KR101958659B1 - Dna polymerases with increased mutation specific amplification - Google Patents

Dna polymerases with increased mutation specific amplification Download PDF

Info

Publication number
KR101958659B1
KR101958659B1 KR1020170088373A KR20170088373A KR101958659B1 KR 101958659 B1 KR101958659 B1 KR 101958659B1 KR 1020170088373 A KR1020170088373 A KR 1020170088373A KR 20170088373 A KR20170088373 A KR 20170088373A KR 101958659 B1 KR101958659 B1 KR 101958659B1
Authority
KR
South Korea
Prior art keywords
leu
ala
glu
arg
gly
Prior art date
Application number
KR1020170088373A
Other languages
Korean (ko)
Other versions
KR20190007214A (en
Inventor
이병철
박일현
이휘호
Original Assignee
주식회사 진캐스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020170088373A priority Critical patent/KR101958659B1/en
Application filed by 주식회사 진캐스트 filed Critical 주식회사 진캐스트
Priority to AU2018301534A priority patent/AU2018301534B2/en
Priority to JP2020523223A priority patent/JP6986299B2/en
Priority to EP18832513.8A priority patent/EP3653729A4/en
Priority to PCT/KR2018/006246 priority patent/WO2019013451A1/en
Priority to US16/630,229 priority patent/US11891632B2/en
Priority to CA3069580A priority patent/CA3069580C/en
Priority to CN201810691174.5A priority patent/CN109251907B/en
Priority to TW107124137A priority patent/TWI733038B/en
Publication of KR20190007214A publication Critical patent/KR20190007214A/en
Application granted granted Critical
Publication of KR101958659B1 publication Critical patent/KR101958659B1/en
Priority to US18/478,874 priority patent/US20240076633A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/10Nucleotidyl transfering
    • C12Q2521/101DNA polymerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase

Abstract

본 발명은 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소 및 이의 용도에 관한 것으로, 보다 구체적으로 특정 아미노산 위치에서 돌연변이가 유발되어 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소, 상기 중합효소를 코딩하는 핵산 서열, 상기 핵산 서열을 포함하는 벡터 및 상기 벡터로 형질전환된 숙주세포를 제공한다. 본 발명은 또한 상기 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소를 이용하여 하나 이상의 주형에서 하나 이상의 유전자 변이 또는 SNP를 생체 외(in vitro)에서 검출하는 방법, 상기 DNA 중합효소를 포함하는 유전자 변이 또는 SNP 검출용 조성물 및 상기 조성물을 포함하는 PCR 키트를 제공한다.The present invention relates to a DNA polymerase having an increased specific gene amplification efficiency and a use thereof. More specifically, the present invention relates to a DNA polymerase which is mutated at a specific amino acid position to increase gene-specific amplification efficiency, A vector comprising the nucleic acid sequence, and a host cell transformed with the vector. The present invention also provides a method for detecting at least one gene mutation or SNP in vitro in at least one template using a DNA polymerase having increased gene mutation-specific amplification efficiency, a method for detecting a gene containing the DNA polymerase A variant or a composition for detecting SNP, and a PCR kit comprising the composition.

Description

유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소{DNA POLYMERASES WITH INCREASED MUTATION SPECIFIC AMPLIFICATION}DNA POLYMERASES WITH INCREASED MUTATION SPECIFIC AMPLIFICATION [0002]

본 발명은 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소 및 이의 용도에 관한 것으로, 보다 구체적으로 특정 아미노산 위치에서 돌연변이가 유발되어 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소, 상기 중합효소를 코딩하는 핵산 서열, 상기 핵산 서열을 포함하는 벡터 및 상기 벡터로 형질전환된 숙주세포를 제공한다. 본 발명은 또한 상기 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소를 이용하여 하나 이상의 주형에서 하나 이상의 유전자 변이 또는 SNP를 생체 외(in vitro)에서 검출하는 방법, 상기 DNA 중합효소를 포함하는 유전자 변이 또는 SNP 검출용 조성물 및 상기 조성물을 포함하는 PCR 키트를 제공한다.The present invention relates to a DNA polymerase having an increased specific gene amplification efficiency and a use thereof. More specifically, the present invention relates to a DNA polymerase which is mutated at a specific amino acid position to increase gene-specific amplification efficiency, A vector comprising the nucleic acid sequence, and a host cell transformed with the vector. The present invention also provides a method for detecting at least one gene mutation or SNP in vitro in at least one template using a DNA polymerase having increased gene mutation-specific amplification efficiency, a method for detecting a gene containing the DNA polymerase A variant or a composition for detecting SNP, and a PCR kit comprising the composition.

첫 번째 인간 유전체 서열이 밝혀진 이래로, 연구자들은 단일염기 돌연변이 (단일염기다형성, SNPs)와 같은 개체 간의 유전적 차이를 발견하는데 집중해왔다. 유전체에서 단일염기 변이는 매우 다양한 질환에 대한 서로 다른 약물 내성 또는 질병소질과 연관되어 있다는 것이 점점 더 분명해지고 있기 때문에 관심의 대상이 된다. 추후 의학적으로 관련이 있는 뉴클레오타이드 변이에 대한 지식은 개인의 유전적 공급에 대한 치료법을 적용할 수 있고, 비효과적이거나 부작용을 일으킬 수 있는 약물 치료를 방지할 수 있다 (Shi, Expert Rev. Mol. Diagn. 1, 363-365 (2001)). 뉴클레오타이드 변이의 시간 및 비용 효율적인 식별을 가능하게 하는 기술의 개발은 약리유전학에서의 추가적인 진보를 가져올 것이다.Since the first human genome sequence has been discovered, researchers have focused on finding genetic differences between individuals, such as single base mutations (single nucleotide polymorphisms, SNPs). It is of interest because it is becoming increasingly clear that single base mutations in the genome are associated with different drug resistance or disease predisensors for a wide variety of diseases. Knowledge of future, clinically relevant nucleotide variations can apply treatments to the individual's genetic supply and prevent drug treatment that can be ineffective or cause side effects (Shi, Expert Rev. Mol. Diagn 1, 363-365 (2001)). The development of techniques that enable time and cost-effective identification of nucleotide variations will lead to further advances in pharmacogenetics.

SNPs는 인간 유전체에서 주요 유전적 변이를 차지하며 개체 간의 차이의 90% 이상을 유발한다 (Kwok, Annu. Rev. Genomics Hum, Genet. 2, 235-258 (2001); Kwok and Chen, Curr. Issues Mol. Biol. 5, 43-60 (2003); Twyman and Primrose, Pharmacogenomics 4, 67-79 (2003)). 이러한 유전적 변이와 돌연변이와 같은 다른 핵산 변이를 검출하기 위해, 다양한 방법들이 사용될 수 있다. 예를 들어, 표적 핵산의 변이체를 동정하는 것은 분석하고자 하는 핵산 샘플을 적합한 혼성화 조건에서 서열 변이체에 대해 특이적인 혼성화 프라이머와 혼성화함으로써 이루어질 수 있다 (Guo et al., Nat. Biotechnol. 15, 331-335 (1997)). SNPs occupy a major genetic variation in the human genome and cause over 90% of differences among individuals (Kwok, Annu. Rev. Genomics Hum, Genet. 2, 235-258 (2001); Kwok and Chen, Curr. Mol. Biol., 5, 43-60 (2003); Twyman and Primrose, Pharmacogenomics 4, 67-79 (2003)). In order to detect other nucleic acid variations, such as genetic mutations and mutations, a variety of methods can be used. For example, identifying a variant of a target nucleic acid can be accomplished by hybridizing a nucleic acid sample to be analyzed with a hybridizing primer specific for the sequence variant under appropriate hybridization conditions (Guo et al., Nat. Biotechnol. 15, 331- 335 (1997)).

그러나, 이러한 혼성화 방법은, 특히, 어세이의 필수적인 민감도 측면에서 임상학적 요구를 만족시키지 못한다는 것을 발견하였다. 따라서, PCR은 분자생물학 및 SNP 및 다른 대립 유전자 서열 변이체와 같은 돌연변이 검출을 위한 진단 검사 방법에서 폭넓게 사용되어 왔으며 (Saiki et al., Science 239, 487-490 (1988)), 여기서 변이체의 존재를 고려하여 검사하고자 하는 표적 핵산은 혼성화 전에 중합효소연쇄반응(PCR)에 의해 증폭하였다. 그러한 어세이를 위한 혼성화 프로브로서, 일반적으로 단일가닥 올리고뉴클레오타이드가 사용된다. 상기 어세이의 변형된 구현예는 형광 혼성화 프로브를 사용하는 것을 포함한다 (Livak, Genet. Anal. 14, 143-149 (1999)). 일반적으로, SNP 및 다른 서열 변이의 측정 방법을 자동화하고자 노력하였다 (Gut, Hum. Mutat. 17, 475-492 (2001)).However, it has been found that such hybridization methods do not, in particular, satisfy clinical requirements in terms of the essential sensitivity of the assay. Thus, PCR has been used extensively in molecular biology and diagnostic testing methods for mutation detection such as SNPs and other allelic sequence variants (Saiki et al., Science 239, 487-490 (1988)), where the presence of variants The target nucleic acid to be examined was amplified by polymerase chain reaction (PCR) before hybridization. As hybridization probes for such assays, single stranded oligonucleotides are generally used. Modified embodiments of the assay include using fluorescent hybridization probes (Livak, Genet. Anal. 14, 143-149 (1999)). In general, efforts have been made to automate methods of measuring SNPs and other sequence variations (Gut, Hum. Mutat. 17, 475-492 (2001)).

당해 기술분야에 공지된 서열 변이 특이적 혼성화의 대안은 소위 유전자 변이 특이적 증폭에 의해 제공된다. 이러한 검출 방법에서, 이미 증폭하는 동안, 변이 특이적 증폭 프라이머가 사용되고, 이는 통상적으로 프라이머의 3'-말단에 소위 차별적 말단 뉴클레오타이드 잔기를 가지며, 잔기는 단지 검출하고자 하는 표적 핵산의 하나의 특이적 변이에만 상보적이다. 이 방법에서, 뉴클레오타이드 변이체는 PCR 증폭 후에 DNA 산물의 존재 또는 부재에 의해 측정된다. 유전자 변이 특이적 증폭의 원리는 유전자 변이 특이적 증폭 프라이머 말단에서 표준(canonical) 또는 비표준 프라이머-주형 복합체의 형성을 기반으로 한다. 정확하게 쌍을 이루는 3' 프라이머 말단에서, DNA 중합효소에 의한 증폭이 일어나는 반면, 미스매치된 프라이머 말단에서는 연장이 억제된다.An alternative to the sequence mutation-specific hybridization known in the art is provided by so-called gene mutation-specific amplification. In this detection method, during amplification, a mutation-specific amplification primer is used, which usually has a so-called differential terminal nucleotide residue at the 3'-end of the primer, and the residue is only one specific variation of the target nucleic acid to be detected Only complementary. In this method, the nucleotide variants are measured by the presence or absence of the DNA product after PCR amplification. The principle of gene mutation-specific amplification is based on the formation of a canonical or non-standard primer-template complex at the end of a gene mutation-specific amplification primer. At precisely paired 3 'primer ends, amplification by DNA polymerase occurs while extension at the mismatched primer ends is suppressed.

예를 들어, U.S. Pat. No. 5,595,890는 유전자 변이 특이적 증폭을 위한 방법 및 이의 적용, 예를 들어 k-ras 종양 유전자에서 임상적으로 연관된 점돌연변이 (point mutation)의 검출을 위한 적용을 개시하고 있다. 또한, U.S. Pat. No. 5,521,301은 ABO 혈액형 시스템의 유전형 분석을 위한 대립 유전자-특이적 증폭 방법을 개시하고 있다. 대조적으로, U.S. Pat. No. 5,639,611은 겸상 적혈구 빈혈의 원인이되는 점돌연변이의 검출과 관련된 대립 유전자-특이적 증폭의 사용을 개시하고 있다. 그러나, 유전자 변이 특이적 증폭 또는 대립 유전자-특이적 증폭은 선택성이 낮다는 문제가 있으며, 이는 더욱 복잡하고 시간 및 비용 집약적인 최적화 단계를 필요로 한다.For example, U.S. Pat. Pat. No. 5,595,890 discloses methods for gene mutation-specific amplification and its application for detection of point mutations that are clinically associated with, for example, the k-ras oncogene. Also, U.S. Pat. Pat. No. 5,521,301 discloses an allele-specific amplification method for genotype analysis of the ABO blood group system. In contrast, U.S.A. Pat. No. 5,639,611 discloses the use of allele-specific amplification associated with the detection of point mutations that cause sickle cell anemia. However, gene mutation-specific amplification or allele-specific amplification is problematic in that it has low selectivity, which requires more complex and time- and cost-intensive optimization steps.

서열 변이, 다형성 및 주로 점돌연변이를 검출하기 위한 상기와 같은 방법은, 특히, 검출하고자 하는 서열 변이가 동일한 핵산 분절 (또는 동일한 유전자)의 우세한 변이와 비교하여 부족한 경우 대립 유전자-특이적 증폭(또는 유전자 변이 특이적 증폭)을 필요로 한다.Such a method for detecting sequence mutations, polymorphisms and mainly point mutations is particularly useful when allelic-specific amplification (or deletion) is required when the sequence variant to be detected is deficient compared to the dominant variant of the same nucleic acid segment Gene mutation-specific amplification).

예를 들어, 유전자 변이 특이적 증폭에 의해 산재성 종양 세포가 혈액, 혈청 또는 혈장과 같은 체액에서 검출되게 되는 경우, 이러한 상황이 발생한다 (U.S. Pat. No. 5,496,699). 이를 위해, DNA는 첫 번째로 혈액, 혈청 또는 혈장과 같은 체액으로부터 분리되고, DNA는 부족한 산재성 종양 세포와 과량의 비증식성 세포로 구성된다. 따라서, k-ras 유전자에서 종양 DNA에 중요한 돌연변이는 과량의 야생형 DNA 존재 하에 몇 개의 복제본으로부터 검출되어야 한다.This situation arises, for example, when the sporadic tumor cells are detected in body fluids such as blood, serum or plasma by gene mutation-specific amplification (U.S. Pat. No. 5,496,699). To this end, DNA is first isolated from body fluids such as blood, serum or plasma, and DNA consists of deficient, sporadic tumor cells and excess non-proliferative cells. Thus, mutations that are important in tumor DNA in the k-ras gene should be detected from several replicates in the presence of excess wild-type DNA.

종래 기술에 개시된 유전자 변이 특이적 증폭에 대한 모든 방법은, 3'-말단 차별적 올리고뉴클레오타이드 잔기가 사용되어야 한다는 단점이 있다. 또한, 3'-차별적 뉴클레오타이드 잔기의 사용에도 불구하고, 표적 핵산이 검출하고자 하는 서열 변이체와 정확하게 일치하지 않더라도, 적합한 DNA 중합효소의 존재 하에 프라이머 연장이 낮은 수준으로 발생한다는 단점을 갖는다. 특히, 특정 서열 변이체가 다른 서열 변이체를 포함하는 과량의 백그라운드 핵산으로 검출되게 되는 경우, 위양성 결과를 초래하게 된다. 이러한 PCR 기반 방법이 갖는 단점의 주된 이유는 미스매치되는 염기를 충분히 구별하기 위한 방법에 사용되는 중합효소의 부적합성이다. 따라서, PCR로 돌연변이의 유무에 대한 명확한 정보를 직접적으로 얻는 것은 아직까지 가능하지 않다. 현재까지, 추가의 시간 및 비용 집약적 정제와 분석 방법이 돌연변이의 명확한 진단을 위해 요구되었다. 그러므로, 유전자 변이 특이적 또는 대립 유전자-특이적 PCR 증폭의 선택성을 향상시킬 수 있는 신규한 방법은 PCR에 의한 직접적인 유전자 변이 또는 SNP 분석의 신뢰성 및 강력함에 큰 영향을 미칠 것이다.All methods for gene-specific amplification disclosed in the prior art have the disadvantage that 3 ' -terminal oligonucleotide residues must be used. Also, despite the use of 3 ' -different nucleotide residues, they have the disadvantage that primer extension occurs at low levels in the presence of the appropriate DNA polymerase even if the target nucleic acid does not exactly match the sequence variant that is to be detected. In particular, when a particular sequence variant is detected with an excess of background nucleic acid comprising another sequence variant, the false positive result will result. The main reason for the disadvantage of this PCR-based method is the incompatibility of the polymerase used in the method for sufficiently discriminating mismatched bases. Therefore, it is not yet possible to directly obtain clear information on the presence or absence of mutation in PCR. To date, additional time and cost intensive purification and assay methods have been required for a clear diagnosis of mutations. Therefore, a novel method for improving the selectivity of gene mutation-specific or allele-specific PCR amplification will have a significant impact on the reliability and robustness of direct gene mutation or SNP analysis by PCR.

이에, 본 발명자들은 유전자 변이 특이적 PCR 증폭의 선택성을 향상시킬 수 있는 신규한 DNA 중합효소를 개발하기 위해 노력한 결과, Taq 중합효소의 특정 위치의 아미노산 잔기에 돌연변이를 유발하는 경우 유전자 변이 특이적 증폭 효율이 현저하게 증가되는 것을 확인하고, 본 발명을 완성하였다.The present inventors have made efforts to develop a novel DNA polymerase capable of enhancing the selectivity of gene mutation-specific PCR amplification. As a result, when a mutation is caused in an amino acid residue at a specific position of Taq polymerase, The efficiency was remarkably increased, and the present invention was completed.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 유전자 변이 또는 SNP가 포함된 표적서열에서 하나 이상의 유전자 변이 또는 SNP를 검출하기 위한 DNA 중합효소를 제공한다.Disclosure of the Invention The present invention provides a DNA polymerase for detecting one or more gene mutations or SNPs in a target sequence containing a gene mutation or SNP.

본 발명의 다른 목적은 본 발명에 따른 DNA 중합효소를 코딩하는 핵산 서열, 상기 핵산 서열을 포함하는 벡터 및 상기 벡터로 형질전환된 숙주세포를 제공하는 것이다.Another object of the present invention is to provide a nucleic acid sequence encoding a DNA polymerase according to the present invention, a vector containing the nucleic acid sequence, and a host cell transformed with the vector.

본 발명의 또 다른 목적은 본 발명에 따른 DNA 중합효소 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for producing a DNA polymerase according to the present invention.

본 발명의 또 다른 목적은 본 발명의 DNA 중합효소를 이용하여 하나 이상의 주형에서 하나 이상의 유전자 변이 또는 SNP를 생체 외(in vitro)에서 검출하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for in vitro detection of one or more gene mutations or SNPs in one or more templates using the DNA polymerase of the present invention.

본 발명의 또 다른 목적은 본 발명에 따른 DNA 중합효소를 포함하는 유전자 변이 또는 SNP 검출용 조성물을 제공하는 것이다.Still another object of the present invention is to provide a composition for detecting a gene mutation or SNP comprising a DNA polymerase according to the present invention.

본 발명의 또 다른 목적은 본 발명에 따른 유전자 변이 또는 SNP 검출용 조성물을 포함하는 유전자 변이 또는 SNP 검출용 키트를 제공하는 것이다.It is still another object of the present invention to provide a kit for detecting a gene mutation or SNP comprising a composition for detecting a gene mutation or a SNP according to the present invention.

상기의 목적을 달성하기 위해, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 Taq 중합효소를 갖는 DNA 중합효소로서,In order to achieve the above object, the present invention provides a DNA polymerase having a Taq polymerase comprising the amino acid sequence of SEQ ID NO: 1,

(a) 서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기의 치환; 및(a) substitution of the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1; And

(b) 서열번호 1의 아미노산 서열에서 536번째 아미노산 잔기의 치환, 660번째 아미노산 잔기의 치환 또는 536번째 및 660번째 아미노산 잔기 둘 다의 치환;을 포함하는 DNA 중합효소를 제공한다.(b) a substitution of a 536th amino acid residue, a substitution of a 660th amino acid residue, or a substitution of both 536th and 660th amino acid residues in the amino acid sequence of SEQ ID NO: 1.

본 발명의 바람직한 일실시예에 따르면, 상기 507번째 아미노산 잔기의 치환은 글루탐산(E)에서 리신(K)으로 치환되는 것이고, 상기 536번째 아미노산 잔기의 치환은 아르기닌(R)에서 리신(K)으로 치환되는 것이며, 상기 660번째 아미노산 잔기의 치환은 아르기닌(R)에서 발린(V)으로 치환되는 것일 수 있다.According to a preferred embodiment of the present invention, substitution of the 507th amino acid residue is replaced by lysine (K) in glutamic acid (E), and substitution of arginine (R) to lysine (K) , And the substitution of the 660th amino acid residue may be substituted with valine (V) in arginine (R).

본 발명의 바람직한 다른 일실시예에 따르면, 상기 DNA 중합효소는 매치된 프라이머와 미스매치된 프라이머를 구별하고, 상기 매치된 프라이머와 미스매치된 프라이머는 표적서열과 혼성화되며, 상기 미스매치된 프라이머는 혼성화되는 표적서열에 대하여 이의 3' 말단에 비표준 뉴클레오타이드를 포함할 수 있다.According to another preferred embodiment of the present invention, the DNA polymerase distinguishes between a mismatched primer and a mismatched primer, wherein the mismatched primer and the mismatched primer are hybridized with the target sequence, May include non-standard nucleotides at the 3 ' end thereof for the target sequence to be hybridized.

본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 DNA 중합효소는 매치된 프라이머를 포함하는 표적서열의 증폭이 미스매치된 프라이머를 포함하는 표적서열의 증폭보다 낮은 Ct값 (높은 증폭 효율)의 향상을 나타낼 수 있다. According to another preferred embodiment of the present invention, the DNA polymerase has an improved Ct value (higher amplification efficiency) than the amplification of the target sequence containing the mismatched primer in amplification of the target sequence containing the matched primer Lt; / RTI >

본 발명은 또한, 본 발명에 따른 DNA 중합효소를 코딩하는 핵산 서열, 상기 핵산 서열을 포함하는 벡터, 상기 벡터로 형질전환된 숙주세포를 제공한다.The present invention also provides a nucleic acid sequence encoding a DNA polymerase according to the present invention, a vector comprising the nucleic acid sequence, and a host cell transformed with the vector.

본 발명은 또한, 상기 숙주세포를 배양하는 단계; 및 배양물 및 이의 배양상청액으로부터 DNA 중합효소를 분리하는 단계;를 포함하는 DNA 중합효소 제조방법을 제공한다.The present invention also relates to a method for producing a host cell comprising the steps of: culturing the host cell; And separating the DNA polymerase from the culture and the culture supernatant thereof.

본 발명은 또한, 본 발명에 따른 DNA 중합효소를The present invention also relates to a DNA polymerase according to the present invention

a) 하나 이상의 주형;a) one or more molds;

b) 하나 이상의 매치된 프라이머, 하나 이상의 미스매치된 프라이머 또는 하나 이상의 매치된 프라이머와 하나 이상의 미스매치된 프라이머 둘 다; 및b) one or more matched primers, one or more mismatched primers or one or more matched primers and one or more mismatched primers; And

c) 뉴클레오사이드 트리포스페이트와 접촉시키는 것을 포함하고,c) contacting with a nucleoside triphosphate,

상기 하나 이상의 매치된 프라이머 및 미스매치된 프라이머는 표적서열과 혼성화되고, 상기 미스매치된 프라이머는 혼성화되는 표적서열에 대하여 이의 3' 말단으로부터 7개까지의 염기 위치에 비표준(non-canonical) 뉴클레오타이드를 포함하는, 하나 이상의 주형에서 하나 이상의 유전자 변이 또는 SNP를 생체 외(in vitro)에서 검출하는 방법을 제공한다.Wherein the one or more matched primers and the mismatched primers are hybridized to the target sequence and the mismatched primers hybridize to non-canonical nucleotides at up to seven base positions from its 3 ' A method for in vitro detection of one or more gene mutations or SNPs in one or more templates.

본 발명의 바람직한 일실시예에 따르면, 상기 방법은 이중가닥 특이적 염료를 이용한 용융 온도(melting point) 분석을 포함할 수 있다.According to one preferred embodiment of the present invention, the method may comprise melting point analysis using a double-strand specific dye.

본 발명의 바람직한 다른 일실시예에 따르면, 상기 방법은 실시간 PCR, 표준 PCR 후 아가로스 겔에서의 분석, 실시간 PCR을 통한 유전자 변이 특이적 증폭 또는 대립 유전자-특이적 증폭, 테트라-프라이머 증폭-불응성 돌연변이 시스템 PCR 또는 등온 증폭에 의해 수행될 수 있다.According to another preferred embodiment of the present invention, the method comprises real-time PCR, analysis on agarose gel after standard PCR, gene-specific amplification or allele-specific amplification through real-time PCR, tetra-primer amplification- Lt; RTI ID = 0.0 > mutation < / RTI > system PCR or isothermal amplification.

본 발명은 또한 본 발명에 따른 DNA 중합효소를 포함하는 유전자 변이 또는 SNP 검출용 조성물을 제공한다.The present invention also provides a composition for detecting a gene mutation or SNP comprising a DNA polymerase according to the present invention.

본 발명은 또한 상기 유전자 변이 또는 SNP 검출용 조성물을 포함하는 PCR 키트를 제공한다.The present invention also provides a PCR kit comprising a composition for detecting said gene mutation or SNP.

본 발명의 바람직한 일실시예에 따르면, 상기 PCR 키트는 하나 이상의 매치된 프라이머, 하나 이상의 미스매치된 프라이머 또는 하나 이상의 매치된 프라이머와 하나 이상의 미스매치된 프라이머 둘 다를 추가로 포함하고, 상기 하나 이상의 매치된 프라이머 및 하나 이상의 미스매치된 프라이머는 표적서열과 혼성화되며, 상기 미스매치된 프라이머는 혼성화되는 표적서열에 대하여 이의 3' 말단으로부터 7개까지의 염기 위치에 비표준(non-canonical) 뉴클레오타이드를 포함할 수 있다.According to a preferred embodiment of the present invention, the PCR kit further comprises one or more matched primers, one or more mismatched primers or one or more matched primers and one or more mismatched primers, Primer and one or more mismatched primers are hybridized to the target sequence and the mismatched primer comprises non-canonical nucleotides at positions 3 to 7 bases from its 3 ' end to the hybridizing target sequence .

본 발명의 바람직한 다른 일실시예에 따르면, 상기 PCR 키트는 뉴클레오사이드 트리포스페이트를 추가로 포함할 수 있다.According to another preferred embodiment of the present invention, the PCR kit may further comprise nucleoside triphosphate.

본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 PCR 키트는 According to another preferred embodiment of the present invention, the PCR kit comprises

a) 하나 이상의 버퍼;a) one or more buffers;

b) 이중가닥 DNA에 결합하는 정량화를 위한 시약;b) a reagent for quantification binding to double stranded DNA;

c) 중합효소 차단 항체;c) a polymerase blocking antibody;

d) 하나 이상의 대조값 또는 대조서열; 및d) one or more control values or control sequences; And

e) 하나 이상의 주형; 을 추가로 포함할 수 있다.e) one or more molds; May be further included.

본 발명의 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소는 종래의 Taq 중합효소와 비교하여 더 높은 미스매치 대비 매치 신장 선택성을 가지므로, 어떠한 기질 변형없이도 신뢰성 있는 유전자 변이 특이적 증폭을 가능하게 한다. 또한, 본 발명의 DNA 중합효소는 질병의 의학적 진단 및 재조합 DNA 연구에 유용하게 활용될 수 있다.Since the DNA polymerase of the present invention having an increased gene amplification-specific amplification efficiency has a higher mismatch-to-matched kidney selectivity than the conventional Taq polymerase, a reliable gene mutation-specific amplification is possible without any substrate modification do. In addition, the DNA polymerase of the present invention can be usefully used for medical diagnosis of diseases and research on recombinant DNA.

도 1은 R536K, R660V 및 R536K/R660V 변이를 각각 포함하는 Taq DNA 중합효소의 제조과정을 나타낸 것으로, (a)는 단편 PCR 및 오버랩 PCR을 도식화하여 나타낸 것이고, (b)는 단편 PCR에서 증폭된 산물을 전기영동으로 확인한 결과를 나타낸 것이며, (c)는 오버랩 PCR로 전장을 증폭하여 증폭된 산물을 전기영동으로 확인한 결과를 나타낸 것이다.
도 2는 겔 추출을 위해, 제한효소 EcoRI/XbaI로 분해한 다음 SAP를 처리한 pUC19 벡터와 정제한 도 1(c)의 오버랩 PCR 산물을 전기영동으로 확인한 결과이다.
도 3은 E507K, E507K/R536K, E507K/R660V 및 E507K/R536K/R660V 변이를 각각 포함하는 Taq DNA 중합효소의 제조과정 중 단편 PCR 및 오버랩 PCR을 도식화하여 나타낸 것이다.
도 4는 겔 추출을 위해, 제한효소 EcoRI/XbaI로 분해한 다음 SAP를 처리한 pUC19 벡터와 정제한 도 3의 오버랩 PCR 산물을 전기영동으로 확인한 결과이다.
도 5는 구강 상피세포를 채취하여 PCR 주형을 제조하는 과정을 도식화한 것이다.
도 6은 본 발명의 E507K/R536K, E507K/R660V 및 E507K/R536K/R660V Taq 중합효소를 사용하여, rs1408799에 대해 AS-qPCR을 수행한 결과를 나타낸 것으로, 대조군으로는 E507K 변이를 포함하는 Taq 중합효소를 사용하였다.
도 7은 본 발명의 E507K/R536K, E507K/R660V 및 E507K/R536K/R660V 변이를 가지는 Taq 중합효소를 사용하여, rs1015362에 대해 AS-qPCR을 수행한 결과를 나타낸 것으로, 대조군으로는 E507K 변이를 포함하는 Taq 중합효소를 사용하였다.
도 8는 본 발명의 E507K/R536K, E507K/R660V 및 E507K/R536K/R660V 변이를 가지는 Taq 중합효소를 사용하여, rs4911414에 대해 AS-qPCR을 수행한 결과를 나타낸 것으로, 대조군으로는 E507K 변이를 포함하는 Taq 중합효소를 사용하였다.
FIG. 1 shows a preparation process of a Taq DNA polymerase containing R536K, R660V and R536K / R660V mutations, wherein (a) is a schematic representation of fragment PCR and overlap PCR, and (b) (C) shows the results obtained by amplifying the total length by overlap PCR and confirming the amplified products by electrophoresis. FIG.
FIG. 2 shows the results of electrophoresis of the overlap PCR product of purified pUC19 vector treated with SAP and digested with restriction enzyme EcoRI / XbaI and purified (FIG. 1 (c)) for gel extraction.
FIG. 3 is a schematic representation of fragment PCR and overlap PCR during the preparation of Taq DNA polymerase comprising E507K, E507K / R536K, E507K / R660V and E507K / R536K / R660V mutations, respectively.
FIG. 4 shows the results of electrophoresis of the overlap PCR product of FIG. 3 purified with pUC19 vector treated with SAP after digestion with restriction enzyme EcoRI / XbaI for gel extraction.
FIG. 5 is a diagram illustrating a process of preparing a PCR template by collecting oral epithelial cells.
Fig. 6 shows the results of AS-qPCR performed on rs1408799 using the E507K / R536K, E507K / R660V and E507K / R536K / R660V Taq polymerase of the present invention. As a control group, Taq polymerizing Enzyme was used.
FIG. 7 shows the results of AS-qPCR performed on rs1015362 using Taq polymerase having the E507K / R536K, E507K / R660V and E507K / R536K / R660V mutations of the present invention, and the control group includes the E507K mutation Taq polymerase was used.
FIG. 8 shows the results of performing AS-qPCR on rs4911414 using Taq polymerase having the E507K / R536K, E507K / R660V and E507K / R536K / R660V mutations of the present invention, and the control group includes the E507K mutation Taq polymerase was used.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

상술한 바와 같이, 종래 기술에 개시된 유전자 변이 특이적 증폭 방법의 단점을 개선시키기 위해, 유전자 변이 특이적 증폭 효율의 선택성을 향상시킬 수 있는 방법에 대한 개발이 계속해서 요구되고 있으며, 이러한 방법의 개발은 PCR에 의한 직접적인 SNP 분석의 신뢰성 및 강력함에 큰 영향을 미칠 것이다. 본 발명자들은 유전자 변이 특이적 PCR 증폭의 선택성을 향상시킬 수 있는 방법을 개발하기 위해 노력한 결과, Taq 중합효소의 특정 위치의 아미노산 잔기에 돌연변이를 유발하는 경우 유전자 변이 특이적 증폭 효율이 현저하게 증가되는 것을 확인하고, 본 발명을 완성하였다.As described above, in order to improve the drawbacks of the gene mutation-specific amplification method disclosed in the prior art, there is a continuing need to develop a method for improving the selectivity of gene mutation-specific amplification efficiency. Will have a significant impact on the reliability and robustness of direct SNP analysis by PCR. As a result of efforts to develop a method for improving the selectivity of gene mutation-specific PCR amplification, the present inventors have found that when a mutation is caused in an amino acid residue at a specific position of Taq polymerase, the gene mutation-specific amplification efficiency is remarkably increased And completed the present invention.

본 발명의 유전자 변이 특이적 증폭 효율이 증가된 DNA 중합효소는 종래의 Taq 중합효소와 비교하여 더 높은 미스매치 대비 매치 신장 선택성을 가지므로, 어떠한 기질 변형없이도 신뢰성 있는 유전자 변이 특이적 증폭을 가능하게 한다. 또한, 본 발명의 DNA 중합효소는 질병의 의학적 진단 및 재조합 DNA 연구에 유용하게 활용될 수 있다.Since the DNA polymerase of the present invention having an increased gene amplification-specific amplification efficiency has a higher mismatch-to-matched kidney selectivity than the conventional Taq polymerase, a reliable gene mutation-specific amplification is possible without any substrate modification do. In addition, the DNA polymerase of the present invention can be usefully used for medical diagnosis of diseases and research on recombinant DNA.

이하, 본원에 사용되는 용어를 설명한다.Hereinafter, terms used in the present application will be described.

"아미노산" 은 펩타이드, 폴리펩타이드, 또는 단백질에 혼입될 수 있는 임의의 단량체 단위를 지칭한다. 본원에 사용되는 바와 같이, 용어 "아미노산" 은 하기 20 개의 천연 또는 유전적으로 인코딩된 알파-아미노산을 포함한다: 알라닌 (Ala 또는 A), 아르기닌 (Arg 또는 R), 아스파라긴 (Asn 또는 N), 아스파르트산 (Asp 또는 D), 시스테인 (Cys 또는 C), 글루타민 (Gln 또는 Q), 글루탐산 (Glu 또는 E), 글리신 (Gly 또는 G), 히스티딘 (His 또는 H), 이소류신 (Ile 또는 I), 류신 (Leu 또는 L), 라이신 (Lys 또는 K), 메티오닌 (Met 또는 M), 페닐알라닌 (Phe 또는 F), 프롤린 (Pro 또는 P), 세린 (Ser 또는 S), 트레오닌 (Thr 또는 T), 트립토판 (Trp 또는 W), 티로신 (Tyr 또는 Y), 및 발린 (Val 또는 V). &Quot; Amino acid " refers to any monomeric unit that can be incorporated into a peptide, polypeptide, or protein. As used herein, the term "amino acid" includes the following 20 natural or genetically encoded alpha-amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N) (Gly or G), histidine (His or H), isoleucine (Ile or I), leucine (Gln or G) (Lys or K), methionine (Met or M), phenylalanine (Phe or F), proline (Pro or P), serine (Ser or S), threonine (Thr or T), tryptophan Trp or W), tyrosine (Tyr or Y), and valine (Val or V).

아미노산은 전형적으로 유기산이며, 이는 치환되거나 치환되지 않은 아미노기, 치환되거나 치환되지 않은 카르복시기, 및 하나 이상의 측사슬(side chain) 또는 기(group), 또는 이들 기의 임의의 유사체를 포함한다. 예시적인 측사슬은, 예를 들어, 티올, 셀레노, 술포닐, 알킬, 아릴, 아실, 케토, 아지도, 히드록실, 히드라진, 시아노, 할로, 히드라지드, 알케닐, 알키닐, 에테르, 보레이트, 보로네이트, 포스포, 포스포노, 포시핀, 헤테로시클릭, 에논, 이민, 알데히드, 에스테르, 티오산, 히드록실아민, 또는 이들 기의 임의의 조합을 포함한다.Amino acids are typically organic acids, which include substituted or unsubstituted amino groups, substituted or unsubstituted carboxy groups, and one or more side chains or groups, or any analog of these groups. Exemplary side chains include, for example, thiol, seleno, sulfonyl, alkyl, aryl, acyl, keto, azido, hydroxyl, hydrazine, cyano, halo, hydrazide, alkenyl, alkynyl, Boronate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, ester, thio acid, hydroxylamine, or any combination of these groups.

다른 예시적인 아미노산은 하기를 포함하나 이에 한정되지 않는다: 광활성화 가능한 가교제를 포함하는 아미노산, 금속 결합 아미노산, 스핀-라벨링된 아미노산, 형광 아미노산, 금속-함유 아미노산, 신규 관능기를 갖는 아미노산, 다른 분자와 공유적으로 또는 비공유적으로 상호작용하는 아미노산, 광케이지화된 및/또는 광이성질체화 가능한 아미노산, 방사성 아미노산, 비오틴 또는 비오틴 유사체를 포함하는 아미노산, 글리코실화 아미노산, 다른 카르보히드레이트 변형된 아미노산, 폴리에틸렌 글리콜 또는 폴리에테르를 포함하는 아미노산, 중원자 치환된 아미노산, 화학분해성 및/또는 광분해성 아미노산, 탄소-링크된 당-함유 아미노산, 산화환원-활성 아미노산, 아미노 티오산 함유 아미노산, 및 하나 이상의 독성 부분을 포함하는 아미노산.Other exemplary amino acids include, but are not limited to, amino acids, including photoactivatable crosslinking agents, metal-bonded amino acids, spin-labeled amino acids, fluorescent amino acids, metal-containing amino acids, amino acids with novel functionalities, Amino acids that are covalently or non-covalently interacting, light caged and / or photoisomerizable amino acids, radioactive amino acids, biotin or biotin analogs, glycosylated amino acids, other carbohydrate modified amino acids, Carbon-linked sugar-containing amino acids, redox-active amino acids, aminothioic acid-containing amino acids, and one or more toxic < RTI ID = 0.0 > Amino acids.

본 발명의 DNA 중합효소에서, 용어 "돌연변이체"는 상응하는 자연 발생 또는 변형되지 않은 DNA 중합효소에 비해 하나 이상의 아미노산 치환을 포함하는 재조합 폴리펩타이드를 의미한다.In the DNA polymerase of the present invention, the term " mutant " means a recombinant polypeptide comprising at least one amino acid substitution relative to the corresponding naturally occurring or unmodified DNA polymerase.

용어 "열안정성 중합효소" (열에 안정한 효소를 지칭함)는 열 저항성이 있으며, 후속 폴리뉴클레오타이드 신장 반응을 달성하기에 충분한 활성을 보유하고 이중가닥 핵산의 변성을 달성하기 위해 요구되는 시간 동안 승온으로 처리될 때 비가역적으로 변성 (불활성화) 되지 않는다. 본원에 사용되는 바와 같이, PCR 과 같은 반응을 사이클링하는 온도에 사용되기에 적합하다. 본원에서 비가역성 변성은 영구하고 효소 활성의 완전한 손실을 지칭한다. 열안정성 중합효소에 대해, 효소 활성은 주형 핵산 가닥에 대해 상보적인 폴리뉴클레오타이드 신장 생성물을 형성하기 위한 적절한 방식으로 뉴클레오타이드의 조합을 촉매작용하는 것을 지칭한다. 호열성 박테리아 유래 열안정성 DNA 중합효소는 예를 들어 하기를 포함한다: 써모토가 마리티마, 써무스 아쿠아티쿠스, 써무스써모필루스, 써무스 플라부스, 써모드 필리포르미스, 써무스 종 Sps17, 써무스 종 Z05, 써무스 칼도필루스, 바실러스 칼도테낙스, 써모토가 네오폴리타나, 및 써모시포 아프리카누스 유래 DNA 중합효소.The term " thermostable polymerase " (which refers to a thermostable enzyme) is thermally resistant and has sufficient activity to achieve subsequent polynucleotide elongation reactions and is subjected to elevated temperatures for the time required to achieve denaturation of the double- It is not irreversibly denatured (inactivated). As used herein, it is suitable for use at temperatures that cyclize reactions such as PCR. The irreversible denaturation here is permanent and refers to a complete loss of enzyme activity. For thermostable polymerases, the enzyme activity refers to catalyzing the combination of nucleotides in a suitable manner to form a polynucleotide elongation product complementary to the template nucleic acid strand. Thermostable bacterial-derived thermostable DNA polymerases include, for example, the following: Thermotoga maritima, Thermus aquaticus, Thermus thermophilus, Thermus flabus, Thermodipyliporphis, Thermus species DNA polymerase derived from Sps17, Thermus species Z05, Thermus caldophilus, Bacillus caldotenax, Thermotoga neopolitanica, and Thermosipo africanus.

용어 "열활성" 은 RT-PCR 및/또는 PCR 반응에서 역전사 또는 어닐링/신장 단계에 통상적으로 사용되는 온도 (즉, 45-80 ℃)에서 촉매 특성을 유지하는 효소를 지칭한다. 열안정성 효소는 핵산 변성에 요구되는 상승된 온도로 처리될 때 비가역적으로 불활성화되거나 변성되지 않는 것이다. 열활성 효소는 열안정성일 수 있거나 열안정성일 수 없다. 열활성 DNA 중합효소는 하기를 포함하나 이에 한정되지 않는 호열성 종 또는 중온성 종으로부터 의존적인 DNA 또는 RNA 일 수 있다.The term " thermoactive " refers to an enzyme that retains its catalytic properties at the temperatures typically used in reverse transcription or annealing / extension steps in RT-PCR and / or PCR reactions (i.e., 45-80 ° C). Thermostable enzymes are those that are irreversibly inactivated or denatured when treated with elevated temperatures required for nucleic acid denaturation. The thermoactive enzyme may or may not be thermostable. The thermoactive DNA polymerase may be DNA or RNA that is dependent on thermophilic species or mesophilic species, including, but not limited to,

용어 "숙주 세포" 는 세포 배양액에서 배양할 때 고등 식물 또는 동물로부터 둘 모두의 단일-세포성 원핵생물 및 진핵생물 유기체 (예를 들어, 박테리아, 효모, 및 방선균) 및 단일 세포를 지칭한다.The term " host cell " refers to both single-cellular prokaryotic and eukaryotic organisms (e. G., Bacteria, yeast, and actinomycetes) and single cells from higher plants or animals when cultured in cell culture media.

용어 “벡터(vector)”란 복제 가능하고 유전자 같은 외래 DNA를 수용 세포로 전달할 수 있는 DNA 분자로서 플라스미드, 파지, 인조 염색체 등이 있다. 본원에서 “플라스미드”, “벡터” 또는 “플라스미드 벡터”는 동일한 의미로 사용될 수 있다. The term " vector " is a DNA molecule capable of replicating foreign DNA such as a gene to a recipient cell, such as plasmid, phage, and artificial chromosome. &Quot; Plasmid ", " vector " or " plasmid vector " may be used interchangeably herein.

용어 “뉴클레오타이드(nucleotide)”는 단일가닥(single strand) 또는 이중가닥(double strand) 형태로 존재하는 디옥시리보뉴클레오타이드(deoxyribonucleic acid; DNA) 또는 리보뉴클레오타이드(ribonucleic acid; RNA)이며, 다르게 특별하게 언급되어 있지 않은 한 자연의 뉴클레오타이드의 유사체를 포함할 수 있다. The term " nucleotide " is a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) present in the form of a single strand or a double strand, Lt; RTI ID = 0.0 > nucleotides < / RTI >

용어 "핵산"은 또는 "폴리뉴클레오타이드"는 DNA 또는 RNA 중합체, 또는 이의 유사체에 상응할 수 있는 중합체를 지칭한다. 핵산은, 예를 들어, 염색체 또는 염색체 분절, 벡터 (예를 들어, 발현 벡터), 발현 카세트, 네이키드 DNA 또는 RNA 중합체, 중합효소 사슬 반응 (PCR) 의 생성물, 올리고뉴클레오타이드, 탐침, 및 프라이머일 수 있거나 이를 포함할 수 있다. 핵산은 예를 들어, 단일-가닥, 이중-가닥, 또는 삼중-가닥일 수 있으나 임의의 특정 길이에 한정되지 않는다. 달리 언급되지 않는 한, 특정 핵산 서열은 명시되는 임의의 서열 외에도 상보 서열을 포함하거나 이를 코딩한다.The term " nucleic acid " or " polynucleotide " refers to a polymer that can correspond to DNA or RNA polymers, or analogs thereof. The nucleic acid can be, for example, a chromosome or a chromosome segment, a vector (e.g., an expression vector), an expression cassette, a naked DNA or RNA polymer, a product of a polymerase chain reaction (PCR), an oligonucleotide, Or may include the same. The nucleic acid may be, for example, single-stranded, double-stranded, or tri-stranded, but is not limited to any particular length. Unless otherwise stated, a particular nucleic acid sequence includes or encodes a complementary sequence in addition to any sequence specified.

용어 "프라이머" 는 폴리뉴클레오타이드 신장이 개시되는 조건 하에 놓일 때 주형-방향으로 핵산 합성의 개시점으로서 작용할 수 있는 폴리뉴클레오타이드를 지칭한다. 프라이머는 또한 de novo RNA 합성 및 시험관내 전사-관련 공정의 개시제로서 포함되는, 다양한 기타 올리고뉴클레오타이드-중재 합성 공정에서 사용될 수 있다. 프라이머는 전형적으로는, 단일-가닥 올리고뉴클레오타이드 (예를 들어, 올리고데옥시리보뉴클레오타이드)이다. 프라이머의 적절한 길이는 전형적으로는 6 내지 40 개의 뉴클레오타이드 범위, 보다 전형적으로는 15 내지 35 개의 뉴클레오타이드 범위에서 의도되는 사용에 따라 달라진다. 짧은 프라이머 분자는 일반적으로 주형과 충분히 안정적인 혼성화 착물을 형성하기 위해 보다 저온의 온도를 요구한다. 프라이머는 주형의 정확한 서열을 반영하는데 요구되지 않으나, 프라이머가 신장되기 위한 주형과 혼성화되기 위해 충분히 상보적이어야만 한다. 특정 구현예에서, 용어 "프라이머 쌍"은 증폭되는 핵산 서열의 5'-말단에 상보적으로 혼성화되는 5'-센스 프라이머를 포함하고, 증폭되는 서열의 3' 말단에 혼성화되는 3'-안티센스 프라이머를 포함하는 프라이머의 세트를 의미한다. 프라이머는, 필요한 경우, 분광학적, 광화학적, 생화학적, 면역화학적 또는 화학적 수단에 의해 검출될 수 있는 표지를 혼입함으로써 표지될 수 있다. 예를 들어, 유용한 표지는 하기를 포함한다: 32P, 형광 염료, 전자-덴스 시약, 효소 (ELISA 분석에서 통상적으로 사용됨), 비오틴, 또는 합텐 및 항혈청 또는 모노클로날 항체가 이용될 수 있는 단백질.The term " primer " refers to a polynucleotide that can act as a starting point for nucleic acid synthesis in the template-orientation when the polynucleotide stretch is placed under the conditions of initiation. Primers can also be used in a variety of other oligonucleotide-mediated synthesis processes, including as de novo RNA synthesis and as initiators of in vitro transcription-related processes. The primer is typically a single-stranded oligonucleotide (e.g., oligodeoxyribonucleotide). The appropriate length of primer will typically depend on the intended use in the range of 6 to 40 nucleotides, more typically in the range of 15 to 35 nucleotides. Short primer molecules generally require a lower temperature to form a sufficiently stable hybridization complex with the template. The primer is not required to reflect the correct sequence of the template, but the primer must be sufficiently complementary to hybridize with the template to be elongated. In certain embodiments, the term "primer pair" includes a 5'-sense primer that is complementarily hybridized to the 5'-end of the nucleic acid sequence to be amplified and a 3'-antisense primer that hybridizes to the 3'end of the amplified sequence ≪ / RTI > The primer can be labeled, if necessary, by incorporating a label that can be detected by spectroscopic, photochemical, biochemical, immunochemical or chemical means. For example, useful labels include: 32 P, fluorescent dyes, electron-dense reagents, enzymes (commonly used in ELISA assays), biotin, or hapten, and proteins that can be used with antisera or monoclonal antibodies .

용어 "5'-핵산가수분해효소(nuclease) 프로브"는 핵산 검출을 표적화하기 위해 5'-핵산가수분해효소 반응에서 사용되는 하나 이상의 발광 표지 부분을 포함하는 올리고뉴클레오타이드를 지칭한다. 몇몇 구현예에서, 예를 들어, 5'-핵산가수분해효소 프로브는 오직 단일 발광 부분 (예를 들어, 형광 염료, 등)을 포함한다. 특정 구현예에서, 5'-핵산가수분해효소 프로브는, 프로브가 선택 조건 하에서 헤어핀 구조를 형성할 수 있도록 자가-상보적 영역을 포함한다. 몇몇 구현예에서, 5'-핵산가수분해효소 프로브는, 2개 이상의 표지 부분을 포함하고, 2개 중 하나의 표지가 올리고뉴클레오타이드로부터 분리되거나 분해된 후 방사 강도가 증가하여 방출된다. 특정 구현예에서, 5'-핵산가수분해효소 프로브는 2개의 상이한 형광 염료, 예를 들어 5'-말단 리포터 염료 및 3'-말단 소광제 염료 또는 부분과 표지된다. 몇몇 구현예에서, 5'-뉴클레아제 탐침은, 말단 위에 더하여, 또는 말단 위치 이외의 하나 이상의 위치에서 표지된다. 프로브가 원래대로인 경우, 전형적으로, 리포터 염료로부터 형광 방출이 부분 이상 소광되도록 2 개의 형광물질 사이에서 에너지 이동이 발생한다. 중합효소 사슬 반응의 신장 단계동안, 예를 들어 주형 핵산에 결합되는 5'-핵산가수분해효소 프로브가 리포터 염료의 형광 발광이 더 이상 소광되지 않도록 하는 활성을 갖는 예를 들어, Taq 중합효소 또는 다른 중합효소의 5' 내지 3'-핵산가수분해효소 활성에 의해 분해된다. 몇몇 구현예에서, 5'-핵산가수분해효소 프로브가 둘 이상의 상이한 리포터 염료 및 3'-말단 소광제 염료 또는 부분과 표지될 수 있다.The term " 5'-nucleic acid hydrolase (nuclease) probe " refers to an oligonucleotide comprising at least one luminescent marker moiety used in a 5'-nucleic acid hydrolase reaction to target nucleic acid detection. In some embodiments, for example, the 5'-nucleic acid hydrolase probe comprises only a single light emitting moiety (e.g., a fluorescent dye, etc.). In certain embodiments, the 5 ' -nucleic acid hydrolase probe comprises a self-complementary region such that the probe can form a hairpin structure under selected conditions. In some embodiments, the 5 ' -nucleic acid hydrolase probe comprises two or more label portions, one of the two labels is separated or degraded from the oligonucleotide and then released with increased radiant intensity. In certain embodiments, the 5'-nucleic acid hydrolase probe is labeled with two different fluorescent dyes, for example a 5'-terminal reporter dye and a 3'-terminal light quencher dye or moiety. In some embodiments, the 5'-nuclease probe is labeled at one or more positions in addition to, or in addition to, the terminus. When the probe is intact, energy transfer typically occurs between the two fluorescent materials so that fluorescence emission from the reporter dye is partially or more extinguished. During the elongation step of the polymerase chain reaction, for example, the 5'-nucleic acid hydrolase probe bound to the template nucleic acid has an activity such that the fluorescence emission of the reporter dye is no longer quenched, for example, Taq polymerase or other Is degraded by the 5 ' to 3 ' -nucleic acid hydrolase activity of the polymerase. In some embodiments, a 5'-nucleic acid hydrolase probe can be labeled with two or more different reporter dyes and a 3'-terminal quencher dye or moiety.

용어 "FRET" 또는 "형광 공명 에너지 이동" 또는 "포에스터 공명 에너지 이동" 은 둘 이상의 발색단, 공여체 발색단 및 수용체 발색단 (소광제로서 지칭됨) 사이의 에너지의 이동을 지칭한다. 공여체는 전형적으로는, 공여체가 적합한 파장의 빛이 방사됨으로써 여기될 때 에너지를 수용체에 이동시킨다. 수용체는 전형적으로는 상이한 파장으로 방사되는 빛의 형태로 이동된 에너지를 재방사한다. 수용체가 "암" 소광제인 경우, 이는 빛 이외의 형태로 이동된 에너지를 분산시킨다. 특정 형광물질이 공여체 또는 수용체로서 작용하는지 여부는 FRET 쌍의 다른 멤버의 특성에 의존적이다. 통상적으로 사용되는 공여체-수용체 쌍은 FAM-TAMRA 쌍을 포함한다. 통상적으로 사용되는 소광제는 DABCYL 및 TAMRA 이다. 통상적으로 사용되는 암 소광제는 하기를 포함한다: BlackHole Quenchers™ (BHQ), (Biosearch Technologies, Inc., Novato, Cal.), Iowa Black™ (Integrated DNA Tech., Inc., Coralville, Iowa), 및 BlackBerry™ Quencher 650 (BBQ-650) (Berry & Assoc., Dexter, Mich.).The term "FRET" or "fluorescence resonance energy transfer" or "forester resonance energy transfer" refers to the transfer of energy between two or more chromophores, a donor chromophore and a receptor chromophore (referred to as a quencher). The donor typically transfers energy to the acceptor when the donor is excited by emitting light of the appropriate wavelength. The receptors typically re-emit energy transferred in the form of light that is emitted at different wavelengths. When the receptor is a "dark" quencher, it disperses the energy transferred in a form other than light. Whether a particular fluorescent substance acts as a donor or acceptor depends on the properties of other members of the FRET pair. Commonly used donor-acceptor pairs include FAM-TAMRA pairs. The commonly used quenchers are DABCYL and TAMRA. Commercially available dark quenching agents include: BlackHole Quenchers (BHQ), (Biosearch Technologies, Inc., Novato, Cal.), Iowa Black (Integrated DNA Tech., Inc., Coralville, Iowa) And BlackBerry 占 Quencher 650 (BBQ-650) (Berry & Assoc., Dexter, Mich.).

핵산 염기, 뉴클레오시드 트리포스페이트, 또는 뉴클레오타이드를 지칭할 때 용어 "통상적인" 또는 "천연"은, 기술되는 폴리뉴클레오타이드에서 천연 발생하는 것을 지칭한다 (즉, DNA 에 대해 이들은 dATP, dGTP, dCTP 및 dTTP임). 또한, dITP, 및 7-데아자-dGTP 는 dGTP 대신 빈번히 이용되며 서열화와 같은 시험관내 DNA 합성 반응에서 dATP 대신 이용될 수 있다.The term " conventional " or " native " when referring to a nucleic acid base, nucleoside triphosphate, or nucleotide refers to naturally occurring in the polynucleotides described (i.e., for DNA they are dATP, dGTP, dCTP, dTTP). In addition, dITP and 7-deaza-dGTP are frequently used instead of dGTP and can be used in place of dATP in in vitro DNA synthesis reactions such as sequencing.

핵산 염기, 뉴클레오시드, 또는 뉴클레오타이드를 지칭할 때 용어 "통상적이지 않은" 또는 "변형된" 은, 특정 폴리뉴클레오타이드에서 천연적으로 발생하는 통상적인 염기, 뉴클레오시드, 또는 뉴클레오타이드의 변형, 유도체 또는 유사체를 포함한다. 특정한 통상적이지 않은 뉴클레오타이드는 통상적인 dNTP 와 비교하여 리보오스 당의 2' 위치에서 변형된다. 따라서, RNA 에 대해 자연 발생 뉴클레오타이드가 리보뉴클레오타이드 (즉, ATP, GTP, CTP, UTP, 집합적 rNTP)이더라도, 뉴클레오타이드가 당의 2' 위치에서 히드록실기를 갖기 때문에, 이는 비교하여 dNTP가 부재하고, 본원에 사용되는 바와 같이, 리보뉴클레오타이드는 DNA 중합효소에 대한 기질로서 통상적이지 않은 뉴클레오타이드다. 본원에 사용되는 바와 같이, 통상적이지 않은 뉴클레오타이드는 핵산 서열화에 대한 종결자로서 사용되는 화합물을 포함하나 이에 한정되지 않는다. 예시적인 종결자 화합물은 2',3'-디데옥시 구조를 갖는 화합물을 포함하나 이에 한정되지 않으며, 이는 디데옥시뉴클레오시드 트리포스페이트로서 지칭된다. 디데옥시뉴클레오시드 트리포스페이트 ddATP, ddTTP, ddCTP 및 ddGTP 는 ddNTP 로서 집합적으로 지칭된다. 종결자 화합물의 추가의 예는 리보뉴클레오타이드의 2'-PO4 유사체를 포함한다. 다른 통상적이지 않은 뉴클레오타이드는 포스포로티오에이트 dNTP ([[α]-S]dNTP), 5'-[α]-보라노-dNTP, [α]-메틸-포스포네이트 dNTP, 및 리보뉴클레오시드 트리포스페이트 (rNTP) 를 포함한다. 통상적이지 않은 염기는 방사성 동위원소, 예컨대 32P, 33P, 또는 35S; 형광 표지; 화학발광의 표지; 생물발광의 표지; 합텐 표지 예컨대 비오틴; 또는 효소 표지 예컨대 스트렙타비딘 또는 아비딘으로 표지될 수 있다. 형광 표지는, 음성으로 하전된 염료, 예컨대 플루오세인 패밀리의 염료, 또는 중성으로 하전된 염료, 예컨대 로다민 패밀리의 염료, 또는 양성으로 하전된 염료, 예컨대 시아닌 패밀리의 염료를 포함할 수 있다. 플루오세인 패밀리의 염료는, 예를 들어, FAM, HEX, TET, JOE, NAN 및 ZOE를 포함한다. 로다민 패밀리의 염료는 Texas Red, ROX, R110, R6G, 및 TAMRA를 포함한다. FAM, HEX, TET, JOE, NAN, ZOE, ROX, R110, R6G, Texas Red 및 TAMRA로 라벨링된 다양한 염료 또는 뉴클레오타이드는 Perkin-Elmer (Boston, MA), Applied Biosystems (Foster City, CA), 또는 Invitrogen/Molecular Probes (Eugene, OR) 에 의해 시판된다. 시아닌 패밀리의 염료는 Cy2, Cy3, Cy5, 및 Cy7 을 포함하고, GE Healthcare UK Limited (Amersham Place, Little Chalfont, Buckinghamshire, England)에 의해 시판된다.The term " unusual " or " modified " when referring to a nucleic acid base, nucleoside, or nucleotide refers to a variation, derivative, or modification of a naturally occurring conventional base, nucleoside, or nucleotide in a particular polynucleotide ≪ / RTI > Certain unusual nucleotides are modified at the 2 ' position of the ribose sugar compared to conventional dNTPs. Thus, even though the naturally occurring nucleotides for RNA are ribonucleotides (i.e., ATP, GTP, CTP, UTP, aggregated rNTP), because the nucleotides have hydroxyl groups at the 2 ' As used herein, a ribonucleotide is a nucleotide that is not conventional as a substrate for a DNA polymerase. As used herein, unconventional nucleotides include, but are not limited to, compounds that are used as terminators for nucleic acid sequencing. Exemplary terminator compounds include, but are not limited to, compounds having a 2 ', 3 ' -dideoxy structure, which is referred to as dideoxynucleoside triphosphate. Dideoxy nucleoside triphosphate ddATP, ddTTP, ddCTP and ddGTP are collectively referred to as ddNTP. A further example of a terminator compound comprises a 2'-PO 4 analogs of ribonucleotides. Other non-conventional nucleotides include, but are not limited to, phosphorothioate dNTPs ([[?] -S] dNTPs, 5 '- [?] -Borano- dNTPs, [?] - methylphosphonate dNTPs, and ribonucleosides Triphosphate (rNTP). Unusual bases include radioactive isotopes such as 32 P, 33 P, or 35 S; Fluorescent labeling; Labeling of chemiluminescence; Labeling of bioluminescence; Hapten labels such as biotin; Or enzymatic labels such as streptavidin or avidin. Fluorescent labels may include negatively charged dyes, such as dyes of the fluoxane family, or neutrally charged dyes such as the rhodamine family, or positively charged dyes such as the cyanine family. Dyes of the fluoxane family include, for example, FAM, HEX, TET, JOE, NAN and ZOE. The dyes of the Rhodamine family include Texas Red, ROX, R110, R6G, and TAMRA. Various dyes or nucleotides labeled with FAM, HEX, TET, JOE, NAN, ZOE, ROX, R110, R6G, Texas Red and TAMRA are available from Perkin-Elmer (Boston, Mass.), Applied Biosystems / Molecular Probes (Eugene, OR). The dyes of the cyanine family include Cy2, Cy3, Cy5, and Cy7 and are marketed by GE Healthcare UK Limited (Amersham Place, Little Chalfont, Buckinghamshire, England).

용어 "미스매치 구별"은, 핵산에 대해 하나 이상의 뉴클레오타이드를 부착함으로써 (예를 들어, 공유적으로), 주형-의존적 방식으로, 핵산 (예를 들어, 프라이머 또는 다른 올리고뉴클레오타이드)을 연장할 때 미스매치-함유 서열로부터 완전히 상보적인 서열을 구별하기 위한, 생체촉매 (예를 들어, 효소, 예컨대 중합효소, 리가아제 등)의 능력을 지칭한다. 용어 "미스매치 구별"은, 연장되는 핵산 (예를 들어, 프라이머 또는 다른 올리고뉴클레오타이드)이 핵산이 혼성화되는 주형에 비해 3'-말단 핵산에서 미스매치를 갖는, 미스매치-함유 (대략 상보적) 서열부터 완전히 상보적인 서열을 구별하기 위한 생체촉매의 능력을 지칭한다. 몇몇 구현예에서, 연장되는 핵산은 완전히 상보적인 서열에 대해 3'-말단에서 미스매치를 포함한다. 몇몇 구현예에서, 연장되는 핵산은, 완전히 상보적인 서열에 대해 말단에서 두번째 (N-1) 3'-위치 및/또는 N-2 위치에서 미스매치를 포함한다.The term " mismatch discrimination " is intended to encompass the term " mismatch discrimination " when a nucleic acid (e.g., a primer or other oligonucleotide) is extended in a template-dependent manner by affixing one or more nucleotides Refers to the ability of a biocatalyst (e. G., An enzyme, e. G., A polymerase, ligase, etc.) to distinguish a fully complementary sequence from a match-containing sequence. The term " mismatch discrimination " refers to a mismatch-containing (substantially complementary) nucleic acid in which an extended nucleic acid (e.g., a primer or other oligonucleotide) has a mismatch in the 3'-terminal nucleic acid relative to a template in which the nucleic acid is hybridized Quot; refers to the ability of the biocatalyst to distinguish completely complementary sequences from the sequence. In some embodiments, the extended nucleic acid comprises a mismatch at the 3 ' -terminus to a fully complementary sequence. In some embodiments, the extended nucleic acid comprises a mismatch at the second (N-1) 3'-position and / or N-2 position at the terminus to a fully complementary sequence.

달리 정의되지 않는 한, 본원에 사용되는 모든 기술적 및 과학적 용어는 당업자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art.

본 발명은 서열번호 1의 아미노산 서열로 이루어진 Taq 중합효소를 갖는 DNA 중합효소로서, (a) 서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기의 치환; 및 (b) 서열번호 1의 아미노산 서열에서 536번째 아미노산 잔기의 치환, 660번째 아미노산 잔기의 치환 또는 536번째 및 660번째 아미노산 잔기 둘 다의 치환;을 포함하는 DNA 중합효소에 관한 것이다.The present invention relates to a DNA polymerase having a Taq polymerase comprising the amino acid sequence of SEQ ID NO: 1, which comprises (a) substitution of the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1; And (b) a substitution of a 536th amino acid residue in the amino acid sequence of SEQ ID NO: 1, a substitution of the 660th amino acid residue, or both of the 536th and 660th amino acid residues.

상기 "Taq 중합효소"는 고온성 세균인 써모스 아쿠아티쿠스(Thermus aquaticus)의 이름을 따서 명명된 내열성 DNA 중합효소로 상기 세균으로부터 최초로 분리되었다. 써모스 아쿠아티쿠스는 온천 및 열수 분출공에 서식하는 세균으로, Taq 중합효소는 PCR 과정에서 요구되는 단백질 변성 조건 (고온)을 견딜 수 있는 효소로 확인되었다. Taq 중합효소의 최적 활성온도는 75-80 ℃이고, 92.5 ℃에서 2시간 이상, 95 ℃에서 40분, 97.5 ℃에서 9분의 반감기를 가지며, 72 ℃에서 10초 이내에 1000개의 염기쌍 DNA를 복제할 수 있다. 이는 3'→5' 핵산말단가수분해효소(exonuclease) 교정 활성이 결여되어 있으며, 9,000개의 뉴클레오타이드 중 약 1개에서 오류율이 측정된다. 예를 들어 내열성 Taq를 사용하면 고온(60 ℃ 이상)에서 PCR을 실행할 수 있다. Taq 중합효소에 대하여 서열번호 1에 나타낸 아미노산 서열이 기준 서열로 사용된다.The " Taq polymerase " was first isolated from the bacterium by a heat-resistant DNA polymerase named Thermus aquaticus , a thermophilic bacterium. Thermos Aqua ticus is a bacterium inhabited by hot springs and hydrothermal vesicles. Taq polymerase has been identified as an enzyme capable of withstanding the protein denaturation conditions (high temperature) required in the PCR process. The optimal activity temperature of Taq polymerase is 75-80 ° C. It has a half-life of 92 hours at 92.5 ° C, 40 minutes at 95 ° C, and 9 minutes at 97.5 ° C. It replicates 1000 base pairs of DNA within 10 seconds at 72 ° C . This lacks the 3 'to 5' exonuclease correcting activity, and the error rate is measured in about one out of 9,000 nucleotides. For example, when heat resistant Taq is used, PCR can be performed at a high temperature (60 ° C or higher). For the Taq polymerase, the amino acid sequence shown in SEQ ID NO: 1 is used as the reference sequence.

본 발명의 바람직한 일실시예에 따르면, 상기 507번째 아미노산 잔기의 치환은 글루탐산(E)에서 리신(K)으로 치환되는 것이고, 상기 536번째 아미노산 잔기의 치환은 아르기닌(R)에서 리신(K)으로 치환되는 것이며, 상기 660번째 아미노산 잔기의 치환은 아르기닌(R)에서 발린(V)으로 치환되는 것일 수 있다.According to a preferred embodiment of the present invention, substitution of the 507th amino acid residue is replaced by lysine (K) in glutamic acid (E), and substitution of arginine (R) to lysine (K) , And the substitution of the 660th amino acid residue may be substituted with valine (V) in arginine (R).

본 발명에서, 서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기가 글루탐산(E)에서 리신(K)으로 치환된 Taq 중합효소는 "E507K" (서열번호 2)로 명명하였고; 서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기가 글루탐산(E)에서 리신(K)으로 치환되고, 536번째 아미노산 잔기가 아르기닌(R)에서 리신(K)으로 치환된 Taq 중합효소는 "E507K/R536K" (서열번호 6)로 명명하였으며; 서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기가 글루탐산(E)에서 리신(K)으로 치환되고, 660번째 아미노산 잔기가 아르기닌(R)에서 발린(V)으로 치환된 Taq 중합효소는 "E507K/R660V" (서열번호 7)로 명명하였고; 마지막으로 서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기가 글루탐산(E)에서 리신(K)으로 치환되고, 536번째 아미노산 잔기가 아르기닌(R)에서 리신(K)으로 치환되며, 660번째 아미노산 잔기가 아르기닌(R)에서 발린(V)으로 치환된 Taq 중합효소는 "E507K/R536K/R660V" (서열번호 8)로 명명하였다.In the present invention, the Taq polymerase in which the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1 was substituted with lysine (K) in glutamic acid (E) was named "E507K" (SEQ ID NO: 2); The Taq polymerase in which the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1 is substituted with lysine (K) in glutamic acid (E) and the lysine (K) in arginine (R) is substituted with the 536th amino acid residue is referred to as "E507K / R536K Quot; (SEQ ID NO: 6); The Taq polymerase in which the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1 is substituted with lysine (K) in glutamic acid (E) and the 660th amino acid residue is substituted with valine (V) in arginine (R) is "E507K / R660V Quot; (SEQ ID NO: 7); Finally, the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1 is substituted with lysine (K) in glutamic acid (E), the 536th amino acid residue is substituted with lysine (K) in arginine (R) The Taq polymerase substituted with valine (V) in arginine (R) was named "E507K / R536K / R660V" (SEQ ID NO: 8).

본 발명의 바람직한 일실시예에 따르면, 상기 DNA 중합효소는 매치된 프라이머와 미스매치된 프라이머를 구별하고, 상기 매치된 프라이머와 미스매치된 프라이머는 표적서열과 혼성화되며, 상기 미스매치된 프라이머는 혼성화되는 표적서열에 대하여 이의 3' 말단에 비표준 뉴클레오타이드를 포함할 수 있다.According to a preferred embodiment of the present invention, the DNA polymerase distinguishes between a matched primer and a mismatched primer, wherein the mismatched primer and the mismatched primer are hybridized with the target sequence, and the mismatched primer is hybridized Lt; RTI ID = 0.0 > 3 ' end < / RTI >

상기 미스매치된 프라이머는 표적서열과 혼성화되도록 충분히 상보적이어야 하지만 표적서열의 정확한 서열을 반영하지 않은 혼성 올리고뉴클레오타이드이다.The mismatched primer is a hybrid oligonucleotide that must be sufficiently complementary to hybridize with the target sequence but does not reflect the exact sequence of the target sequence.

상기 "표준 뉴클레오타이드 (canonical nucleotide)" 또는 "상보적 뉴클레오타이드"는 표준 왓슨-크릭 염기쌍, A-U, A-T 및 G-C를 의미한다.The "canonical nucleotide" or "complementary nucleotide" refers to the standard Watson-Crick base pair, A-U, A-T, and G-C.

상기 "비표준 뉴클레오타이드(non-canonical nucleotide)" 또는 "비상보적 뉴클레오타이드"는 왓슨-크릭 염기쌍 외에 A-C, A-G, G-U, G-T, T-C, T-U, A-A, G-G, T-T, U-U, C-C, C-U를 의미한다.The term "non-canonical nucleotide" or "non-complementary nucleotide" refers to A-C, A-G, G-U, G-T, T-C, T-U, A-A, G-G, T-T, U-U, C-C and C-U in addition to the Watson-

본 발명의 바람직한 일실시예에 따르면, 상기 DNA 중합효소는 매치된 프라이머를 포함하는 표적서열의 증폭이 미스매치된 프라이머를 포함하는 표적서열의 증폭보다 낮은 Ct값을 나타낼 수 있다.According to a preferred embodiment of the present invention, the DNA polymerase may exhibit a lower Ct value than the amplification of the target sequence comprising the mismatched primer in amplification of the target sequence comprising the matched primer.

예를 들어, DNA 중합효소는 프라이머에 하나 이상의 뉴클레오타이드를 공유적으로 결합시킴으로써 표적서열 의존적인 방식으로 미스매치된 프라이머 보다 더 큰 효율성으로 매치된 프라이머를 신장할 수 있다. 여기서 더 큰 효율성은 예를 들어 RT-PCR에서 미스매치된 프라이머보다 매치된 프라이머에 대해 낮은 Ct값이 관찰될 수 있다. 매치된 프라이머와 미스매치된 프라이머의 Ct값 차이는 10 이상, 바람직하게는 10 내지 20 이거나 미스매치된 프라이머에 의한 앰플리콘의 합성이 없을 수 있다.For example, a DNA polymerase can elongate primers matched with greater efficiency than mismatched primers in a target sequence-dependent manner by covalently linking one or more nucleotides to the primer. Where greater efficiency can be observed, for example, lower Ct values for primers matched than mismatched primers in RT-PCR. The Ct value difference between the matched primers and the mismatched primers is at least 10, preferably between 10 and 20, or there may be no synthesis of the amplicon by mismatched primers.

예를 들어 첫 번째 반응에서 매치된 정방향 프라이머와 역방향 프라이머, 동일한 실험 세팅으로 두 번째 반응에서 미스매치된 정방향 프라이머와 매치된 역방향 프라이머를 사용하여 표준 PCR로 형성된 생성물이 두 번째 반응보다 첫 번째 반응에 대해 더 크다는 것을 의미한다.For example, a product formed by standard PCR using the forward primer matched in the first reaction and the reverse primer, and the reverse primer matched with the mismatched forward primer in the second reaction in the same experimental setup, Which means that it is bigger.

Ct(Threshold crossing cycle) 값은 로그 눈금상 사이클 수에 대한 형광을 플롯팅하는 것에 의존하는 정량적 PCR로 DNA 정량화 방법을 나타낸다. DNA 기반 형광 검출에 대한 한계값은 최소한 백그라운드보다 약간 높게 설정된다. 형광이 한계값을 초과하는 사이클 수를 Ct 또는, MIQE 가이드라인에 따라 Cq(quantification cycle)이라고 한다. 주어진 반응에 대한 Ct 값은 형광 방출이 고정된 한계값을 교차하는 사이클 수로 정의된다. 예를 들어, SYBR Green I 및 형광 프로브는 주형 DNA 정량화에 대한 실시간 PCR에 사용될 수 있다. 샘플로부터의 형광은 PCR 동안 매 사이클마다 수집되고, 사이클 수에 대해 플롯팅된다. 출발 주형 농도는 형광 신호가 최초로 나타나는 사간에 반비례한다. 신호는 주형의 농도가 높을수록 더 일찍 나타난다 (낮은 사이클 수에서 나타남).The Ct (Threshold Crossing Cycle) value represents the DNA quantification method by quantitative PCR, which relies on plotting fluorescence over log count cycles. The threshold for DNA-based fluorescence detection is set at least slightly higher than the background. The number of cycles for which the fluorescence exceeds the threshold value is called Ct, or Cq (quantification cycle) according to the MIQE guideline. The Ct value for a given reaction is defined as the number of cycles in which the fluorescence emission crosses a fixed limit value. For example, SYBR Green I and fluorescent probes can be used for real-time PCR for template DNA quantification. Fluorescence from the sample is collected every cycle during the PCR and plotted against the number of cycles. The starting template concentration is inversely proportional to the time the fluorescence signal first appears. The higher the concentration of the template, the earlier the signal appears (at low cycle counts).

본 발명은 또한 전술한 DNA 중합효소를 코딩하는 핵산 서열 및 상기 핵산 서열을 포함하는 벡터 및 숙주세포에 관한 것이다. 본 발명의 DNA 중합효소를 코딩하는 핵산을 이용하여 다양한 벡터가 제조될 수 있다. 숙주세포와 호환되는 종으로부터 유래되는 레플리콘 및 제어 서열을 포함하는 임의의 벡터가 사용될 수 있다. 본 발명의 벡터는 발현 벡터일 수 있고, 본 발명의 DNA 중합효소를 코딩하는 핵산 서열에 작동가능하게 연결되는 전사 및 번역을 조절하는 핵산 영역을 포함한다. 조절서열은 특정 숙주 유기체에서 작동가능하게 연결되는 코딩서열의 발현에 요구되는 DNA 서열을 말한다. 예를 들어, 원핵생물에 적합한 제어 서열은 프로모터, 임의의 작동 서열 및 리보솜 결합 부위를 포함한다. 또한, 벡터는 전사되는 mRNA의 반감기를 증강시키기 위해 "Positive Retroregulatory Element(PRE)"를 포함할 수 있다. 전사 및 번역 조절 핵산 영역은 일반적으로 중합효소를 발현하기 위해 사용되는 숙주 세포에 대해 적절할 것이다. 다양한 유형의 적절한 발현 벡터, 및 적합한 조절 서열은, 다양한 숙주 세포에 대해 당업계에 공지되어 있다. 일반적으로, 전사 및 번역 조절 서열은 예를 들어, 프로모터 서열, 리보좀 결합 부위, 전사 개시 및 종결 서열, 번역 개시 및 종결 서열, 및 인핸서 또는 활성화 서열을 포함할 수 있다. 전형적인 구현예에서, 조절 서열은 프로모터 및 전사 개시 및 종결 서열을 포함한다. 벡터 또한 전형적으로는 외래 DNA 의 삽입을 위한 수 개의 제한 부위를 함유하는 폴리링커 영역을 포함한다. 특정 구현예에서, "융합 플래그" 는 정제를 촉진하기 위해 사용되고, 필요에 따라, 태그/플래그가 후속 제거된다 (예를 들어, "His-Tag"). 그러나, "가열-단계" 가 사용되는 중온성 숙주 (예를 들어, E. coli) 로부터 열활성 및/또는 열안정성 단백질을 정제할 때 이들은 일반적으로 불필요하다. DNA 코딩 복제 서열, 조절 서열, 표현형 선택 유전자를 함유하는 적합한 벡터의 구축, 및 관심 돌연변이체 중합효소가 표준 재조합 DNA 기술을 사용하여 제조된다. 단리된 플라스미드, 바이러스 벡터, 및 DNA 단편이 분해되고 절단되어, 당업계에 공지되어 있는 바와 같이 원하는 벡터를 생성하기 위해 특정 순서로 함께 라이게이션된다.The present invention also relates to a nucleic acid sequence encoding the aforementioned DNA polymerase and a vector and a host cell comprising the nucleic acid sequence. Various vectors can be prepared using the nucleic acid encoding the DNA polymerase of the present invention. Any vector may be used, including replicons and control sequences derived from species compatible with the host cell. The vector of the present invention may be an expression vector and includes a transcriptional and translational control nucleic acid region operably linked to a nucleic acid sequence encoding a DNA polymerase of the present invention. Regulatory sequences refer to DNA sequences required for the expression of coding sequences operatively linked in a particular host organism. For example, control sequences suitable for prokaryotes include promoters, any operative sequences and ribosome binding sites. In addition, the vector may contain a " Positive Retroregulatory Element (PRE) " to enhance the half-life of the transcribed mRNA. The transcriptional and translational regulatory nucleic acid domains will generally be appropriate for host cells used to express the polymerase. Various types of appropriate expression vectors, and suitable regulatory sequences, are known in the art for a variety of host cells. Generally, transcriptional and translational control sequences may include, for example, promoter sequences, ribosomal binding sites, transcription initiation and termination sequences, translation initiation and termination sequences, and enhancers or activation sequences. In a typical embodiment, regulatory sequences include promoters and transcription initiation and termination sequences. The vector also typically comprises a polylinker region containing several restriction sites for insertion of foreign DNA. In certain embodiments, a " fusion flag " is used to facilitate purification and, if necessary, a tag / flag is subsequently removed (e.g., " His-Tag "). However, these are generally unnecessary when purifying thermostable and / or thermostable proteins from a mesophilic host (e. G., E. coli) in which the "heat-step" is used. Construction of suitable vectors containing DNA coding replication sequences, regulatory sequences, phenotypic selection genes, and the mutant polymer of interest are prepared using standard recombinant DNA techniques. Isolated plasmids, viral vectors, and DNA fragments are cleaved and truncated and ligated together in a particular order to produce the desired vectors as is known in the art.

본 발명의 바람직한 일실시예에서, 발현 벡터는 형질전환된 숙주 세포의 선택을 위해 선택가능한 마커 유전자를 함유한다. 선택 유전자는 당업계에 공지되어 있으며, 사용되는 숙주 세포에 대해 다양하할 것이다. 적합한 선택 유전자는 암피실린 및/또는 테트라사이클린 저항성에 대한 유전자 코딩을 포함할 수 있고, 이는 이들 항생제의 존재 하에 이들 벡터를 배양하는 세포를 형질전환시킬 수 있다.In one preferred embodiment of the invention, the expression vector contains a selectable marker gene for selection of the transformed host cell. Selection genes are known in the art and will vary for the host cells used. Suitable selection genes may include gene coding for resistance to ampicillin and / or tetracycline, which can transform cells that cultivate these vectors in the presence of these antibiotics.

본 발명의 바람직한 일실시예에서, 본 발명의 DNA 중합효소를 코딩하는 핵산 서열은 세포에 단독으로 또는 벡터와 조합되어 도입된다. 도입 또는 이의 등가적인 표현은 핵산이 후속 통합, 증폭 및/또는 발현에 적합한 방식으로 세포로 들어가는 것을 의미한다. 도입 방법은 예를 들어 CaPO4 침전, 리포좀 융합, LIPOFECTIN®, 전기영동, 바이러스 감염 등을 포함한다.In a preferred embodiment of the present invention, the nucleic acid sequence encoding the DNA polymerase of the present invention is introduced into cells either alone or in combination with a vector. The introduction or equivalent expression thereof means that the nucleic acid enters the cell in a manner suitable for subsequent integration, amplification and / or expression. Methods of introduction include, for example, CaPO 4 precipitation, liposome fusion, LIPOFECTIN®, electrophoresis, viral infection, and the like.

원핵생물은 본 발명의 초기 클로닝 단계에 대해 숙주 세포로서 사용된다. 다량의 DNA 를 신속하게 제조하기 위해, 부위-지향 돌연변이생성에 사용되는 단일-가닥 DNA 주형을 제조하기 위해, 많은 돌연변이체를 동시에 스크리닝하기 위해, 생성되는 돌연변이체의 DNA 서열화를 위해, 이들이 특히 유용하다. 적합한 원핵세포의 숙주 세포는 E. coli K12 균주 94 (ATCC No. 31,446), E. coli 균주 W3110 (ATCC No. 27,325), E. coli K12 균주 DG116 (ATCC No. 53,606), E. coli X1776 (ATCC No. 31,537), 및 E. coli B; E. coli 의 많은 다른 균주, 예컨대 HB101, JM101, NM522, NM538, NM539, 및 기타 다른 종들을 포함하고, 바실리 예컨대 바실러스 서브틸리스 (Bacillus subtilis), 다른 엔테로박테리아 세아, 예컨대 살모넬라 티피무리움 (Salmonella typhimurium) 또는 세라티아 마르세산스 (Serratia marcesans), 및 다양한 슈도모나스 종(Pseudomonas sp.) 을 포함하는 원핵생물 속이 호스트로서 사용될 수 있다. 전형적으로 E. coli 의 형질전환에 사용되는 플라스미드는 pBR322, pUCI8, pUCI9, pUCIl8, pUC119 및 Bluescript M13 을 포함한다. 그러나 많은 다른 적합한 벡터가 또한 이용될 수 있다.Prokaryotes are used as host cells for the initial cloning step of the present invention. In order to produce large quantities of DNA rapidly, to prepare single-stranded DNA templates used for site-directed mutagenesis, to screen many mutants simultaneously, for DNA sequencing of the resulting mutants, Do. Suitable host cells of prokaryotic cells are E. coli K12 strain 94 (ATCC No. 31,446), E. coli strain W3110 (ATCC No. 27,325), E. coli K12 strain DG116 (ATCC No. 53,606), E. coli X1776 ATCC No. 31,537), and E. coli B; It is well known in the art that many different strains of E. coli such as HB101, JM101, NM522, NM538, NM539 and other species, including Vassilis such as Bacillus subtilis, other Enterobacteriaceae such as Salmonella typhimurium) or Serratia marcesans, and various Pseudomonas species (Pseudomonas sp.) can be used as hosts. Plasmids typically used for transformation of E. coli include pBR322, pUCI8, pUCI9, pUCIl8, pUC119 and Bluescript M13. However, many other suitable vectors may also be used.

본 발명은 또한, 상기 숙주세포를 배양하는 단계; 및 배양물 및 이의 배양상청액으로부터 DNA 중합효소를 분리하는 단계;를 포함하는 DNA 중합효소 제조방법을 제공한다.The present invention also relates to a method for producing a host cell comprising the steps of: culturing the host cell; And separating the DNA polymerase from the culture and the culture supernatant thereof.

본 발명의 DNA 중합효소는 DNA 중합효소의 발현을 유도하거나 야기하는 적절한 조건 하에서, DNA 중합효소를 코딩하는 핵산 서열을 함유하는 발현 벡터로 형질전환되는 숙주 세포를 배양함으로써 제조된다. 단백질 발현에 적합한 조건 하에서 형질전환된 숙주 세포를 배양하는 방법은 당업계에 공지되어 있다. 람다 pL 프로모터-함유 플라스미드 벡터로부터 중합효소의 제조에 적합한 숙주 세포는 E. coli 균주 DG116 (ATCC No. 53606)을 포함한다. 발현에 따라, 중합효소는 수확되고 분리될 수 있다.The DNA polymerase of the present invention is prepared by culturing a host cell transformed with an expression vector containing a nucleic acid sequence encoding a DNA polymerase under appropriate conditions that induce or cause expression of the DNA polymerase. Methods for culturing transformed host cells under conditions suitable for protein expression are known in the art. Suitable host cells for the production of the polymerase from lambda pL promoter-containing plasmid vectors include the E. coli strain DG116 (ATCC No. 53606). Depending on the expression, the polymerase can be harvested and separated.

일단 정제되면, 본 발명의 DNA 중합효소의 미스매치 구별이 검정될 수 있다. 예를 들어, 미스매치 구별 활성은, 프라이머의 3-말단에서 단일 염기 미스매치를 갖는 표적의 증폭에 대해 프라이머로 완벽히 매치되는 표적 서열의 증폭을 비교함으로써 측정된다. 증폭은, 예를 들어, TaqManTM 프로브의 사용에 의해 실시간 검출될 수 있다. 2개의 표적 서열 사이를 구분하기 위한 중합효소의 능력은 2 개 반응의 Ct를 비교함으로써 추정될 수 있다. Once purified, the mismatch discrimination of the DNA polymerase of the present invention can be assayed. For example, mismatch distinguishing activity is measured by comparing the amplification of a target sequence perfectly matched to a primer for amplification of a target with a single base mismatch at the 3-terminus of the primer. Amplification can be detected in real time, for example, by the use of a TaqMan TM probe. The ability of the polymerase to distinguish between two target sequences can be estimated by comparing the Ct of the two reactions.

따라서, 본 발명은 본 발명에 따른 DNA 중합효소를Therefore, the present invention provides DNA polymerase according to the present invention

a) 하나 이상의 주형;a) one or more molds;

b) 뉴클레오사이드 트리포스페이트; 및b) nucleoside triphosphate; And

c) 하나 이상의 매치된 프라이머, 하나 이상의 미스매치된 프라이머 또는 하나 이상의 매치된 프라이머와 하나 이상의 미스매치된 프라이머 둘 다와 접촉시키는 것을 포함하고, 상기 하나 이상의 매치된 프라이머 및 미스매치된 프라이머는 표적서열과 혼성화되며, 상기 미스매치된 프라이머는 혼성화되는 표적서열에 대하여 이의 3' 말단으로부터 7개까지의 염기 위치에 비표준(non-canonical) 뉴클레오타이드를 포함하는, 하나 이상의 주형에서 하나 이상의 유전자 변이 또는 SNP를 생체 외(in vitro)에서 검출하는 방법을 제공한다.c) contacting one or more matched primers, one or more mismatched primers, or one or more matched primers with one or more mismatched primers, wherein the one or more matched primers and the mismatched primers comprise a target sequence Wherein the mismatched primer comprises one or more mutations or SNPs in one or more templates, including non-canonical nucleotides at up to seven base positions from its 3 'end to the hybridizing target sequence A method for detection in vitro is provided.

상기 "SNP(Single Nucleotide Polymorphisms)"는 DNA 염기서열에서 하나의 염기서열(A, T, G 또는 C)의 차이를 보이는 유전적 변화 또는 변이를 말한다.The term " SNP (Single Nucleotide Polymorphisms) " refers to a genetic change or mutation showing a difference in one base sequence (A, T, G, or C) in a DNA base sequence.

본 발명의 생체 외(in vitro) 유전자 변이 또는 SNP 검출 방법에서, 표적서열은 테스트 샘플에 존재할 수 있으며, DNA, cDNA 또는 RNA, 바람직하게는 유전체 DNA를 포함한다. 테스트 샘플은 박테리아, 박테리아 배양물 또는 세포 배양물로부터 제조된 세포 용해물일 수 있다. 또한, 테스트 샘플은 동물, 바람직하게는 척추 동물, 보다 바람직하게는 인간 대상체에 포함된 것일 수 있다. 표적서열은 유전체 DNA, 바람직하게는 개체의 유전체 DNA, 보다 바람직하게는 박테리아 또는 척추 동물, 가장 바람직하게는 인간 대상체의 유전체 DNA에 포함된 것일 수 있다.In the in vitro gene mutation or SNP detection method of the present invention, the target sequence may be present in the test sample and include DNA, cDNA or RNA, preferably genomic DNA. The test sample may be a bacterium, a bacterial culture, or a cell lysate prepared from a cell culture. In addition, the test sample may be contained in an animal, preferably a vertebrate animal, more preferably a human subject. The target sequence may be comprised in a genomic DNA, preferably a genomic DNA of a subject, more preferably a bacterial or vertebrate animal, most preferably a human subject.

본 발명의 SNP 검출 방법은 SYBR Green I과 같은 이중 가닥 특이적 염료를 이용하여 용융 온도 분석을 포함할 수 있다.The SNP detection method of the present invention can include melting temperature analysis using a double-strand specific dye such as SYBR Green I.

용융 온도 곡선 분석은, 온보드 소프트웨어 (SDS 2.1)를 포함하는 ABI 5700/7000 (96 웰 포맷) 또는 ABI 7900 (384 웰 포맷) 장치와 같은 실시간 PCR 장치에서 수행될 수 있다. 대안적으로는, 용융 온도 곡선 분석은 종결점 분석으로서 수행될 수 있다.Melting temperature curve analysis can be performed in a real-time PCR device such as ABI 5700/7000 (96 well format) or ABI 7900 (384 well format) device containing onboard software (SDS 2.1). Alternatively, the melting temperature curve analysis can be performed as a termination analysis.

"이중 가닥 DNA에 결합하는 염료" 또는 "이중 가닥 특이적 염료"는 결합되지 않은 상태보다 이중 가닥 DNA에 결합하였을 때 높은 형광을 가지는 경우 사용될 수 있다. 이러한 염료의 예로는, SOYTO-9, SOYTO-13, SOYTO-16, SOYTO-60, SOYTO-64, SYTO-82, 브롬화 에티듐(EtBr), SYTOX Orange, TO-PRO-1, SYBR Green I, TO-PRO-3 또는 EvaGreen이 있다. EtBr 및 EvaGreen (Quiagen)을 제외한 이들 염료는 실시간 응용에 시험되어 왔다.&Quot; Dyes that bind to double-stranded DNA " or " double-stranded specific dyes " can be used when they have high fluorescence when bound to double-stranded DNA rather than unbound. Examples of such dyes include SOYTO-9, SOYTO-13, SOYTO-16, SOYTO-60, SOYTO-64, SYTO-82, EtBr, SYTOX Orange, TO- TO-PRO-3 or EvaGreen. Except for EtBr and EvaGreen (Quiagen), these dyes have been tested in real-time applications.

본 발명의 생체 외(in vitro) 유전자 변이 또는 SNP 검출 방법은 실시간 PCR, 표준 PCR 후 아가로스 겔에서의 분석, 실시간 PCR을 통한 유전자 변이 특이적 증폭 또는 대립 유전자-특이적 증폭, 테트라-프라이머 증폭-불응성 돌연변이 시스템 PCR 또는 등온 증폭에 의해 수행될 수 있다.The in vitro gene mutation or SNP detection method of the present invention can be used for real-time PCR, analysis on agarose gel after standard PCR, gene-specific amplification or allele-specific amplification through real-time PCR, tetra-primer amplification - can be carried out by a refractory mutation system PCR or isothermal amplification.

상기 "표준 PCR"은 통상의 기술자에게 알려진 DNA 또는 cDNA를 단일 또는 수 개의 복제를 증폭시키는 기술이다. 거의 대부분의 PCR은 Taq 중합효소 또는 Klen Taq와 같은 열안정성 DNA 중합효소를 사용한다. DNA 중합 효소는 주형으로 단일 가닥 DNA를 사용하고, 올리고뉴클레오타드 (프라이머)를 사용함으로써 뉴클레오타이드로부터 새로운 DNA 가닥을 효소적으로 조립한다. PCR에 의해 생성 된 앰플리콘은 예를 들어, 아가로오스 겔에서 분석될 수 있다.The " standard PCR " is a technique for amplifying a single or several copies of DNA or cDNA known to the ordinary skilled artisan. Most PCR uses a Taq polymerase or a thermostable DNA polymerase such as Klen Taq. DNA polymerase enzymatically assemble new DNA strands from nucleotides by using single stranded DNA as template and using oligonucleotides (primers). Amplicons generated by PCR can be analyzed, for example, on agarose gels.

상기 "실시간 PCR"은 PCR을 할 때 실시간으로 그 과정을 모니터할 수 있다. 따라서, 데이터는 PCR이 종료되는 시점이 아니라, PCR 과정 전반에 걸쳐 수집된다. 실시간 PCR에서, 반응은 고정된 사이클 수 후에 축적된 표적 양보다는 증폭이 처음으로 검출될 때의 사이클 동안의 시점을 특징으로 한다. 주로 염료 기반 검출 및 프로브 기반 검출의 두 가지 방법이 정량적 PCR을 수행하는데 사용된다.The " real time PCR " can monitor the process in real time when performing PCR. Thus, the data are collected throughout the PCR process, not at the end of the PCR. In real-time PCR, the reaction is characterized by the time point during the cycle when the amplification is first detected rather than the amount of target accumulated after a fixed number of cycles. Two methods, mainly dye-based detection and probe-based detection, are used to perform quantitative PCR.

상기 "대립 유전자-특이적 증폭(Allele Specific Amplification, ASA)"은 PCR 프라이머를 단일 뉴클레오타이드 잔기가 다른 주형들을 구별할 수 있도록 고안한 증폭 기술이다.The " Allele Specific Amplification (ASA) " is an amplification technique designed so that a single nucleotide residue can distinguish PCR primers from other templates.

상기 "실시간 PCR을 통한 대립 유전자-특이적 증폭 또는 유전자 변이 특이적 증폭"은 매우 효율적인 방법으로 유전자 변이 또는 SNP를 검출한다. 유전자 변이 또는 SNP를 검출하기 위한 다른 대부분의 방법과는 달리, 표적 유전자 물질의 예비 증폭이 필요하지 않다. ASA는 매치 및 미스매치된 프라이머/표적서열 복합체의 구별을 바탕으로 단일 반응에서 증폭 및 검출을 결합한다. 반응동안 증폭된 DNA의 증가는 이중 가닥 DNA에 결합하는 것에 따라 발광하는 SYBR Green I과 같은 염료에 의해 야기되는 형광 신호의 증가로 실시간 모니터될 수 있다. 실시간 PCR을 통한 대립 유전자-특이적 증폭 또는 유전자 변이 특이적 증폭은 미스매치된 경우에 대한 형광 신호의 지연 또는 부재가 나타난다. 유전자 변이 또는 SNP 검출에서, 이는유전자 변이 또는 SNP 존재 유무에 대한 정보를 제공한다.The above-mentioned " allele-specific amplification or gene mutation-specific amplification by real-time PCR " detects a gene mutation or a SNP in a highly efficient manner. Unlike most other methods for detecting gene mutations or SNPs, preliminary amplification of the target gene material is not required. ASA combines amplification and detection in a single reaction based on the distinction between matched and mismatched primer / target sequence complexes. The increase in amplified DNA during the reaction can be monitored in real time by an increase in the fluorescence signal caused by a dye such as SYBR Green I that emits light as it binds to double stranded DNA. Allele-specific amplification or gene mutation-specific amplification by real-time PCR appears to delay or absent the fluorescence signal for mismatches. In gene mutation or SNP detection, this provides information on the presence or absence of a gene mutation or SNP.

상기 "테트라-프라이머 증폭-불응성 돌연변이 시스템 PCR"은 단일 튜브 PCR 반응에서 대조 단편과 함께 야생형 및 돌연변이 대립 유전자를 모두 증폭한다. 비 대립 유전자 특이적 대조 앰플리콘은 돌연변이 영역 측면의 2개의 공통적인 (바깥쪽) 프라이머에 의해 증폭된다. 2개의 대립 유전자 특이적 (안쪽) 프라이머는 공통 프라이머와 반대 방향으로 설계되며, 공통 프라이머와 함께 야생형 및 돌연변이 앰플리콘 둘 다를 동시에 증폭시킬 수 있다. 결과적으로, 2개의 대립 유전자-특이적 앰플리콘은 돌연변이가 공통 (바깥쪽) 프라이머에 대해 비대칭으로 위치하기 때문에 다른 길이를 가지며 표준 겔 전기영동으로 쉽게 분리할 수 있다. 상기 대조 앰플리콘은 증폭 실패뿐만 아니라 위음성에 대한 내부 대조를 제공하며 2개의 대립 유전자-특이적 앰플리콘 중 적어도 하나는 테트라-프라이머 증폭-불응성 돌연변이 시스템 PCR에 항상 존재한다.The " tetra-primer amplification-refractory mutation system PCR " amplifies both wild-type and mutant alleles together with the control fragment in a single-tube PCR reaction. Non-allele-specific control amplicons are amplified by two common (outer) primers on the side of the mutation region. The two allele-specific (inner) primers are designed in the opposite direction to the common primer, and both wild-type and mutant amplicons can be amplified simultaneously with a common primer. As a result, the two allele-specific amplicons have different lengths and can be easily separated by standard gel electrophoresis because the mutations are asymmetrically located relative to the common (outer) primer. The control amplicon provides internal control for false negatives as well as amplification failure, and at least one of the two allele-specific amplicons is always present in the tetra-primer amplification-refractory mutant system PCR.

상기 "등온 증폭"은 써모사이클러에 의존하지 않고, 바람직하게는 증폭하는 동안 온도가 변화할 필요없이 핵산의 증폭이 더 낮은 온도에서 이루어짐을 의미한다. 등온 증폭에서 사용되는 온도는 실온 (22-24 ℃) 내지 약 65 ℃ 사이, 또는 약 60-65 ℃, 45-50 ℃, 37 ℃-42 ℃ 또는 22-24 ℃의 상온일 수 있다. 등온 증폭 결과의 생성물은 겔 전기 영동, ELISA, ELOSA (Enzyme linked oligosorbent assay), 실시간 PCR, ECL (개선된 화학 발광), RNA, DNA 및 단백질 또는 탁도를 분석하는 칩 기반의 모세관 전기 영동 기기인 bioanalyzer로 검출될 수 있다.This " isothermal amplification " means that the amplification of the nucleic acid is performed at a lower temperature without depending on the thermocycler, preferably without requiring the temperature to change during amplification. The temperature used in isothermal amplification may be between room temperature (22-24 ° C.) and about 65 ° C., or about 60-65 ° C., 45-50 ° C., 37 ° C. -42 ° C., or 22-24 ° C. The products of isothermal amplification are bioanalyzer, which is a chip-based capillary electrophoresis device for analyzing gel electrophoresis, ELISA, enzyme linked oligosorbent assay (ELOSA), real time PCR, ECL (improved chemiluminescence), RNA, DNA and protein or turbidity As shown in FIG.

본 발명의 일실시예에서는 E507K/R536K, E507K/R660V, 또는 E507K/R536K/R660V Taq 중합효소를 사용하여 SNP (rs1408799, rs1015362 및/또는 rs4911414)를 포함하는 주형에 대해 미스매치된 프라이머를 연장하기 위한 능력이 감소되었는지 여부를 확인하였다.In one embodiment of the present invention, the use of E507K / R536K, E507K / R660V, or E507K / R536K / R660V Taq polymerase to extend mismatched primers for templates containing SNPs (rs1408799, rs1015362 and / or rs4911414) And whether the ability to do so was reduced.

그 결과, 도 6 내지 8에 나타난 바와 같이 E507K Taq 중합효소에 비해 E507K/R536K, E507K/R660V, 또는 E507K/R536K/R660V Taq 중합효소의 경우 미스매치된 프라이머에 의한 증폭이 지연되는 것을 확인할 수 있으며, 그 효과는 E507K/R536K/R660V Taq 중합효소에서 가장 현저하게 나타났다.As a result, it can be confirmed that the amplification by the mismatch primer is delayed in E507K / R536K, E507K / R660V, or E507K / R536K / R660V Taq polymerase as compared to E507K Taq polymerase as shown in FIGS. 6 to 8 , The effect was most pronounced in E507K / R536K / R660V Taq polymerase.

이를 통해, 본 발명의 DNA 중합효소는 종래의 Taq 중합효소(E507K)와 비교하여 더 높은 미스매치 신장 선택성을 가짐을 확인하였다. 따라서, 본 발명의 DNA 중합효소는 질병의 의학적 진단 및 재조합 DNA 연구에 유용하게 활용될 수 있을 것으로 예상된다.As a result, it was confirmed that the DNA polymerase of the present invention had a higher mismatch elongation selectivity as compared with the conventional Taq polymerase (E507K). Therefore, the DNA polymerase of the present invention is expected to be useful for medical diagnosis of disease and research of recombinant DNA.

본 발명은 또한 본 발명에 따른 DNA 중합효소를 포함하는 유전자 변이 또는 SNP 검출용 조성물 및 이를 포함하는 PCR 키트에 관한 것이다.The present invention also relates to a composition for detecting a gene mutation or SNP comprising a DNA polymerase according to the present invention and a PCR kit containing the same.

본 발명의 PCR 키트는 통상의 기술자에게 프라이머 신장 과정에 사용되는 것을 인지되는 임의의 시약 또는 다른 요소를 포함할 수 있다.The PCR kit of the present invention may include any reagent or other element that is known to the skilled artisan for use in the primer extension process.

본 발명의 바람직한 일실시예에 따르면, 상기 PCR 키트는 하나 이상의 매치된 프라이머, 하나 이상의 미스매치된 프라이머 또는 하나 이상의 매치된 프라이머와 하나 이상의 미스매치된 프라이머 둘 다를 추가로 포함하고, 상기 하나 이상의 매치된 프라이머 및 하나 이상의 미스매치된 프라이머는 표적서열과 혼성화되며, 상기 미스매치된 프라이머는 혼성화되는 표적서열에 대하여 이의 3' 말단으로부터 7개까지의 염기 위치에 비표준(non-canonical) 뉴클레오타이드를 포함할 수 있다.According to a preferred embodiment of the present invention, the PCR kit further comprises one or more matched primers, one or more mismatched primers or one or more matched primers and one or more mismatched primers, Primer and one or more mismatched primers are hybridized to the target sequence and the mismatched primer comprises non-canonical nucleotides at positions 3 to 7 bases from its 3 ' end to the hybridizing target sequence .

본 발명의 PCR 키트는 뉴클레오사이드 트리포스페이트를 추가로 포함할 수 있다.The PCR kit of the present invention may further comprise a nucleoside triphosphate.

본 발명의 PCR 키트는 또한 a) 하나 이상의 버퍼; b) 이중가닥 DNA에 결합하는 정량화를 위한 시약; c) 중합효소 차단 항체; d) 하나 이상의 대조값 또는 대조서열; 및 e) 하나 이상의 주형; 을 추가로 포함할 수 있다.The PCR kit of the present invention also includes a) one or more buffers; b) a reagent for quantification binding to double stranded DNA; c) a polymerase blocking antibody; d) one or more control values or control sequences; And e) one or more molds; May be further included.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

TaqTaq 중합효소의 돌연변이유발 Mutagenesis of polymerase

1-1. 단편 1-1. snippet PCRPCR

본 실시예에서는 서열번호 1의 아미노산 서열에서 536번째 아미노산 잔기를 아르기닌에서 리신으로 치환된 Taq DNA 중합효소 (이하 "R536K"라 함), 660번째 아미노산 잔기를 아르기닌에서 발린으로 치환된 Taq DNA 중합효소 (이하 "R660V"라 함) 및 536번째 아미노산 잔기를 아르기닌에서 리신으로 치환되고 660번째 아미노산 잔기를 아르기닌에서 발린으로 치환된 Taq DNA 중합효소 (이하 "R536K/R660V"라 함)를 하기와 같이 제조하였다.In this embodiment, the 536th amino acid residue in the amino acid sequence of SEQ ID NO: 1 is replaced with Taq DNA polymerase (hereinafter referred to as "R536K") substituted with lysine at arginine, the Taq DNA polymerase substituted with valine at arginine (Hereinafter referred to as "R660V") and a 536th amino acid residue were substituted with lysine in arginine and the 660th amino acid residue was substituted with valine in arginine (hereinafter referred to as "R536K / R660V") was prepared as follows Respectively.

먼저, 표 1에 기재된 돌연변이 특이적 프라이머를 이용하여 도 1(a)에 나타난 바와 같이 Taq DNA 중합효소 단편들(F1 내지 F5)을 PCR로 증폭하였다. 반응조건은 표 2와 같다.First, Taq DNA polymerase fragments (F1 to F5) were amplified by PCR using the mutation-specific primers shown in Table 1 as shown in Fig. 1 (a). The reaction conditions are shown in Table 2.

Figure 112017066630014-pat00001
Figure 112017066630014-pat00001

Figure 112017066630014-pat00002
Figure 112017066630014-pat00002

PCR 산물을 전기영동 상에서 확인해본 결과, 도 1(b)에 나타난 바와 같이 각 단편에 대한 밴드가 확인되어 목적하는 단편이 증폭되었음을 확인하였다.As a result of confirming the PCR products on electrophoresis, the band for each fragment was confirmed as shown in FIG. 1 (b), and it was confirmed that the desired fragment was amplified.

1-2. 오버랩 (overlap) PCR1-2. Overlap PCR

상기 1-1에서 증폭한 각 단편을 주형으로 하여 양 말단의 프라이머(Eco-F 및 Xba-R 프라이머)를 이용하여 전장을 증폭하였다. 반응조건은 표 3 및 4와 같다.Each fragment amplified in 1-1 above was used as a template and the entire length was amplified using primers (Eco-F and Xba-R primers) at both ends. The reaction conditions are shown in Tables 3 and 4.

Figure 112017066630014-pat00003
Figure 112017066630014-pat00003

Figure 112017066630014-pat00004
Figure 112017066630014-pat00004

그 결과, 도 1(c)에 나타난 바와 같이 "R536K", "R660V" 및 "R536K/R660V"의 Taq 중합효소가 증폭되었음을 확인하였다.As a result, it was confirmed that Taq polymerase of "R536K", "R660V" and "R536K / R660V" was amplified as shown in FIG. 1 (c).

1-3. 라이게이션1-3. Ligation

pUC19을 하기 표 5의 조건으로 37℃에서 4시간 동안 제한효소 EcoRI/XbaI로 분해한 다음 DNA를 정제하고 정제된 DNA를 표 6의 조건으로 37℃에서 1시간 동안 SAP를 처리하여 벡터를 준비하였다.pUC19 was digested with restriction enzymes EcoRI / XbaI at 37 DEG C for 4 hours under the conditions shown in Table 5, and DNA was purified. The purified DNA was treated with SAP at 37 DEG C for 1 hour under the conditions of Table 6 to prepare a vector .

Figure 112017066630014-pat00005
Figure 112017066630014-pat00005

Figure 112017066630014-pat00006
Figure 112017066630014-pat00006

인서트(insert)의 경우, 상기 실시예 1-2의 오버랩 PCR 산물을 정제하여 표 7의 조건으로 37℃에서 3시간 동안 제한효소 EcoRI/XbaI로 분해한 다음 준비된 벡터와 함께 겔 추출하였다 (도 2).For the insert, the overlap PCR product of Example 1-2 was purified and digested with restriction enzyme EcoRI / XbaI for 3 hours at 37 ° C under the conditions of Table 7, and then gel-extracted with the prepared vector (FIG. 2 ).

Figure 112017066630014-pat00007
Figure 112017066630014-pat00007

표 8의 조건으로 실온(RT)에서 2시간 동안 라이게이션한 후, E. coli DH5α에 형질전환하여 암피실린이 포함된 배지에서 선별하였다. 수득된 콜로니들로부터 준비된 플라스미드를 시퀀싱하여 원하는 변이가 도입된 Taq DNA 중합효소 돌연변이체 ("R536K", "R660V" 및 "R536K/R660V")를 수득하였다. After ligation at room temperature (RT) for 2 hours under the conditions of Table 8, E. coli DH5α was transformed and selected on a medium containing ampicillin. The prepared plasmids were sequenced from the obtained colonies to obtain Taq DNA polymerase mutants (" R536K "," R660V ", and " R536K / R660V ") into which desired mutations were introduced.

Figure 112017066630014-pat00008
Figure 112017066630014-pat00008

E507K 변이의 도입Introduction of E507K mutation

2-1. 단편 PCR2-1. Short PCR

상기 실시예 1에서 제조된 "R536K", "R660V" 및 "R536K/R660V"의 Taq 중합효소 활성을 테스트해 본 결과 활성이 떨어지는 것을 확인하고(데이터 미도시), R536K, R660V, R536K/R660V 각각에 추가로 E507K 변이(서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기를 글루탐산에서 리신으로 치환)를 도입하였으며, 대조군으로 사용하기 위해 야생형 Taq DNA 중합효소(WT)에도 E507K 변이를 도입하였다. E507K 변이가 도입된 Taq DNA 중합효소의 제조방법은 실시예 1과 동일하다.R536K, R660V, and R536K / R660V produced in Example 1 were tested for activity of Taq polymerase activity (data not shown) as a result of testing the Taq polymerase activity of R536K, R660V, and R536K / R660V , The E507K mutation (substitution of the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1 with lysine in glutamic acid) was introduced, and the E507K mutation was also introduced into the wild type Taq DNA polymerase (WT) for use as a control. The production method of the Taq DNA polymerase into which the E507K mutation was introduced is the same as in Example 1. [

표 9에 기재된 돌연변이 특이적 프라이머를 이용하여 도 3에 나타난 바와 같이 Taq DNA 중합효소 단편들(F6 내지 F7)을 PCR로 증폭하였다. 반응조건은 표 10과 같다.Using the mutation-specific primers shown in Table 9, the Taq DNA polymerase fragments (F6 to F7) were amplified by PCR as shown in Fig. The reaction conditions are shown in Table 10.

Figure 112017066630014-pat00009
Figure 112017066630014-pat00009

Figure 112017066630014-pat00010
Figure 112017066630014-pat00010

2-2. 오버랩 (overlap) PCR2-2. Overlap PCR

상기 2-1에서 증폭한 각 단편을 주형으로 하여 양 말단의 프라이머(Eco-F 및 Xba-R 프라이머)를 이용하여 전장을 증폭하였다. 반응조건은 표 11과 같다.Each fragment amplified in the above 2-1 was used as a template to amplify the total length using primers (Eco-F and Xba-R primers) at both ends. The reaction conditions are shown in Table 11.

Figure 112017066630014-pat00011
Figure 112017066630014-pat00011

2-3. 라이게이션2-3. Ligation

pUC19을 표 5의 조건으로 37℃에서 4시간 동안 제한효소 EcoRI/XbaI로 분해한 다음 DNA를 정제하고, 정제된 DNA를 표 6의 조건으로 37℃에서 1시간 동안 SAP를 처리하여 벡터를 준비하였다.pUC19 was digested with restriction enzyme EcoRI / XbaI at 37 ° C for 4 hours under the conditions shown in Table 5, and DNA was purified. The purified DNA was treated with SAP at 37 ° C for 1 hour under the conditions shown in Table 6 to prepare a vector .

인서트(insert)의 경우, 상기 실시예 2-2의 오버랩 PCR 산물을 정제하여 표 7의 조건으로 37℃에서 3시간 동안 제한효소 EcoRI/XbaI로 분해한 다음 준비된 벡터와 함께 겔 추출하였다 (도 4).For the insert, the overlap PCR product of Example 2-2 was purified and digested with restriction enzyme EcoRI / XbaI for 3 hours at 37 ° C under the conditions of Table 7, followed by gel extraction with the prepared vector (FIG. 4 ).

표 8의 조건으로 실온(RT)에서 2시간 동안 라이게이션한 후, E. coli DH5α 또는 DH10β에 형질전환하여 암피실린이 포함된 배지에서 선별하였다. 수득된 콜로니들로부터 준비된 플라스미드를 시퀀싱하여 E507K 변이가 도입된 Taq DNA 중합효소 돌연변이체 ("E507K/R536K", "E507K/R660V" 및 "E507K/R536K/R660V")를 수득하였다.After ligation at room temperature (RT) for 2 hours under the conditions of Table 8, E. coli was transformed into DH5? Or DH10? And selected on a medium containing ampicillin. The plasmids prepared from the obtained colonies were sequenced to obtain Taq DNA polymerase mutants ("E507K / R536K", "E507K / R660V" and "E507K / R536K / R660V") into which the E507K mutation was introduced.

본 발명의 DNA 중합효소를 이용한 Using the DNA polymerase of the present invention qPCRqPCR 수행 Perform

상기 실시예 2에서 수득한 "E507K/R536K", "E507K/R660V" 및 "E507K/R536K/R660V" 변이를 각각 포함하는 Taq 중합효소를 사용하여 SNP를 포함하는 주형에 대해 미스매치된 프라이머를 연장하기 위한 능력이 감소되었는지 여부를 확인하였다. 대조군으로는 E507K 변이를 포함하는 "E507K" Taq 중합효소를 사용하였다.A Taq polymerase containing the mutations "E507K / R536K", "E507K / R660V" and "E507K / R536K / R660V" obtained in Example 2 above was used to extend the mismatched primers for the template containing the SNP The ability to do so was reduced. As a control group, " E507K " Taq polymerase containing the E507K mutation was used.

본 실시예에서 사용한 SNP를 포함하는 주형은 rs1408799, rs1015362 및 rs4911414이며, 각 주형의 유전자형과 이들 각각에 대한 특이적 프라이머(IDT, 미국)의 서열 정보는 하기 표 12 및 13에 나타낸 바와 같다.The templates containing the SNP used in this Example are rs1408799, rs1015362 and rs4911414, and the genotype of each template and the sequence information of the specific primer (IDT, USA) for each of them are as shown in Tables 12 and 13 below.

Figure 112017066630014-pat00012
Figure 112017066630014-pat00012

Figure 112017066630014-pat00013
Figure 112017066630014-pat00013

qPCR 조건(Applied Biosystems 7500 Fast)은 하기 표 14과 같다.The qPCR conditions (Applied Biosystems 7500 Fast) are shown in Table 14 below.

Figure 112017066630014-pat00014
Figure 112017066630014-pat00014

프로브는 하기 표 15와 같이 이중으로 표지하였다.The probes were double-labeled as shown in Table 15 below.

Figure 112017066630014-pat00015
Figure 112017066630014-pat00015

Noble bio로부터 구입한 구강 상피세포 채취 키트를 이용하여 구강 상피세포를 채취한 다음 500 ㎕의 용해액(lysis solution)에 용해시켜 12,000×g로 3분동안 원심분리하였다. 상층액은 새로운 튜브로 옮겨 실험시 1 ㎕씩 사용하였다(도 5).Oral epithelial cells were collected using an oral epithelial cell collection kit purchased from Noble Bio, dissolved in 500 μl of lysis solution, and centrifuged at 12,000 × g for 3 minutes. The supernatant was transferred to a new tube and used in an amount of 1 쨉 l per experiment (Fig. 5).

반응 조건은 표 16, 반응 버퍼의 조성은 표 17과 같다.Table 16 shows the reaction conditions, and Table 17 shows the composition of the reaction buffer.

Figure 112017066630014-pat00016
Figure 112017066630014-pat00016

Figure 112017066630014-pat00017
Figure 112017066630014-pat00017

상기 표 13의 특이적인 프라이머를 제외한 나머지 반응액은 동일하게 하여 2개의 튜브에 준비하고, 각 대립 유전자 특이적 프라이머를 첨가하여 qPCR을 수행하였다. 이때 각 튜브에서 검출되는 형광신호를 병합하여 AB 7500 소프트웨어 (v2.0.6) 상에서 계산되어 도출되는 한계(threshold) 형광값에 도달하는 사이클 (Ct) 값의 차이를 분석하였다. 미스매치된 프라이머에 의한 증폭에서의 Ct값이 지연될수록, 즉 유전자 변이 특이성 또는 대립 유전자 특이성이 좋은 것으로 판단한다.Except for the specific primers shown in Table 13, were prepared in two tubes in the same manner and qPCR was performed by adding each allele-specific primer. At this time, fluorescence signals detected in each tube were merged to analyze the difference in the cycle (Ct) values reaching the threshold fluorescence value calculated and calculated on the AB 7500 software (v2.0.6). It is judged that the longer the Ct value in the amplification by the mismatched primer is, the better the gene mutation specificity or the allele specificity.

rs1408799, rs1015362 및 rs4911414에 대한 AS-qPCR 결과, 도 6 내지 8에 나타난 바와 같이 대조군인 E507K에 비해 E507K/R536K, E507K/R660V, 또는 E507K/R536K/R660V 변이를 포함하는 Tap 중합효소의 경우 미스매치된 프라이머에 의한 증폭이 지연되는 것을 확인할 수 있으며, 그 효과는 E507K/R536K/R660V의 돌연변이에서 가장 현저하게 나타났다.The results of AS-qPCR for rs1408799, rs1015362 and rs4911414 show that for the Tap polymerase comprising E507K / R536K, E507K / R660V, or E507K / R536K / R660V mutations compared to the control group E507K as shown in FIGS. 6 to 8, Amplification of the primer was delayed, and the effect was most remarkable in the mutation of E507K / R536K / R660V.

본 발명의 E507K/R536K, E507K/R660V, 또는 E507K/R536K/R660V 변이를 포함하는 Tap DNA 중합효소는 E507K 변이를 포함하는 Taq 중합효소와 비교하여 우수한 미스매치 신장 선택성을 가짐을 확인하였다. 따라서, 본 발명의 Taq DNA 중합효소는 질병의 의학적 진단 및 재조합 DNA 연구에 유용하게 활용될 수 있을 것으로 예상된다.It was confirmed that the Tap DNA polymerase including the E507K / R536K, E507K / R660V, or E507K / R536K / R660V mutants of the present invention had excellent mismatch renal selectivity as compared with the Taq polymerase including the E507K mutation. Therefore, the Taq DNA polymerase of the present invention is expected to be useful for medical diagnosis of diseases and recombinant DNA studies.

<110> GeneCast Co., Ltd. <120> DNA POLYMERASES WITH INCREASED MUTATION SPECIFIC AMPLIFICATION <130> 1062317 <160> 36 <170> KopatentIn 2.0 <210> 1 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Thermus aquaticus DNA polymerase (Taq) <400> 1 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 2 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K <400> 2 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Lys Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 3 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq R536K <400> 3 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 4 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq R660V <400> 4 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Val Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 5 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq R536K/R660V <400> 5 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Val Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 6 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K/R536K <400> 6 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Lys Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 7 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K/R660V <400> 7 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Lys Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Val Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 8 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K/R536K/R660V <400> 8 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly 290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu 340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro 355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn 370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu 420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly 435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala 450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Glu Lys Lys Thr Gly Lys Arg 500 505 510 Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile 515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr 530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln 580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala 595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly 610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro 645 650 655 Leu Met Arg Val Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly 660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu 675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg 690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro 740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu 755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His 770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 820 825 830 <210> 9 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Thermus aquaticus DNA polymerase (Taq) <400> 9 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 10 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K <400> 10 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 11 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq R536K <400> 11 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 12 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq R660V <400> 12 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 13 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq R536K/R660V <400> 13 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 14 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K/R536 <400> 14 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 15 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K/R660V <400> 15 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 16 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K/R536K/R660V <400> 16 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eco-forward primer <400> 17 ggggtacctc atcaccccgg 20 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R536K-reverse primer <400> 18 cttggtgagc tccttgtact gcaggat 27 <210> 19 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R536K-forward primer <400> 19 atcctgcagt acaaggagct caccaag 27 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R660V-reverse primer <400> 20 gatggtcttg gccgccacgc gcatcagggg 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R660V-forward primer <400> 21 cccctgatgc gcgtggcggc caagaccatc 30 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Xba-reverse primer <400> 22 gctctagact atcactcctt ggcggagagc ca 32 <210> 23 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E507K-reverse primer <400> 23 cttgccggtc tttttcgtct tgccgat 27 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E507K-forward primer <400> 24 atcggcaaga cgaaaaagac cggcaag 27 <210> 25 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> rs1408799 forward primer <400> 25 ccagtgttag gttatttcta acttg 25 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> rs1408799 reverse_T primer <400> 26 gctcggagca catggtcaa 19 <210> 27 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> rs1408799 reverse_C primer <400> 27 gctcggagca catggtcag 19 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> rs1015362 forward primer <400> 28 tgaagagcag gaaagttctt ca 22 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> rs1015362 reverse_C primer <400> 29 actgtgtgtc tgaaacagtg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> rs1015362 reverse_T primer <400> 30 actgtgtgtc tgaaacagta 20 <210> 31 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> rs4911414 forward_G primer <400> 31 gtaagtcttt gctgagaaat tcattg 26 <210> 32 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> rs4911414 forward_T primer <400> 32 gtaagtcttt gctgagaaat tcattt 26 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> rs4911414 reverse primer <400> 33 agtatccagg gttaatgtga aag 23 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 1408799-FAM probe <400> 34 agatatttgt aaggtattct ggcct 25 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 1015362-HEX probe <400> 35 tgctgaacaa atagtcccga ccag 24 <210> 36 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 4911414-Texas Red probe <400> 36 tttctctagt tgcctttaag attt 24 <110> GeneCast Co., Ltd. <120> DNA POLYMERASES WITH INCREASED MUTATION SPECIFIC AMPLIFICATION <130> 1062317 <160> 36 <170> Kopatentin 2.0 <210> 1 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Thermus aquaticus DNA polymerase (Taq) <400> 1 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 2 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K <400> 2 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Lys Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 3 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq R536K <400> 3 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 4 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq R660V <400> 4 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Val Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 5 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq R536K / R660V <400> 5 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Val Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 6 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K / R536K <400> 6 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Lys Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 7 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K / R660V <400> 7 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Lys Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Val Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 8 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> Taq E507K / R536K / R660V <400> 8 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu   1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly              20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala          35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val      50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly  65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu                  85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu             100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys         115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp     130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro                 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn             180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu         195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu     210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val                 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe             260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu         275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly     290 295 300 Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp 305 310 315 320 Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val Val His Arg Ala Pro                 325 330 335 Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu             340 345 350 Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro         355 360 365 Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn     370 375 380 Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu 385 390 395 400 Glu Ala Gly Glu Arg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu                 405 410 415 Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu             420 425 430 Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly         435 440 445 Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala     450 455 460 Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His 465 470 475 480 Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp                 485 490 495 Glu Leu Gly Leu Pro Ala Ile Gly Lys Glu Lys Lys Thr Gly Lys Arg             500 505 510 Ser Thr Ser Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile         515 520 525 Val Glu Lys Ile Leu Gln Tyr Lys Glu Leu Thr Lys Leu Lys Ser Thr     530 535 540 Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu 545 550 555 560 His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser                 565 570 575 Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln             580 585 590 Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala         595 600 605 Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly     610 615 620 Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr 625 630 635 640 Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro                 645 650 655 Leu Met Arg Val Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly             660 665 670 Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu         675 680 685 Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg     690 695 700 Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val 705 710 715 720 Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg                 725 730 735 Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro             740 745 750 Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu         755 760 765 Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His     770 775 780 Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala 785 790 795 800 Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro                 805 810 815 Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu             820 825 830 <210> 9 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Thermus aquaticus DNA polymerase (Taq) <400> 9 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 10 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K <400> 10 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 11 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq R536K <400> 11 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 12 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq R660V <400> 12 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 13 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq R536K / R660V <400> 13 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 14 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K / R536 <400> 14 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 15 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K / R660V <400> 15 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 16 <211> 2499 <212> DNA <213> Artificial Sequence <220> <223> Taq E507K / R536K / R660V <400> 16 atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60 cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120 gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180 gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240 tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300 gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360 gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420 gccgacaaag acctttacca gctcctttcc gaccgcatcc acgtcctcca ccccgagggg 480 tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540 gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600 gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660 ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780 aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840 ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900 ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960 cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020 gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080 ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200 gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260 gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380 ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440 cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500 cccgccatcg gcaagacgaa aaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560 gccctccgcg aggcccaccc catcgtggag aagatcctgc agtacaagga gctcaccaag 1620 ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680 cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740 ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800 gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgcgtg 1980 gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040 gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100 cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160 gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220 cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280 atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340 cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400 cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460 gtggggatag gggaggactg gctctccgcc aaggagtga 2499 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eco-forward primer <400> 17 ggggtacctc atcaccccgg 20 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R536K-reverse primer <400> 18 cttggtgagc tccttgtact gcaggat 27 <210> 19 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R536K-forward primer <400> 19 atcctgcagt acaaggagct caccaag 27 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R660V-reverse primer <400> 20 gatggtcttg gccgccacgc gcatcagggg 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R660V-forward primer <400> 21 cccctgatgc gcgtggcggc caagaccatc 30 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Xba-reverse primer <400> 22 gctctagact atcactcctt ggcggagagc ca 32 <210> 23 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E507K-reverse primer <400> 23 cttgccggtc tttttcgtct tgccgat 27 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E507K-forward primer <400> 24 atcggcaaga cgaaaaagac cggcaag 27 <210> 25 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> rs1408799 forward primer <400> 25 ccagtgttag gttatttcta acttg 25 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> rs1408799 reverse_T primer <400> 26 gctcggagca catggtcaa 19 <210> 27 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> rs1408799 reverse_C primer <400> 27 gctcggagca catggtcag 19 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> rs1015362 forward primer <400> 28 tgaagagcag gaaagttctt ca 22 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> rs1015362 reverse_C primer <400> 29 actgtgtgtc tgaaacagtg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> rs1015362 reverse_T primer <400> 30 actgtgtgtc tgaaacagta 20 <210> 31 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> rs4911414 forward_G primer <400> 31 gtaagtcttt gctgagaaat tcattg 26 <210> 32 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> rs4911414 forward_T primer <400> 32 gtaagtcttt gctgagaaat tcattt 26 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> rs4911414 reverse primer <400> 33 agtatccagg gttaatgtga aag 23 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 1408799-FAM probe <400> 34 agatatttgt aaggtattct ggcct 25 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 1015362-HEX probe <400> 35 tgctgaacaa atagtcccga ccag 24 <210> 36 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 4911414-Texas Red probe <400> 36 tttctctagt tgcctttaag attt 24

Claims (15)

서열번호 1의 아미노산 서열에서 507번째 아미노산 잔기인 글루탐산(E)이 리신(K)으로 치환되고, 536번째 아미노산 잔기인 아르기닌(R)이 리신(K)으로 치환되며, 660번째 아미노산 잔기인 아르기닌(R)이 발린(V)으로 치환된 Taq 중합효소를 갖는 DNA 중합효소.The glutamic acid (E), which is the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1, is substituted with lysine (K), arginine (R), which is the 536th amino acid residue, is substituted with lysine (K) R) is substituted with valine (V). 삭제delete 제1항에 있어서, 상기 DNA 중합효소는 매치된 프라이머와 미스매치된 프라이머를 구별하고, 상기 매치된 프라이머와 미스매치된 프라이머는 표적서열과 혼성화되며, 상기 미스매치된 프라이머는 혼성화되는 표적서열에 대하여 이의 3' 말단에 비표준 뉴클레오타이드를 포함하는 것을 특징으로 하는 DNA 중합효소.2. The method of claim 1, wherein the DNA polymerase distinguishes between a matched primer and a mismatched primer, wherein the mismatched primer and the mismatched primer hybridize to the target sequence, and the mismatched primer hybridizes to the hybridization target sequence Wherein the DNA polymerase comprises a non-standard nucleotide at the 3 ' end thereof. 제1항에 있어서, 상기 DNA 중합효소는 매치된 프라이머를 포함하는 표적서열의 증폭이 미스매치된 프라이머를 포함하는 표적서열의 증폭보다 낮은 Ct값을 나타내는 것을 특징으로 하는 DNA 중합효소.2. The DNA polymerase according to claim 1, wherein the DNA polymerase exhibits a lower Ct value than the amplification of the target sequence comprising the mismatched primer, the amplification of the target sequence comprising the matched primer. 제1항의 DNA 중합효소를 코딩하는 핵산 서열.A nucleic acid sequence encoding the DNA polymerase of claim 1. 제5항의 핵산 서열을 포함하는 벡터.A vector comprising the nucleic acid sequence of claim 5. 제6항의 벡터로 형질전환된 숙주세포.A host cell transformed with the vector of claim 6. 제1항의 DNA 중합효소를
a) 하나 이상의 주형;
b) 하나 이상의 매치된 프라이머, 하나 이상의 미스매치된 프라이머 또는 하나 이상의 매치된 프라이머와 하나 이상의 미스매치된 프라이머 둘 다; 및
c) 뉴클레오사이드 트리포스페이트와 접촉시키는 것을 포함하고,
상기 하나 이상의 매치된 프라이머 및 미스매치된 프라이머는 표적서열과 혼성화되는, 하나 이상의 주형에서 하나 이상의 유전자 변이 또는 SNP를 생체 외(in vitro)에서 검출하는 방법.
The DNA polymerase of claim 1
a) one or more molds;
b) one or more matched primers, one or more mismatched primers or one or more matched primers and one or more mismatched primers; And
c) contacting with a nucleoside triphosphate,
Wherein the at least one matched primer and the mismatched primer hybridize to the target sequence, wherein at least one mutation or SNP in one or more templates is detected in vitro.
제8항에 있어서, 상기 방법은 이중가닥 특이적 염료를 이용한 용융 온도 분석을 포함하는 것을 특징으로 하는 방법.9. The method of claim 8, wherein the method comprises melting temperature analysis using a double-strand specific dye. 제8항에 있어서, 상기 방법은 실시간 PCR, 표준 PCR 후 아가로스 겔에서의 분석, 실시간 PCR을 통한 유전자 변이 특이적 증폭 또는 대립 유전자-특이적 증폭, 테트라-프라이머 증폭-불응성 돌연변이 시스템 PCR 또는 등온 증폭에 의해 수행되는 것을 특징으로 하는 방법.9. The method of claim 8, wherein the method is selected from the group consisting of real-time PCR, analysis on agarose gel after standard PCR, gene-specific amplification or allele-specific amplification through real-time PCR, tetra-primer amplification-refractory mutant system PCR, RTI ID = 0.0 &gt; isothermal &lt; / RTI &gt; amplification. 제1항의 DNA 중합효소를 포함하는 유전자 변이 또는 SNP 검출용 조성물.A composition for detecting gene mutation or SNP comprising the DNA polymerase of claim 1. 제11항의 조성물을 포함하는 PCR 키트.A PCR kit comprising the composition of claim 11. 제12항에 있어서, 하나 이상의 매치된 프라이머, 하나 이상의 미스매치된 프라이머 또는 하나 이상의 매치된 프라이머와 하나 이상의 미스매치된 프라이머 둘 다를 추가로 포함하고, 상기 하나 이상의 매치된 프라이머 및 하나 이상의 미스매치된 프라이머는 표적서열과 혼성화되는 것을 특징으로 하는 PCR 키트.13. The method of claim 12, further comprising one or more matched primers, one or more mismatched primers or one or more matched primers and one or more mismatched primers, wherein the one or more matched primers and one or more mismatched Wherein the primer is hybridized with the target sequence. 제12항에 있어서, 뉴클레오사이드 트리포스페이트를 추가로 포함하는 것을 특징으로 하는 PCR 키트.13. The PCR kit of claim 12, further comprising a nucleoside triphosphate. 제12항에 있어서,
a) 하나 이상의 버퍼;
b) 이중가닥 DNA에 결합하는 정량화를 위한 시약;
c) 중합효소 차단 항체;
d) 하나 이상의 대조값 또는 대조서열; 및
e) 하나 이상의 주형; 을 추가로 포함하는 것을 특징으로 하는 PCR 키트.
13. The method of claim 12,
a) one or more buffers;
b) a reagent for quantification binding to double stranded DNA;
c) a polymerase blocking antibody;
d) one or more control values or control sequences; And
e) one or more molds; Wherein the PCR kit further comprises:
KR1020170088373A 2017-07-12 2017-07-12 Dna polymerases with increased mutation specific amplification KR101958659B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020170088373A KR101958659B1 (en) 2017-07-12 2017-07-12 Dna polymerases with increased mutation specific amplification
JP2020523223A JP6986299B2 (en) 2017-07-12 2018-05-31 DNA polymerizing enzyme with increased gene mutation specificity and PCR buffer composition for increasing its activity
EP18832513.8A EP3653729A4 (en) 2017-07-12 2018-05-31 Dna polymerase with increased gene mutation specificity and pcr buffer composition for increasing activity thereof
PCT/KR2018/006246 WO2019013451A1 (en) 2017-07-12 2018-05-31 Dna polymerase with increased gene mutation specificity and pcr buffer composition for increasing activity thereof
AU2018301534A AU2018301534B2 (en) 2017-07-12 2018-05-31 DNA polymerase with increased gene mutation specificity and pcr buffer composition for increasing activity thereof
US16/630,229 US11891632B2 (en) 2017-07-12 2018-05-31 DNA polymerase with increased gene mutation specificity
CA3069580A CA3069580C (en) 2017-07-12 2018-05-31 Dna polymerase with increased gene mutation specificity and pcr buffer composition for increasing activity thereof
CN201810691174.5A CN109251907B (en) 2017-07-12 2018-06-28 DNA polymerase with improved gene mutation specific amplification efficiency
TW107124137A TWI733038B (en) 2017-07-12 2018-07-12 DNA polymerase with improved gene mutation specific amplification efficiency
US18/478,874 US20240076633A1 (en) 2017-07-12 2023-09-29 Pcr buffer composition for increasing activity of dna polymerase with increased gene mutation specificity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170088373A KR101958659B1 (en) 2017-07-12 2017-07-12 Dna polymerases with increased mutation specific amplification

Publications (2)

Publication Number Publication Date
KR20190007214A KR20190007214A (en) 2019-01-22
KR101958659B1 true KR101958659B1 (en) 2019-03-18

Family

ID=65051339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170088373A KR101958659B1 (en) 2017-07-12 2017-07-12 Dna polymerases with increased mutation specific amplification

Country Status (3)

Country Link
KR (1) KR101958659B1 (en)
CN (1) CN109251907B (en)
TW (1) TWI733038B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102308286B1 (en) * 2020-05-29 2021-10-05 주식회사 진캐스트 DNA polymerase for detecting SARS-CoV-2 and kit comprising the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102370550B1 (en) * 2019-01-11 2022-03-08 주식회사 진캐스트 DNA polymerase for detecting EGFR mutation and kit comprising the same
CN109943549B (en) * 2019-04-12 2020-08-07 苏州译酶生物科技有限公司 Ultra-high-speed amplification type Taq DNA polymerase
CN112029748B (en) * 2019-10-29 2021-03-23 南京诺唯赞生物科技股份有限公司 Taq DNA polymerase mutant Mut4 and application thereof
CN112980964A (en) * 2019-12-13 2021-06-18 宁波海尔施基因科技有限公司 Multiple gene detection kit for detecting human suntan skin and use method thereof
KR20210147952A (en) 2020-05-29 2021-12-07 (주) 제노텍 DNA polymerase variants that show high discrimination against genetic variation
CN111690626B (en) * 2020-07-02 2021-03-26 南京诺唯赞生物科技股份有限公司 Fusion type Taq DNA polymerase and preparation method and application thereof
CN114958799B (en) * 2021-03-25 2023-08-18 山东大学 Taq DNA polymerase variant and application thereof in genome editing
CN115261351B (en) * 2022-06-08 2024-03-29 厦门通灵生物医药科技有限公司 Reverse transcription-polymerization bifunctional enzyme and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110027833A1 (en) 2009-07-31 2011-02-03 Holly Hogrefe Thermostable type-a dna polymerase mutants with increased polymerization rate and resistance to inhibitors
EP2554665A2 (en) * 2011-08-03 2013-02-06 Fermentas UAB DNA polymerases
WO2015082449A2 (en) * 2013-12-02 2015-06-11 Universitaet Konstanz Mutated dna polymerases with high selectivity and activity
EP2907871A1 (en) 2014-02-14 2015-08-19 Agilent Technologies, Inc. Thermostable Type-A DNA polymerase mutant with increased resistance to inhibitors in blood

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110027833A1 (en) 2009-07-31 2011-02-03 Holly Hogrefe Thermostable type-a dna polymerase mutants with increased polymerization rate and resistance to inhibitors
EP2554665A2 (en) * 2011-08-03 2013-02-06 Fermentas UAB DNA polymerases
WO2015082449A2 (en) * 2013-12-02 2015-06-11 Universitaet Konstanz Mutated dna polymerases with high selectivity and activity
EP3077532A2 (en) 2013-12-02 2016-10-12 Universität Konstanz Mutated dna polymerases with high selectivity and activity
EP2907871A1 (en) 2014-02-14 2015-08-19 Agilent Technologies, Inc. Thermostable Type-A DNA polymerase mutant with increased resistance to inhibitors in blood

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AllianceBio, Buffer Optimization Kit, Cat. No.: M061RB33 (2007)
Frontiers in Microbiology, 5:408 (2014)
Gene, 112:29-35 (1992)
Genomics, Vol.12, pp.670-674 (1992)
PLoS ONE, 9(5):e96640 (2014)
UniProtKB/Swiss-Prot: P19821.1 (1991.05.01.)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102308286B1 (en) * 2020-05-29 2021-10-05 주식회사 진캐스트 DNA polymerase for detecting SARS-CoV-2 and kit comprising the same

Also Published As

Publication number Publication date
CN109251907B (en) 2022-12-02
KR20190007214A (en) 2019-01-22
TWI733038B (en) 2021-07-11
TW201908482A (en) 2019-03-01
CN109251907A (en) 2019-01-22

Similar Documents

Publication Publication Date Title
KR101958659B1 (en) Dna polymerases with increased mutation specific amplification
KR101958660B1 (en) Pcr buffer compositions for increasing activity of dna polymerases with increased mutation specificity
JP6986299B2 (en) DNA polymerizing enzyme with increased gene mutation specificity and PCR buffer composition for increasing its activity
CA2472970C (en) New detection format for hot start real time polymerase chain reaction
KR102370550B1 (en) DNA polymerase for detecting EGFR mutation and kit comprising the same
KR102310819B1 (en) DNA polymerase for detecting TERT mutation and kit comprising the same
KR101119417B1 (en) Primer set for amplification of obesity gene, reagent for amplification of obesity gene comprising the primer set, and use of the primer set
JPWO2008066163A1 (en) CYP2C9 gene amplification primer set, CYP2C9 gene amplification reagent containing the same, and use thereof
KR102321902B1 (en) DNA polymerase for detecting BRAF mutation and kit comprising the same
KR101110425B1 (en) Primer set for amplification of nat2 gene, reagent for amplification of nat2 gene comprising the same, and use of the same
US9617588B2 (en) Enzyme mixture
AU2003247603A1 (en) Methods and compositions for monitoring primer extension and polymorphism detection reactions
KR102286025B1 (en) Mass spectrometry using dna polymerases with increased mutation specificity
KR102291402B1 (en) DNA polymerase for detecting JAK2 mutation and kit comprising the same
EP2371951A1 (en) NOVEL MutS PROTEIN AND METHOD OF USING SAME TO DETERMINE MUTATIONS
KR102575618B1 (en) Method and Composition for Amplifying Target Nucleic Acid using Guide Probe and Clamping probe
EP1502961A1 (en) New detection format for hot start real time polymerase chain reaction
JP2018029529A (en) Method of detecting target nucleic acid
JP2018033324A (en) Method of detecting target nucleic acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant