KR101950367B1 - Apparatus for splitting water using zinc oxide and titanium oxide core/shell nanovires - Google Patents

Apparatus for splitting water using zinc oxide and titanium oxide core/shell nanovires Download PDF

Info

Publication number
KR101950367B1
KR101950367B1 KR1020170066173A KR20170066173A KR101950367B1 KR 101950367 B1 KR101950367 B1 KR 101950367B1 KR 1020170066173 A KR1020170066173 A KR 1020170066173A KR 20170066173 A KR20170066173 A KR 20170066173A KR 101950367 B1 KR101950367 B1 KR 101950367B1
Authority
KR
South Korea
Prior art keywords
titanium oxide
zinc oxide
nanowire
zinc
gas
Prior art date
Application number
KR1020170066173A
Other languages
Korean (ko)
Other versions
KR20180130272A (en
Inventor
신원규
정규원
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020170066173A priority Critical patent/KR101950367B1/en
Publication of KR20180130272A publication Critical patent/KR20180130272A/en
Application granted granted Critical
Publication of KR101950367B1 publication Critical patent/KR101950367B1/en

Links

Images

Classifications

    • C25B11/0478
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • C25B1/003
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • C25B11/0405
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

산화아연/산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치가 개시되어 있다. 본 발명은, 물분해 효과를 얻기 위해 작업전극, 기준전극, 상대전극 및 전해질을 포함하는 물분해장치로서, 상기 작업전극은 산화아연 나노와이어에 산화티타늄이 코팅된 코어쉘 나노와이어를 포함하는 것을 특징으로 한다.A water decomposition apparatus using zinc oxide / titanium oxide core shell nanowires is disclosed. The present invention relates to a water decomposition apparatus comprising a working electrode, a reference electrode, a counter electrode and an electrolyte to obtain a water decomposing effect, wherein the working electrode comprises a core-shell nanowire in which titanium oxide is coated on zinc oxide nanowire .

Description

산화아연/산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치{APPARATUS FOR SPLITTING WATER USING ZINC OXIDE AND TITANIUM OXIDE CORE/SHELL NANOVIRES}FIELD OF THE INVENTION [0001] The present invention relates to a water-decomposing apparatus using zinc oxide / titanium oxide core shell nanowires,

본 발명은 산화아연/산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치에 관한 것으로, 보다 구체적으로는 잘 배열된 산화아연-산화티타늄 코어쉘 나노와이어가 가지는 광전기화학 특성을 활용해 높은 물분해 효율을 가지는 산화아연/산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치에 관한 것이다.The present invention relates to a water decomposition apparatus using zinc oxide / titanium oxide core shell nanowires, and more particularly, to a water decomposition apparatus using zinc oxide / titanium oxide core shell nanowires using a well-arranged zinc oxide- Lt; RTI ID = 0.0 > nanoparticles < / RTI > with zinc oxide / titanium oxide core shell nanowires.

급격히 발전하는 현대사회에서, 과도한 화석연료사용으로 인한 환경문제가 심각한 문제로 떠오르고 있다. 화석연료의 연소에서 발생하는 황산화물, 질소산화물, 이산화탄소 등의 물질들은 지구를 황폐하게 만들고 오염문제의 주된 원인으로 손꼽히고 있다. In a rapidly developing modern society, environmental problems caused by excessive use of fossil fuels are emerging as serious problems. Sulfur oxides, nitrogen oxides, and carbon dioxide from fossil fuel fuels are devastating and are a major cause of pollution problems.

환경오염을 유발하지 않고 발전할 수 있는 대표적인 물질은 수소이다. 수소를 제조하기 위한 방법으로는 대표적으로 전기분해 방법이 있지만 효율이 낮고, 전기를 별도로 공급해 주어야 한다는 단점이 있다. 따라서 천연 에너지인 태양광을 활용한 높은 효율의 수소제조 방법에 대한 연구가 필요하다.A representative material that can develop without causing environmental pollution is hydrogen. As a method for producing hydrogen, there is a typical electrolysis method, but the efficiency is low and electricity is supplied separately. Therefore, it is necessary to study the production method of high efficiency hydrogen using solar energy.

산화아연은 큰 밴드갭과 넓은 바인딩 에너지를 가진 반도체 물질이기 때문에 태양전지, 광전기화학전지에 쓰일 수 있다. 특히 잘 배열된, 높은 밀도와 넓은 표면적을 가진 산화아연 나노와이어는 광전기화학 장치를 활용한 물분해에 높은 효율을 기대할 수 있다. 산화티타늄은 산화아연과 유사한 밴드갭 영역을 가지고 있지만, 흡수하는 광파장대와 내구성에 차이가 있다. 산화아연 나노와이어에 산화티타늄을 코팅한 형태인 산화아연-산화티타늄 코어쉘 나노와이어를 제조하면 산화아연 나노와이어 보다 더욱 높은 효율을 기대할 수 있고, 더 안정적으로 장치를 구동할 수 있다. 따라서 높은 효율과 뛰어난 내구성을 가진 산화아연-산화티타늄 코어쉘 나노와이어 기반의 광전기화학전지를 제조하는 방법을 개발하고 발전시켜 공해 없는 수소제조 기술 발전에 기여할 필요성이 있다. Since zinc oxide is a semiconductor material with a large bandgap and wide binding energy, it can be used in solar cells and photoelectrochemical cells. Especially well-ordered, high density and large surface area zinc oxide nanowires can be expected to be highly efficient in water decomposition using photoelectrochemical devices. Titanium oxide has a band gap region similar to zinc oxide, but differs in the durability and the absorbing optical wave length. Manufacture of zinc oxide-titanium oxide core shell nanowire, which is a form of zinc oxide nanowire coated with titanium oxide, can be expected to have higher efficiency than zinc oxide nanowire, and can drive the device more stably. Therefore, there is a need to develop and develop a method for manufacturing a zinc oxide-titanium oxide core shell nanowire-based photoelectrochemical cell having high efficiency and excellent durability to contribute to the development of hydrogen-free hydrogen production technology.

예를 들어 비특허 문헌 1에서는 산화아연 나노와이어를 은 나노파티클로 코팅하여 산화아연-은 코어쉘 나노와이어를 제조하여 물분해 효율을 측정하였는데, 산화아연 나노와이어 보다 산화아연-은 코어쉘 나노와이어에서 더 높은 효율이 나타나는 것을 보여주었다.For example, in Non-Patent Document 1, zinc oxide nanowires were coated with silver nanoparticles to prepare zinc oxide-silver core-shell nanowires, and the water decomposition efficiency was measured. The higher efficiency is shown in Fig.

1. 대한민국 등록특허 제10-0878742호 (2009.01.08)1. Korean Patent No. 10-0878742 (2009.01.08) 2. 대한민국 등록특허 제10-0987468호 (2010.10.06)2. Korean Patent No. 10-0987468 (June 10, 2010)

Wei, Yuefan, Lin Ke, Junhua Kong, Hong Liu, Zhihui Jiao, Xuehong Lu, Hejun Du, and Xiao Wei Sun. "Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles." Nanotechnology 23, no. 23 (2012): 235401. Wei, Yuefan, Lin Ke, Junhua Kong, Hong Liu, Zhihui Jiao, Xuehong Lu, Hejun Du, and Xiao Wei Sun. "Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles." Nanotechnology 23, no. 23 (2012): 235401.

본 발명의 목적은 화학기상증착 방법으로 제조된 잘 배열된 산화아연-산화티타늄 코어쉘 나노와이어를 광전기화학전지로 활용함으로써 기존의 광전기화학전지에 비해 효율을 크게 향상시킬 수 있도록 한 산화아연/산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치를 제공하는 데 있다.It is an object of the present invention to provide a zinc oxide / zinc oxide / zinc oxide / zinc oxide / zinc oxide / zinc oxide / zinc oxide / zinc oxide core oxide nanowire, And to provide a water decomposition apparatus using titanium core shell nanowires.

상기 목적들을 달성하기 위하여, 본 발명에 따른 산화아연/산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치는,In order to achieve the above objects, the present invention provides a water decomposition apparatus using zinc oxide / titanium oxide core shell nanowires,

물분해 효과를 얻기 위해 작업전극, 기준전극, 상대전극 및 전해질을 포함하는 물분해장치로서, 상기 작업전극은 산화아연 나노와이어에 산화티타늄이 코팅된 코어쉘 나노와이어를 포함하는 것을 특징으로 한다.A water decomposition apparatus comprising a working electrode, a reference electrode, a counter electrode and an electrolyte to obtain a water decomposition effect, wherein the working electrode comprises a core-shell nanowire having titanium oxide coated on zinc oxide nanowire.

상기 산화아연-산화티타늄 코어쉘 나노와이어는,The zinc oxide-titanium oxide core shell nanowire may be formed by,

산화아연 나노와이어를 제조하는 단계; 상기 산화아연 나노와이어에 산화티타늄 전구체를 공급하는 단계; 산화티타늄 전구체가 열분해 되며 산화티타늄 증기를 생성하는 단계; 및 산화티타늄 증기가 산화아연 나노와이어 표면에 증착되는 단계를 포함하는 공정으로 제조되는 것을 특징으로 한다.Preparing a zinc oxide nanowire; Supplying a titanium oxide precursor to the zinc oxide nanowire; The titanium oxide precursor is pyrolyzed to produce titanium oxide vapor; And depositing titanium oxide vapor on the surface of the zinc oxide nanowire.

상기 산화아연 나노와이어 제조단계는,Wherein the zinc oxide nanowire manufacturing step comprises:

실리콘 기판 상부에 탄소 촉매층을 형성하는 단계; 및 상기 탄소 촉매층에 산화아연 증기를 열화학 기상 증착방법을 통해서 증착시켜서 다수의 산화아연 나노와이어를 상기 실리콘 기판에 대해 수직방향으로 성장시키는 단계:를 포함하는 것을 특징으로 한다.Forming a carbon catalyst layer on the silicon substrate; And depositing zinc oxide vapor on the carbon catalyst layer through a thermal chemical vapor deposition method to grow a plurality of zinc oxide nanowires in a direction perpendicular to the silicon substrate.

상기 탄소 촉매층을 형성하는 단계는,The step of forming the carbon catalyst layer may include:

세라믹튜브의 내부에 탄소가루와 실리콘 기판이 담긴 알루미나 보트를 위치시키는 단계; 질량 유량 제어기를 통해서 이송가스로서 질소가스를 1 LPM(liter per minute)의 유량으로 유동시키고, 퍼니스의 온도를 1,100 ℃ 이상으로 가열하는 단계; 및 이송가스인 질소가스가 탄소가루로부터 생성된 탄소 증기를 통해서 상기 실리콘 기판에 탄소 필름을 코팅하는 단계;를 포함하는 것을 특징으로 한다.Placing an alumina boat containing carbon powder and a silicon substrate in the interior of the ceramic tube; Flowing nitrogen gas as a transfer gas through a mass flow controller at a flow rate of 1 LPM (liter per minute), and heating the furnace temperature to 1,100 ° C or higher; And coating the carbon film on the silicon substrate through the carbon vapor generated from the carbon powder by the nitrogen gas as the transfer gas.

산화아연 나노와이어를 성장시키는 단계는,The step of growing the zinc oxide nanowire comprises:

탄소필름이 코팅된 실리콘 기판과 소스물질인 아연 막대를 알루미나 보트에 담아서 세라믹튜브의 내부에 위치시키는 단계; 질량 유량 제어기를 통해서 이송가스로서 아르곤과 산소의 혼합가스를 0.4∼1 LPM(liter per minute)의 유량으로 유동시키고, 퍼니스의 온도를 550∼750 ℃의 온도로 가열하는 단계; 및 상기 아연막대로부터 생성된 아연 증기가 이송가스인 아르곤과 산소의 혼합가스를 만나서 산화아연 나노와이어를 실리콘 기판 상에 성장시키는 단계;를 포함하는 것을 특징으로 한다.Placing a silicon substrate coated with a carbon film and a zinc rod as a source material in an alumina boat and inside the ceramic tube; Flowing a mixed gas of argon and oxygen as a transfer gas through a mass flow controller at a flow rate of 0.4 to 1 LPM (liter per minute), and heating the furnace to a temperature of 550 to 750 캜; And growing the zinc oxide nanowire on the silicon substrate by the zinc vapor generated from the zinc bar meeting a mixed gas of argon and oxygen as the transfer gas.

상기 산화티타늄 전구체는 TTIP(Titanium tetra iso- propoxide)인 것을 특징으로 한다.The titanium oxide precursor is TTIP (Titanium tetra iso-propoxide).

상기 산화티타늄 증기가 산화아연 나노와이어 표면에 산화티타늄 층을 생성하도록 하기 위해 희석가스를 공급해 주는 것을 특징으로 한다.And the diluent gas is supplied to the titanium oxide vapor so as to produce a titanium oxide layer on the surface of the zinc oxide nanowire.

상기 산화티타늄 증기의 증착단계에서,In the vapor deposition step of the titanium oxide vapor,

증착 시간을 15∼60분으로 조절하였을 때 산화티타늄 쉘의 두께가 1 nm/분의 속도로 두꺼워지는 것을 특징으로 한다.And the thickness of the titanium oxide shell is thickened at a rate of 1 nm / min when the deposition time is controlled to 15 to 60 minutes.

코팅된 산화티타늄 쉘의 두께는 1∼15 nm 인 것을 특징으로 한다.The coated titanium oxide shell has a thickness of 1 to 15 nm.

상기에 상술한 바와 같이, 본 발명에 따르면, 기존의 물분해 장치와는 달리 산화아연-산화티타늄 코어쉘 나노와이어를 사용함으로써 높은 효율과 높은 내구성을 가진 광전기화학전지를 제조할 수 있다는 장점을 가지고 있다. As described above, according to the present invention, a zinc oxide-titanium oxide core shell nanowire is used unlike the conventional water decomposing apparatus, so that a photoelectrochemical cell having high efficiency and high durability can be manufactured have.

산화티타늄 쉘의 두께를 조절하면 산화아연-산화티타늄 코어쉘 나노와이어의 물분해 효율이 달라지게 되고, 최고의 효율을 가진 쉘두께의 산화아연-산화티타늄 코어쉘 나노와이어를 활용함으로써 높은 물분해 효율을 가진 광전기화학전지의 제조를 가능하게 한다. By adjusting the thickness of the titanium oxide shell, the water degradation efficiency of the zinc oxide-titanium oxide core shell nanowire is changed. By utilizing the zinc oxide-titanium oxide core shell nanowires having the shell thickness of the most efficient efficiency, Lt; RTI ID = 0.0 > photochemical < / RTI >

산화티타늄 쉘을 코팅하는 시간을 15∼60분으로 조절하는 것으로 손쉽게 산화티타늄 쉘의 두께를 조절할 수 있기 때문에 고효율의 산화아연-산화티타늄 코어쉘 나노와이어를 활용한 광전기화학전지의 제조를 가능하게 한다.The thickness of the titanium oxide shell can be easily controlled by adjusting the time for coating the titanium oxide shell to 15 to 60 minutes, thereby enabling the manufacture of a photoelectrochemical cell utilizing the high-efficiency zinc oxide-titanium oxide core-shell nanowire .

도 1은 본 발명에 따른 산화아연-산화티타늄 코어쉘 나노와이어를 활용한 광전기화학전지의 개략도이다
도 2는 도 1의 장치에서 잘 배열된 산화아연-산화티타늄 코어쉘 나노와이어의 모식도이다.
도 3은 본 발명에 따른 잘 배열된 산화아연-산화티타늄 코어쉘 나노와이어를 활용한 광전기화학전지에서 산화티타늄 두께가 0-45 nm 로 변화할 때의 광전류밀도를 나타낸 그래프이다.
도 4는 본 발명에 따른 잘 배열된 산화아연-산화티타늄 코어쉘 나노와이어를 활용한 광전기화학전지에서 산화티타늄 두께가 0-45 nm 로 변화할 때의 광전기화학전지 효율을 나타낸 그래프이다.
도 5는 본 발명에서 산화아연 나노와이어를 제조하기 위한 장치의 개략도이다.
도 6은 도 5의 장치에서 기판에 탄소 필름을 코팅하는 것을 도시한 개략적인 도면이다.
도 7은 도 5의 장치에서 탄소 필름이 코팅된 실리콘 기판 상에 잘 배열된 산화아연 나노와이어를 제조하는 것을 도시한 도면이다.
도 8은 본 발명에 따른 산화아연-산화티타늄 코어쉘 나노와이어를 제조하기 위한 튜브퍼니스 시스템의 개략도이다.
1 is a schematic diagram of a photoelectrochemical cell utilizing zinc oxide-titanium oxide core shell nanowires according to the present invention
2 is a schematic diagram of a zinc oxide-titanium oxide core shell nanowire well-arranged in the apparatus of FIG.
3 is a graph showing the photocurrent density when the titanium oxide thickness varies from 0 to 45 nm in a photoelectrochemical cell utilizing a well-ordered zinc oxide-titanium oxide core shell nanowire according to the present invention.
4 is a graph illustrating the photoelectrochemical cell efficiency when the titanium oxide thickness varies from 0 to 45 nm in a photoelectrochemical cell utilizing a well-ordered zinc oxide-titanium oxide core shell nanowire according to the present invention.
5 is a schematic diagram of an apparatus for manufacturing zinc oxide nanowires in the present invention.
FIG. 6 is a schematic diagram illustrating coating a carbon film on a substrate in the apparatus of FIG. 5; FIG.
Figure 7 illustrates the fabrication of well-ordered zinc oxide nanowires on a silicon substrate coated with a carbon film in the apparatus of Figure 5;
Figure 8 is a schematic view of a tube furnace system for making zinc oxide-titanium oxide core shell nanowires according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명에 따른 산화아연/산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치를 상세히 설명하도록 한다.Hereinafter, a water decomposition apparatus using zinc oxide / titanium oxide core shell nanowires according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 산화아연-산화티타늄 코어쉘 나노와이어를 활용한 광전기화학전지의 개략도이고, 도 2는 도 1의 장치에서 잘 배열된 산화아연-산화티타늄 코어쉘 나노와이어의 모식도이다.FIG. 1 is a schematic diagram of a photoelectrochemical cell utilizing a zinc oxide-titanium oxide core shell nanowire according to the present invention, and FIG. 2 is a schematic diagram of a zinc oxide-titanium oxide core shell nanowire well-arranged in the apparatus of FIG.

도 1에 도시된 바와 같이, 본 발명에 따른 물분해 장치는 광전기 화학전지로서, 산화아연-산화티타늄 코어쉘 나노와이어로 구성된 작업전극(101), 은/염화은 전극으로 구성된 기준전극(102), 백금전극으로 이루어진 상대전극(103) 및 0.5M 황산나트륨 수용액으로 이루어진 전해질(107)을 포함한다.1, the water decomposition apparatus according to the present invention is an electrochemical cell comprising a working electrode 101 composed of a zinc oxide-titanium oxide core shell nanowire, a reference electrode 102 composed of a silver / silver chloride electrode, A counter electrode 103 made of a platinum electrode, and an electrolyte 107 made of a 0.5M sodium sulfate aqueous solution.

상기 기준전극은 전위의 기준이 되어 상기 작업전극의 전위를 알 수 있는 것이고, 상기 상대전극은 음극의 역할을 하며 광전기화학전지에 전류를 흐르게 한다.The reference electrode serves as a reference of potential and can recognize the potential of the working electrode. The counter electrode acts as a cathode and allows a current to flow to the electrochemical cell.

또한, 생성된 전류를 측정하기 위해 전위가변기(104)와 측정된 전류와 전압데이터를 처리하기 위한 컴퓨터(105)가 별도로 설치될 수 있다.In addition, a computer 105 for processing the potable pot 104 and the measured current and voltage data may be separately installed to measure the generated current.

광전류 측정을 위하여 태양광발생장치(106)가 설치될 수 있으며, 상기 태양광발생장치(106)은 제논 램프를 통해 AM 1.5 G, 100 mW/㎠ 의 빛을 발생시킨다. 상기 태양광발생장치(106)에서 태양광을 조사하면 반도체 물질의 전자가 에너지를 얻어 여기되면서 전자와 홀로 나누어지고, 나누어진 홀은 산소이온과 결합하여 산소가스를 만들어 내는데, 이때 반도체물질의 표면에서 일어나는 산화반응은 다음과 같다.A solar light generator 106 may be installed for photocurrent measurement, and the solar light generator 106 generates light of AM 1.5 G, 100 mW / cm 2 through a xenon lamp. When the sunlight is emitted from the solar light generator 106, the electrons of the semiconductor material are energized to be divided into electrons and holes, and the divided holes combine with oxygen ions to produce oxygen gas. The oxidation reactions taking place in the following are as follows.

Figure 112017051083379-pat00001
Figure 112017051083379-pat00001

본 발명에 따른 물분해장치에 있어서, 작업전극(101)에서 만들어진 전자는 상대전극(103)으로 이동한 전자와 작업전극(101)에서 생성된 수소이온이 결합하여 다음과 같은 환원반응이 일어난다.In the water decomposition apparatus according to the present invention, the electrons generated in the working electrode 101 are combined with the electrons moved to the counter electrode 103 and the hydrogen ions generated in the working electrode 101, and the following reduction reaction occurs.

Figure 112017051083379-pat00002
Figure 112017051083379-pat00002

이 반응을 통해서 수소가스를 얻을 수 있고, 포집된 수소가스는 다양한 분야에서 에너지원으로 사용할 수 있다.Through this reaction, hydrogen gas can be obtained, and captured hydrogen gas can be used as an energy source in various fields.

광전기 화학전지에 태양광을 조사하면서 상기 컴퓨터(105)에서 전압과 광전류를 각각 측정한 후, 전압 값에 따른 광전류 값을 이용해 다음과 같은 식으로 물분해 효율을 측정할 수 있다.The voltage and the photocurrent are measured in the computer 105 while the photovoltaic cell is irradiated with sunlight, and the water decomposition efficiency can be measured using the photocurrent value according to the voltage value as follows.

Figure 112017051083379-pat00003
Figure 112017051083379-pat00003

η 는 물분해 효율, J 는 광전류밀도, Ilight는 태양광의 에너지이다. η is water decomposition efficiency, J is photocurrent density, and I light is solar energy.

VRHE는 다음 식을 통해 계산할 수 있다.V RHE can be calculated from the following equation.

Figure 112017051083379-pat00004
Figure 112017051083379-pat00004

VAg / AgCl은 측정된 전압 값, pH 는 전해질의 산성도 (107), V0 Ag / AgCl 은 기준전극의 기준전압 값 (0.1976 V)이다. 이러한 식을 통해 계산된 물분해 효율을 비교하였을 때, 산화티타늄셀의 두께에 따라 효율이 달라지는 것을 확인할 수 있었다.V Ag / AgCl is the measured voltage value, pH is the acidity of the electrolyte (107), V 0 Ag / AgCl Is the reference voltage value of the reference electrode (0.1976 V). When the water decomposition efficiency calculated by this equation is compared, it is confirmed that the efficiency varies depending on the thickness of the titanium oxide cell.

도 2는 본 발명에서 작업전극(101)으로 이용하는 산화아연-산화티타늄 코어쉘 나노와이어를 확대하여 도시한 도면이다. 2 is an enlarged view of a zinc oxide-titanium oxide core shell nanowire used as the working electrode 101 in the present invention.

도 2에서, 기판(113) 상에는 산화아연(112) 나노와이어가 성장하여 위치하고, 상기 산화아연(112) 나노와이어의 표면에 산화티타늄 쉘이 코팅됨으로써, 작업전극(101)으로 적용될 수 있는 것이다.2, a zinc oxide 112 nanowire grows on the substrate 113 and is coated with a titanium oxide shell on the surface of the zinc oxide 112 nanowire, thereby being applicable as the working electrode 101.

도면 3은 잘 배열된 산화아연-산화티타늄 코어셀 나노와이어를 활용한 광전기화학전지에서 산화티타늄 두께가 0∼45 nm 로 변화할 때의 광전류밀도를 나타낸 것이고, 도면 4는 잘 배열된 산화아연-산화티타늄 코어셀 나노와이어를 활용한 광전기화학전지에서 산화티타늄 두께가 0∼45 nm 로 변화할 때의 광전기화학전지 효율을 나타낸 것이다.FIG. 3 shows the photocurrent density when the titanium oxide thickness varies from 0 to 45 nm in a photoelectrochemical cell utilizing well-ordered zinc oxide-titanium oxide core cell nanowires, and FIG. The photoelectrochemical cell efficiency when the titanium oxide thickness varies from 0 to 45 nm in a photoelectrochemical cell utilizing titanium oxide core cell nanowires.

본 발명에 따른 실험 결과, 산화아연 나노와이어의 물분해 효율은 0.2 %이지만, 산화티타늄 쉘의 두께가 15 nm로 증가할 경우 물분해 효율이 0.55% 까지 증가하고, 이후 산화티타늄 셀의 두께가 더욱 두꺼워 질 경우에는 물분해 효율이 0.1% 까지 감소하는 것을 알 수 있었다.As a result of the experiment according to the present invention, the water decomposition efficiency of the zinc oxide nanowire is 0.2%, but when the thickness of the titanium oxide shell is increased to 15 nm, the water decomposition efficiency increases to 0.55% It was found that the water degradation efficiency decreased to 0.1% when thickened.

따라서, 바람직하게는, 산화티타늄 쉘의 두께는 1∼15 nm 일 때가 물분해 효율이 가장 우수하다.Therefore, preferably, when the thickness of the titanium oxide shell is 1 to 15 nm, the water decomposition efficiency is the most excellent.

이하, 본 발명에서 사용되는 작업전극인 산화아연-산화티타늄 코어쉘 나노와이어의 제조공정에 대하여 보다 구체적으로 설명한다.Hereinafter, the manufacturing process of the zinc oxide-titanium oxide core shell nanowire, which is a working electrode used in the present invention, will be described in more detail.

본 발명에 따른 장치에서 실리콘 기판에 탄소필름을 코팅시키는 제 1공정을 실시하고, 동시에 촉매 역할을 하는 탄소필름이 코팅된 실리콘 기판에 잘 배열된 산화아연 나노와이어를 성장시키는 제 2공정을 실시한다. 본 발명에서는 상기와 같은 제 1공정과 제 2공정을 하나의 시스템에서 실행함으로써, 공정을 단순화시킬 수 있고 비용을 크게 절감할 수 있는 것이다.A first step of coating a carbon film on a silicon substrate in a device according to the present invention is carried out and a second step of growing a zinc oxide nanowire well arranged on a silicon substrate coated with a carbon film serving as a catalyst is carried out . In the present invention, by executing the first step and the second step in one system, the process can be simplified and the cost can be greatly reduced.

<제 1공정><First Step>

도 5 및 도 6에 도시된 바와 같이, 세라믹튜브(3)의 내부에 탄소가루(11)와 실리콘 기판(13)이 담긴 알루미나 보트(10)을 위치시킨다. 상기 탄소가루(11)는 상기 실리콘 기판(13)에 탄소필름을 증착시키기 위한 소스물질의 역할을 한다. The alumina boat 10 containing the carbon powder 11 and the silicon substrate 13 is placed inside the ceramic tube 3 as shown in Figs. The carbon powder 11 serves as a source material for depositing a carbon film on the silicon substrate 13. [

이후에, 상기 질량 유량 제어기(1)를 통해서 이송가스로서 질소가스를 1 LPM(liter per minute: 체류시간 184 ms)의 유량으로 유동시키고, 퍼니스(4)의 온도를 1,100 ℃ 이상으로 가열한다.Thereafter, nitrogen gas as a transfer gas is flowed through the mass flow controller 1 at a flow rate of 1 LPM (liter per minute: retention time 184 ms), and the temperature of the furnace 4 is heated to 1,100 ° C. or higher.

그러면, 이송가스인 질소가스가 탄소가루(11)와 실리콘 기판(13)까지 이송하고, 세라믹튜브(3) 내부의 고온으로 인해 탄소가루(11)로부터 탄소 증기가 발생하게 되며, 이러한 상태가 1시간 정도 지속되면 상기 실리콘 기판(13)에 탄소 필름이 고르게 코팅된다.Then, nitrogen gas as a transfer gas is transferred to the carbon powder 11 and the silicon substrate 13, carbon steam is generated from the carbon powder 11 due to the high temperature inside the ceramic tube 3, The carbon film is uniformly coated on the silicon substrate 13.

<제 2공정>&Lt; Second Step &

잘 배열된 산화아연 나노와이어를 얻기 위해서, 상기 탄소필름이 코팅된 실리콘 기판(23)과 소스물질인 아연 막대(21)를 알루미나 보트(10)에 담아서 상기 세라믹튜브(3)의 내부에 위치시킨다.In order to obtain a well-ordered zinc oxide nanowire, the silicon substrate 23 coated with the carbon film and the zinc bar 21 as a source material are placed in the alumina boat 10 and placed inside the ceramic tube 3 .

상기 질량 유량 제어기(1)를 통해서 이송가스로서 아르곤과 산소의 혼합가스를 0.6 LPM(liter per minute: 체류시간 307 ms)의 유량으로 유동시키고, 퍼니스(4)의 온도를 700 ℃ 이상의 온도로 가열한다.A mixed gas of argon and oxygen as a transfer gas is flowed through the mass flow controller 1 at a flow rate of 0.6 LPM (liter per minute: retention time 307 ms), and the temperature of the furnace 4 is heated to 700 ° C or higher do.

그러면, 아연막대(21)는 고온에서 아연 증기를 만들고, 상기 아연 증기는 이송가스인 아르곤과 산소의 혼합가스를 만나서 산화아연 나노와이어를 상기 실리콘 기판(23) 상에 성장시키게 된다.The zinc bar 21 then creates a zinc vapor at high temperature which is in contact with a gas mixture of argon and oxygen, which is a transport gas, to grow zinc oxide nanowires on the silicon substrate 23.

본 발명에서 산화아연 나노와이어는 화학 기상 증착 방법을 사용한다. 상기 화학 기상 증착 방법은 대기 중에서 제조함으로 30초 내외의 짧은 시간에 제조할 수 있다.In the present invention, the zinc oxide nanowire uses a chemical vapor deposition method. The chemical vapor deposition method can be manufactured in a short time of about 30 seconds by being manufactured in air.

또한, 본 발명에서 상기 화학 기상 증착 방법은 촉매제공과 산화아연 나노와이어 제조에 동일한 장치를 사용함으로 공정의 단순화와 비용절감을 기대할 수 있다.In addition, the chemical vapor deposition method of the present invention can be expected to simplify the process and reduce the cost by using the same device for providing the catalyst and manufacturing the zinc oxide nanowire.

상기 화학 기상 증착 방법은 제조시의 온도를 550∼750 ℃로 조절함으로써 산화아연 나노와이어의 지름, 길이 및 밀도 등을 조절할 수 있다.In the chemical vapor deposition method, the diameter, length, and density of the zinc oxide nanowire can be controlled by adjusting the temperature at the time of manufacturing to 550 to 750 캜.

상기 화학 기상 증착 방법에서 제조시의 온도가 550 ℃에서 50 ℃간격으로 증가시킬 경우, 100 nm 크기의 산화아연 나노 입자(particle)로부터 밀도가 높은 산화아연 나노와이어 어레이로 형상이 점차 변화하게 된다. 이를 통해서, 상기 탄소필름이 코팅된 실리콘 기판 상에서 산화아연 나노와이어가 형성될 수 있는 것이다.When the temperature is increased from 550 ° C. to 50 ° C. in the chemical vapor deposition method, the shape gradually changes from zinc oxide nanoparticles having a size of 100 nm to zinc oxide nanowire arrays having a high density. Through this, zinc oxide nanowires can be formed on the silicon substrate coated with the carbon film.

즉, 세라믹 튜브 내의 온도가 550 ℃ 이하일 경우에는 산화아연 나노와이어가 형성되지 않는 문제점이 있고, 750 ℃ 이상일 경우에는 산화아연 나노와이어의 생성 효율이 낮은 문제점이 있다.That is, when the temperature in the ceramic tube is 550 ° C or less, there is a problem that zinc oxide nanowires are not formed. When the temperature is higher than 750 ° C, zinc oxide nanowires are not produced efficiently.

또한, 이송가스인 아르곤과 산소의 혼합가스 유량을 0.4∼1 LPM으로 조절함으로써 산화아연 나노와이어의 배열도 및 밀도를 조절할 수 있다. 즉, 이송가스의 유량을 0.4∼1 LPM으로 조절하면, 산화아연 증기가 세라믹 튜브 내부에서 머무르는 체류시간을 조절할 수 있다.Also, the arrangement and density of the zinc oxide nanowires can be controlled by adjusting the flow rate of the gas mixture of argon and oxygen, which is a transfer gas, to 0.4 to 1 LPM. That is, when the flow rate of the transfer gas is adjusted to 0.4 to 1 LPM, the residence time of the zinc oxide vapor staying in the ceramic tube can be controlled.

본 발명에서 이송가스의 유량을 0.4, 0.5, 0.6, 0.7, 1 LPM으로 설정하였을 때 체류시간은 각각 461, 369, 307, 263, 184 ms이고, 체류시간이 짧아질수록 산화아연 나노와이어의 길이는 길어지지만 배열도가 흐트러지는 경향을 보였다.In the present invention, when the flow rates of the transfer gas are set to 0.4, 0.5, 0.6, 0.7 and 1 LPM, the residence times are respectively 461, 369, 307, 263 and 184 ms. , But the arrangement was disorganized.

즉, 이송가스의 유량이 0.4 LPM 이하일 경우에는 산화아연 나노와이어의 형성이 어렵고, 유량이 1 LPM 이상일 경우에는 나노와이어의 배열도가 흐트러지는 문제점이 있다.That is, when the flow rate of the transfer gas is 0.4 LPM or less, it is difficult to form the zinc oxide nanowire, and when the flow rate is 1 LPM or more, the arrangement of the nanowires is disturbed.

도 8을 참조하면, 본 발명은 불활성기체인 이송가스의 유량을 제어하기 위한 질량유량 제어기(51)와 제어박스(52)를 포함한다. 상기 제어박스에서 사용하고자 하는 이송가스의 유량을 설정하면 상기 질량유량제어기(51)에서 전기적 신호를 가하여 이송가스의 유량을 제어하게 된다.Referring to FIG. 8, the present invention includes a mass flow controller 51 and a control box 52 for controlling the flow rate of the transfer gas, which is an inert gas. When the flow rate of the transfer gas to be used in the control box is set, the mass flow controller 51 controls the flow rate of the transfer gas by applying an electrical signal.

상기 질량유량 제어기(51)의 후단에는 버블러(53)가 설치되어 있어서, 상기 질량유량 제어기(51)에서 제어된 이송가스가 상기 버블러(53)으로 공급된다. 상기 버블러(53)에는 소스물질인 TTIP(titanium tetraisopropoxide)가 충진되어 있다. A bubbler 53 is provided at the rear end of the mass flow controller 51 so that the transfer gas controlled by the mass flow controller 51 is supplied to the bubbler 53. The bubbler 53 is filled with TTIP (titanium tetraisopropoxide) as a source material.

상기 버블러(53)는 그 후방으로 코어튜브(56)에 연결되어 있고, 상기 버블러(53)과 상기 코어튜브(56)를 연결하는 튜브의 외부에는 히팅시스템(55)이 설치되어 있다. The bubbler 53 is connected to the core tube 56 at a rear side thereof and a heating system 55 is installed outside the tube connecting the bubbler 53 and the core tube 56.

상기 히팅시스템(55)은 상기 TTIP가 이송가스와 함께 이송될 때, 응축되는 것을 방지하기 위한 것이다. 이때, 상기 히팅시스템(55)의 온도는 약 60℃인 것이 바람직하다.The heating system 55 is intended to prevent condensation when the TTIP is transported with the transfer gas. At this time, the temperature of the heating system 55 is preferably about 60 ° C.

또한, 상기 코어튜브(56)의 입구측에는 희석가스를 공급하기 위한 공급튜브가 상기 버블러(53)로부터 TTIP를 공급하는 튜브와 합체되도록 구성되어 있어서, 상기 TTIP와 희석가스가 상기 코어튜브(56)에서 함께 혼합될 수 있도록 한다. 상기 희석가스는 TTIP 증기의 농도를 낮추는 역할을 함과 동시에 최종적으로 튜브 퍼니스 내부로 공급되는 전체 TTIP 유량을 조절하는 역할을 한다. 상기 희석가스는 희석가스 공급부(54)로부터 공급된다.In addition, a supply tube for supplying a dilution gas is configured to be combined with a tube for supplying TTIP from the bubbler 53 to the inlet side of the core tube 56, so that the TTIP and the diluting gas are supplied to the core tube 56 ) To be mixed together. The diluent gas serves to lower the concentration of the TTIP vapor and to control the total TTIP flow rate finally supplied to the inside of the tube furnace. The diluent gas is supplied from the diluent gas supply unit 54.

이때, 상기 코어튜브(56)의 외주면에도 히팅테이프가 장착되어서 TTIP와 희석가스가 혼합될 때, 응축되지 않도록 하는 것이 바람직하다.At this time, it is preferable that a heating tape is mounted on the outer circumferential surface of the core tube 56 to prevent condensation when TTIP and diluent gas are mixed.

상기 코어튜브(56)로부터 상기 세라믹튜브(57)로 이송된 이송가스, 희석가스 및 TTIP의 혼합가스는 고온으로 가열되어서 TTIP가 분해되면서 산화티타늄 가스를 생성하게 된다.The transport gas, the diluting gas, and the TTIP mixed gas transferred from the core tube 56 to the ceramic tube 57 are heated to a high temperature to decompose TTIP to produce titanium oxide gas.

이때, 상기 세라믹튜브(57)을 고온으로 가열하는 장치는 튜브퍼니스(58)로서 온도설정에 의해 사용자가 원하는 일정온도까지 상승시킬 수 있는 것이다.At this time, the apparatus for heating the ceramic tube 57 to a high temperature can raise the temperature to a predetermined temperature by the user by setting the temperature as the tube furnace 58.

<제 3공정><Third Step>

상기 세라믹튜브(57)의 내부에 상기 제 1공정 및 제 2공정에서 제조된 산화아연 나노와이어 기판을 위치시키고, 튜브퍼니스(58)을 450℃로 설정한 후 가열한다. 일정시간이 지나면 상기 세라믹튜브(57)의 내부온도가 450℃까지 상승하게 된다.The zinc oxide nanowire substrate manufactured in the first step and the second step is placed in the ceramic tube 57 and the tube furnace 58 is set at 450 ° C. and then heated. After a predetermined time, the internal temperature of the ceramic tube 57 rises to 450 ° C.

이후에, 상기 질량유량 제어기(51)를 통해 이송가스를 0.5LPM(liter per minute)으로 설정하여 상기 버블러(53)로 이송시킨다. 상기 버블러(53)에는 TTIP를 충진시키고, 이송가스를 공급하면 TTIP 가스가 이송가스와 함께 상기 버블러(53)로부터 토출되어 상기 히팅시스템(55)를 거쳐서 상기 코어튜브(56)으로 이동한다. 이때 상기 희석가스 공급부(54)로부터 공급된 희석가스도 상기 코어튜브(56)으로 이송되어, 상기 코어튜브(56)에서 상기 TTIP가스와 희석가스가 혼합된다. 상기 희석가스는 6.45 LPM으로 공급되는 것이 바람직하다.Thereafter, the transferred gas is set to 0.5 liter per minute (LPM) through the mass flow controller 51 and transferred to the bubbler 53. TTIP is filled in the bubbler 53 and TTIP gas is discharged from the bubbler 53 together with the transfer gas when the transfer gas is supplied to the core tube 56 via the heating system 55 . At this time, the diluent gas supplied from the diluent gas supply unit 54 is also transferred to the core tube 56, and the TTIP gas and the dilution gas are mixed in the core tube 56. The diluent gas is preferably supplied at 6.45 LPM.

상기 코어튜브(56)에서 혼합된 TTIP와 희석가스는 세라믹 튜브(57)의 내부로 공급되어서 상기 기판 상의 산화아연 나노와이어 표면 위에 산화티타늄을 쉘 형태로 일정 두께로 코팅할 수 있는 것이다.The TTIP and the diluted gas mixed in the core tube 56 are supplied to the inside of the ceramic tube 57 so that titanium oxide can be coated on the surface of the zinc oxide nanowire on the substrate to a certain thickness in shell form.

이때 TTIP를 공급하는 시간을 조절하면 코팅되는 산화티타늄 쉘의 두께를 조절할 수 있다.At this time, the thickness of the titanium oxide shell to be coated can be adjusted by adjusting the time for supplying TTIP.

TTIP를 공급한 후 15분 동안은 산화아연 나노와이어의 표면에 1∼2 nm 크기의 산화티타늄 파티클이 발생하고, 15분 이후부터 약 1nm/분의 속도로 코팅된다. 약 30분 동안 코팅할 경우 15 nm, 1시간 동안 코팅할 경우 약 50 nm의 산화티타늄이 코팅된 산화아연-산화티타늄 코어쉘 나노와이어를 얻을 수 있다.Titanium oxide particles having a size of 1 to 2 nm are generated on the surface of the zinc oxide nanowire for 15 minutes after the TTIP is supplied, and coated at a rate of about 1 nm / min from 15 minutes later. When coated for about 30 minutes, 15 nm, for 1 hour, about 50 nm of titanium oxide coated zinc oxide-titanium oxide core shell nanowires can be obtained.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, Of the right.

51: 질량유량 제어기 52: 제어박스
53: 버블러 54: 희석가스 공급부
55: 히팅시스템 56: 코어튜브
57: 세라믹튜브 58: 튜브 퍼니스
101: 작업전극 102: 기준전극
103: 상대전극 104: 전위가변기
105: 컴퓨터 106: 태양광발생장치
107: 전해질
51: mass flow controller 52: control box
53: Bubbler 54: Dilution gas supply part
55: Heating system 56: Core tube
57: ceramic tube 58: tube furnace
101: working electrode 102: reference electrode
103: counter electrode 104:
105: computer 106: solar generator
107: electrolyte

Claims (9)

물분해 효과를 얻기 위해 작업전극, 기준전극, 상대전극 및 전해질을 포함하는 물분해장치로서,
상기 작업전극은 산화아연 나노와이어에 산화티타늄이 코팅된 코어쉘 나노와이어를 포함하고,
상기 산화아연-산화티타늄 코어쉘 나노와이어는,
산화아연 나노와이어를 제조하는 단계; 상기 산화아연 나노와이어에 산화티타늄 전구체를 공급하는 단계; 산화티타늄 전구체가 열분해 되며 산화티타늄 증기를 생성하는 단계; 및 산화티타늄 증기가 산화아연 나노와이어 표면에 증착되는 단계를 포함하는 공정으로 제조되며,
상기 산화아연 나노와이어 제조단계는,
실리콘 기판 상부에 탄소 촉매층을 형성하는 단계; 및
상기 탄소 촉매층에 산화아연 증기를 열화학 기상 증착방법을 통해서 증착시켜서 다수의 산화아연 나노와이어를 상기 실리콘 기판에 대해 수직방향으로 성장시키는 단계:를 포함하며,
상기 탄소 촉매층을 형성하는 단계는,
세라믹튜브의 내부에 탄소가루와 실리콘 기판이 담긴 알루미나 보트를 위치시키는 단계;
질량 유량 제어기를 통해서 이송가스로서 질소가스를 1 LPM(liter per minute)의 유량으로 유동시키고, 퍼니스의 온도를 1,100 ℃ 이상으로 가열하는 단계; 및
이송가스인 질소가스가 탄소가루로부터 생성된 탄소 증기를 통해서 상기 실리콘 기판에 탄소 필름을 코팅하는 단계;를 포함하는 것을 특징으로 하는 산화아연-산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치.
A water decomposition apparatus comprising a working electrode, a reference electrode, a counter electrode and an electrolyte to obtain a water decomposition effect,
Wherein the working electrode comprises a core-shell nanowire having zinc oxide nanowires coated with titanium oxide,
The zinc oxide-titanium oxide core shell nanowire may be formed by,
Preparing a zinc oxide nanowire; Supplying a titanium oxide precursor to the zinc oxide nanowire; The titanium oxide precursor is pyrolyzed to produce titanium oxide vapor; And depositing titanium oxide vapor on the surface of the zinc oxide nanowire,
Wherein the zinc oxide nanowire manufacturing step comprises:
Forming a carbon catalyst layer on the silicon substrate; And
Depositing a zinc oxide vapor on the carbon catalyst layer through a thermal chemical vapor deposition process to grow a plurality of zinc oxide nanowires in a direction perpendicular to the silicon substrate,
The step of forming the carbon catalyst layer may include:
Placing an alumina boat containing carbon powder and a silicon substrate in the interior of the ceramic tube;
Flowing nitrogen gas as a transfer gas through a mass flow controller at a flow rate of 1 LPM (liter per minute), and heating the furnace temperature to 1,100 ° C or higher; And
And coating a carbon film on the silicon substrate through the carbon vapor generated from the carbon nanotubes as a transfer gas. The water decomposition apparatus using the zinc oxide-titanium oxide core shell nanowire according to claim 1,
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
산화아연 나노와이어를 성장시키는 단계는,
탄소필름이 코팅된 실리콘 기판과 소스물질인 아연 막대를 알루미나 보트에 담아서 세라믹튜브의 내부에 위치시키는 단계;
질량 유량 제어기를 통해서 이송가스로서 아르곤과 산소의 혼합가스를 0.4∼1 LPM(liter per minute)의 유량으로 유동시키고, 퍼니스의 온도를 550∼750 ℃의 온도로 가열하는 단계; 및
상기 아연막대로부터 생성된 아연 증기가 이송가스인 아르곤과 산소의 혼합가스를 만나서 산화아연 나노와이어를 실리콘 기판 상에 성장시키는 단계;를 포함하는 것을 특징으로 하는 산화아연-산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치.
The method according to claim 1,
The step of growing the zinc oxide nanowire comprises:
Placing a silicon substrate coated with a carbon film and a zinc rod as a source material in an alumina boat and inside the ceramic tube;
Flowing a mixed gas of argon and oxygen as a transfer gas through a mass flow controller at a flow rate of 0.4 to 1 LPM (liter per minute), and heating the furnace to a temperature of 550 to 750 캜; And
And a step of growing a zinc oxide nanowire on the silicon substrate by bringing the zinc vapor generated from the zinc bar into contact with a gas mixture of argon and oxygen as a transfer gas. Used water decomposition device.
제 1항에 있어서,
상기 산화티타늄 전구체는 TTIP(Titanium tetra iso- propoxide)인 것을 특징으로 하는 산화아연-산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치.
The method according to claim 1,
Wherein the titanium oxide precursor is TTIP (Titanium tetra iso propoxide). &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 1항에 있어서,
상기 산화티타늄 증기가 산화아연 나노와이어 표면에 산화티타늄 층을 생성하도록 하기 위해 희석가스를 공급해 주는 것을 특징으로 하는 산화아연-산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치.
The method according to claim 1,
Wherein the diluent gas is supplied to the titanium oxide vapor to cause the titanium oxide vapor to form a titanium oxide layer on the surface of the zinc oxide nanowire.
제 1항에 있어서,
상기 산화티타늄 증기의 증착단계에서,
증착 시간을 15∼60분으로 조절하였을 때 산화티타늄 쉘의 두께가 1 nm/분의 속도로 두꺼워지는 것을 특징으로 하는 산화아연-산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치.
The method according to claim 1,
In the vapor deposition step of the titanium oxide vapor,
Wherein the thickness of the titanium oxide shell is increased at a rate of 1 nm / minute when the deposition time is adjusted to 15 to 60 minutes.
제 1항에 있어서,
코팅된 산화티타늄 쉘의 두께는 1∼15 nm 인 것을 특징으로 하는 산화아연-산화티타늄 코어쉘 나노와이어를 이용한 물분해 장치.

The method according to claim 1,
Wherein the coated titanium oxide shell has a thickness of 1 to 15 nm. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;

KR1020170066173A 2017-05-29 2017-05-29 Apparatus for splitting water using zinc oxide and titanium oxide core/shell nanovires KR101950367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170066173A KR101950367B1 (en) 2017-05-29 2017-05-29 Apparatus for splitting water using zinc oxide and titanium oxide core/shell nanovires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170066173A KR101950367B1 (en) 2017-05-29 2017-05-29 Apparatus for splitting water using zinc oxide and titanium oxide core/shell nanovires

Publications (2)

Publication Number Publication Date
KR20180130272A KR20180130272A (en) 2018-12-07
KR101950367B1 true KR101950367B1 (en) 2019-02-20

Family

ID=64669427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170066173A KR101950367B1 (en) 2017-05-29 2017-05-29 Apparatus for splitting water using zinc oxide and titanium oxide core/shell nanovires

Country Status (1)

Country Link
KR (1) KR101950367B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810026B1 (en) * 2006-04-17 2008-03-07 전남대학교산학협력단 Method for controling size of zinc oxide nanorod arrays
KR100878742B1 (en) 2007-08-14 2009-01-14 한국에너지기술연구원 Enzymatic hydrogen production device by using anodized tubular tio2 electrode, solar cell and nanofiltration membrane
KR100987468B1 (en) 2008-03-25 2010-10-13 재단법인서울대학교산학협력재단 Transparent conductive multilayer, method of manufacturing the same, and solar cell, water decomposition device, photo-catalyst device and low-emissive glass using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.Irannejad등. Electrochimica acta. 2011., 58, pp.19~24
Chun Cheng등. ACS Nano. 2009., vol.3, no.1, pp.53~58
Simelys Hernandez등. Applied materials&interfaces. 2014. 07.01., pp.12155~12167

Also Published As

Publication number Publication date
KR20180130272A (en) 2018-12-07

Similar Documents

Publication Publication Date Title
Park et al. Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production
Arifin et al. Improvement of TiO2 nanotubes for photoelectrochemical water splitting
Wang et al. Heterogeneous p–n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution
Yuan et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
Luo et al. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
Zhang et al. Effective charge carrier utilization in photocatalytic conversions
Zeng et al. Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: Enhanced charge collection and separation for efficient photocatalysis
Shankar et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry
Liccardo et al. Nanoscale ZnO/α‐Fe2O3 heterostructures: toward efficient and low‐cost photoanodes for water splitting
Wang et al. An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting
Sun et al. Enabling silicon for solar-fuel production
Shi et al. Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes
Chen et al. Nano-architecture and material designs for water splitting photoelectrodes
Gür et al. Nanostructuring materials for solar-to-hydrogen conversion
Hsu et al. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting
de Carvalho et al. Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods
Huo et al. Core–shell TiO2@ Au25/TiO2 nanowire arrays photoanode for efficient photoelectrochemical full water splitting
Guo et al. Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers
Zou et al. Fabrication, optoelectronic and photocatalytic properties of some composite oxide nanostructures
Ni et al. In-situ photodeposition of cadmium sulfide nanocrystals on manganese dioxide nanorods with rich oxygen vacancies for boosting water-to-oxygen photooxidation
Dubey et al. Synthesis of self-aligned and vertically oriented carbon incorporated titania nanotube for improved photoelectrochemical hydrogen generation
Rubino et al. Two-dimensional restructuring of Cu2O can improve the performance of nanosized n-TiO2/p-Cu2O photoelectrodes under UV–visible light
Sun et al. Branched CdO/ZnO core/shell heterogeneous structure and its enhanced photoelectrocatalytic performance
Ming et al. Silicon nanowires decorated with silver nanoparticles for photoassisted hydrogen generation
Abouelela et al. Heterojunction of TiO2 nanotubes arrays/Bi2Se3 quantum dots as an effective and stable photoanode for photoelectrochemical H2 generation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant