KR101927195B1 - Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene - Google Patents

Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene Download PDF

Info

Publication number
KR101927195B1
KR101927195B1 KR1020170121793A KR20170121793A KR101927195B1 KR 101927195 B1 KR101927195 B1 KR 101927195B1 KR 1020170121793 A KR1020170121793 A KR 1020170121793A KR 20170121793 A KR20170121793 A KR 20170121793A KR 101927195 B1 KR101927195 B1 KR 101927195B1
Authority
KR
South Korea
Prior art keywords
weight
water
gfrc
raw material
synthetic resin
Prior art date
Application number
KR1020170121793A
Other languages
Korean (ko)
Inventor
박상식
Original Assignee
미림산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미림산업(주) filed Critical 미림산업(주)
Priority to KR1020170121793A priority Critical patent/KR101927195B1/en
Application granted granted Critical
Publication of KR101927195B1 publication Critical patent/KR101927195B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/348Moulds, cores, or mandrels of special material, e.g. destructible materials of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/36Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
    • B28B7/364Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article of plastic material or rubber
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/121Amines, polyamines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/281Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0046Premixtures of ingredients characterised by their processing, e.g. sequence of mixing the ingredients when preparing the premixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0088Compounds chosen for their latent hydraulic characteristics, e.g. pozzuolanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a method for manufacturing a glass fiber reinforced concrete formwork using expanded polystyrene. More specifically, the present invention relates to a method for manufacturing a glass fiber reinforced concrete formwork using expanded polystyrene, to facilitate processes, reduce production cost, enable precise molding since the moldability is excellent to prevent the surface thereof from being uneven due to abrasion after molding regardless of the number of molding operations and a dimension and a shape thereof are not deformed, and facilitate a manufacturing process of inner and outer materials of buildings since a shape process is unrestricted.

Description

발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법{Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for manufacturing a glass fiber reinforced concrete using a foamed polystyrene,

본 발명은 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법에 관한 것으로, 보다 상세하게는 작업이 쉽고 제조단가를 낮출 수 있을 뿐만 아니라, 이형성이 우수하여 성형을 여러 번 해도 마모에 따른 표면 거칠어짐이 없고 치수와 형상이 변형되지 않아 정확한 성형이 가능하며, 형상가공이 자유로워 건축물의 내,외장재를 용이하게 만들 수 있도록 한 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법에 관한 것이다.More particularly, the present invention relates to a method of manufacturing a glass fiber reinforced concrete molded article using expanded polystyrene, and more particularly, to a method for manufacturing a glass fiber reinforced concrete molded article using expanded polystyrene, The present invention also relates to a method for manufacturing a glass fiber reinforced concrete molded article using the expanded polystyrene so that the shape and the shape of the structure can be easily formed.

유리섬유 강화 콘크리트인 GFRC(Glass Fiber Reinforced Concrete)는 외적 미감을 현출할 수 있어 미학적 접근이 요구되는 조형 몰딩용 내장재 또는 외장재로 유럽을 비롯한 주요 선진국들에서 그 사용이 증가하고 있다.GFRC (Glass Fiber Reinforced Concrete), which is a glass fiber reinforced concrete, is an interior or exterior material for molding molding requiring an aesthetic approach because it can develop external aesthetics and its use is increasing in major developed countries including Europe.

이러한 GFRC는 고강도에 따른 내구성이 뛰어나기 때문에 국내에서도 최근들어 건축분야에서 조형 몰딩용 내,외장재로의 사용이 점점 증가하고 있으며, 경우에 따라서는 조형 자체를 내장 또는 외장재로 활용하기도 한다.Since GFRC has high durability according to high strength, it has been increasingly used as interior and exterior materials for molding molding in the field of construction in recent years in Korea. In some cases, the molding itself may be used as an interior or exterior material.

이와 같은 GFRC의 활용예는 하기의 <표 1>과 같다.An example of such a GFRC is shown in Table 1 below.


구분

division

외장재

Exterior material

내장재

Interior material

조형예

Molding example



사진
샘플




Picture
Sample

Figure 112017092258165-pat00001
Figure 112017092258165-pat00001
Figure 112017092258165-pat00002
Figure 112017092258165-pat00002
Figure 112017092258165-pat00003
Figure 112017092258165-pat00003
Figure 112017092258165-pat00004
Figure 112017092258165-pat00004

그런데, GFRC 성형체를 얻기 위한 종래 방식은 몰드가 내구성을 가져야 하므로 주로 FRP(Fiberglass Reinforced Plastics)를 몰드로 하여 여기에 GFRC를 뿌려 몰드와 동일 형상의 성형체를 만들었다.However, in the conventional method for obtaining the GFRC molded body, since the mold has to have durability, FRP (Fiberglass Reinforced Plastics) is mainly used as a mold, and GFRC is sprayed thereon to form a molded body having the same shape as the mold.

때문에, 탈형 후 재성형을 반복하더라도 FRP 몰드의 표면이 마모되거나 거칠어지지 않아 정확한 치수와 형상을 유지할 수 있는 장점을 갖는다.Therefore, even if the re-molding is repeated after demoulding, the surface of the FRP mold is not worn or roughened, so that it is possible to maintain the accurate dimensions and shape.

하지만, FRP 몰드는 강도가 너무 강해 형상자유도가 떨어지기 때문에 형상을 자유롭게 만들 수 없다는 한계를 가진다.However, the FRP mold has a limitation that the shape can not be freely formed because the strength is too strong and the degree of freedom of shape is decreased.

즉, 몰드 형상을 만들기 위해 선정된 성형체에 맞게 컴퓨터로 설계(CAD:Computer Aided Design)된 정보를 기초로 컴퓨터 프로그램에 의해 CNC(Computerized Numerical Control) 가공하게 되는데, 종래 FRP 몰드는 기계적 물성이 너무 강해 CNC 가공시 많은 무리가 가해져 가공하기 쉽지 않고, 가공한다고 하더라도 많은 시간과 비용 낭비를 초래하는 단점이 있다.That is, CNC (Computerized Numerical Control) processing is performed by a computer program based on computer-aided design (CAD) information in accordance with a molded body selected to form a mold shape. Conventional FRP molds have too strong mechanical properties There is a disadvantage in that a lot of time and cost are wasted even if it is processed because CNC machining is not easy to process because a lot of work is done.

이를 개선하기 위해, 가격이 저렴하고 형상가공성이 우수한 발포폴리스티렌(EPS)에 주목하여 이를 활용하려는 시도들이 개시(開始)되었다.In order to solve this problem, attempts have been made to utilize expanded polystyrene (EPS), which is inexpensive and has excellent formability.

그러나 발포폴리스티렌(Expandable Polystyrene)은 기계적 물성이 약하고, GFRC의 이형성이 좋지 않기 때문에 이를 몰드로 사용할 경우, 마모로 인한 표면 거칠어짐에 따른 치수와 형상 부정확도가 증가하므로 몰드 재성형이 어려워 우수한 형상가공성과 저렴한 가격에도 불구하고 활용도가 떨어진다.However, expandable polystyrene has poor mechanical properties and poor releasability of GFRC. Therefore, when it is used as a mold, the size and shape inaccuracy increase due to surface roughness due to abrasion, Despite its low price, its utilization is low.

대한민국 특허 공고번호 특1996-0011910호(1996.09.04), '내장재용 섬유판 및 그 제조방법'Korean Patent Publication No. 1996-0011910 (1996.09.04), 'Fiberboard for interior materials and method for manufacturing the same' 대한민국 등록특허 제10-1187320호(2012.09.25.), '탄소원 첨가제를 포함하는 건축외장재용 노출 콘크리트 패널 및 이의 제조방법'Korean Registered Patent No. 10-1187320 (2012.09.25.), 'Exposed Concrete Panel for Building Exterior Material Containing Carbon Additive and Its Manufacturing Method' 대한민국 등록특허 제10-1361713호(2014.02.03.), '섬유강화 콘크리트용 합성섬유 제조 방법'Korean Registered Patent No. 10-1361713 (Mar. 23, 2014), 'Method for Manufacturing Synthetic Fiber for Fiber Reinforced Concrete'

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 작업이 쉽고 제조단가를 낮출 수 있을 뿐만 아니라, 이형성이 우수하여 성형을 여러 번 해도 마모에 따른 표면 거칠어짐이 없고 치수와 형상이 변형되지 않아 정확한 성형이 가능하며, 형상가공이 자유로워 건축물의 내,외장재를 용이하게 만들 수 있도록 한 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법을 제공함에 그 주된 목적이 있다.The present invention has been made in view of the above-mentioned problems in the prior art, and it is an object of the present invention to provide a method for manufacturing a semiconductor device, which is easy to work and can reduce a manufacturing cost and is excellent in releasing property, And a method for manufacturing a glass fiber reinforced concrete molded body using the expanded polystyrene so that the shape and the shape of the structure are not deformed, .

본 발명은 상기한 목적을 달성하기 위한 수단으로, 1차 원료 배합단계 → 2차 원료 배합단계 → 3차 원료 배합단계 → EPS(Expandable Polystyrene) 몰드 제작단계 → 수용성 합성수지 도포단계 → GFRC(Glass Fiber Reinforced Concrete) 분체 성형단계 → GFRC 성형체 건조 및 탈형단계를 포함하는 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법에 있어서; 상기 1차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 50~55 중량%와, 트리에탄올아민 0.50~1.00 중량%와, 헥사메틸렌테트라민 0.10~0.15 중량%와, 실리콘 소포제 0.05~0.15 중량%와, 메탄올 15~20 중량% 및 나머지 수산화나트륨을 배합하는 과정과; 상기 과정을 통해 배합된 배합물을 1~2시간 동안 간접가열시켜 1차 반응물을 형성하는 과정으로 이루어지고; 상기 2차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 30~35 중량%와, 트리에탄올아민 0.50~1.00 중량%와, 헥사메틸렌테트라민 0.10~0.15 중량%와, 포름산 0.01-0.02 중량% 및 나머지 상기 1차 반응물로 혼합하는 과정과; 상기 과정을 통해 혼합된 혼합물을 냉각시켜 2차 반응물을 형성하는 과정으로 이루어지며; 상기 3차 원료 배합단계는 3-클로로프로필렌옥시드 또는 1-클로로-2, 3-에폭시프로페인 0.25~0.30 중량%와, 메틸트리메톡시실란 0.3~0.5 중량%와, 폴리비닐알코올 10~15 중량%와, 실리콘수지 1.5~2.0 중량% 및 나머지 2차 반응물로 최종 배합물을 만들고, 이 최종 배합물을 반응기에서 완전히 혼합 반응시켜 수용성 합성수지를 만드는 단계이고; 상기 EPS 몰드 제작단계는 CNC(Computerized Numerical Control) 선반을 통해 CAD(Computer Aided Design) 설계된 치수와 형상대로 EPS 몰드를 만드는 단계이며; 상기 수용성 합성수지 도포단계는 수용성 합성수지를 물과 혼합하여 EPS 몰드의 표면에 분사식으로 도포하는 단계이고; 상기 GFRC 분체 성형단계는 GFRC 성형용 원료를 EPS 몰드 표면에 분체성형하여 일정 두께를 갖도록 성형하는 단계이며; 상기 GFRC 성형체 건조 및 탈형단계는 분체 성형이 완료된 성형체를 EPS 몰드로부터 이형시키는 단계;인 것을 특징으로 하는 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법을 제공한다.In order to achieve the above-mentioned object, the present invention provides a method for producing a glass fiber reinforced resin (GFRC), comprising the steps of: mixing a first raw material, a second raw material, a third raw material, an EPS (Expandable Polystyrene) Concrete) powder molding step → drying and demolding of GFRC formed body, the method comprising the steps of: preparing a glass fiber reinforced concrete molded body using expanded polystyrene; Wherein the primary raw material mixing step comprises mixing 50 to 55 wt% of a copolymer of acrylic acid, styrene, and methacrylic acid, 0.50 to 1.00 wt% of triethanolamine, 0.10 to 0.15 wt% of hexamethylenetetramine, 0.15% by weight, 15-20% by weight of methanol and the balance sodium hydroxide; And indirectly heating the compounded mixture through the above process for 1 to 2 hours to form a first reactant; The second raw material blending step is carried out by mixing 30 to 35% by weight of a copolymer of acrylic acid, styrene and methacrylic acid, 0.50 to 1.00% by weight of triethanolamine, 0.10 to 0.15% by weight of hexamethylenetetramine, % By weight and the remainder in the first reactant; And cooling the mixed mixture through the process to form a second reactant; The third raw material blending step is a step of blending the starting material mixture of 3-chloropropylene oxide or 1-chloro-2,3-epoxypropane in an amount of 0.25 to 0.30% by weight, methyltrimethoxysilane in an amount of 0.3 to 0.5% by weight, polyvinyl alcohol in an amount of 10 to 15 By weight of a silicone resin, 1.5 to 2.0% by weight of a silicone resin and the remainder of the secondary reactant, and the final combination is completely mixed in the reactor to form a water soluble synthetic resin; The EPS mold making step is a step of making an EPS mold according to a dimension and a shape designed by CAD (Computer Aided Design) through a CNC (Computerized Numerical Control) shelf; The step of applying the water-soluble synthetic resin is a step of spraying the water-soluble synthetic resin on the surface of the EPS mold by mixing with water; Wherein the GFRC powder forming step is a step of powder-molding the GFRC molding raw material on the surface of the EPS mold to form a predetermined thickness; Wherein the drying and demolding of the GFRC formed body is a step of releasing the molded body from the EPS mold after the powder molding is completed.

이때, 상기 수용성 합성수지 도포단계에서, 상기 수용성 합성수지와 물의 혼합비율은 9:1의 중량비인 것에도 그 특징이 있다.At this time, in the step of applying the water-soluble synthetic resin, the mixing ratio of the water-soluble synthetic resin and water is 9: 1.

또한, 상기 GFRC 분체 성형단계에서, 상기 GFRC 성형용 원료는 포틀랜트 시멘트 25-35중량%와, 모래 20-40중량%와, 유리섬유 10-20중량%와, 에폭시수지 2-5중량%와, 감수제 2-5중량%와, 포졸란 2-5중량% 및 나머지 물로 이루어진 것에도 그 특징이 있다.In addition, in the GFRC powder molding step, the GFRC molding raw material may contain 25-35 wt% of the portland cement, 20-40 wt% of the sand, 10-20 wt% of the glass fiber, 2-5 wt% of the epoxy resin, , 2-5 wt% of a water reducing agent, 2-5 wt% of pozzolan, and the remainder water.

본 발명에 따르면, 작업이 쉽고 제조단가를 낮출 수 있을 뿐만 아니라, 이형성이 우수하여 성형을 여러 번 해도 마모에 따른 표면 거칠어짐이 없고 치수와 형상이 변형되지 않아 정확한 성형이 가능하며, 형상가공이 자유로워 건축물의 내,외장재를 용이하게 만들 수 있는 효과를 얻을 수 있다.According to the present invention, not only can the work be easy, the manufacturing cost can be lowered, but also the releasing property is excellent so that even when the molding is repeated several times, the surface is not roughened due to abrasion and the dimension and shape are not deformed, Thereby making it possible to easily make the inside and exterior of the building.

이하에서는, 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments according to the present invention will be described in detail.

본 발명 설명에 앞서, 이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.Before describing the present invention, the following specific structural or functional descriptions are merely illustrative for the purpose of describing an embodiment according to the concept of the present invention, and embodiments according to the concept of the present invention may be embodied in various forms, And should not be construed as limited to the embodiments described herein.

또한, 본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In addition, it should be understood that the embodiments according to the concept of the present invention include various modifications, equivalents, and alternatives included in the spirit and technical scope of the present invention, .

본 발명에 따른 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법은 1차 원료 배합단계 → 2차 원료 배합단계 → 3차 원료 배합단계 → EPS 몰드 제작단계 → 수용성 합성수지 도포단계 → GFRC 분체성형단계 → GFRC 성형체 건조 및 탈형단계를 포함한다.The method for manufacturing a glass fiber reinforced concrete molded article using expanded polystyrene according to the present invention comprises: a first raw material blending step; a second raw material blending step; a third raw material blending step; an EPS mold making step; a water soluble synthetic resin applying step; a GFRC powder forming step; And includes a molded body drying and demolding step.

이때, 1차, 2차, 3차 원료 배합단계는 EPS 몰드의 표면에 도포될 수용성 합성수지를 조성하는 단계로서, 특성발현을 위해 반드시 차수별로 나누어 배합하는 형태로 조성물을 만들어야 한다.In this case, the first, second, and third raw material mixing steps are to form a water-soluble synthetic resin to be applied to the surface of the EPS mold.

그리고, 이러한 수용성 합성수지는 일종의 바인더 기능을 수행하는 표면강화제로서 표면을 보호하고 입자간 융착시 결합력을 높여 EPS 몰드의 표면이 쉽게 부스러지지 않게 하면서 마모저항성도 높여 내구성을 강화시키고, GFRC의 이형성도 좋게 하기 위한 것이다.This water-soluble synthetic resin is a surface strengthening agent that performs a kind of binder function. It protects the surface and improves the durability of the EPS mold by increasing the bonding force during the fusion between the particles to prevent the surface of the EPS mold from being easily broken, .

예컨대, 상기 1차 원료 배합단계는 아크릴산(Acrylic acid)ㆍ스티렌(Styrene)ㆍ메타크릴산(Methacrylic acid)을 공중합시킨 공중합체 50~55 중량%와, 트리에탄올아민(Triethanolamine) 0.50~1.00 중량%와, 헥사메틸렌테트라민(Hexamethylenetetramine) 0.10~0.15 중량%와, 실리콘 소포제(Silicone antifoaming agent) 0.05~0.15 중량%와, 메탄올(Methanol) 15~20 중량% 및 나머지 수산화나트륨(Sodium hydroxide)을 배합하는 과정과; 상기 과정을 통해 배합된 배합물을 1~2시간 동안 간접가열시켜 1차 반응물을 형성하는 과정으로 이루어진다.For example, the primary raw material mixing step may be performed by mixing 50 to 55% by weight of a copolymer obtained by copolymerizing acrylic acid, styrene, and methacrylic acid, 0.50 to 1.00% by weight of triethanolamine, , 0.10 to 0.15% by weight of hexamethylenetetramine, 0.05 to 0.15% by weight of a silicone antifoaming agent, 15 to 20% by weight of methanol and sodium hydroxide (sodium hydroxide) and; And indirectly heating the compounded mixture through the above process for 1 to 2 hours to form a first reactant.

이때, 공중합체는 스티렌과 메타크릴산의 공중합에 의한 성형가공성 개량과, 내열성 향상 및 아크릴산을 더하여 다원공중합시키게 되면 내충격성이 현저히 상승하며, 무엇보다도 GFRC의 이형성을 증대시키기 위해 첨가된다.At this time, the copolymer is added in order to improve moldability by copolymerization of styrene and methacrylic acid, improve heat resistance, and increase the impact resistance remarkably when polyacrylic acid is added and copolymerized, among other things, to increase releasability of GFRC.

다만, 55중량%를 초과하여 첨가하면 유화성이 강해 점성 증가로 도포성, 성형성을 저해하고, 50중량% 미만으로 첨가하면 에멀젼화가 저해되어 내열성과 내충격성은 물론 이형특성이 급격히 떨어지기 때문에 상기 범위로 한정해야 한다.However, when it is added in an amount of more than 55% by weight, the emulsifying property is intensified and the viscosity is increased to deteriorate the coatability and formability. When the amount is less than 50% by weight, emulsification is inhibited and the mold release property sharply drops as well as heat resistance and impact resistance, Range.

그리고, 트리에탄올아민은 pH 조절(약산성 유지) 및 계면활성과 유화성을 적절히 유지하기 위해 첨가되는 것으로 EWG 5등급의 위험도를 가지고 있기 때문에 상기와 같이 소량 첨가되어야 한다.And, triethanolamine is added to maintain pH control (weakly acidic retention) and surfactant and emulsification properly, and has a risk of EWG 5 grade.

또한, 헥사메틸렌테트라민은 방부성을 강화시키면서 산성에서 염을 만들면서 분해되어 포름알데히드를 방출시켜 살균함과 동시에 제거하고 경화시 바인딩 효과를 높이기 위해 첨가되는 것으로, 다만, 0.15중량%를 초과하면 기포 발생이 커져 소포성에 악영향을 미치므로 이를 초과하지 않아야 하며, 0.10중량% 미만으로 첨가되면 방부성과 바인딩 효과가 줄어들기 때문에 상기 범위로 한정해야 한다.In addition, hexamethylenetetramine is added in order to increase the preservative effect while decomposing the acidic salt while dissolving it to release the formaldehyde to sterilize and remove it, and to increase the binding effect upon curing. However, if it exceeds 0.15 wt% And it should not be exceeded. If it is added in an amount of less than 0.10% by weight, the anticorrosiveness and binding effect are reduced. Therefore, the range should be limited to the above range.

아울러, 실리콘 소포제는 배합성을 저해하고 배합비율을 불량하게 하며 외관 품질을 나쁘게 하는 기포 생성을 억제하여 균일 배합성을 유지하기 위해 첨가되며, 특히 실리콘 소포제는 활성성분이 매우 낮은 표면장력을 갖고 있어 상용성을 강화시키기 위해 첨가된다.In addition, silicone antifoaming agents are added in order to inhibit embryo formation, to inhibit the formation of bubbles which deteriorate the appearance quality and to deteriorate the appearance quality, and to maintain homogeneous orientation. In particular, silicone antifoam agents have very low surface tension It is added to enhance compatibility.

다만, 0.15중량%를 초과하여 과량 첨가되면 비상용성이 커지므로 바람직하지 않고, 0.05중량% 미만으로 첨가되면 기포 안정화, 즉 소포성이 약화되므로 상기 범위로 한정해야 한다.However, when it is added in an amount exceeding 0.15% by weight, the incompatibility is increased, and if it is added in an amount of less than 0.05% by weight, stabilization of bubble, that is, foaming becomes weak.

뿐만 아니라, 메탄올은 에탄올에 비해 탄소와 수소를 적게 포함하고 있어 끓는점이 에탄올보다 낮아 저온 간접가열에 용이한 용제이다. 이러한 메탄올은 결정형 고형분인 헥사메틸렌테트라민의 용제 역할로 바람직하다.In addition, methanol contains less carbon and hydrogen than ethanol and boiling point is lower than that of ethanol, so it is an easy solvent for low temperature indirect heating. Such methanol is preferable as a solvent for hexamethylenetetramine, which is a crystalline solid.

다만, 휘발성과 가연성 및 유독성이 있기 때문에 상기 범위로 한정하여 첨가되어야 한다.However, since it is volatile, flammable and toxic, it should be added to the above range.

그리고, 잔부(殘部)로 첨가되는 수산화나트륨은 불용성 염의 분해능이 뛰어나고, 저온에서도 반응성이 우수하기 때문에 공중합체의 분자내 극성기를 알킬화시키는데 기여한다.The sodium hydroxide added as the remainder contributes to the alkylation of the intramolecular polar group of the copolymer because of its excellent ability to decompose insoluble salts and its excellent reactivity at low temperatures.

덧붙여, 배합물을 1~2시간 동안 간접가열시켜 1차 반응물을 형성하는 과정은 간접가열에 의해 공중합체 내의 분자내에 존재하는 극성기를 알킬화시켜 반응성을 좋게 하기 위한 것이다.In addition, the process of indirectly heating the blend for 1 to 2 hours to form the first reactant is to alkylate the polar groups present in the molecule in the copolymer by indirect heating to improve the reactivity.

한편, 상기 2차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 30~35 중량%와, 트리에탄올아민 0.50~1.00 중량%와, 헥사메틸렌테트라민 0.10~0.15 중량%와, 포름산(Formic acid) 0.01-0.02 중량% 및 나머지 상기 1차 반응물로 혼합하는 과정과; 상기 과정을 통해 혼합된 혼합물을 냉각시켜 2차 반응물을 형성하는 과정으로 이루어진다.Meanwhile, the second raw material mixing step may be performed by mixing 30 to 35% by weight of a copolymer of acrylic acid, styrene and methacrylic acid, 0.50 to 1.00% by weight of triethanolamine, 0.10 to 0.15% by weight of hexamethylenetetramine, 0.0 &gt;% &lt; / RTI &gt; by weight of formic acid and the remainder of the primary reactant; And cooling the mixed mixture through the above process to form a second reactant.

이때, 주요 성분들의 첨가 사유는 상술한 바와 같고, 포름산은 수산에 글리세린을 가해 제조되기 때문에 스케일 용해력이 커 산세탁에 활용되는 것으로 표면 개질특성을 구현하여 EPS의 표면에 GFRC의 부착력을 높이기 위해 첨가된다.Since formic acid is prepared by adding glycerin to aquatic acid, it has a high scale dissolving power and is used for acid washing. It is used for improving the adhesion property of GFRC on the surface of EPS by implementing the surface modification property do.

다만, 양이 과하면 메탄올과 반응하여 포르마린으로 변하기 때문에 상기와 같은 범위 내로 첨가되어야 한다.However, since the amount thereof is changed to formalin by reacting with methanol, it should be added within the above range.

그리고, 1차 반응물을 다시 첨가하는 이유는 유화 피막 형성을 촉진하여 GFRC의 이형성을 좋게 하기 위함이다.The reason why the first reactant is added again is to promote emulsion film formation and improve the releasability of GFRC.

아울러, 상기 3차 원료 배합단계는 3-클로로프로필렌옥시드 또는 1-클로로-2, 3-에폭시프로페인 0.25~0.30 중량%와, 메틸트리메톡시실란(Methyltrimethoxysilane) 0.3~0.5 중량%와, 폴리비닐알코올(Polyvinyl alcohol) 10~15 중량%와, 실리콘수지(Silicone resin) 1.5~2.0 중량% 및 나머지 2차 반응물로 최종 배합물을 만들고, 이 최종 배합물을 반응기에서 완전히 혼합 반응시켜 수용성 합성수지를 만드는 단계이다.In addition, the third raw material mixing step may be carried out by mixing 0.25 to 0.30% by weight of 3-chloropropylene oxide or 1-chloro-2,3-epoxypropane, 0.3 to 0.5% by weight of methyltrimethoxysilane, 10 to 15% by weight of a polyvinyl alcohol, 1.5 to 2.0% by weight of a silicone resin and the remainder of the secondary reaction product, and the final product is completely mixed and reacted in the reactor to form a water- to be.

이때, 3-클로로프로필렌옥시드 또는 1-클로로-2, 3-에폭시프로페인은 반응성이 강한 염소계 물질인 에피클로로히드린으로서 유화물의 안정화를 위해 첨가된다.At this time, 3-chloropropylene oxide or 1-chloro-2,3-epoxypropane is added to stabilize the emulsion as epichlorohydrin, which is a chlorine-based material having high reactivity.

다만, 가연성이 있고, 독성이 강해 상기와 같이 소량 첨가되어야 한다.However, it is flammable and toxic.

또한, 메틸트리메톡시실란은 소수성에 의해 유분만 흡수하여 유화물질들간의 결합력을 강화시켜 내구성을 증대시키기 위해 첨가된다. 다만, 수화반응성을 고려하여 상기 범위로 한정해야 한다.In addition, methyltrimethoxysilane is added to increase durability by enhancing the bonding force between emulsified materials by absorbing only oil by hydrophobicity. However, it should be limited to the above range in consideration of hydration reactivity.

그리고, 폴리비닐알코올은 내산성과 내약품성을 강화시키기 위해 첨가되는 것으로, 성분간 결합력을 높이고, 피막 형성을 촉진하여 이형성을 강화시키며, 점증제로 활용되기 때문에 점도 조절을 위해 상기 범위로 한정되어야 한다.Polyvinyl alcohol is added to enhance acid resistance and chemical resistance. It is required to be limited to the above range in order to control the viscosity because it increases the bonding force between the components, promotes the film formation and strengthens the releasing property, and is used as an increasing agent.

아울러, 실리콘수지는 규소와 산소 결합을 주체로 하는 고분자로서 접착력을 증대시켜 부착력, 고착력 및 구성성분간 바인딩력을 강화시키기 위해 첨가된다.In addition, the silicone resin is a polymer mainly composed of silicon and oxygen bonds, and is added in order to increase the adhesive force and to strengthen the binding force between the adhesive force and the constituent components.

다만, 2.0중량%를 초과하면 점도가 너무 높아져 도포성을 좋지 않게 하며, 1.5중량% 미만으로 첨가되면 부착력과 고착력이 떨어지므로 상기 범위로 한정해야 한다.However, if it exceeds 2.0% by weight, the viscosity becomes too high and the coating property becomes poor. When the content is less than 1.5% by weight, the adhesive strength and the fixing strength are lowered.

이와 같은 1차, 2차, 3차에 걸치 원료 배합단계가 완료되면, 비로서 수용성 합성수지가 완성된다.When the raw material mixing step for the primary, secondary, and tertiary materials is completed, a water soluble synthetic resin is completed.

그리고, 상기 EPS 몰드 제작단계는 CNC 선반을 이용하여 CAD 설계된 수치와 형상대로 EPS를 커팅하여 성형체 제조용 몰드로 가공하는 단계이다.In the EPS mold manufacturing step, the EPS is cut in numerical values and shapes designed by a CAD using a CNC lathe, and processed into a mold for molding.

이렇게 하여, EPS 몰드가 완성되면, 이어 수용성 합성수지 도포단계가 수행된다.Thus, when the EPS mold is completed, the water-soluble synthetic resin application step is performed.

상기 수용성 합성수지 도포단계는 앞서 제조된 수용성 합성수지를 물과 혼합하여 합성수지액을 만들고, 이를 EPS 몰드의 표면에 분사식으로 도포하는 단계이다.The step of applying the water-soluble synthetic resin is a step of mixing the water-soluble synthetic resin prepared above with water to prepare a synthetic resin solution and spraying it on the surface of the EPS mold.

이때, 경화 촉진을 유도하기 위해 폴리메타인산염(Polymetaphosphate)을 더 첨가할 수 있는데, 상기 폴리메타인산염은 상기 수용성 합성수지 전체에 대해 1.5-2.5중량부 더 첨가될 수 있다.At this time, a polymetaphosphate may be further added to induce curing acceleration. The polymetaphosphate may be added in an amount of 1.5-2.5 parts by weight based on the entire water-soluble synthetic resin.

다만, 폴리메타인산염을 과량 첨가하면 경화 촉진 능력이 더 강해지지만 2.5중량부를 초과하면 백색침전이 생겨서 안되고, 1.5중량부 미만으로 첨가되면 경화 촉진 효과를 기대할 수 없기 때문에 상기 범위로 한정되어야 한다.However, when the amount of the polymetaphosphate is excessively added, the ability to accelerate curing becomes stronger. However, when the amount exceeds 2.5 parts by weight, white precipitation can not occur. When the amount is less than 1.5 parts by weight, curing acceleration effect can not be expected.

아울러, 상기 수용성 합성수지가 물과 혼합되는 비율은 9:1의 중량비로 이루어지는데, 이 비율을 초과하여 물이 더 많이 첨가되게 되면 경화지연이 발생되고 EPS 몰드 표면에서의 수용성 합성수지 부착력이 떨어져 향후 사용시 박리현상이 발생될 수 있으므로 주의하여야 한다.In addition, when the water-soluble synthetic resin is mixed with water at a weight ratio of 9: 1, when water is added in excess of this ratio, hardening delay occurs and adhesion of water-soluble synthetic resin at the surface of the EPS mold is decreased. Care must be taken that peeling may occur.

뿐만 아니라, 본 발명에 따른 수용성 합성수지 도포 후 경화시간은 1-2시간이 바람직하다.In addition, the curing time after application of the water-soluble synthetic resin according to the present invention is preferably 1-2 hours.

이렇게 하여, 수용성 합성수지의 도포 및 건조 경화가 완료되면, EPS 몰드 표면에 표면강화층이 형성된 것으로서 GFRC 성형체를 탈형할 때 이형이 잘 되고, 탈형시 EPS 몰드 표면이 뜯겨 나가지 않기 때문에 다수회 반복하여 재사용이 가능하게 된다.Thus, when the water-soluble synthetic resin is applied and dried and cured, a surface strengthening layer is formed on the surface of the EPS mold, and when the GFRC molded body is demolded, the EPS mold is easily demolded and the EPS mold surface is not torn. Lt; / RTI &gt;

무엇보다도, EPS 몰드는 형상자유도가 우수하여 CNC 가공이 자유로워 원하는 형상과 모양으로의 설계가 용이한 장점이 있다.Above all, EPS mold is excellent in shape freedom, and CNC machining is free, so that it is easy to design in a desired shape and shape.

이후, GFRC 분체 성형단계가 수행된다.Thereafter, a GFRC powder forming step is performed.

상기 GFRC 분체 성형단계는 GFRC 원료를 숏크리트 설비로 분체도장하듯이 분체성형하는 단계로서, 일종의 뿜칠이라고 보면 된다.The GFRC powder forming step is a step of powder-molding the GFRC raw material in the form of a powder coating with a shotcrete facility, which is regarded as a kind of spraying.

이러한 분체성형을 통해 설계된 두께로 GFRC 원료가 부착되어 고착되면 EPS 몰드와 동일 형상의 성형체가 만들어지게 된다.When the GFRC material is adhered and fixed with the designed thickness through such powder molding, a molded article having the same shape as the EPS mold is formed.

여기에서, 상기 GFRC 원료는 시멘트질 반응성 물질인 포틀랜트 시멘트 25-35중량%와, 모래 20-40중량%와, 유리섬유 10-20중량%와, 에폭시수지 2-5중량%와, 감수제 2-5중량%와, 포졸란 2-5중량% 및 나머지 물로 이루어진다.Wherein the GFRC material comprises 25-35 wt% of a cementitious reactive material, 20-40 wt% of sand, 10-20 wt% of glass fibers, 2-5 wt% of an epoxy resin, 5 wt%, pozzolan 2-5 wt%, and balance water.

이때, 에폭시수지는 콘크리트의 열화를 방지하기 위해 첨가되는 수지이고, 상기 감수제는 시멘트의 분산작용 또는 공기연행작용에 의해 단위수량을 감소시켜 콘크리트의 워커빌리티를 개선하기 위해 첨가되는 일종의 혼화제이다.The epoxy resin is a resin added to prevent deterioration of concrete, and the water reducing agent is a kind of admixture added to improve the workability of concrete by decreasing the unit water by the dispersing action of cement or air entraining action.

그리고, 포졸란은 실리카 혼합물로서 물의 존재하에 석회와 결합하여 불용성의 실리카질 화합물을 생성시키고 이러한 수화반응(응결고화반응)을 통해 시멘트를 경화시키는 물질이다.And pozzolan is a silica mixture that binds with lime in the presence of water to produce an insoluble siliceous compound and cure the cement through such hydration (condensation solidification).

이렇게 하여, 분체성형이 완료되면 이후, GFRC 성형체 건조 및 탈형단계가 수행된다.Thus, after the powder molding is completed, the GFRC molded body drying and demolding steps are performed.

상기 GFRC 성형체 건조 및 탈형단계는 약 2일 정도의 양생된 성형체를 형틀인 EPS 몰드로부터 이형시켜 분리하는 단계로서, 탈형 후 탈형된 GFRC 성형체는 약 7일 정도 자연건조 방식으로 최종 건조된 후 제품화된다.The GFRC molded body is dried and demolded by separating the cured molded body from the EPS mold for about 2 days by releasing the molded body, and the GFRC molded body after demoulding is finally dried for about 7 days by natural drying method and then commercialized .

이하, 실시예에 대하여 설명한다.Hereinafter, examples will be described.

[실시예 1][Example 1]

본 발명에 따른 제조방법으로 GFRC 성형체를 제조할 때 EPS 몰드의 특성을 확인하기 위해 다음과 같이 실험하였다.In order to confirm the characteristics of the EPS mold when the GFRC molded body was manufactured by the manufacturing method according to the present invention, the following experiment was conducted.

먼저, 1차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 50 중량%와, 트리에탄올아민 0.50 중량%와, 헥사메틸렌테트라민 0.10 중량%와, 실리콘 소포제 0.05 중량%와, 메탄올 15 중량% 및 나머지 수산화나트륨을 배합하는 과정과; 상기 과정을 통해 배합된 배합물을 1시간 동안 간접가열시켜 1차 반응물을 형성하였다.First, in the primary raw material mixing step, 50 wt% of a copolymer of acrylic acid, styrene and methacrylic acid, 0.50 wt% of triethanolamine, 0.10 wt% of hexamethylenetetramine, 0.05 wt% of silicone defoamer, % By weight and the balance sodium hydroxide; Through the above process, the compounded compound was indirectly heated for 1 hour to form a first reaction product.

그리고, 2차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 30 중량%와, 트리에탄올아민 0.50 중량%와, 헥사메틸렌테트라민 0.10 중량%와, 포름산 0.01 중량% 및 나머지 상기 1차 반응물로 혼합하는 과정과; 상기 과정을 통해 혼합된 혼합물을 냉각시켜 2차 반응물을 형성하였다.The second raw material compounding step is a step of mixing 30 wt% of a copolymer of acrylic acid, styrene and methacrylic acid, 0.50 wt% of triethanolamine, 0.10 wt% of hexamethylenetetramine, 0.01 wt% of formic acid, Mixing with the reactant; Through the above process, the mixed mixture was cooled to form a second reaction product.

아울러, 3차 원료 배합단계는 3-클로로프로필렌옥시드 0.25 중량%와, 메틸트리메톡시실란 0.3 중량%와, 폴리비닐알코올 10 중량%와, 실리콘수지 1.5 중량% 및 나머지 2차 반응물로 최종 배합물을 만들고, 이 최종 배합물을 반응기에서 완전히 혼합 반응시켜 수용성 합성수지를 만들었다.In addition, the third raw material compounding step is carried out by mixing 0.25% by weight of 3-chloropropylene oxide, 0.3% by weight of methyltrimethoxysilane, 10% by weight of polyvinyl alcohol, 1.5% by weight of silicone resin, , And the resulting blend was completely mixed and reacted in a reactor to form a water-soluble synthetic resin.

이렇게 만들어진 수용성 합성수지를 제작된 EPS 몰드 시료에 2mm의 두께로 도포하고, 2시간 동안 경화시켰다.The water-soluble synthetic resin thus prepared was applied to the prepared EPS mold sample to a thickness of 2 mm and cured for 2 hours.

이후, 포틀랜트 시멘트 25중량%와, 모래 20중량%와, 유리섬유 10중량%와, 에폭시수지 2중량%와, 감수제 2중량%와, 포졸란 2중량% 및 나머지 물로 이루어진 GFRC 성형용 원료를 상기 시료의 표면에 분체성형하고, 2일간 양생 후 탈형하였다.Thereafter, a raw material for molding GFRC consisting of 25 wt% of portland cement, 20 wt% of sand, 10 wt% of glass fiber, 2 wt% of epoxy resin, 2 wt% of water reducing agent, 2 wt% of pozzolan, Powder molding was performed on the surface of the sample, followed by demolding after curing for 2 days.

[실시예 2][Example 2]

1차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 55 중량%와, 트리에탄올아민 1.0 중량%와, 헥사메틸렌테트라민 0.15 중량%와, 실리콘 소포제 0.15 중량%와, 메탄올 20 중량% 및 나머지 수산화나트륨을 배합하는 과정과; 상기 과정을 통해 배합된 배합물을 1시간 동안 간접가열시켜 1차 반응물을 형성하였다.The primary raw material mixing step was conducted by mixing 55 wt% of a copolymer of acrylic acid, styrene and methacrylic acid, 1.0 wt% of triethanolamine, 0.15 wt% of hexamethylenetetramine, 0.15 wt% of silicone defoamer, 20 wt% And the balance of sodium hydroxide; Through the above process, the compounded compound was indirectly heated for 1 hour to form a first reaction product.

그리고, 2차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 35 중량%와, 트리에탄올아민 1.0 중량%와, 헥사메틸렌테트라민 0.15 중량%와, 포름산 0.02 중량% 및 나머지 상기 1차 반응물로 혼합하는 과정과; 상기 과정을 통해 혼합된 혼합물을 냉각시켜 2차 반응물을 형성하였다.In the second raw material mixing step, 35 wt% of a copolymer of acrylic acid, styrene and methacrylic acid, 1.0 wt% of triethanolamine, 0.15 wt% of hexamethylenetetramine, 0.02 wt% of formic acid, Mixing with the reactant; Through the above process, the mixed mixture was cooled to form a second reaction product.

아울러, 3차 원료 배합단계는 3-클로로프로필렌옥시드 0.3 중량%와, 메틸트리메톡시실란 0.5 중량%와, 폴리비닐알코올 15 중량%와, 실리콘수지 2.0 중량% 및 나머지 2차 반응물로 최종 배합물을 만들고, 이 최종 배합물을 반응기에서 완전히 혼합 반응시켜 수용성 합성수지를 만들었다.In addition, the third raw material compounding step is a step of mixing 0.3 wt% of 3-chloropropylene oxide, 0.5 wt% of methyltrimethoxysilane, 15 wt% of polyvinyl alcohol, 2.0 wt% of silicone resin, , And the resulting blend was completely mixed and reacted in a reactor to form a water-soluble synthetic resin.

이렇게 만들어진 수용성 합성수지를 제작된 EPS 몰드 시료에 2mm의 두께로 도포하고, 2시간 동안 경화시켰다.The water-soluble synthetic resin thus prepared was applied to the prepared EPS mold sample to a thickness of 2 mm and cured for 2 hours.

이후, 포틀랜트 시멘트 35중량%와, 모래 40중량%와, 유리섬유 20중량%와, 에폭시수지 5중량%와, 감수제 5중량%와, 포졸란 5중량% 및 나머지 물로 이루어진 GFRC 성형용 원료를 상기 시료의 표면에 분체성형하고, 2일간 양생 후 탈형하였다.Thereafter, the raw material for molding GFRC consisting of 35 wt% of portland cement, 40 wt% of sand, 20 wt% of glass fiber, 5 wt% of epoxy resin, 5 wt% of water reducing agent, 5 wt% of pozzolan, Powder molding was performed on the surface of the sample, followed by demolding after curing for 2 days.

[실시예 3][Example 3]

실시예 1과 동일하게 하되, 수용성 합성수지 도포 전에 수용성 합성수지 전체량 대비 2.0중량부로 메타인산염을 더 첨가하였다.In the same manner as in Example 1, before addition of the water-soluble synthetic resin, 2.0 parts by weight of metaphosphate was added to the total amount of the water-soluble synthetic resin.

[비교예][Comparative Example]

비교를 위해, EPS 몰드 표면에 직접 실시예 2의 GFRC 성형용 원료를 분체성형하고, 2일간 양생 후 탈형하였다.For comparison, the raw material for molding GFRC of Example 2 was directly powder-formed on the surface of the EPS mold, and after 2 days of curing, the mold was demolded.

실험결과, 성형체 탈형시 이형성을 확인한 결과, 실시예 1,2,3은 모두 이형이 원활하게 일어났다. 하지만, 비교예의 경우에는 이형이 매우 불량하였다.As a result of the test, it was confirmed that the mold releasing property in the mold releasing was smoothly occurred in Examples 1, 2, and 3. However, in the case of the comparative example, the release was very poor.

또한, 탈형시 EPS 몰드 표면 상태를 돋보기로 확인하였다.In addition, the state of the surface of the EPS mold was confirmed by a magnifying glass when demoulding.

확인 결과, 실시예 1,2,3에서는 표면 스크래치나 표면 손상이 발생하지 않았지만, 비교예에서는 표면이 뜯겨져 움푹 패인 곳이 다수곳에서 발견되었고, 표면 깍임도 발생되어 균질하지 못하였다.As a result, in Examples 1, 2 and 3, surface scratches and surface damage did not occur. However, in Comparative Examples, the surface was torn and dents were found in many places, and surface cracks were also generated.

아울러, 수용성 합성수지 경화 후 부착력 시험기(Cross Cutter, ASTM)로 1mm 간격의 줄을 11개씩 가로 세로로 그어 100개의 칸을 만들고 이를 테이핑하여 부착력을 확인한 결과, 실시예 1은 2개, 실시예 2는 1개, 실시예 3은 0개로 확인되었다.In addition, after curing the water-soluble synthetic resin, 11 rows of 1 mm spacers were cross-cut with an Adhesion Tester (Cross Cutter, ASTM) to make 100 squares, and taping was performed to confirm adhesion, 1, and Example 3 was 0.

이때, 탈락한 칸의 경우 주로 모서리 부분에 국한되어 있어 사실상 거의 탈락이 없다고 봐도 무방할 정도였다.At this time, the box that was dropped out was limited mainly to the corner, so that it was virtually impossible to say that there was virtually no dropout.

이를 통해, 부착력이 매우 우수함을 확인할 수 있었다.As a result, it was confirmed that the adhesive strength was excellent.

Claims (3)

1차 원료 배합단계 → 2차 원료 배합단계 → 3차 원료 배합단계 → EPS(Expandable Polystyrene) 몰드 제작단계 → 수용성 합성수지 도포단계 → GFRC(Glass Fiber Reinforced Concrete) 분체 성형단계 → GFRC 성형체 건조 및 탈형단계를 포함하는 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법에 있어서;
상기 1차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 50~55 중량%와, 트리에탄올아민 0.50~1.00 중량%와, 헥사메틸렌테트라민 0.10~0.15 중량%와, 실리콘 소포제 0.05~0.15 중량%와, 메탄올 15~20 중량% 및 나머지 수산화나트륨을 배합하는 과정과; 상기 과정을 통해 배합된 배합물을 1~2시간 동안 간접가열시켜 1차 반응물을 형성하는 과정으로 이루어지고;
상기 2차 원료 배합단계는 아크릴산ㆍ스티렌ㆍ메타크릴산을 공중합시킨 공중합체 30~35 중량%와, 트리에탄올아민 0.50~1.00 중량%와, 헥사메틸렌테트라민 0.10~0.15 중량%와, 포름산 0.01-0.02 중량% 및 나머지 상기 1차 반응물로 혼합하는 과정과; 상기 과정을 통해 혼합된 혼합물을 냉각시켜 2차 반응물을 형성하는 과정으로 이루어지며;
상기 3차 원료 배합단계는 3-클로로프로필렌옥시드 또는 1-클로로-2, 3-에폭시프로페인 0.25~0.30 중량%와, 메틸트리메톡시실란 0.3~0.5 중량%와, 폴리비닐알코올 10~15 중량%와, 실리콘수지 1.5~2.0 중량% 및 나머지 2차 반응물로 최종 배합물을 만들고, 이 최종 배합물을 반응기에서 완전히 혼합 반응시켜 수용성 합성수지를 만드는 단계이고;
상기 EPS 몰드 제작단계는 CNC(Computerized Numerical Control) 선반을 통해 CAD(Computer Aided Design) 설계된 치수와 형상대로 EPS 몰드를 만드는 단계이며;
상기 수용성 합성수지 도포단계는 수용성 합성수지를 물과 혼합하여 EPS 몰드의 표면에 분사식으로 도포하는 단계이고;
상기 GFRC 분체 성형단계는 GFRC 성형용 원료를 EPS 몰드 표면에 분체성형하여 일정 두께를 갖도록 성형하는 단계이며;
상기 GFRC 성형체 건조 및 탈형단계는 분체 성형이 완료된 성형체를 EPS 몰드로부터 이형시키는 단계;인 것을 특징으로 하는 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법.
First raw material blending step → Secondary raw material blending step → Third raw material blending step → EPS (Expandable Polystyrene) mold making step → Water soluble synthetic resin applying step → GFRC (Glass Fiber Reinforced Concrete) powder molding step → GFRC molded article drying and demolding step A method for manufacturing a glass fiber reinforced concrete molded article using expanded polystyrene comprising:
Wherein the primary raw material mixing step comprises mixing 50 to 55 wt% of a copolymer of acrylic acid, styrene, and methacrylic acid, 0.50 to 1.00 wt% of triethanolamine, 0.10 to 0.15 wt% of hexamethylenetetramine, 0.15% by weight, 15-20% by weight of methanol and the balance sodium hydroxide; And indirectly heating the compounded mixture through the above process for 1 to 2 hours to form a first reactant;
The second raw material blending step is carried out by mixing 30 to 35% by weight of a copolymer of acrylic acid, styrene and methacrylic acid, 0.50 to 1.00% by weight of triethanolamine, 0.10 to 0.15% by weight of hexamethylenetetramine, % By weight and the remainder in the first reactant; And cooling the mixed mixture through the process to form a second reactant;
The third raw material blending step is a step of blending the starting material mixture of 3-chloropropylene oxide or 1-chloro-2,3-epoxypropane in an amount of 0.25 to 0.30% by weight, methyltrimethoxysilane in an amount of 0.3 to 0.5% by weight, polyvinyl alcohol in an amount of 10 to 15 By weight of a silicone resin, 1.5 to 2.0% by weight of a silicone resin and the remainder of the secondary reactant, and the final combination is completely mixed in the reactor to form a water soluble synthetic resin;
The EPS mold making step is a step of making an EPS mold according to a dimension and a shape designed by CAD (Computer Aided Design) through a CNC (Computerized Numerical Control) shelf;
The step of applying the water-soluble synthetic resin is a step of spraying the water-soluble synthetic resin on the surface of the EPS mold by mixing with water;
Wherein the GFRC powder forming step is a step of powder-molding the GFRC molding raw material on the surface of the EPS mold to form a predetermined thickness;
Wherein the drying and demolding of the GFRC formed body is a step of releasing the molded body from the EPS mold after the powder molding is completed.
청구항 1에 있어서,
상기 수용성 합성수지 도포단계에서, 상기 수용성 합성수지와 물의 혼합비율은 9:1의 중량비인 것을 특징으로 하는 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법.
The method according to claim 1,
Wherein the mixing ratio of the water-soluble synthetic resin and water is 9: 1 in the water-soluble synthetic resin application step.
청구항 1에 있어서,
상기 GFRC 분체 성형단계에서, 상기 GFRC 성형용 원료는 포틀랜트 시멘트 25-35중량%와, 모래 20-40중량%와, 유리섬유 10-20중량%와, 에폭시수지 2-5중량%와, 감수제 2-5중량%와, 포졸란 2-5중량% 및 나머지 물로 이루어진 것을 특징으로 하는 발포폴리스티렌을 이용한 유리섬유 강화 콘크리트 성형체 제조방법.
The method according to claim 1,
In the GFRC powder forming step, the GFRC molding raw material is prepared by mixing 25-35 wt% of the portland cement, 20-40 wt% of the sand, 10-20 wt% of the glass fiber, 2-5 wt% of the epoxy resin, 2-5% by weight of pozzolan, 2-5% by weight of pozzolan and the balance of water.
KR1020170121793A 2017-09-21 2017-09-21 Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene KR101927195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170121793A KR101927195B1 (en) 2017-09-21 2017-09-21 Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170121793A KR101927195B1 (en) 2017-09-21 2017-09-21 Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene

Publications (1)

Publication Number Publication Date
KR101927195B1 true KR101927195B1 (en) 2018-12-11

Family

ID=64671813

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170121793A KR101927195B1 (en) 2017-09-21 2017-09-21 Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene

Country Status (1)

Country Link
KR (1) KR101927195B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316164A (en) 1999-11-24 2001-11-13 Kanegafuchi Chem Ind Co Ltd Inorganic hydraulic composition and method for manufacturing lightweight molded body using it
JP2001316165A (en) 2000-02-25 2001-11-13 Kanegafuchi Chem Ind Co Ltd Wall structure of building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316164A (en) 1999-11-24 2001-11-13 Kanegafuchi Chem Ind Co Ltd Inorganic hydraulic composition and method for manufacturing lightweight molded body using it
JP2001316165A (en) 2000-02-25 2001-11-13 Kanegafuchi Chem Ind Co Ltd Wall structure of building

Similar Documents

Publication Publication Date Title
KR101292174B1 (en) Aqueous membrane curing composition for surface reinforcement functions of concrete
KR20070050065A (en) Method of making water-resistant gypsum-based article
US20130168891A1 (en) Paste composition for artificial marble and method of manufacturing artificial marble using the same
CN108623268B (en) Self-insulation bearing concrete based on 3D printing performance and preparation method thereof
KR102228695B1 (en) Waterproof coating agent manufacturing method and construction method using thereof
CN112679178B (en) Thistle board
US20200231502A1 (en) Lightweight concrete
CN108395194A (en) A kind of glass fiber reinforced gypsum based composites and preparation method thereof
CN114804786A (en) Anti-crack mortar and preparation method thereof
KR101927195B1 (en) Method of manufacturing glass fiber reinforced concrete formwork using expanded polystyrene
CN111592318B (en) High-strength high-toughness water-resistant gypsum plaster board and preparation method thereof
KR101037983B1 (en) Concrete composition and include them an artificial waterfall or ingongamyong plastic panels
JP2000507292A (en) One-component epoxy resin tool material
KR102650351B1 (en) Organic and inorganic hybrid grout compositon with high flow and high elasticity and grout construction method using the same
CN109575522B (en) Epoxy resin porous composite material and preparation method and application thereof
US20190330113A1 (en) Synthetic stone
JP2008260687A (en) Method for manufacturing cement concrete cured body
MX2015001995A (en) Fast curing agents for epoxy resins.
CN107135652B (en) Macro-defect free cement with improved moisture resistance
KR101346039B1 (en) Manufacturing method of one component type epoxy emulsion
CN104558484A (en) Preparation method of reinforced flame-retardant hard polyurethane composite material
CN113321469A (en) High-strength concrete with high water permeability and preparation method thereof
CN106278040A (en) A kind of toughening modifying foam cement polyurethane foam composite insulation boards
RU2688329C2 (en) Method of prefabricated manufacturing of high-quality polystyrene concrete products using special technology
KR102209760B1 (en) Eco-friendly liquid waterproofing composition, preparing method for thereof and waterproofing method using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant