccgtaactct tctaccttct ttatttactt 7140 tctaaaatcc aaatacaaaa cataaaaata aataaacaca gagtaaattc ccaaattatt 7200 ccatcattaa aagatacgag gcgcgtgtaa gttacaggca agcgatccgt cctaagaaac 7260 cattattatc atgacattaa cctataaaaa taggcgtatc acgaggccct ttcgtc 7316 <210> 38 <211> 1095 <212> DNA <213> Artificial Sequence <220> <223> Fdh1 from C. boidinii <400> 38 atgaagatcg ttttagtctt atatgatgct ggtaagcacg ctgctgatga agaaaaatta 60 tatggttgta ctgaaaataa attaggtatt gctaattggt taaaagatca aggtcatgaa 120 ctaattacta cttctgataa agaaggtgaa acaagtgaat tggataaaca tatcccagat 180 gctgatatta tcatcaccac tcctttccat cctgcttata tcactaagga aagacttgac 240 aaggctaaga acttaaaatc agtcgttgtc gctggtgttg gttctgatca cattgattta 300 gattatatta atcaaacagg taagaaaatc tcagtcctgg aagttacagg ttctaatgtt 360 gtctctgttg ctgaacacgt tgtcatgacc atgcttgtct tggttagaaa tttcgttcca 420 gcacatgaac aaattattaa ccacgattgg gaggttgctg ctatcgctaa ggatgcttac 480 gatatcgaag gtaaaactat cgctaccatt ggtgctggta gaattggtta cagagtcttg 540 gaaagattac tcccatttaa tccaaaagaa ttattatact acgattatca agctttacca 600 aaagaagctg aagaaaaagt tggtgctaga agagttgaaa atattgaaga attagttgct 660 caagctgata tcgttacagt taatgctcca ttacacgcag gtacaaaagg tttaattaat 720 aaggaattat tatctaaatt taaaaaaggt gcttggttag tcaataccgc aagaggtgct 780 atttgtgttg ctgaagatgt tgcagcagct ttagaatctg gtcaattaag aggttacggt 840 ggtgatgttt ggttcccaca accagctcca aaggatcacc catggagaga tatgagaaat 900 aaatatggtg ctggtaatgc catgactcct cactactctg gtactacttt agacgctcaa 960 acaagatacg ctgaaggtac taaaaatatt ttggaatcat tctttaccgg taaatttgat 1020 tacagaccac aagatattat cttattaaat ggtgaatacg ttactaaagc ttacggtaaa 1080 cacgataaga aataa 1095 <210> 39 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> atoB from E. coli <400> 39 atgaaaaatt gtgtcatcgt cagtgcggta cgtactgcta tcggtagttt taacggttca 60 ctcgcttcca ccagcgccat cgacctgggg gcgacagtaa ttaaagccgc cattgaacgt 120 gcaaaaatcg attcacaaca cgttgatgaa gtgattatgg gtaacgtgtt acaagccggg 180 ctggggcaaa atccggcgcg tcaggcactg ttaaaaagcg ggctggcaga aacggtgtgc 240 ggattcacgg tcaataaagt atgtggttcg ggtcttaaaa gtgtggcgct tgccgcccag 300 gccattcagg caggtcaggc gcagagcatt gtggcggggg gtatggaaaa tatgagttta 360 gccccctact tactcgatgc aaaagcacgc tctggttatc gtcttggaga cggacaggtt 420 tatgacgtaa tcctgcgcga tggcctgatg tgcgccaccc atggttatca tatggggatt 480 accgccgaaa acgtggctaa agagtacgga attacccgtg aaatgcagga tgaactggcg 540 ctacattcac agcgtaaagc ggcagccgca attgagtccg gtgcttttac agccgaaatc 600 gtcccggtaa atgttgtcac tcgaaagaaa accttcgtct tcagtcaaga cgaattcccg 660 aaagcgaatt caacggctga agcgttaggt gcattgcgcc cggccttcga taaagcagga 720 acagtcaccg ctgggaacgc gtctggtatt aacgacggtg ctgccgctct ggtgattatg 780 gaagaatctg cggcgctggc agcaggcctt acccccctgg ctcgcattaa aagttatgcc 840 agcggtggcg tgccccccgc attgatgggt atggggccag tacctgccac gcaaaaagcg 900 ttacaactgg cggggctgca actggcggat attgatctca ttgaggctaa tgaagcattt 960 gctgcacagt tccttgccgt tgggaaaaac ctgggctttg attctgagaa agtgaatgtc 1020 aacggcgggg ccatcgcgct cgggcatcct atcggtgcca gtggtgctcg tattctggtc 1080 acactattac atgccatgca ggcacgcgat aaaacgctgg ggctggcaac actgtgcatt 1140 ggcggcggtc agggaattgc gatggtgatt gaacggttga attaa 1185 <210> 40 <211> 1023 <212> DNA <213> Artificial Sequence <220> <223> adhA from L. lactis <400> 40 atgaaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 cttcgagcaa tcaaacctaa tgaagctttg cttgacatgg agtattgtgg agtctgtcat 120 accgatttgc acgttgcagc aggtgattat ggcaacaaag cagggactgt tcttggtcat 180 gaaggaattg gaattgtcaa agaaattgga actgatgtaa gctcgcttca agttggtgat 240 cgggtttcag tggcttggtt ctttgaagga tgtggtcact gtgaatactg tgtatctggt 300 aatgaaactt tttgtcgaga agttaaaaat gcaggatatt cagttgatgg cggaatggct 360 gaagaagcaa ttgttgttgc cgattatgct gtcaaagttc ctgacggact tgacccaatt 420 gaagctagct caattacttg tgctggagta acaacttaca aagcaatcaa agtatcagga 480 gtaaaacctg gtgattggca agtaattttt ggtgctggag gacttggaaa tttagcaatt 540 caatatgcta aaaatgtttt tggagcaaaa gtaattgctg ttgatattaa tcaagataaa 600 ttaaatttag ctaaaaaaat tggagctgat gtgattatca attctggtga tgtaaatcca 660 gttgatgaaa ttaaaaaaat aactggcggc ttaggagcac aaagtgcaat agtttgtgct 720 gttgcaagga ttgcttttga acaagcggtt gcttctttga aacctatggg caaaatggtt 780 gctgtggcac ttcccaatac tgagatgact ttatcagttc caacagttgt ttttgacgga 840 gtggaggttg caggttcact tgtcggaaca agacttgact tggcagaagc ttttcaattt 900 ggagcagagg gtaaggtaaa accaattgtt gcgacacgca aactggaaga aatcaatgat 960 attattgatg aaatgaaggc aggaaaaatt gaaggccgaa tggtcattga ttttactaaa 1020 taa 1023 <210> 41 <211> 1395 <212> DNA <213> Artificial Sequence <220> <223> pduP from S. enterica <400> 41 atgaatactt ctgaactcga aacattaatc agaaccattc ttagcgagca gttaaccacg 60 ccggcacaaa cgccggtcca gcctcaaggc aaagggattt ttcagtccgt tagcgaggcc 120 atcgatgccg cccaccaagc gtttttacgt tatcagcagt gtccgctaaa aactcgtagt 180 gctataataa gcgcgatgag acaagagctg acgcctctgc tggcgcccct ggcggaagaa 240 agtgccaatg aaacggggat gggcaacaaa gaagataagt ttctcaaaaa caaggctgca 300 ttggacaata caccgggggt agaagatctc accacaacag ctcttaccgg cgacggcggt 360 atggttctgt ttgagtactc accgtttgga gttataggtt cggtcgcccc tagcaccaac 420 cccactgaaa ctataatcaa taacagtatc tctatgctag cagcgggcaa tagtatttat 480 ttttcccctc atccgggagc taaaaaagtt tctctgaagc tgattagctt gattgaagaa 540 atagccttca ggtgctgtgg aatccgcaat ttagtggtga ccgtggcgga accaaccttc 600 gaggctaccc agcagatgat ggcccatcca cgaatcgcag tacttgccat tacaggcggc 660 ccgggcattg ttgcaatggg aatgaaaagc ggtaagaaag tgataggagc tggtgcgggt 720 aatccgccat gtatcgttga cgagacggcg gacctggtga aagcggcgga agacatcatc 780 aacggggctt cattcgatta caatctgccc tgcattgccg aaaagagcct tattgttgtg 840 gagagtgtag cagaacggct ggtgcagcaa atgcaaacat ttggtgcact gttgttatca 900 cctgcagata ccgataaatt acgcgctgtc tgcctgcctg aaggacaggc aaataaaaaa 960 cttgtcggca aaagtccatc ggcaatgctg gaagccgcag gaattgctgt ccctgcaaaa 1020 gcgccgcgtc ttttaattgc tctggttaac gctgatgatc cgtgggtcac aagcgaacag 1080 ttgatgccta tgctgccagt ggtaaaagtt tcagatttcg attccgcact ggcgctggcc 1140 ttgaaggttg aagaggggct gcatcatact gctattatgc actcgcagaa cgtgtcacgc 1200 ctgaatctcg cggcacgcac tttacaaaca tctattttcg taaaaaatgg tccctcatat 1260 gccgggattg gtgttggcgg cgaaggcttt accaccttca ctattgcaac gccaacaggt 1320 gaagggacaa catctgcgcg tacttttgct cgttcccggc gctgtgtact gacgaatggt 1380 ttttctattc gttaa 1395 <210> 42 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> HBD from C. acetobutyricum with GBD tag <400> 42 aactaaacaa tgtcatcctt gaaaaggaag gtaaagttgc tgtagttacc attaacagac 60 ctaaagcatt aaatgcgtta aatagtgata cactaaaaga aatggattat gttataggtg 120 aaattgaaaa tgatagcgaa gtacttgcag taattttaac tggagcagga gaaaaatcat 180 ttgtagcagg agcagatatt tctgagatga aggaaatgaa taccattgaa ggtagaaaat 240 tcgggatact tggaaataaa gtgtttagaa gattagaact tcttgaaaag cctgtaatag 300 cagctgttaa tggttttgct ttaggaggcg gatgcgaaat agctatgtct tgtgatataa 360 gaatagcttc aagcaacgca agatttggtc aaccagaagt aggtctcgga ataacacctg 420 gtttggtgg tacacaaaga ctttcaagat tagttggaat gggcatggca aagcagctta 480 tatttactgc acaaaatata aaggcagatg aagcattaag aatcggactt gtaaataagg 540 tagtagaacc tagtgaatta atgaatacag caaaagaaat tgcaaacaaa attgtgagca 600 atgctccagt agctgttaag ttaagcaaac aggctattaa tagaggaatg cagtgtgata 660 ttgatactgc tttagcattt gaatcagaag catttggaga atgcttttca acagaggatc 720 aaaaggatgc aatgacagct ttcatagaga aaagaaaaat tgaaggcttc aaaaatagat 780 aggaggtaa 789 <210> 43 <211> 862 <212> DNA <213> Artificial Sequence <220> <223> crt from C acetobutyricum with SH3 tag <400> 43 aaggagctgt ttaatgaaaa aggtatgtgt tataggtgca ggtactatgg gttcaggaat 60 tgctcaggca tttgcagcta aaggatttga agtagtatta agagatatta aagatgaatt 120 tgttgataga ggattagatt ttatcaataa aaatctttct aaattagtta aaaaaggaaa 180 gatagaagaa gctactaaag ttgaaatctt aactagaatt tccggaacag ttgaccttaa 240 tatggcagct gattgcgatt tagttataga agcagctgtt gaaagaatgg atattaaaaa 300 gcagattttt gctgacttag acaatatatg caagccagaa acaattcttg catcaaatac 360 atcatcactt tcaataacag aagtggcatc agcaactaaa agacctgata aggttatagg 420 tatgcatttc tttaatccag ctcctgttat gaagcttgta gaggtaataa gaggaatagc 480 tacatcacaa gaaacttttg atgcagttaa agagacatct atagcaatag gaaaagatcc 540 tgtagaagta gcagaagcac caggatttgt tgtaaataga atattaatac caatgattaa 600 tgaagcagtt ggtatattag cagaaggaat agcttcagta gaagacatag ataaagctat 660 gaaacttgga gctaatcacc caatgggacc attagaatta ggtgatttta taggtcttga 720 tatatgtctt gctataatgg atgttttata ctcagaaact ggagattcta agtatagacc 780 acatacatta cttaagaagt atgtaagagc aggatggctt ggaagaaaat caggaaaagg 840 tttctacgat tattcaaaat aa 862 <210> 44 <211> 1191 <212> DNA <213> Artificial Sequence <220> <223> Ter from T. denticola with PDZ tag <400> 44 attgtaaaac caatggttag gaacaatatt tgtctaaacg ctcatccgca aggatgcaaa 60 aaaggcgttg aggatcaaat agagtacaca aaaaagagaa ttaccgctga ggtaaaagcc 120 ggagcaaaag cccctaaaaa cgtgctggtt ctcggctgct cgaacggtta cggacttgca 180 agccggataa cggcagcatt cggctatggg gccgccacta tcggcgtttc ctttgaaaaa 240 gccggaagcg aaacaaagta cggcacaccc ggctggtaca acaacctggc ctttgacgag 300 gctgccaaaa gggaaggcct ttattccgta actatagacg gagacgcctt ttccgatgaa 360 atcaaggcac aagtaatcga agaagccaaa aagaaaggaa ttaaattcga tcttatagtt 420 tagertaggg caagccctgt aagaaccgat cccgacacag gcataatgca caagtccgtc 480 ttaaaaccct tcggtaaaac atttacaggc aagacagtcg atccctttac gggagaacta 540 aaagaaatct ccgccgaacc tgcaaacgat gaagaagccg ctgcaaccgt taaggttatg 600 ggaggagaag actgggaacg ctggataaag cagctttcaa aagaaggtct tttagaagaa 660 ggctgcatta ccctagccta ttcctatatc ggccctgagg ccactcaagc cctctaccga 720 aagggcacca taggaaaggc aaaagaacac cttgaagcaa ctgcccaccg cctaaacaaa 780 gaaaacccgt caatacgggc cttcgtttcg gtgaacaagg gcttggtaac aagggcaagt 840 gcggtaatcc ccgtaattcc cctatacctc gcttccttgt ttaaggttat gaaagaaaaa 900 ggaaaccacg agggctgtat cgagcagatt acccgccttt atgccgaaag actctaccgt 960 aaagacggca ccatccccgt cgatgaagaa aacagaatcc gtatcgacga ctgggagctt 1020 gaagaagacg ttcaaaaggc ggtttcggct ttaatggaaa aagtaaccgg cgaaaatgcc 1080 gaaagcctaa ccgaccttgc aggctaccgc cacgactttt tagcctcaaa cggctttgat 1140 gtagaaggca tcaactacga agccgaggta gaaaggttcg acaggattta a 1191

Claims (11)

삭제delete 글루코오스로부터 아세틸-CoA를 생성하는 경로를 가지는 미생물에서 다음 유전자가 도입되어 있고, 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자의 발현이 하향조절되어 있는 호기조건에서 부탄올 생성능을 가지는 변이 미생물;
(a) 호기성 균주 유래 알코올 디하이드로게네이즈를 코딩하는 유전자;
(b) 호기성 균주 유래의 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자;
(c) 부틸-CoA 디하이드로게네이즈를 코딩하는 유전자;
(d) 크로토네이즈(crotonase)를 코딩하는 유전자;
(e) 하이드록시부티릴-CoA 디하이드로게네이즈를 코딩하는 유전자; 및
(f) 티올레이즈(thiolase)를 코딩하는 유전자.
A mutant microorganism having the ability to produce butanol in an aerobic condition in which the following gene is introduced in a microorganism having a pathway for producing acetyl-CoA from glucose and the expression of a gene encoding citrate synthase is down-regulated;
(a) a gene encoding an aerobic strain-derived alcohol dehydrogenase;
(b) a gene encoding a propionaldehyde dehydrogenase derived from an aerobic strain;
(c) a gene encoding butyl-CoA dehydrogenase;
(d) a gene encoding crotonase;
(e) a gene encoding hydroxybutyryl-CoA dehydrogenase; And
(f) a gene encoding thiolase.
제2항에 있어서, 숙신산, 락테이트, 에탄올 및 아세테이트로 구성된 군에서 선택되는 부산물의 생합성에 관여하는 효소를 코딩하는 유전자가 결실되어 있는 것을 특징으로 하는 변이미생물.
3. The mutant microorganism according to claim 2, wherein a gene encoding an enzyme involved in biosynthesis of a by-product selected from the group consisting of succinic acid, lactate, ethanol and acetate is deleted.
제2항에 있어서, 푸마레이트 리덕테이즈, 락테이트 디하이드로 게네이즈, 포스페이트 아세틸 트랜스퍼레이즈 및 아세트알데하이드/알코올 디하이드로게네이즈로 구성된 군에서 선택되는 효소를 코딩하는 유전자가 결실되어 있는 것을 특징으로 하는 변이 미생물.
3. The method according to claim 2, characterized in that a gene encoding an enzyme selected from the group consisting of fumarate reductase, lactate dehydrogenase, phosphate acetyl transferase and acetaldehyde / alcohol dehydrogenase is deleted Mutated microorganisms.
제2항에 있어서, 상기 알코올 디하이드로게네이즈를 코딩하는 유전자는 살모넬라 유래인 것을 특징으로 하는 변이 미생물.
3. The mutant microorganism according to claim 2, wherein the gene encoding the alcohol dehydrogenase is derived from Salmonella.
제2항에 있어서, 상기 프로피온알데하이드 디하이드로게네이즈를 코딩하는 유전자는 락토코커스 유래인 것을 특징으로 하는 변이 미생물.
3. The mutant microorganism according to claim 2, wherein the gene encoding the propionaldehyde dehydrogenase is derived from lactococus.
제2항에 있어서, 폴메이트 디하이드로게네이즈(formate dehydrogenase)를 코딩하는 유전자가 추가로 도입되어 있는 변이 미생물.
3. The mutant microorganism according to claim 2, wherein a gene encoding formate dehydrogenase is further introduced.
제2항에 있어서, 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자 발현의 하향조절은 CRISPR/Cas 시스템에 의해 수행되는 것을 특징으로 하는 변이 미생물.
3. The mutant microorganism according to claim 2, wherein the down-regulation of gene expression encoding citrate synthase is carried out by the CRISPR / Cas system.
제2항에 있어서, 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자 발현의 하향조절은 상기 시트레이트 신타아제(citrate synthase)를 코딩하는 유전자의 5'-UTR 부분이 서열번호 1~4 중 어느 하나로 표시되는 올리고뉴클레오티드로 치환된 것을 특징으로 하는 변이 미생물.
3. The method according to claim 2, wherein the down-regulation of gene expression encoding citrate synthase is carried out in such a manner that the 5'-UTR portion of the gene encoding citrate synthase is at least one of SEQ ID NOS: Wherein the oligonucleotide is substituted with an oligonucleotide represented by one.
다음 단계를 포함하는 부탄올의 제조방법;
(a) 제2항 내지 제9항 중 어느 한 항의 변이 미생물을 배양하여 부탄올을 생성시키는 단계; 및
(b) 생성된 부탄올을 수득하는 단계.
A process for preparing butanol, comprising the steps of:
(a) culturing the mutant microorganism of any one of claims 2 to 9 to produce butanol; And
(b) obtaining the resulting butanol.
제10항에 있어서, 상기 배양은 호기 또는 미세호기 조건에서 수행되는 것을 특징으로 하는 방법.11. The method of claim 10, wherein the culturing is performed under aerobic or micro-aerobic conditions.
KR1020160143113A 2016-10-31 2016-10-31 Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same KR101960382B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160143113A KR101960382B1 (en) 2016-10-31 2016-10-31 Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160143113A KR101960382B1 (en) 2016-10-31 2016-10-31 Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same

Publications (2)

Publication Number Publication Date
KR20180047228A KR20180047228A (en) 2018-05-10
KR101960382B1 true KR101960382B1 (en) 2019-03-20

Family

ID=62184024

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160143113A KR101960382B1 (en) 2016-10-31 2016-10-31 Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same

Country Status (1)

Country Link
KR (1) KR101960382B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517206B (en) * 2020-11-16 2024-05-24 中国科学院微生物研究所 Recombinant Mediterranean salt-rich bacteria and application thereof in preparation of PHBV

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FEMS Microbiology Letters, vol.363, fnw020,pp.1-13(2016.01.31)*

Also Published As

Publication number Publication date
KR20180047228A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
Horwitz et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
KR20080113199A (en) Methods and compositions for ethanol producing cyanobacteria
KR20150014953A (en) Ketol-acid reductoisomerase enzymes and methods of use
KR20120115500A (en) Method for producing butanol using extractive fermentation with electrolyte addition
AU2016361421A1 (en) Genetically modified yeasts and fermentation processes using genetically modified yeasts
CN111926030B (en) Phage genome editing vector based on CRISPR-Cas12a system and application thereof
CN113025512A (en) Construction method and application of saccharomyces cerevisiae capable of dynamically regulating 7-deoxycholesterol and vitamin D3
CN112154206A (en) Production of 2-keto-3-deoxy-D-gluconic acid in filamentous fungi
CN110042067B (en) Method for improving xylose utilization capacity of recombinant saccharomyces cerevisiae strain and mutant strain thereof
CN103224955A (en) Vector for efficiently labeling zebra fish PGC, and preparation method and use of transgenic fish
CN112852860B (en) Plasmid vector and application thereof in construction of multi-copy expression system
KR101960382B1 (en) Variant Microorganism Producing Butanol in Aerobic Condition and Method for Preparing Butanol Using the Same
CN108060175B (en) Construction and application of inducible yeast transformation recombination system
CN114015723B (en) Duck tembusu virus plasmid vector, attenuated strain, preparation method and application thereof
CN114874927B (en) Yeast genetic engineering bacterium for high-yield recombinant protein, construction method and application thereof
CN109468338A (en) A kind of method of purpose pU6-sgRNA plasmid needed for rapid build caenorhabditis elegan gene editing
CN113201517B (en) Cytosine single base editor tool and application thereof
US20040161756A1 (en) Substrate linked directed evolution (slide)
CN112553098B (en) Biological preparation method of caffeic acid
KR102583349B1 (en) Genetic modification of eremothecium to increase gmp synthetase activity
KR20240054960A (en) Production of saturated fat in microorganisms
Walter et al. Method for multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas9
KR102561863B1 (en) Genetic modification of eremothecium to increase imp dehydrogenase activity
CN117355608A (en) Transcriptional modulators and polynucleotides encoding same
CN101659967B (en) PiggyBac transposon vector for producing transgenic pig and construction method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant