KR101928193B1 - Method for predicting data of tower footing - Google Patents

Method for predicting data of tower footing Download PDF

Info

Publication number
KR101928193B1
KR101928193B1 KR1020170069557A KR20170069557A KR101928193B1 KR 101928193 B1 KR101928193 B1 KR 101928193B1 KR 1020170069557 A KR1020170069557 A KR 1020170069557A KR 20170069557 A KR20170069557 A KR 20170069557A KR 101928193 B1 KR101928193 B1 KR 101928193B1
Authority
KR
South Korea
Prior art keywords
electric field
foundation
base
relational expression
steel tower
Prior art date
Application number
KR1020170069557A
Other languages
Korean (ko)
Inventor
류희환
김경열
김대홍
배두산
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020170069557A priority Critical patent/KR101928193B1/en
Priority to JP2018548736A priority patent/JP6716710B2/en
Priority to CN201780013047.3A priority patent/CN109392305B/en
Priority to PCT/KR2017/006624 priority patent/WO2018225888A1/en
Application granted granted Critical
Publication of KR101928193B1 publication Critical patent/KR101928193B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D37/00Repair of damaged foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/20Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mathematical Physics (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Abstract

The present invention relates to a method for predicting tower base data, comprising: a step of measuring an electric field of the underground around a tower base buried for supporting a tower; a step of calculating a relation equation of an electric resistance of the underground from the electric field measured in the step of measuring an electric field; and a step of deriving the base data through the relation equation of the electric resistance and the measured electric field. According to the present invention, the tower base data can be precisely predicted.

Description

철탑 기초 제원 예측 방법{METHOD FOR PREDICTING DATA OF TOWER FOOTING}METHOD FOR PREDICTING DATA OF TOWER FOOTING

본 발명은 지중에 매설된 철탑 기초의 제원을 예측하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the specifications of a steel tower foundation buried in the ground.

철탑은 철골(鐵骨)이나 철주(鐵州)를 소재로 한 탑으로, 주로 송전선의 지지물로 사용되는데, 그 형태는 선로(線路)의 송전전력, 전압, 지형 등에 따라 다르며, 수평단면이 정사각형인 것이 많다.The steel tower is made of steel or steel and is mainly used as a support for the transmission line. The shape of the tower is different depending on the transmission power, voltage, terrain, etc. of the line (line) .

이러한 철탑이 붕괴되어 넘어지는 것을 방지하기 위해 지하에 설치되는 구조물로서 기초(footing, foundation, 基礎)가 설치되고, 그 위에 철탑이 설치된다.In order to prevent the steel tower from collapsing and falling down, a foundation (footing, foundation, foundation) is installed on the underground, and a steel tower is installed thereon.

철탑 기초 또한 지형 등의 여건에 따라 역T형, L형, 심형 등이 있다.There are inverted T-shape, L-shape, and heart shape depending on the conditions such as topography.

철탑은 안전성이 중요시되는 구조물로서, 시간이 지남에 따라 풍속의 영향에 따라 노후하게 되어 기초의 보강이 필요하게 된다.The steel tower is a structure where safety is important. As the time passes, it becomes aged due to the influence of the wind speed and it is necessary to reinforce the foundation.

그렇기 때문에 주기적으로 안정성을 검토하게 되고, 우리나라 기준으로 1988년 6월 이전 시공된 철탑 중 2015년 이전까지 보강 완료된 철탑 기초는 4,324기이며, 그 이후로도 보강을 필요로 하는 철탑은 4,220기가 된다.Therefore, it is periodically considered stability. In Korea, the number of steel towers completed before June of 1988 is 4,324, and the number of steel towers that need reinforcement is 4,220.

그런데, 철탑 기초를 보강하기 위해서는 기초의 제원이 파악되어야 하는데, 보강을 필요로 하는 철탑 4,220기 중 제원이 확보되지 않는 철탑이 2,306기에 달한다.However, in order to reinforce the foundation of the steel tower, the specifications of the foundation must be grasped. Of the 4,220 steel towers that require reinforcement, 2,306 steel towers are not secured.

철탑 기초규격을 비롯한 땅 하부를 탐사할 수 있는 방법으로는 전기비저항 탐사, 탄성파 탐사, 전자 탐사 등이 존재한다.Electrical resistivity survey, seismic survey, and electromagnetic survey can be used to explore the underground of the pylon.

전기비저항 탐사를 수행할 경우, 철탑 기초 모양 및 크기를 정확히 판단할 수 없으며 탐사하는 데 넓은 부지가 필요하다.When conducting electrical resistivity survey, it is impossible to accurately determine the shape and size of the steel tower, and a large site is needed for exploration.

전자탐사일 경우, 철탑 기초는 전도성을 가지지 않기 때문에 탐사가 불가능하며, 탄성파 탐사는 신호가 철탑에 의해 간섭을 받기 때문에 정확한 결과를 획득하지 못한다.In the case of EM survey, the steel tower foundation is not conductive because it has no conductivity, and seismic surveys do not obtain accurate results because the signal is interfered by the steel towers.

즉, 기존 방식에 의해서는 철탑 기초의 모양 및 크기를 정확하게 판단하기 어려운 한계가 있다.That is, it is difficult to accurately determine the shape and size of the steel tower foundation by the existing method.

이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.The matters described in the background art are intended to aid understanding of the background of the invention and may include matters which are not known to the person of ordinary skill in the art.

한국공개특허공보 제10-2014-0049240호Korean Patent Publication No. 10-2014-0049240

본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 철탑 기초의 제원을 정확하게 예측하기 위한 방법을 제공하는 데 그 목적이 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for accurately predicting the specifications of a steel tower foundation.

본 발명의 일 관점에 의한 철탑 기초 제원 예측 방법은, 철탑을 지지하기 위해 매설된 기초의 주변에서 지중의 전기장을 측정하는 단계, 상기 전기장을 측정하는 단계에 의해 측정된 전기장으로부터 지중의 전기저항에 대한 관계식을 산출하는 단계 및 상기 측정된 전기장과 상기 전기저항에 대한 관계식을 통해 상기 기초의 제원을 도출하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method for predicting a steel tower base material, comprising the steps of measuring an electric field of the earth at the periphery of a foundation buried for supporting a steel tower, measuring an electric resistance of the ground from an electric field measured by measuring the electric field And deriving a specification of the base through a relational expression for the measured electric field and the electric resistance.

상기 지중의 전기장을 측정하는 단계는, 상기 기초를 중심으로 좌우측으로 평행하고 동일한 길이의 측선을 구축하는 단계, 상기 측선에 의한 양 측점에 각각 복수의 센서를 설치하는 단계 및 상기 센서를 통해 전기장을 측정하는 단계를 포함하는 것을 특징으로 한다.The step of measuring the ground electric field includes the steps of: constructing a sidewall parallel to the left and right sides of the foundation, having the same length; installing a plurality of sensors at each of the two points by the sidewall; And a step of measuring the temperature.

그리고, 상기 기초가 심형 기초인 경우 상기 센서는 각 측점당 5개인 것을 특징으로 한다.And the sensor is five per side point when the base is a heart base.

또한, 상기 기초가 L형 기초인 경우 상기 센서는 각 측점당 7개인 것을 특징으로 한다.Further, when the base is an L-shaped base, the sensor is characterized by 7 per side point.

한편, 상기 각 측점을 중심을 설치되는 복수의 센서는 서로 0.5m 이상 이격되게 설치되는 것을 특징으로 한다.The plurality of sensors provided at the centers of the respective points are spaced apart from each other by at least 0.5 m.

이러한 상기 전기저항에 대한 관계식은 상기 기초가 존재하지 않을 때의 전류, 상기 기초의 면적에 해당하는 전류 및 상기 기초의 재질을 고려한 전류의 관계로부터 도출되는 것을 특징으로 한다.The relational expression for the electrical resistance is derived from the relationship between the current when the base is not present, the current corresponding to the area of the base, and the current considering the base material.

그래서, 상기 전기저항에 대한 관계식은 흙의 전기전도도, 상기 기초의 전기전도도 및 상기 흙의 유전율과 상기 기초의 유전율의 비를 변수로서 포함하는 것을 특징으로 한다.Thus, the relational expression for the electric resistance is characterized by including the electric conductivity of the soil, the electric conductivity of the foundation, and the ratio of the permittivity of the soil and the permittivity of the foundation as variables.

본 발명의 다른 일 관점에 의한 철탑 기초 제원 예측 방법은, 철탑을 지지하기 위해 매설된 기초의 주변에서 전기장을 측정하여 측정된 전기장으로부터 지중의 전기저항에 대한 관계식을 산출함으로써, 산출된 상기 전기저항에 대한 관계식을 통해 상기 기초의 제원을 도출하되, 상기 기초가 심형 기초인 경우 산출되는 상기 전기저항에 대한 관계식은 하기 식으로 표현되는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of predicting a steel tower base material, comprising: measuring an electric field at a periphery of a foundation buried for supporting a steel tower; calculating a relational expression for the electric resistance in the ground from the measured electric field; The relation of the electric resistance calculated in the case where the base is the core base is expressed by the following equation.

Figure 112017053419644-pat00001
Figure 112017053419644-pat00001

Figure 112017053419644-pat00002
Figure 112017053419644-pat00002

(여기서,

Figure 112017053419644-pat00003
은 전기저항,
Figure 112017053419644-pat00004
는 전기장 측정 센서의 반지름,
Figure 112017053419644-pat00005
은 흙의 전기전도도,
Figure 112017053419644-pat00006
는 심형 기초의 전기전도도,
Figure 112017053419644-pat00007
은 전기장 측정을 위한 두 센서 사이 거리,
Figure 112017053419644-pat00008
는 흙의 유전율(
Figure 112017053419644-pat00009
)과 심형 기초의 유전율(
Figure 112017053419644-pat00010
)의 비,
Figure 112017053419644-pat00011
,
Figure 112017053419644-pat00012
는 심형 기초의 모양 변수임.)(here,
Figure 112017053419644-pat00003
Electrical resistance,
Figure 112017053419644-pat00004
The radius of the electric field measurement sensor,
Figure 112017053419644-pat00005
The electrical conductivity of the soil,
Figure 112017053419644-pat00006
Is the electrical conductivity of the heart base,
Figure 112017053419644-pat00007
The distance between two sensors for electric field measurement,
Figure 112017053419644-pat00008
Is the dielectric constant of soil
Figure 112017053419644-pat00009
) And the dielectric constant of the heart base
Figure 112017053419644-pat00010
),
Figure 112017053419644-pat00011
,
Figure 112017053419644-pat00012
Is the shape parameter of the heart base.)

그리고, 본 발명의 다른 일 관점에 의한 철탑 기초 제원 예측 방법은, 철탑을 지지하기 위해 매설된 기초의 주변에서 전기장을 측정하여 측정된 전기장으로부터 지중의 전기저항에 대한 관계식을 산출함으로써, 산출된 상기 전기저항에 대한 관계식을 통해 상기 기초의 제원을 도출하되, 상기 기초가 L형 기초인 경우 산출되는 상기 전기저항에 대한 관계식은 하기 식으로 표현되는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method for predicting a steel tower base material, comprising the steps of: measuring an electric field at a periphery of a foundation buried in order to support a steel tower; calculating a relational expression for the electric resistance in the ground from the measured electric field; And the relationship of the electric resistance calculated when the base is the L-shaped base is expressed by the following equation.

Figure 112017053419644-pat00013
Figure 112017053419644-pat00013

Figure 112017053419644-pat00014
Figure 112017053419644-pat00014

(여기서,

Figure 112017053419644-pat00015
은 전기저항,
Figure 112017053419644-pat00016
는 전기장 측정 센서의 반지름,
Figure 112017053419644-pat00017
은 흙의 전기전도도,
Figure 112017053419644-pat00018
는 L형 기초의 전기전도도,
Figure 112017053419644-pat00019
은 전기장 측정을 위한 두 센서 사이 거리,
Figure 112017053419644-pat00020
는 흙의 유전율(
Figure 112017053419644-pat00021
)과 L형 기초의 유전율(
Figure 112017053419644-pat00022
)의 비,
Figure 112017053419644-pat00023
,
Figure 112017053419644-pat00024
,
Figure 112017053419644-pat00025
,
Figure 112017053419644-pat00026
는 L형 기초의 모양 변수임.)(here,
Figure 112017053419644-pat00015
Electrical resistance,
Figure 112017053419644-pat00016
The radius of the electric field measurement sensor,
Figure 112017053419644-pat00017
The electrical conductivity of the soil,
Figure 112017053419644-pat00018
Is the electrical conductivity of the L-shaped base,
Figure 112017053419644-pat00019
The distance between two sensors for electric field measurement,
Figure 112017053419644-pat00020
Is the dielectric constant of soil
Figure 112017053419644-pat00021
) And the dielectric constant of the L-shaped base
Figure 112017053419644-pat00022
),
Figure 112017053419644-pat00023
,
Figure 112017053419644-pat00024
,
Figure 112017053419644-pat00025
,
Figure 112017053419644-pat00026
Is the shape parameter of the L-shaped foundation.)

본 발명의 철탑 기초 제원 예측 방법에 의하면, 철탑 주변에서 전기저항값을 측정하여 대략적인 철탑 기초의 근입 깊이와 모양을 산정할 수 있다.According to the method of predicting the steel tower basic specification of the present invention, it is possible to estimate the approximate depth and shape of the steel tower foundation by measuring the electric resistance value around the steel tower.

그래서, 기존에 예측할 수 없었던 심형 기초 및 L형 기초에 대한 전기장 해석을 통해 철탑 기초의 근입 깊이와 모양의 예측이 가능하여 이를 토대로 철탑 기초의 보강공사를 수행할 수 있게 한다.Therefore, it is possible to predict the penetration depth and shape of the foundation of the steel tower through the electric field analysis on the foundation of the heart and the foundation of the L type, which can not be predicted in the past, so that the reinforcement work of the steel tower base can be performed.

도 1은 심형 기초의 제원을 예측하는 방법을 설명하기 위해 도시한 것이다.
도 2는 L형 기초의 제원을 예측하는 방법을 설명하기 위해 도시한 것이다.
FIG. 1 is a diagram for explaining a method of predicting the shape of a heart base.
Fig. 2 is a view for explaining a method of predicting the specifications of the L-shaped foundation.

본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the present invention, operational advantages of the present invention, and objects achieved by the practice of the present invention, reference should be made to the accompanying drawings and the accompanying drawings which illustrate preferred embodiments of the present invention.

본 발명의 바람직한 실시 예를 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지의 기술이나 반복적인 설명은 그 설명을 줄이거나 생략하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In describing the preferred embodiments of the present invention, a description of known or repeated descriptions that may unnecessarily obscure the gist of the present invention will be omitted or omitted.

본 발명에 의한 철탑 기초 제원 예측 방법은 먼저 철탑 기초를 중심으로 좌우측으로 평행하고 동일한 길이의 측선을 구축한다.In the method of predicting a steel tower base material according to the present invention, first, a sidewall is formed parallel to the left and right sides of the base of the steel tower and having the same length.

그 다음, 양 측점에 각각 복수의 센서를 설치한다.Then, a plurality of sensors are provided on each of the two points.

센서는 심형 기초의 경우 각 측점당 5개, L형 기초의 경우 각 측점당 7개 정도로 설치하여 복수의 데이터를 계측한다.The sensor is installed at 5 points for each point on the core foundation and 7 points for each point on the L-type foundation, and measures a plurality of data.

각 측점을 중심으로 설치되는 복수의 센서는 주변 영향을 고려하여 0.5m 이상씩 이격되는 것이 바람직하다.It is preferable that a plurality of sensors installed around each point are spaced apart by 0.5 m or more considering the influence of the surroundings.

설치된 센서를 통해서 전기장을 측정하고, 측정된 전기장으로부터 지중의 전기저항을 이론적으로 산출한다.The electric field is measured through the installed sensor, and the electric resistance of the ground is theoretically calculated from the measured electric field.

그리고, 산출된 전기저항식으로부터 역해석을 수행하여 기초의 여러 제원을 도출한다.Then, inverse analysis is performed from the calculated electric resistance equation to derive various specifications of the foundation.

도 1 및 도 2는 측정된 전기장으로부터 전기저항식을 산출하는 방법을 설명하기 위한 도시로서, 도 1은 심형 기초의 제원을 예측하기 위한 방법이며, 도 2는 L형 기초의 제원을 예측하기 위한 방법이다.1 and 2 are diagrams for explaining a method of calculating an electric resistance equation from a measured electric field, wherein Fig. 1 is a method for predicting a parameter of a heart base, Fig. 2 is a graph for predicting parameters of an L- Method.

먼저, 도 1을 참조하여 심형 기초의 제원 산출을 설명하기로 한다.First, with reference to FIG. 1, description will be given of the specification of the heart base.

전류(I)는 시간이 경과하는 동안에 임의의 단면적(ds)을 통과하는 전하량을 의미하며, 수학식 1과 같다.(Gauss'law)The current I means the amount of charge passing through an arbitrary cross-sectional area ds during the elapse of time, and is expressed by the following equation (1): Gauss'law =

Figure 112017053419644-pat00027
Figure 112017053419644-pat00027

여기서,

Figure 112017053419644-pat00028
는 전기전도도,
Figure 112017053419644-pat00029
는 전기장이다.here,
Figure 112017053419644-pat00028
Lt; / RTI >
Figure 112017053419644-pat00029
Is an electric field.

수학식 1을 도 1의 심형 기초에 적용하면 수학식 2와 같다.Equation (1) is applied to the foundations of the heart in Fig.

Figure 112017053419644-pat00030
Figure 112017053419644-pat00030

여기서,

Figure 112017053419644-pat00031
은 흙의 전기전도도,
Figure 112017053419644-pat00032
은 흙에서 발생하는 전기장,
Figure 112017053419644-pat00033
는 심형 기초의 전기전도도,
Figure 112017053419644-pat00034
는 심형 기초에서 발생하는 전기장,
Figure 112017053419644-pat00035
은 두 센서를 연결한 선에서 흙 내부 임의의 점까지 거리이다.here,
Figure 112017053419644-pat00031
The electrical conductivity of the soil,
Figure 112017053419644-pat00032
The electric field generated from the soil,
Figure 112017053419644-pat00033
Is the electrical conductivity of the heart base,
Figure 112017053419644-pat00034
Is an electric field generated at the base of the heart,
Figure 112017053419644-pat00035
Is the distance from the line connecting the two sensors to any point in the soil.

수학식 2의 첫 번째 항은 심형 기초가 존재하지 않을 때 전기장 해석식이며, 두 번째 항은 심형 기초 면적만큼의 전류량이며, 세 번째 항은 심형 기초 재질(

Figure 112017053419644-pat00036
)을 고려한 전류량을 의미한다.The first term in Equation 2 is the electric field analysis equation when there is no heart base, the second term is the amount of current in the core base area, and the third term is the heart base material
Figure 112017053419644-pat00036
) Is taken into consideration.

흙에서 발생하는 전기장은 수학식 3과 같으며, 심형 기초에서 발생하는 전기장과 흙에서 발생하는 전기장의 관계는 수학식 4와 같다.The electric field generated from the soil is expressed by Equation (3), and the relationship between the electric field generated in the core base and the electric field generated in the soil is expressed by Equation (4).

Figure 112017053419644-pat00037
Figure 112017053419644-pat00037

Figure 112017053419644-pat00038
Figure 112017053419644-pat00038

여기서,

Figure 112017053419644-pat00039
은 흙의 유전율,
Figure 112017053419644-pat00040
는 전하량,
Figure 112017053419644-pat00041
은 센서에서 흙 내부 임의 점까지 거리,
Figure 112017053419644-pat00042
은 두 센서 사이 거리, 벡터
Figure 112017053419644-pat00043
은 방향의 수직 벡터,
Figure 112017053419644-pat00044
는 흙의 유전율(
Figure 112017053419644-pat00045
)과 심형 기초의 유전율(
Figure 112017053419644-pat00046
)의 비이다.here,
Figure 112017053419644-pat00039
The dielectric constant of soil,
Figure 112017053419644-pat00040
The charge amount,
Figure 112017053419644-pat00041
The distance from the sensor to any point in the soil,
Figure 112017053419644-pat00042
Is the distance between two sensors, vector
Figure 112017053419644-pat00043
A vertical vector in the direction of silver,
Figure 112017053419644-pat00044
Is the dielectric constant of soil
Figure 112017053419644-pat00045
) And the dielectric constant of the heart base
Figure 112017053419644-pat00046
).

수학식 3에서 2배를 한 이유는 흙 내부의 임의의 점이 source 센서와 receiver 센서에서 각각 영향을 받기 때문이다.The reason for doubling in Equation 3 is that any point in the soil is affected by the source sensor and the receiver sensor, respectively.

수학식 2의 첫 번째 항에 수학식 3과 수학식 4를 적용하면 수학식 5와 같다.Equation (3) and Equation (4) are applied to the first term of Equation (2).

Figure 112017053419644-pat00047
Figure 112017053419644-pat00047

전하량(

Figure 112017053419644-pat00048
)는 기존 이론식에 의해서 수학식 6과 같으며 수학식 6을 수학식 5에 대입하여 수학식 2를 정리하면 수학식 7과 같다.Charge amount
Figure 112017053419644-pat00048
) Is expressed by Equation (6) according to the existing equation, and Equation (6) is substituted into Equation (5), and Equation (2) is summarized as Equation (7).

Figure 112017053419644-pat00049
Figure 112017053419644-pat00049

Figure 112017053419644-pat00050
Figure 112017053419644-pat00050

여기서,

Figure 112017053419644-pat00051
는 센서의 반지름,
Figure 112017053419644-pat00052
는 전압이다.here,
Figure 112017053419644-pat00051
The radius of the sensor,
Figure 112017053419644-pat00052
Is the voltage.

수학식 7에 수학식 4를 대입하여 정리하면 수학식 8과 같다.Equation (7) can be substituted into Equation (7) to obtain Equation (8).

Figure 112017053419644-pat00053
Figure 112017053419644-pat00053

수학식 8의 적분항에 수학식 3 및 수학식 6을 대입하면 수학식 8은 수학식 9와 같이 표현 가능하다.Substituting Equations (3) and (6) into the integral term of Equation (8), Equation (8) can be expressed as Equation (9).

Figure 112017053419644-pat00054
Figure 112017053419644-pat00054

여기서,

Figure 112017053419644-pat00055
,
Figure 112017053419644-pat00056
는 도 1의 심형 기초모양 변수이다.here,
Figure 112017053419644-pat00055
,
Figure 112017053419644-pat00056
Is the heart shape basic parameter of FIG.

따라서, 수학식 9를 전기저항(

Figure 112017053419644-pat00057
) 식으로 표현하면 수학식 10과 같다.Thus, equation (9)
Figure 112017053419644-pat00057
) ≪ / RTI >

Figure 112017053419644-pat00058
Figure 112017053419644-pat00058

Figure 112017053419644-pat00059
Figure 112017053419644-pat00059

수학식 10의 변수는

Figure 112017053419644-pat00060
,
Figure 112017053419644-pat00061
,
Figure 112017053419644-pat00062
,
Figure 112017053419644-pat00063
,
Figure 112017053419644-pat00064
,
Figure 112017053419644-pat00065
,
Figure 112017053419644-pat00066
,
Figure 112017053419644-pat00067
이다.The variable in equation (10)
Figure 112017053419644-pat00060
,
Figure 112017053419644-pat00061
,
Figure 112017053419644-pat00062
,
Figure 112017053419644-pat00063
,
Figure 112017053419644-pat00064
,
Figure 112017053419644-pat00065
,
Figure 112017053419644-pat00066
,
Figure 112017053419644-pat00067
to be.

이 중에서

Figure 112017053419644-pat00068
는 아는 변수이며,
Figure 112017053419644-pat00069
에 따라
Figure 112017053419644-pat00070
을 5번 측정하여 얻고자 하는 변수
Figure 112017053419644-pat00071
,
Figure 112017053419644-pat00072
,
Figure 112017053419644-pat00073
,
Figure 112017053419644-pat00074
,
Figure 112017053419644-pat00075
를 역해석을 통해 획득 가능하다.among these
Figure 112017053419644-pat00068
Is a known variable,
Figure 112017053419644-pat00069
Depending on the
Figure 112017053419644-pat00070
To be obtained by measuring 5 times
Figure 112017053419644-pat00071
,
Figure 112017053419644-pat00072
,
Figure 112017053419644-pat00073
,
Figure 112017053419644-pat00074
,
Figure 112017053419644-pat00075
Can be obtained through inverse analysis.

다음으로, 도 2를 참조하여 L형 기초의 제원 산출을 설명한다.Next, the specification calculation of the L-shaped base will be described with reference to Fig.

L형 기초가 지하 내부에 존재할 때 흐르는 전류는 수학식 2를 수정한 수학식 12와 같다.The current flowing when the L-shaped foundation exists in the underground is expressed by Equation (12), which is a modification of Equation (2).

Figure 112017053419644-pat00076
Figure 112017053419644-pat00076

여기서,

Figure 112017053419644-pat00077
은 L형 기초의 전기전도도,
Figure 112017053419644-pat00078
은 L형 기초에서 발생하는 전기장이다.here,
Figure 112017053419644-pat00077
The electrical conductivity of the L-shaped base,
Figure 112017053419644-pat00078
Is an electric field generated at the L-shaped base.

수학식 12의 첫 번째 항은 L형 기초가 존재하지 않을 때 전기장 해석식이며, 두 번째 항은 L형 기초 면적만큼의 전류량이며, 세 번째 항은 L형 기초 재질(

Figure 112017053419644-pat00079
)을 고려한 전류량을 의미한다.The first term in equation (12) is the electric field analysis equation when there is no L-shaped base, the second term is the amount of current for the L-shaped base area, and the third term is the L-
Figure 112017053419644-pat00079
) Is taken into consideration.

흙에서 발생하는 전기장은 수학식 3과 같으며, L형 기초에서 발생하는 전기장과 흙에서 발생하는 전기장의 관계는 수학식 13과 같다.The electric field generated from the soil is expressed by Equation (3), and the relationship between the electric field generated in the L-shaped foundation and the electric field generated in the soil is expressed by Equation (13).

Figure 112017053419644-pat00080
Figure 112017053419644-pat00080

여기서,

Figure 112017053419644-pat00081
는 흙의 유전율(
Figure 112017053419644-pat00082
)과 L형 기초의 유전율(
Figure 112017053419644-pat00083
)의 비이다.here,
Figure 112017053419644-pat00081
Is the dielectric constant of soil
Figure 112017053419644-pat00082
) And the dielectric constant of the L-shaped base
Figure 112017053419644-pat00083
).

수학식 12의 첫 번째 항에 수학식 5와 같으며 정리하면 수학식 14와 같다.The first term of Equation (12) is expressed by Equation (5).

Figure 112017053419644-pat00084
Figure 112017053419644-pat00084

수학식 14에 수학식 13을 대입하여 정리하면 수학식 15과 같다.Equation (13) can be substituted into Equation (14) to obtain Equation (15).

Figure 112017053419644-pat00085
Figure 112017053419644-pat00085

수학식 15의 적분항은 수학식 16과 같이 표현 가능하다.The integral term in Equation (15) can be expressed as Equation (16).

Figure 112017053419644-pat00086
Figure 112017053419644-pat00086

여기서,

Figure 112017053419644-pat00087
,
Figure 112017053419644-pat00088
,
Figure 112017053419644-pat00089
,
Figure 112017053419644-pat00090
는 도 2의 L형 기초모양 변수이다.here,
Figure 112017053419644-pat00087
,
Figure 112017053419644-pat00088
,
Figure 112017053419644-pat00089
,
Figure 112017053419644-pat00090
Is the L-shaped basic shape variable of FIG.

따라서, 수학식 16을 전기저항(

Figure 112017053419644-pat00091
) 식으로 표현하면 수학식 17과 같다.Therefore, equation (16)
Figure 112017053419644-pat00091
) ≪ / RTI >

Figure 112017053419644-pat00092
Figure 112017053419644-pat00092

Figure 112017053419644-pat00093
Figure 112017053419644-pat00093

수학식 18의 변수는

Figure 112017053419644-pat00094
,
Figure 112017053419644-pat00095
,
Figure 112017053419644-pat00096
,
Figure 112017053419644-pat00097
,
Figure 112017053419644-pat00098
,
Figure 112017053419644-pat00099
,
Figure 112017053419644-pat00100
,
Figure 112017053419644-pat00101
,
Figure 112017053419644-pat00102
,
Figure 112017053419644-pat00103
이다.The variable in equation (18)
Figure 112017053419644-pat00094
,
Figure 112017053419644-pat00095
,
Figure 112017053419644-pat00096
,
Figure 112017053419644-pat00097
,
Figure 112017053419644-pat00098
,
Figure 112017053419644-pat00099
,
Figure 112017053419644-pat00100
,
Figure 112017053419644-pat00101
,
Figure 112017053419644-pat00102
,
Figure 112017053419644-pat00103
to be.

이 중에서

Figure 112017053419644-pat00104
는 아는 변수이며,
Figure 112017053419644-pat00105
에 따라 을 7번 측정하여 얻고자 하는 변수
Figure 112017053419644-pat00106
,
Figure 112017053419644-pat00107
,
Figure 112017053419644-pat00108
,
Figure 112017053419644-pat00109
,
Figure 112017053419644-pat00110
,
Figure 112017053419644-pat00111
,
Figure 112017053419644-pat00112
,
Figure 112017053419644-pat00113
를 역해석을 통해 획득 가능하다.among these
Figure 112017053419644-pat00104
Is a known variable,
Figure 112017053419644-pat00105
The number of times to measure 7
Figure 112017053419644-pat00106
,
Figure 112017053419644-pat00107
,
Figure 112017053419644-pat00108
,
Figure 112017053419644-pat00109
,
Figure 112017053419644-pat00110
,
Figure 112017053419644-pat00111
,
Figure 112017053419644-pat00112
,
Figure 112017053419644-pat00113
Can be obtained through inverse analysis.

이상과 같은 본 발명은 예시된 도면을 참조하여 설명되었지만, 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형될 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이며, 본 발명의 권리범위는 첨부된 특허청구범위에 기초하여 해석되어야 할 것이다.While the present invention has been described with reference to the exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It is obvious to those who have. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (9)

삭제delete 탑을 지지하기 위해 매설된 기초의 주변에서 지중의 전기장을 측정하는 단계;
상기 전기장을 측정하는 단계에 의해 측정된 전기장으로부터 지중의 전기저항에 대한 관계식을 산출하는 단계; 및
상기 측정된 전기장과 상기 전기저항에 대한 관계식을 통해 상기 기초의 제원을 도출하는 단계를 포함하고,
상기 지중의 전기장을 측정하는 단계는,
상기 기초를 중심으로 좌우측으로 평행하고 동일한 길이의 측선을 구축하는 단계;
상기 측선에 의한 양 측점에 각각 복수의 센서를 설치하는 단계; 및
상기 센서를 통해 전기장을 측정하는 단계를 포함하며,
상기 전기저항에 대한 관계식은 상기 기초가 존재하지 않을 때의 전류, 상기 기초의 면적에 해당하는 전류 및 상기 기초의 재질을 고려한 전류의 관계로부터 도출되는 것을 특징으로 하는,
철탑 기초 제원 예측 방법.
Measuring an electric field in the ground around the foundation embedded to support the tower;
Calculating a relational expression for the electric resistance in the ground from the electric field measured by measuring the electric field; And
And deriving a specification of the foundation through a relational expression for the measured electric field and the electric resistance,
The step of measuring the ground electric field includes:
Constructing a sidewall of parallel and parallel length to the left and right about the foundation;
Installing a plurality of sensors at two points on the side line; And
Measuring an electric field through the sensor,
Wherein the relational expression for the electrical resistance is derived from the relationship between the current when the base is not present, the current corresponding to the area of the base, and the current taking into account the material of the base.
Prediction of basic specifications of steel tower.
청구항 2에 있어서,
상기 기초가 심형 기초인 경우 상기 센서는 각 측점당 5개인 것을 특징으로 하는,
철탑 기초 제원 예측 방법.
The method of claim 2,
Characterized in that the sensor is 5 per side point if the base is a heart base.
Prediction of basic specifications of steel tower.
청구항 2에 있어서,
상기 기초가 L형 기초인 경우 상기 센서는 각 측점당 7개인 것을 특징으로 하는,
철탑 기초 제원 예측 방법.
The method of claim 2,
And said sensor is 7 per side point when said base is an L-shaped base.
Prediction of basic specifications of steel tower.
청구항 2에 있어서,
상기 각 측점을 중심을 설치되는 복수의 센서는 서로 0.5m 이상 이격되게 설치되는 것을 특징으로 하는,
철탑 기초 제원 예측 방법.
The method of claim 2,
Wherein a plurality of sensors provided at centers of the respective points are spaced apart from each other by at least 0.5 m.
Prediction of basic specifications of steel tower.
삭제delete 청구항 2에 있어서,
상기 전기저항에 대한 관계식은 흙의 전기전도도, 상기 기초의 전기전도도 및 상기 흙의 유전율과 상기 기초의 유전율의 비를 변수로서 포함하는 것을 특징으로 하는,
철탑 기초 제원 예측 방법.
The method of claim 2,
Wherein the relational expression for the electrical resistance comprises as a parameter the electrical conductivity of the soil, the electrical conductivity of the foundation, and the ratio of the dielectric constant of the soil to the dielectric constant of the foundation.
Prediction of basic specifications of steel tower.
철탑을 지지하기 위해 매설된 기초의 주변에서 전기장을 측정하여 측정된 전기장으로부터 지중의 전기저항에 대한 관계식을 산출함으로써, 산출된 상기 전기저항에 대한 관계식을 통해 상기 기초의 제원을 도출하되,
상기 기초가 심형 기초인 경우 산출되는 상기 전기저항에 대한 관계식은 하기 식으로 표현되는 것을 특징으로 하는 철탑 기초 제원 예측 방법.
Figure 112017053419644-pat00114

Figure 112017053419644-pat00115

(여기서,
Figure 112017053419644-pat00116
은 전기저항, 는 전기장 측정 센서의 반지름,
Figure 112017053419644-pat00118
은 흙의 전기전도도,
Figure 112017053419644-pat00119
는 심형 기초의 전기전도도,
Figure 112017053419644-pat00120
은 전기장 측정을 위한 두 센서 사이 거리,
Figure 112017053419644-pat00121
는 흙의 유전율(
Figure 112017053419644-pat00122
)과 심형 기초의 유전율(
Figure 112017053419644-pat00123
)의 비,
Figure 112017053419644-pat00124
,
Figure 112017053419644-pat00125
는 심형 기초의 모양 변수임.)
The electric field is measured at the periphery of the foundation buried in order to support the steel tower, and a relational expression for the electric resistance in the ground is calculated from the measured electric field to derive a specification of the foundation through the relational expression for the calculated electric resistance,
Wherein the relational expression for the electric resistance calculated when the foundation is a core foundation is expressed by the following equation.
Figure 112017053419644-pat00114

Figure 112017053419644-pat00115

(here,
Figure 112017053419644-pat00116
Electrical resistance, The radius of the electric field measurement sensor,
Figure 112017053419644-pat00118
The electrical conductivity of the soil,
Figure 112017053419644-pat00119
Is the electrical conductivity of the heart base,
Figure 112017053419644-pat00120
The distance between two sensors for electric field measurement,
Figure 112017053419644-pat00121
Is the dielectric constant of soil
Figure 112017053419644-pat00122
) And the dielectric constant of the heart base
Figure 112017053419644-pat00123
),
Figure 112017053419644-pat00124
,
Figure 112017053419644-pat00125
Is the shape parameter of the heart base.)
철탑을 지지하기 위해 매설된 기초의 주변에서 전기장을 측정하여 측정된 전기장으로부터 지중의 전기저항에 대한 관계식을 산출함으로써, 산출된 상기 전기저항에 대한 관계식을 통해 상기 기초의 제원을 도출하되,
상기 기초가 L형 기초인 경우 산출되는 상기 전기저항에 대한 관계식은 하기 식으로 표현되는 것을 특징으로 하는 철탑 기초 제원 예측 방법.
Figure 112017053419644-pat00126

Figure 112017053419644-pat00127

(여기서,
Figure 112017053419644-pat00128
은 전기저항,
Figure 112017053419644-pat00129
는 전기장 측정 센서의 반지름,
Figure 112017053419644-pat00130
은 흙의 전기전도도,
Figure 112017053419644-pat00131
는 L형 기초의 전기전도도,
Figure 112017053419644-pat00132
은 전기장 측정을 위한 두 센서 사이 거리,
Figure 112017053419644-pat00133
는 흙의 유전율(
Figure 112017053419644-pat00134
)과 L형 기초의 유전율(
Figure 112017053419644-pat00135
)의 비,
Figure 112017053419644-pat00136
,
Figure 112017053419644-pat00137
,
Figure 112017053419644-pat00138
,
Figure 112017053419644-pat00139
는 L형 기초의 모양 변수임.)
The electric field is measured at the periphery of the foundation buried in order to support the steel tower, and a relational expression for the electric resistance in the ground is calculated from the measured electric field to derive a specification of the foundation through the relational expression for the calculated electric resistance,
Wherein the relational expression for the electrical resistance calculated when the foundation is an L-shaped foundation is expressed by the following equation.
Figure 112017053419644-pat00126

Figure 112017053419644-pat00127

(here,
Figure 112017053419644-pat00128
Electrical resistance,
Figure 112017053419644-pat00129
The radius of the electric field measurement sensor,
Figure 112017053419644-pat00130
The electrical conductivity of the soil,
Figure 112017053419644-pat00131
Is the electrical conductivity of the L-shaped base,
Figure 112017053419644-pat00132
The distance between two sensors for electric field measurement,
Figure 112017053419644-pat00133
Is the dielectric constant of soil
Figure 112017053419644-pat00134
) And the dielectric constant of the L-shaped base
Figure 112017053419644-pat00135
),
Figure 112017053419644-pat00136
,
Figure 112017053419644-pat00137
,
Figure 112017053419644-pat00138
,
Figure 112017053419644-pat00139
Is the shape parameter of the L-shaped foundation.)
KR1020170069557A 2017-06-05 2017-06-05 Method for predicting data of tower footing KR101928193B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170069557A KR101928193B1 (en) 2017-06-05 2017-06-05 Method for predicting data of tower footing
JP2018548736A JP6716710B2 (en) 2017-06-05 2017-06-23 Steel tower basic specifications prediction method
CN201780013047.3A CN109392305B (en) 2017-06-05 2017-06-23 Method for predicting size of steel tower foundation
PCT/KR2017/006624 WO2018225888A1 (en) 2017-06-05 2017-06-23 Method for predicting specification of steel tower foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170069557A KR101928193B1 (en) 2017-06-05 2017-06-05 Method for predicting data of tower footing

Publications (1)

Publication Number Publication Date
KR101928193B1 true KR101928193B1 (en) 2018-12-11

Family

ID=64567300

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170069557A KR101928193B1 (en) 2017-06-05 2017-06-05 Method for predicting data of tower footing

Country Status (4)

Country Link
JP (1) JP6716710B2 (en)
KR (1) KR101928193B1 (en)
CN (1) CN109392305B (en)
WO (1) WO2018225888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210091618A (en) 2020-01-14 2021-07-22 한국전력공사 Apparatus and method for predicting data of tower footing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362860B (en) * 2019-06-06 2023-05-09 国网江西省电力有限公司电力科学研究院 Electric field measuring instrument bracket optimization method based on finite element simulation and differential evolution algorithm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402062B1 (en) * 2001-01-11 2003-10-17 한빛이디에스(주) Apparatus for measuring ground resistance of transmission tower posts
KR100734821B1 (en) 2005-10-31 2007-07-03 한국전력공사 Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System
KR100968046B1 (en) 2008-09-30 2010-07-07 한국전력공사 Method for ground resistance measurement of transmission tower equipped with overhead groundwires
JP2011112652A (en) 2009-11-24 2011-06-09 Fluke Corp Method of measuring earth ground resistance of pylon using single clamp
KR101412748B1 (en) 2014-04-29 2014-07-02 (주)화신파워텍 System for ground resistance measurement of transmission tower equipped with overhead ground wires

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641983B2 (en) * 1988-04-18 1994-06-01 動力炉・核燃料開発事業団 Underground exploration method and equipment using commercial frequency signals
JPH11120476A (en) * 1997-10-20 1999-04-30 Chinetsu Gijutsu Kaihatsu Kk Underground monitoring data transmission method and device therefor
JPH11190778A (en) * 1997-12-26 1999-07-13 Mitsui Kinzoku Shigen Kaihatsu Kk Underground prospecting method and system using compact generator
FR2802298B1 (en) * 1999-12-14 2002-03-08 Cie Du Sol INJECTION COLUMN DIAMETER CONTROL METHOD
JP2002156460A (en) * 2000-11-20 2002-05-31 Sangaku Renkei Kiko Kyushu:Kk Electric searching method, electric searching device using the same, and land mine detecting device
JP4362646B2 (en) * 2001-07-06 2009-11-11 農工大ティー・エル・オー株式会社 Soil property observation equipment
JP5074117B2 (en) * 2007-07-24 2012-11-14 株式会社ユアテック Method and apparatus for measuring shape of buried concrete foundation
JP2011133301A (en) * 2009-12-24 2011-07-07 Taisei Kiso Sekkei Kk Method for surveying bottom depth of underground base structure
CN101871765A (en) * 2010-05-31 2010-10-27 江苏省电力公司南通供电公司 Linear flexible sensor for electricity-close early-warning of tower crane and yard-crane and device locking
US20150122531A1 (en) * 2013-11-01 2015-05-07 Carestream Health, Inc. Strain gauge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402062B1 (en) * 2001-01-11 2003-10-17 한빛이디에스(주) Apparatus for measuring ground resistance of transmission tower posts
KR100734821B1 (en) 2005-10-31 2007-07-03 한국전력공사 Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System
KR100968046B1 (en) 2008-09-30 2010-07-07 한국전력공사 Method for ground resistance measurement of transmission tower equipped with overhead groundwires
JP2011112652A (en) 2009-11-24 2011-06-09 Fluke Corp Method of measuring earth ground resistance of pylon using single clamp
KR101412748B1 (en) 2014-04-29 2014-07-02 (주)화신파워텍 System for ground resistance measurement of transmission tower equipped with overhead ground wires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210091618A (en) 2020-01-14 2021-07-22 한국전력공사 Apparatus and method for predicting data of tower footing

Also Published As

Publication number Publication date
WO2018225888A1 (en) 2018-12-13
CN109392305A (en) 2019-02-26
JP2019527780A (en) 2019-10-03
CN109392305B (en) 2020-10-30
JP6716710B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
KR101493231B1 (en) Integration system for interworking seismic instrumentation and electrical resistivity monit0ring and hydraulic structure monitoring method using the same
CN108957563B (en) Advanced geological detection system and detection method for tunnel construction
CN106960548B (en) Side slope geological disaster monitoring and early warning method and system
KR101919897B1 (en) Integration system for monit0ring hydraulic structure using integrated trigger and the method using the same
CN106770478B (en) A kind of lossless detection method of stability of earth dams
Ungureanu et al. Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites
CN103869173A (en) Method for measuring earth resistivity distribution from earth surface to underground tens of kilometers
CN106706029B (en) Soil body performance monitoring device for underground structure construction and working method thereof
CN103336298A (en) Method for acquiring and analyzing earthquake fracture area omen data
KR101928193B1 (en) Method for predicting data of tower footing
CN108195346B (en) Method for monitoring underground multi-level space surface settlement deformation in real time
US20170074910A1 (en) Method of using power grid as large antenna for geophysical imaging
US20200232102A1 (en) Method and system for autonomous measurement of transmission line EMF for pipeline cathodic protection systems
CN102767366A (en) High-resolution orientation resistivity side direction logging instrument and logging method
CN103499838A (en) Transient electromagnetic measuring device and recognizing method for anomalous body orientation recognition
KR101475155B1 (en) Method for predicting ground condition ahead of tunnel using electrical resistivity
RU2678535C1 (en) Method of monitoring state of diaphragm from boron-cutting alumina-cement concrete piles in earth dam by electrical tomography
Grecheneva et al. The method of selection of the key geodynamic objects
CN203480046U (en) Transient electromagnetic measuring device for anomalous body azimuth recognition
CN103728673B (en) A kind of tunnel model test device realizing many geophysical fields forward probe
CN113466930A (en) Micro-motion exploration method and device and electronic equipment
JP2011133301A (en) Method for surveying bottom depth of underground base structure
KR102660494B1 (en) Sinkhole measurement and prediction system
RU2568986C1 (en) Method of geological monitoring
KR20160031323A (en) method for detection of underground structure through measurement of electrical resistivity

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant