KR100734821B1 - Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System - Google Patents
Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System Download PDFInfo
- Publication number
- KR100734821B1 KR100734821B1 KR1020050103504A KR20050103504A KR100734821B1 KR 100734821 B1 KR100734821 B1 KR 100734821B1 KR 1020050103504 A KR1020050103504 A KR 1020050103504A KR 20050103504 A KR20050103504 A KR 20050103504A KR 100734821 B1 KR100734821 B1 KR 100734821B1
- Authority
- KR
- South Korea
- Prior art keywords
- tower
- resistance
- ground
- transmission
- measuring
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/20—Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/58—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
- H01R4/66—Connections with the terrestrial mass, e.g. earth plate, earth pin
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
가공지선을 분리하지 않은 운전 중인 송전계통의 탑각에서 송전철탑의 접지저항 측정방법에 있어서, 상기 탑각 1기에 대하여 유도전압(E1)을 발생시켜 유도전류(I1)를 흘리기 위해 구성한 측정장비인 변압기 회로의 내부저압(E0)과 내부전류(I0)를 이용하여 루프저항 측정치(E0/I0)를 구하는 제 1단계와 상기 탑각 4기로 분류되는 전류(I1 ~ I4) 측정치를 구하는 제 2단계와 상기 탑각간 거리(D)로부터 환산한 병렬효율(η)을 구하는 제 3단계와 상기 1, 2, 3단계로 단일 송전철탑의 접지저항을 산정하는 제 4단계로 구성되어 있다.In the measuring method of the ground resistance of the transmission tower at the tower angle of the transmission system in operation without separating the processing ground wire, measuring equipment configured to flow the induced current (I 1 ) by generating an induced voltage (E 1 ) for each of the tower angle. The first step of obtaining the loop resistance measurement (E 0 / I 0 ) using the internal low voltage (E 0 ) and the internal current (I 0 ) of the transformer circuit, and the current (I 1 to I 4 ) measurement classified into the top four angles. And a third step of obtaining a parallel efficiency (η) converted from the distance between the tower angles (D) and a fourth step of calculating the ground resistance of the single transmission tower in steps 1, 2 and 3. have.
송전계통, 송전철탑, 접지저항 Transmission system, transmission tower, grounding resistance
Description
도 1 은 가공지선을 분리한 후 철탑의 접지저항을 측정하는 회로1 is a circuit for measuring the ground resistance of the steel tower after separating the processing ground
도 2 는 철탑의 누설전류를 시험전류로 활용하여 측정하는 회로2 is a circuit measuring the leakage current of the steel tower as a test current
도 3 은 접지극 전위측정에 있어서 측정선 길이가 미치는 영향3 shows the effect of measuring line length on ground electrode potential measurement.
도 4 는 배전선로 다중접지계통에서 루프저항 측정회로4 is a loop resistance measurement circuit in a distribution line multiple ground system
도 5 는 유도결합에 의해 전원인가하는 등가회로5 is an equivalent circuit for applying power by inductive coupling.
도 6 은 탑각구조체의 면적과 같은 반구전극의 등가 반지름 산정도6 is an equivalent radius calculation of the hemispherical electrode equal to the area of the tower structure.
도 7 은 반구전극(탑각) 4개를 병렬연결했을 때의 반구전극 모델7 is a hemisphere electrode model when four hemisphere electrodes (top angles) are connected in parallel.
도 8 은 탑각간 이격거리에 따른 병렬효율(η) 계산결과8 shows the parallel efficiency (η) calculation result according to the separation distance between tower angles
도 9 는 운전 중인 송전선로에서 단일 송전철탑 접지극의 등가회로9 is an equivalent circuit of a single transmission tower ground electrode in a transmission line in operation;
도 10 은 도 9의 반구전극모델을 근사화한 회로모델FIG. 10 is a circuit model approximating the hemisphere electrode model of FIG.
도 11 은 운전 중인 송전계통에서 접지측정 등가회로도11 is an equivalent circuit diagram of ground measurement in a transmission system in operation
도 12 는 운전 중인 송전계통에서 송전철탑 컴퓨터 모델12 is a transmission tower computer model in the transmission system in operation
도 13 은 철탑 각 부분의 전류분포 ㄴ계산결과13 is a result of calculating the current distribution of each part of the steel tower
도 14 는 전원인가하는 탑각의 전류 계산치Fig. 14 is a current calculation value of the top angle to be applied.
도 15 는 전원인가 탑각의 인근 탑각의 전류 계산치Fig. 15 shows the current calculations of the adjacent tower angles of the powered-up tower angles.
도 16 은 전원인가 탑각의 대각선방향 탑각의 전류계산치Fig. 16 shows the current calculation value of the diagonal tower angle of the power supply tower angle.
본 발명은 운전 중인 송전계통에서 송전철탑의 접지저항을 측정하기 위한 방법에 관한 것이다.The present invention relates to a method for measuring the ground resistance of a transmission tower in a transmission system in operation.
종래의 측정방법으로는 도 1에서 보는 바와 같이 다중접지된 가공지선을 분리한 후 기지의 시험전류원을 주입하고 탑각전위를 측정하여 저항을 직접 측정하는 방법으로 저항측정을 위해 해당 선로를 휴전하여야 하므로 현실적으로 제약이 많은 문제점이 있었다.In the conventional measuring method, as shown in FIG. 1, after disconnecting the multi-grounded processing ground wire, a known test current source is injected and the top angle potential is measured to directly measure resistance. In reality, there were many problems.
또한 상기와 같은 문제점을 해결하기 위해 도 2와 같이 운전 중인 상태에서 측정이 가능한 가공지선을 분리하지 않고 간접 측정하는 방법으로 탑각 누설전류를 시험전류원으로 이용하고 탑각전위를 측정하여 저항을 산정하는 방법이 제시된 바 있지만 탑각 주변의 전위를 측정하기 위한 작업 및 측정선(기준전극)의 포설이 필요한 문제점이 있었다.In addition, in order to solve the problems described above, using the top-angle leakage current as a test current source and measuring the top-angle potential as an indirect measurement method without separating the processing ground wire that can be measured in the operating state as shown in FIG. Although this has been suggested, there was a problem in that work for measuring the potential around the top angle and laying of the measurement line (reference electrode) were required.
본 발명은 종래의 측정방법의 문제점을 해결하기 위하여 송전철탑의 탑각접지과 가공지선 다중접지에 의해 형성되는 루프(Loop)회로의 루프저항 측정치, 4개 탑각들로 분류되는 전류측정치 및 탑각간 거리로부터 산정한 탑각들 간의 병렬효율(η)을 이용하여 송전철탑의 접지저항을 산정하는 알고리즘을 제시하고자 한다. 이 방법은 종래의 배전선로 전주측정시 널리 이용되는 루프저항 측정방법에서와 같이 유도결합회로에 의해 시험전류를 인가하므로 시험전류 주입회로 또는 전류전극의 시공이 필요없을 뿐만 아니라 탑각의 전위측정을 위한 회로나 전극도 필요없어 불충분한 전위측정선 길이로 인한 측정오류가 생기지 않으며 측정작업도 간편해진다.The present invention is to solve the problem of the conventional measuring method from the loop resistance measurement of the loop circuit formed by the tower angle grounding of the transmission tower and multiple ground line of the overhead line, the current measurement value divided into four tower angles and the distance between the tower angles We propose an algorithm for estimating the ground resistance of a transmission tower using parallel efficiency (η) between the calculated tower angles. This method applies the test current by the inductive coupling circuit as in the loop resistance measurement method, which is widely used for the electric pole measurement of distribution lines. There is no need for circuits or electrodes, which eliminates measurement errors due to insufficient potential measuring line lengths and makes measurement simple.
본 발명은 가공지선을 분리하지 않은 운전 중인 송전계통의 탑각에서 송전철탑의 접지저항 측정방법에 있어서, 상기 탑각 1기에 대하여 유도전압(E1)을 발생시켜 유도전류(I1)를 흘리기 위해 구성한 측정장비인 변압기 회로의 내부저압(E0)과 내부전류(I0)를 이용하여 루프저항 측정치(E0/I0)를 구하는 제 1단계와 상기 탑각 4기로 분류되는 전류(I1 ~ I4) 측정치를 구하는 제 2단계와 상기 탑각간 거리(D)로부터 환산한 병렬효율(η)을 구하는 제 3단계와 상기 1, 2, 3단계로 단일 송전철탑의 접지저항을 산정하는 제 4단계로 구성되어 있다.The present invention is a method for measuring the ground resistance of a transmission tower at the tower angle of the transmission system in operation without separating the processing ground, it is configured to flow the induced current (I 1 ) by generating an induced voltage (E 1 ) for each of the tower angle. The first step of obtaining loop resistance measurement value (E 0 / I 0 ) using the internal low voltage (E 0 ) and internal current (I 0 ) of the transformer circuit, which is a measuring device, and the current (I 1 ~ I) 4 ) a second step of obtaining a measurement value and a third step of calculating parallel efficiency (η) converted from the distance between the tower angles (D) and a fourth step of calculating ground resistance of a single transmission tower in
도 1은 먼저 일반적인 접지저항(RT) 측정방법을 도 1과 2에서 설명하였다.1 illustrates a general method of measuring ground resistance (R T ) in FIGS. 1 and 2.
상기 도 1은 가공지선을 분리한 후 측정하는 방법으로 현실적으로 적용이 어렵기 때문에 상기 도 2의 누설전류를 이용한 측정법이 제안되었다. 상기 도 2의 방법은 탑각으로 상시에 흐르는 상기 누설전류(I)를 이용하므로 상기 도 1의 방법에서 전류주입회로가 생략되나, 상기 누설전류에 의한 탑각 전위상승(V)는 측정하여야 하므로 전위측정회로는 남게되는 문제점이 있었다. 1 is a method of measuring after separating the processing branch is difficult to apply in reality because the measurement method using the leakage current of FIG. 2 has been proposed. In the method of FIG. 2, the current injection circuit is omitted in the method of FIG. 1 since the leakage current I always flows at the top angle, but the top angle potential rise V due to the leakage current should be measured, thereby measuring the potential. The circuit had a problem that remains.
도 3은 접지극 전위측정에 있어서 측정선 길이가 미치는 영향을 나타내는 것으로 전위측정선 거리(x)에 따른 정확성을 설명하기 위한 그림이다. 상기 도 3에서 반경이 a인 반구전극의 접지저항은 식 1로 주어진다. 전극 중심으로부터 상기 x만큼 이격된 지점의 지표면전위를 V(x)라 하면 상기 점을 기준전위로 하여 측정한 저항은 식 2와 같으며, 측정값과 접지저항 참값(식 1)과의 비율은 식 3으로 표현된다. 상기 식 3으로부터 측정치의 90% 및 95% 정확도를 확보하기 위한 전위전극의 이격거리 x는 각각 반구전극 반지름의 10배, 20배임을 알 수 있다. 따라서 현장 여건상 측정선을 멀리 펼치기 어려운 지역에서는 측정의 정확도가 떨어지게 된다. 3 is a diagram illustrating the influence of the measuring line length in the measurement of the ground electrode potential, and is a diagram for explaining the accuracy according to the distance measuring line distance (x). In FIG. 3, the ground resistance of the hemispherical electrode having a radius is given by
(식 1) (Equation 1)
(식 2) (Equation 2)
(식 3) (Equation 3)
도 4는 배전선로 다중접지계통에서 루프저항 측정회로를 나타내며 다중접지회로에서 루프저항 측정에 의한 접지저항 산정방법의 예를 설명한다. 상기 도 4에서 측정하고자 하는 접지저항(Rg) 외의 기타 접지극의 저항이 유사한 값이라고 상정하면 병렬 합성저항(RThev)은 식 5에 의해 0 에 수렴하므로, 식 6에 의해 루프저항은 측정하고자 하는 접지저항과 같은 값이 된다. 4 illustrates a loop resistance measuring circuit in a distribution line multi-ground system and an example of a method of calculating ground resistance by measuring loop resistance in a multi-ground circuit will be described. Assuming that the resistance of the other ground electrode other than the ground resistance (R g ) to be measured in FIG. 4 is a similar value, the parallel composite resistance (R Thev ) converges to 0 by Equation 5, so that the loop resistance is measured by Equation 6. Is equal to the ground resistance.
(식 4) (Equation 4)
(식 5) (Eq. 5)
(식 6) (Equation 6)
도 5의 유도결합에 의해 전원인가하는 등가회로에서 보인 바와 같이 상기 도 4의 인가전원(E)을 유도전압에 의해 발생시키고 비접촉식 클램프-온 식 전류프로브를 이용하여 전류(I)를 측정하게 되면 다중접지선을 분리하지 않고도, 식 6에 의하여 단일 접지극의 접지저항(Rg)를 측정할 수 있게 된다. 이상의 기술은 현재 다중접지된 배전선로 전주의 접지저항 측정에 널리 이용되고 있는 루프저항 측정법을 설명한 것이다.As shown in the equivalent circuit of applying power by inductive coupling of FIG. 5, when the applied power E of FIG. 4 is generated by an induction voltage and the current I is measured using a non-contact clamp-on current probe. It is possible to measure the ground resistance (R g ) of a single ground electrode by equation (6) without disconnecting the multiple ground lines. The above description describes the loop resistance measurement method currently widely used for measuring the ground resistance of poles of multi-grounded distribution lines.
송전철탑의 경우는 배전전주와는 달리 탑각 4개의 병렬합성저항을 구해야 하기 때문에 상기와 같이 기술한 방법은 적용이 불가능하다. 따라서 루프저항 측정을 통해 송전철탑 접지저항을 산정하기 위해서는 별도의 알고리즘이 요구된다. 여기서는 수식유도를 위하여 탑각구조체접지를 반구전극으로 등가화한 모델로부터 철탑의 접지저항 산정알고리즘을 유도하고자 한다. In the case of transmission towers, unlike the distribution poles, four parallel composite resistors must be obtained, so the method described above is not applicable. Therefore, a separate algorithm is required to calculate the ground resistance of transmission tower through loop resistance measurement. Here, the ground resistance calculation algorithm of the steel tower is derived from the model where the top angle structure ground is equivalent to the hemispherical electrode for the induction of the equation.
도 6은 탑각구조체의 면적과 같은 반구전극의 등가 반지름 산정도이며 철탑 접지설계시 송전철탑의 탑각의 역T형기초로 하는 접지저항은 탑각구조체의 표면적(S)과 동일한 면적의 반구전극으로 환산할 수 있으며, 이 때 반구전극의 반경(a)은 탑각 1기의 표면적과 동일한 반구전극의 반지름이며, 식 8에 의해 구해진다.Fig. 6 shows the equivalent radius calculation of the hemispherical electrode equal to the area of the tower structure, and the grounding resistance of the tower angle of the transmission tower in the design of the steel tower grounding is converted to the hemispherical electrode having the same area as the surface area S of the tower structure. In this case, the radius (a) of the hemisphere electrode is the radius of the hemisphere electrode that is the same as the surface area of one column angle, and is obtained by the equation (8).
(식 7) (Eq. 7)
(식 8) (Eq. 8)
송전철탑은 상기와 같은 탑각접지 4개가 병렬로 연결되므로 이는 도 7인 반구전극 4개를 병렬연결했을 때의 반구전극 모델과 같다. 이러한 전극에 전류(I)를 주입했을 때 전극의 전위상승(V)는 반구전극(탑각) 1개의 전위상승값에 나머지 3개의 탑각에 의한 전위간섭이 합해져 식 9로 표현되며, 대지저항율 ρ는 대지를 균일한 매질로 가정했을 때의 탑각 1의 접지저항에 대한 등가이다.
그리고, 탑각 4개의 합성저항(RT)는 상기 전위(V)를 상기 전류(I)로 나눈 값이므로 식 10으로 정리된다.Since four tower angle grounds are connected in parallel, the transmission tower is the same as the hemisphere electrode model when four hemisphere electrodes in FIG. 7 are connected in parallel. When the current (I) is injected into such an electrode, the potential rise (V) of the electrode is expressed by
The four composite resistors R T are each divided by Equation 10 since the potential V is divided by the current I.
(식 9) (Eq. 9)
(식 10) (Eq. 10)
(단, V:반구전극 전위 [V], ρ:대지저항율 [Ωm], a:반구전극 반경 [m], (V: Hemispherical electrode potential [V], ρ: Earth resistivity [Ωm], a: Hemispherical electrode radius [m],
I:주입전류 [A], D:탑각간 거리 [m], RT:탑각4기의 병렬합성저항 [Ω])I: injection current [A], D: distance between tower angles [m], R T : parallel composition resistance of 4 towers [Ω])
송전철탑 접지저항을 표현하는 또다른 방법은 탑각 1개의 접지저항(RLeg)과 4개 탑각들간의 병렬효율(η)을 정의하여 표현하는 것이다. 즉, 상기 탑각 4개의 병렬저항은 이상적인 조건에서 상기 탑각 1개 저항(RLeg)의 1/4가 되어야 하나, 상기 탑각들간의 상호간섭에 의해 탑각 4기를 병열연결했을 때의 접지저항인 실제 송전철탑의 저항(RT)은 이 값보다 큰 값이 된다. 따라서 상기 탑각들간의 병렬효율(η)을 식 11과 같이 정의하고 이를 철탑저항(RT)에 대해 정리하면 식 12로 정리된다. 그리고 식 12를 식 10에 대입하여 병렬효율(η)로 정리하면 식 13을 얻을 수 있으며, 상기 식 13에서의 a는 탑각 1기의 표면적에 등가인 반구전극의 반지름이다.Another way of expressing transmission tower grounding resistance is to define and express the parallel efficiency (η) between one tower resistance (R Leg ) and four tower angles. In other words, the parallel resistance of the four top angles should be 1/4 of the top one resistance (R Leg ) under ideal conditions, but the actual transmission is the ground resistance when four top angles are connected in parallel by mutual interference between the top angles. The resistance (R T ) of the tower is greater than this value. Therefore, if the parallel efficiency (η) between the tower angles is defined as
(식 11) (Eq. 11)
(식 12) (Eq. 12)
(식 13) (Eq. 13)
상기 식 13의 검증을 위하여 탑각들간의 거리(D)가 매우 멀어지는 경우를 가정하면 탑각들간의 전위간섭이 없어져 식 14와 같이 병렬효율은 1.0이 되는 것을 확인할 수 있다.For the verification of
(식 14) (Eq. 14)
일반적으로 송전철탑 탑각의 형상은 정형화되어 있으나 철탑 높이에 따라 탑각간 거리(D)가 가변인 점을 감안하여, 일반적인 154 kV 철탑의 탑각형상과 탑각간 거리(D)를 도 6의 수치를 참조하면 8 ~ 12 m에서 변하는 경우의 병렬효율(η) 계산결과를 도 8인 탑각간 이격거리에 따른 병렬효율(η) 계산결과를 보면 상기 병렬효율(η)는 대략 0.5 ~ 0.6 임을 알 수 있다. 참고로 송전철탑 접지설계시에는 보수적인 설계를 위하여 일률적으로 0.5의 병렬계수(η)를 적용하고 있다.In general, the shape of the transmission tower tower angle is standardized, but considering that the distance between tower angles (D) is variable according to the height of the tower, the tower angle and the distance between tower angles (D) of a typical 154 kV pylon are referred to the numerical values of FIG. 6. When the parallel efficiency (η) is calculated in the case of varying from 8 to 12 m, the parallel efficiency (η) according to the separation distance between the tower angles of FIG. 8 can be seen that the parallel efficiency (η) is about 0.5 to 0.6. . For reference, when designing the transmission tower grounding, a parallel coefficient (η) of 0.5 is applied uniformly for conservative design.
도 9는 운전 중인 송전선로에서 단일 송전철탑 접지극의 등가회로이며 상기와 같이 기술한 송전철탑 접지모델의 탑각 1기에 유도전압(E1)을 발생시켰을 때의 회로를 표현한 것이다. 상기 도 9에서 ZE는 가공지선을 통해 다중접지된 외부회로의 임피던스를, I1 ~ I4는 4개의 탑각을 통해 대지로 나가는 전류들을, Ie는 탑각들의 분류전류를 모두 대수합한 전류를 각각 표시한 것이다.9 is an equivalent circuit of a single transmission tower grounding pole in a transmission line in operation and represents a circuit when the induced voltage E 1 is generated at each tower top of the transmission tower grounding model described above. In FIG. 9, Z E denotes the impedance of the external circuit multi-grounded through the overhead line, I 1 ~ I 4 represents the currents going to the earth through the four tower angles, and I e represents the current obtained by multiplying all the divided currents of the tower angles.
도 10은 상기 도 9의 반구전극모델을 회로모델로 등가화한 것으로 상기 도 10에서 두 개의 반구전극을 상정했을 때의 두 전극간 상호저항, 즉 하나의 반구전 극에 단위전류를 주입했을 때 거리 D만큼 떨어진 또 다른 전극의 전위상승치는 식 15와 같지만 단일의 반구전극 접지저항(R+Rm)은 식 1의 RTrue또는 식 12의 RLeg와 같은 값이어야 하므로 상기 도 10에서 저항 R은 식 16과 같이 구해진다.FIG. 10 is an equivalent circuit model of the hemisphere electrode model of FIG. 9, and when unit current is injected into one hemisphere electrode when the mutual resistance between two electrodes is assumed in FIG. 10. The potential rise of another electrode separated by the distance D is equal to Equation 15, but the single hemispherical electrode ground resistance (R + R m ) must be equal to R True of
(식 15) (Eq. 15)
(식 16) (Eq. 16)
(식 17) (Eq. 17)
상기 도 10의 회로모델에서 철탑저항(RT')은 식 17과 같이 구해지지만 회로모델에서는 반구전극의 4개가 되면 전극들간 거리 중 하나가 배가 되어 상호저항(Rm)이 상기 식 15보다 작아지게 되므로 상기 도 10의 회로모델은 도 12의 운전 중인 송전계통에서 송전철탑 컴퓨터 모델의 반구모델을 근사화한 것이다. 상기 도 10의 회로모델의 정확성을 검증하기 위하여 반구전극모델에서의 접지저항인 식 12의 RT와의 비율식인 식 18을 유도하고, 일반적인 154 kV 철탑의 탑각 등가반경(a=2.8m)과 거리(D=8~12m)를 상정했을 때 그 비율을 계산하면 대략 5% 이하의 오차 밖에 나지 않는다. 따라서 상기 도 10의 회로모델은 허용할만한 오차범위 내에서 상기 도 9의 반구전극모델과 등가라고 간주할 수 있다.In the circuit model of FIG. 10, the pylon resistance R T ′ is obtained as shown in Equation 17, but in the circuit model, when four hemispherical electrodes become four, one of the distances between the electrodes becomes Since the mutual resistance R m becomes smaller than Equation 15, the circuit model of FIG. 10 is an approximation of the hemisphere model of the transmission tower computer model in the operating transmission system of FIG. In order to verify the accuracy of the circuit model of FIG. 10, Equation 18, which is a ratio with R T of
(식 18) (Eq. 18)
이제 상기 도 10의 회로모델에서 전원(E1) 부분을 상기 도 5과 같은 유도전압 발생회로로 대체한 모델을 도 11인 운전 중인 송전계통에서 접지측정 등가회로도에 보였다. 상기 도 11에서 저항 R 사이의 루프방정식을 E1에 대하여 정리하면 식 20을 얻을 수 있으며, 이를 다시 R에 대하여 정리하면 식 21이 된다. 피측정회로의 인가전압(E1)은 직접 측정하지 않아도 식 19와 같은 변압기 권선비에 따른 전압/전류 관계식으로부터 유도되므로, 상기 식 20의 E1 대신 직접 측정이 가능한 E0, I0, I1으로 치환하면 상기 식 21이 되며, 상기 도 2에서 보는 바와 같이 E0 및 I0는 철탑의 탑각 1기에 유도전압(E1)을 발생시켜 유도전류(I1)을 흘리기 위해 구성한 변압기회로의 내부전압(E0) 및 전류 (I0)이며, 상기 도 9에서 보는 바와 같이 Ie는 철탑접지 전체를 통해 대지로 누설되는 전류로서 탑각 4기에 각각 흐르는 전류(I1~I4)의 대수합이다. 그리고 앞서 보여던 탑각간 병렬효율(η)의 정의에 따라 상기 도 10 또는 도 11의 회로에서 탑각4개의 병렬저항(RT)는 식 22로 표현할 수 있으며, 이를 다시 Rm에 대하여 정리하면 식 23과 같다. 이를 다시 상기 식 22의 좌측방정식에 치환하고, 직접 측정가능한 E0, I0, I1~I4 및 병렬효율(η)로 정리한 것이 식 24이며, E0 및 I0는 철탑의 탑각 1기에 유도전압(E1)을 발생시켜 유도전류(I1)을 흘리기 위해 구성한 변압기회로의 내부전압(E0) 및 전류 (I0)이고, RM은 탑각 4기간 상호저항(Mutual Resistance)이며, R은 탑각 1기의 접지저항(R+RM)에서 탑각들간의 상호저항(RM)을 뺀 저항값(Self Resistance)이다. 참고로 탑각 1기에 1 A의 단위전류를 흘릴 때, 전류주입을 하지 않은 나머지 탑각 3기의 전위상승값이 RM 이며, R은 전류를 주입한 탑각의 전위상승값이다.Now, a model in which the power source E 1 is replaced with the induction voltage generating circuit of FIG. 5 in the circuit model of FIG. 10 is shown in the ground measurement equivalent circuit diagram of the transmission system in operation in FIG. 11. In FIG. 11, the loop equation between the resistors R may be summarized with respect to E 1 , and equation 20 may be obtained. Since the applied voltage (E 1 ) of the circuit under test is derived from the voltage / current relationship according to the transformer turns ratio as shown in Equation 19 without direct measurement, E 0 , I 0 , I 1 that can be directly measured instead of E 1 in Equation 20 above. Substitution of Equation 21 results in Equation 21. As shown in FIG. 2, E 0 and I 0 are internal to a transformer circuit configured to flow an induced current I 1 by generating an induced voltage E 1 at a tower angle of a steel tower. Voltage E 0 and current I 0 , and as shown in FIG. 9, I e is a current leaking to the ground through the entire pylon ground, and is a logarithm of the currents I 1 to I 4 flowing through each of the four towers. to be. And in accordance with the tower gakgan definition of parallel efficiency (η) Dun shown above may be represented in the Fig. 10 or circuit type 22 tapgak four parallel resistance (R T) in Figure 11, if this rearrangement with respect to R m formula Same as 23. Substituting this back into the left equation of Equation 22, and summed up directly by E 0 , I 0 , I 1 ~ I 4 and parallel efficiency (η), Equation 24, E 0 and I 0 is the
(식 19) (Eq. 19)
(식 20) (Eq. 20)
(식 21) (Eq. 21)
(식 22) (Eq. 22)
(식 23) (Eq. 23)
(식 24) (Eq. 24)
상기 식 24에서 E0, I0, I1 ~ I4는 직접 측정하는 값들이며, 병렬효율(η)는 상기 식 13으로부터 추정이 가능하므로 상기 도 11의 측정회로를 이용하면 송전철 탑의 접지저항(RT)를 산정할 수 있게 된다.In Equation 24, E 0 , I 0 , I 1 ˜ I 4 are values directly measured, and the parallel efficiency (η) can be estimated from
이상에서 기술한 접지저항 산정방법을 검증하기 위하여 접지해석용 전자계해석 프로그램인인 HIFREQ (Safe Engineering Services社, CANADA)을 이용하여 모의실험한 결과를 표 1 에 보였다. 계산을 위한 컴퓨터 모델을 상기 도 12에 보였다.Table 1 shows the simulation results using HIFREQ (Safe Engineering Services, Inc., CANADA), an electromagnetic field analysis program for ground analysis. A computer model for the calculation is shown in FIG. 12 above.
모의실험 조건을 요약하면 다음과 같다. 철탑의 탑각의 형상은 상기 도 6 과 동일한 제원이 되도록 모델링하였으며, 탑각간 거리는 12 m , 상기 도 9의 ZE인 가공지선의 다중접지저항는 0.5 Ω, 대지저항율은 100 Ωm, 토양의 비유전율은 30.0, 비투자율은 1.0을 각각 가정하였다.The simulation conditions are summarized as follows. The shape of the tower angle of the steel tower was modeled to have the same specifications as in FIG. 6, the distance between the tower angles is 12 m, the multi-ground resistance of the processed ground wire of Z E of FIG. 9 is 0.5 Ω, the earth resistivity is 100 Ωm, and the relative dielectric constant of the soil is 30.0 and specific permeability were assumed 1.0.
표 1. 계산결과 요약Table 1. Summary of calculation results
I1, I2와 I3, I4 계산결과는 도 14 ~ 16 에 보였으며, 상기 표 1에서 나타나듯 이 본 특허의 접지저항 산정방법을 사용했을 때 접지저항 참값과의 오차는 약 5.5 % (=1-2.387/2.263) 로 양호한 수준임을 확인하였다.The calculation results of I 1 , I 2, and I 3 , I 4 are shown in FIGS. 14 to 16, and as shown in Table 1, the error from the true value of ground resistance when using the method of calculating the ground resistance of the present patent is about 5.5%. (= 1-2.387 / 2.263) confirmed good levels.
상술한 바와 같이 본 발명에 따른 바람직한 실시예를 설명하였지만, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구의 범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.As described above, preferred embodiments of the present invention have been described, but the present invention is not limited to the above-described embodiments, and the present invention belongs to the present invention without departing from the gist of the present invention as claimed in the following claims. Anyone with ordinary knowledge will have the technical spirit of the present invention to the extent that various modifications can be made.
상기에서 기술한 바와 같이 본 발명의 접지저항 산정원리를 이용하면 가공지선을 분리하지 않은 운전 중인 송전계통에서 장거리의 전압(전류) 측정선을 펼치지 않고도 단일의 송전철탑 접지저항을 측정할 수 있다.As described above, using the ground resistance calculation principle of the present invention, it is possible to measure the ground resistance of a single transmission tower without spreading a long distance voltage (current) measurement line in an operating transmission system that does not separate the processing ground.
철탑의 누설전류를 시험전류원으로 이용하는 기존의 방법에서는 전위측정을 위하여 충분한 길이의 측정선을 펼치고 측정선 상에서 전극을 이동해가면서 겉보기저항을 해야 하지만, 본 발명의 원리를 이용하면 별도의 측정선(전극)을 필요로 하지 않으므로 측정작업이 간단해진다.In the existing method using the leakage current of the steel tower as a test current source, the measurement resistance should be expanded while extending the measurement line of sufficient length and moving the electrode on the measurement line, but using the principle of the present invention, a separate measurement line (electrode ), So the measurement work is simplified.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050103504A KR100734821B1 (en) | 2005-10-31 | 2005-10-31 | Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050103504A KR100734821B1 (en) | 2005-10-31 | 2005-10-31 | Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070046645A KR20070046645A (en) | 2007-05-03 |
KR100734821B1 true KR100734821B1 (en) | 2007-07-03 |
Family
ID=38271964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050103504A KR100734821B1 (en) | 2005-10-31 | 2005-10-31 | Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100734821B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100968046B1 (en) | 2008-09-30 | 2010-07-07 | 한국전력공사 | Method for ground resistance measurement of transmission tower equipped with overhead groundwires |
KR101928193B1 (en) | 2017-06-05 | 2018-12-11 | 한국전력공사 | Method for predicting data of tower footing |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101066617B1 (en) * | 2009-09-30 | 2011-09-22 | 한국전력공사 | Method for ground resistance measurement of concrete electric pole |
KR101061447B1 (en) * | 2010-07-28 | 2011-09-02 | 한국전력공사 | A neutral line synthetic reactance measurement method and apparatus at the electric distribution during the operation |
CN102680797A (en) * | 2011-03-10 | 2012-09-19 | 云南电力试验研究院(集团)有限公司 | Method for evaluating effect of grounding resistance reducing measures by aid of electric transmission line poles and towers for electricity |
CN103954843B (en) * | 2014-05-21 | 2016-06-15 | 重庆大学 | One does not disconnect ground lead pole tower ground resistance and measures injection power frequency method of determining range |
CN104502724B (en) * | 2014-11-05 | 2017-10-13 | 济南鲁智电子科技有限公司 | A kind of pole tower ground resistance measurement method |
CN104502726B (en) * | 2014-12-01 | 2017-12-15 | 国网辽宁省电力有限公司锦州供电公司 | The measuring method of steel tower and cement pole power frequency earthing resistance |
CN106093588A (en) * | 2016-07-07 | 2016-11-09 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A kind of direct current grounding pole earth resistance accurate measuring systems and method |
CN106597112B (en) * | 2016-10-31 | 2019-04-02 | 杭州潇楠科技有限公司 | Shock ground resistance of transmission line tower test device and its method |
CN107656144A (en) * | 2017-11-14 | 2018-02-02 | 国网山东省电力公司电力科学研究院 | A kind of comprehensive detection system and method for transmission line of electricity earthed system |
CN114486713B (en) * | 2021-12-31 | 2023-11-17 | 贵州电网有限责任公司 | Resistance test device and method for weathering steel tower |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06222093A (en) * | 1993-01-27 | 1994-08-12 | Yokogawa Electric Corp | Method for measuring grounding resistance |
JPH095370A (en) * | 1995-06-19 | 1997-01-10 | Chubu Electric Power Co Inc | Method for measuring grounding resistance of earth wire of pole |
KR20000037146A (en) * | 2000-04-10 | 2000-07-05 | 정재기 | A new technical method and equipment for the grounding resistance measurement on power service |
KR20010025613A (en) * | 2001-01-11 | 2001-04-06 | 정재기 | Grounding Resistance Measurement System for Electric Support Tower on Power Service |
KR20050021668A (en) * | 2003-08-25 | 2005-03-07 | 한국전력공사 | Ground resistor analysis system |
-
2005
- 2005-10-31 KR KR1020050103504A patent/KR100734821B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06222093A (en) * | 1993-01-27 | 1994-08-12 | Yokogawa Electric Corp | Method for measuring grounding resistance |
JPH095370A (en) * | 1995-06-19 | 1997-01-10 | Chubu Electric Power Co Inc | Method for measuring grounding resistance of earth wire of pole |
KR20000037146A (en) * | 2000-04-10 | 2000-07-05 | 정재기 | A new technical method and equipment for the grounding resistance measurement on power service |
KR20010025613A (en) * | 2001-01-11 | 2001-04-06 | 정재기 | Grounding Resistance Measurement System for Electric Support Tower on Power Service |
KR20050021668A (en) * | 2003-08-25 | 2005-03-07 | 한국전력공사 | Ground resistor analysis system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100968046B1 (en) | 2008-09-30 | 2010-07-07 | 한국전력공사 | Method for ground resistance measurement of transmission tower equipped with overhead groundwires |
KR101928193B1 (en) | 2017-06-05 | 2018-12-11 | 한국전력공사 | Method for predicting data of tower footing |
WO2018225888A1 (en) * | 2017-06-05 | 2018-12-13 | 한국전력공사 | Method for predicting specification of steel tower foundation |
Also Published As
Publication number | Publication date |
---|---|
KR20070046645A (en) | 2007-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100734821B1 (en) | Measurement Method of Grounding Resistance of Transmission Towers in an Energized Transmission Line System | |
Christoforidis et al. | A hybrid method for calculating the inductive interference caused by faulted power lines to nearby buried pipelines | |
CN108562782B (en) | Stray current acquisition method and stray current detection system | |
CN109256771A (en) | Metro stray current and its caused transformer neutral point DC current calculation method | |
CN107609208B (en) | Traction network modeling method considering tunnel section comprehensive grounding system structure | |
CN105588982A (en) | Measurement and calculation method of harmonic impedance of power system | |
CN103792433A (en) | Measuring method using spark coefficient for correcting low-amplitude value impact resistance of tower grounding device | |
Yuan et al. | Grounding resistance measurement method based on the fall of potential curve test near current electrode | |
CN108205088A (en) | A kind of parallel radio interference of high voltage ac/dc circuit calculates and optimization method | |
CN106096161B (en) | The emulated computation method of power transmission line power frequency induced voltage and electric current | |
Chang et al. | Computation of ground resistances and assessment of ground grid safety at 161/23.9-kV indoor-type substation | |
CN112285425A (en) | Grounding resistance calculation method and device of tower grounding device and terminal equipment | |
CN111025024B (en) | Method and device for measuring grounding impedance of transformer substation grounding grid based on actual measurement and simulation | |
Telló et al. | Substation grounding grid diagnosis applying optimization techniques based on measurements and field tests | |
CN104318003A (en) | TDCM (three-dimensional combined-layer soil model)-based transformer substation ESP (earth surface potential) calculation and address selection detection method | |
CN109165441A (en) | The emulated computation method of parallel transmission line of alternation current induced voltage and electric current based on ATP-EMTP | |
CN105842582A (en) | Flexible DC line fault range finding method based on EMTR | |
Visacro et al. | Measurements for qualifying the lightning response of tower-footing electrodes of transmission lines | |
CN103424627B (en) | The method of double-end measurement parallel grid line zero-sequence impedance | |
CN106597161A (en) | Shunting coefficient obtaining method of short circuit current of overhead line ground wire | |
CN112285426B (en) | Grounding resistance testing method and system of tower grounding device and terminal equipment | |
Volpov et al. | Characterization of local environmental data and lightning-caused outages in the IECo transmission-line network | |
CN107271941B (en) | A kind of zero-sequence mutual inductance impedance computation method on multiple-loop line transmission line of electricity | |
CN110457777A (en) | Soil resistivity inversion method and system and readable storage medium | |
CN105486929A (en) | Impulse grounding resistance calculation method considering spark discharge effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130617 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140616 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150615 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160615 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180530 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190529 Year of fee payment: 13 |