KR101922420B1 - Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker - Google Patents

Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker Download PDF

Info

Publication number
KR101922420B1
KR101922420B1 KR1020160151432A KR20160151432A KR101922420B1 KR 101922420 B1 KR101922420 B1 KR 101922420B1 KR 1020160151432 A KR1020160151432 A KR 1020160151432A KR 20160151432 A KR20160151432 A KR 20160151432A KR 101922420 B1 KR101922420 B1 KR 101922420B1
Authority
KR
South Korea
Prior art keywords
dna
artificial sequence
rice
seq
nos
Prior art date
Application number
KR1020160151432A
Other languages
Korean (ko)
Other versions
KR20180054070A (en
Inventor
지현소
이승범
서석철
김태호
최인찬
김경환
윤혜진
이강섭
정인선
강현주
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020160151432A priority Critical patent/KR101922420B1/en
Publication of KR20180054070A publication Critical patent/KR20180054070A/en
Application granted granted Critical
Publication of KR101922420B1 publication Critical patent/KR101922420B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/20Polymerase chain reaction [PCR]; Primer or probe design; Probe optimisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 남평벼 유래 DNA 마커를 포함하는 키다리병 저항성 벼 품종 선별용 조성물에 관한 것으로, 보다 상세하게는 1625IND에 대한 서열번호 249 및 250으로 표시되는 프라이머 쌍, 및 1675IND에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍으로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 쌍을 포함하는, 키다리병 저항성 벼 품종 선별용 조성물에 관한 것이다. 또한, 상기 조성물을 포함하는 키다리병 저항성 벼 품종 선별 키트, 상기 조성물을 이용한 키다리병 저항성 벼 품종 선별 방법, 및 키다리병 저항성 벼 품종 생산 방법에 관한 것이다. 한편, 본 발명은 키다리병 저항성과 관련된 양적형질 유전자좌(QTLs, quantitative trait loci)를 결정하기 위한 유전지도 작성용 CAPS(cleaved amplified polymorphic sequences) 마커 증폭용 프라이머 세트에 관한 것이다.
본 발명에 따른 남평벼 유래 DNA 마커를 포함하는 키다리병 저항성 벼 품종 선별용 조성물을 이용하여 효율적으로 키다리병 저항성 및 감수성 개체를 구분할 수 있으며, 본 발명의 DNA 마커는 MAS(Marker Assisted Selection)를 통한 키다리병 저항성을 개선한 벼 육종에 유용하게 사용될 수 있다. 이에, 벼 키다리병 저항성 품종 개발 촉진으로 인해 키다리병에 대한 피해 절감 및 농약 사용량 또한 절감할 수 있다.
The present invention relates to a composition for screening rice blast-resistant rice varieties comprising a DNA marker derived from Nambyeong Rice, and more particularly to a primer pair represented by SEQ ID NOs: 249 and 250 for 1625IND and SEQ ID NOs: 251 and 252 for 1675IND Wherein the primer pair comprises at least one primer pair selected from the group consisting of primer pairs to be displayed. Also, the present invention relates to a kit for screening a susceptible rice variety, which comprises the above composition, a method for screening a susceptible rice variety resistant to Kidari disease, and a method for producing a susceptible rice variety. The present invention relates to a primer set for cleaved amplified polymorphic sequences (CAPS) marker amplification for genetic mapping for determining quantitative trait loci (QTLs) associated with resistance to a keypad disease.
The DNA marker of the present invention can be efficiently distinguished from the susceptibility of susceptible individuals by using the composition for screening the susceptible rice varieties comprising the DNA markers derived from the Nambyeong plant according to the present invention. It can be used for rice breeding with improved disease resistance. Therefore, the promotion of the development of Rice Kidney Disease Resistant Varieties can reduce the damage to the Kidari disease and reduce the amount of pesticide use.

Description

남평벼 유래 DNA 마커를 포함하는 키다리병 저항성 벼 품종 선별용 조성물 및 상기 DNA 마커를 이용한 키다리병 저항성 벼 품종 선별 방법{Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker}[0001] The present invention relates to a composition for screening a variety of rice-resistant rice varieties including DNA markers derived from Nambyeong Rice, and a method for screening the rice-resistant rice varieties using the DNA markers. resistant to bakanae disease using the DNA marker}

본 발명은 남평벼 유래 DNA 마커를 포함하는 키다리병 저항성 벼 품종 선별용 조성물에 관한 것으로, 보다 상세하게는 1625IND에 대한 서열번호 249 및 250으로 표시되는 프라이머 쌍, 및 1675IND에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍으로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 쌍을 포함하는, 키다리병 저항성 벼 품종 선별용 조성물에 관한 것이다. 또한, 상기 조성물을 포함하는 키다리병 저항성 벼 품종 선별 키트, 상기 조성물을 이용한 키다리병 저항성 벼 품종 선별 방법, 및 키다리병 저항성 벼 품종 생산 방법에 관한 것이다. 한편, 본 발명은 키다리병 저항성과 관련된 양적형질 유전자좌(QTLs, quantitative trait loci)를 결정하기 위한 유전지도 작성용 CAPS(cleaved amplified polymorphic sequences) 마커 증폭용 프라이머 세트에 관한 것이다. The present invention relates to a composition for screening rice blast-resistant rice varieties comprising a DNA marker derived from Nambyeong Rice, and more particularly to a primer pair represented by SEQ ID NOs: 249 and 250 for 1625IND and SEQ ID NOs: 251 and 252 for 1675IND Wherein the primer pair comprises at least one primer pair selected from the group consisting of primer pairs to be displayed. Also, the present invention relates to a kit for screening a susceptible rice variety, which comprises the above composition, a method for screening a susceptible rice variety resistant to Kidari disease, and a method for producing a susceptible rice variety. The present invention relates to a primer set for cleaved amplified polymorphic sequences (CAPS) marker amplification for genetic mapping for determining quantitative trait loci (QTLs) associated with resistance to a keypad disease.

벼 키다리병은 곰팡이 병원균인 푸사리움균(Fusarium fujikuroi)에 의해 발생하는 대표적인 종자전염성 병으로, 육묘시부터 본답시까지 발생하는 병해이다. 묘가 비정상적으로 신장하는 병징때문에 Bakanae disease라 명명된다. 일본에서 1898년 처음 보고되었으며, 우리나라에서는 1960년대 일부 농가에 심하게 발생하여 문제가 되었고, 최근 들어 벼 종자 내부의 심한 감염과 약제에 대한 저항성 균의 출현 등에 의하여 그 발병이 급격히 증가하여 보급종 종자에까지 발병하고 있는 추세이다. 또한 벼 키다리병에 대하여 저항성이 높은 벼 품종이 개발되어있지 않아, 방제를 위한 농약살포에 막대한 농약과 노동력이 소모되고 있고, 이에 따라 생산비 절감과 친환경 농산물의 생산에 큰 걸림돌이 되고 있다.Rice Kidari disease is a common infectious disease caused by Fusarium fujikuroi , a fungal pathogen. It is named Bakanae disease due to abnormal growth of the seedlings. It was first reported in Japan in 1898. In Korea, it was a serious problem in some farms in the 1960s. In recent years, severe infections in rice seeds and the emergence of resistant bacteria to medicines have led to a rapid increase in the incidence, It is a tendency to develop. In addition, since rice varieties with high resistance to rice seedling disease have not been developed, enormous pesticides and labor force are consumed for spraying pesticides for control, which is a major obstacle to production cost reduction and production of environmentally friendly agricultural products.

이러한 벼 종자소독을 위하여, i) 적당한 온도의 온수탕을 만들어 파종종자를 일정시간동안 침지시킴으로써 병원균 포자나 유해 미생물을 살균·예방하는 방법인 온탕침법(溫湯浸法)을 수행하거나, ⅱ) 헥사코나졸(hexaconazole), 테부코나졸(tebuconazole)과 같은 새로운 종자소독제들이 개발 보급되어 이용되고 있으나, 상기 온탕침법은 대량의 종자를 균일한 온도로 처리하기가 어렵다는 한계점이 있고, 상기 종자소독제의 사용과 같은 화학적 처리는 약제 저항성 균의 출현이 우려되는 문제점이 있다. 따라서 벼 키다리병의 근본적인 해결을 위해서는 벼 키다리병 병원균에 대한 저항성 품종을 발굴하는 것이 필요하다.In order to sterilize rice seeds, i) a hot water bath at an appropriate temperature is made to drench sowing seeds for a predetermined period of time, thereby conducting a hot water immersion method, which is a method of sterilizing and preventing pathogenic spores and harmful microorganisms, or ii) New seed disinfectants such as hexaconazole and tebuconazole have been developed and used. However, there is a limitation in that it is difficult to treat a large amount of seeds at a uniform temperature, and the use of the seed disinfectant , There is a concern that the appearance of a drug resistance-resistant microorganism may occur. Therefore, it is necessary to identify resistant cultivars against rice pathogens in order to solve the root disease of rice.

종래의 벼 키다리병 저항성 평가를 위한 검정방법으로는, i) 병원균의 포자 배양액에 벼 종자를 침지한 후 육묘상에 파종하여 균계에 따른 도장과 고사 증상을 품종별로 비교하는 방법, ⅱ) 토양-귀리 배지에서 배양한 병원균을 살균 토양과 혼합한 상토에 종자를 파종하여 육묘상에서 키다리병 발병을 조사하는 방법, ⅲ) 시험관 배양을 통한 실내검정법, ⅳ) 포자 배양액에 벼 종자를 침지한 후 포장에서 검정하는 방법 등이 있다. 그러나 이들은 방법에 따라 정밀도가 떨어지거나, 넓은 면적을 필요로 하며, 검정하는 데 장기간의 시간이 소요되는 등의 한계점이 존재한다.The conventional method for assaying resistance to rice hind pandemic disease includes: i) a method of seeding seedlings in a spore culture of a pathogenic bacterium and then seeding the seedlings, A method for investigating the onset of Kidari disease in a seedling by sowing seeds on a soil mixed with a pathogenic bacterium cultivated in a medium, iii) an indoor test method using a test tube culture, iv) a method in which rice seeds are immersed in a spore culture medium, And the like. However, these methods have a limitation in that accuracy is decreased according to the method, a large area is required, and a long time is required for the verification.

새로운 품종을 개발하여 생산하기 위해서는 일반적으로 8~12년 이상의 장기간이 소요되며, 계통 전개 및 선발을 위한 넓은 재배면적이 필요하다. 우리나라에서 재배되고 있는 벼 품종들은 대부분 벼 키다리병에 약하여 저항성 품종에 대한 개발 요구가 매우 높다. 따라서, 벼 유전자원 및 교배집단 대상 저항성 자원 및 계통의 선발 등에 소요되는 시간과 비용 절감을 위해 정밀하면서도 객관성이 있는 검정결과를 얻을 수 있는 가장 효율적인 검정방법인 분자표지방법이 매우 필요한 실정이다. 분자 표지방법은 분자 육종시스템에서 유용 형질 탐색, 생물의 종 판별, 품종 분류동정 및 집단 개체군의 유연관계 분석 등의 목적으로 널리 이용되고 있다. 분자 표지를 이용한 벼 육종은 환경변이에 영향을 받지 않고 어린 시기에 형질을 탐색할 수 있기 때문에 대량의 자원을 정확하고 빠르게 분석할 수 있는 장점이 있다(한국등록특허 제10-1509076호). Generally, it takes 8 ~ 12 years to develop and produce new varieties, and a wide cultivation area is needed for system development and selection. Most of the rice cultivars cultivated in Korea are weak against rice pandemic, so the development of resistant cultivars is very demanding. Therefore, there is a need for a molecular labeling method, which is the most effective method for obtaining precise and objective test results, in order to reduce the time and cost required for selection of resistance resources and lines for rice genetic resources and mating groups. Molecular labeling methods are widely used in molecular breeding systems for the search of useful traits, identification of species of organisms, identification of breed classification, and analysis of the relationship of group populations. Since the rice seedlings using the molecular markers can be traced in a young period without being affected by the environmental variation, it is possible to analyze a large amount of resources accurately and quickly (Korean Patent No. 10-1509076).

최근 차세대 염기서열 분석기술(Next Generation Sequencing)이 발달하면서 대용량의 염기서열 분석 비용이 감소하고, 속도가 가속화되었다. 또한, 벼 유전체 해독이 완료됨으로써 표준유전체(reference sequence)를 기반으로 전장 유전체 재염기서열 분석(whole genome re-sequencing)을 수행하여 SNP, 삽입(insertion) 그리고 결실(deletion) 등 다양한 마커들을 대량으로 단기간 안에 개발할 수 있게 되었다. 중국에서는 재래종 벼에 대한 재염기서열 분석을 통해 대량의 SNP를 탐색하여 고밀도의 분자 유전지도를 작성하였다(Nature Genet., 42:961-967, 2010).Recently, the development of Next Generation Sequencing has resulted in a decrease in the cost of large-scale sequencing and acceleration of speed. In addition, when the rice genome is decoded, whole genome re-sequencing is performed based on a standard genome (reference sequence), and various markers such as SNP, insertion and deletion are mass- It can be developed in a short time. In China, a large number of SNPs were searched for by genome sequence analysis of native rice plants to produce a high-density molecular genetic map ( Nature Genet. , 42: 961-967, 2010).

작물 육종에 있어서 농업적으로 중요한 형질들은 독립적인 단일 유전자가 아니라 전체 염색체 상에 존재하는 수많은 유전자들에 의해서 조절되는 양적형질이다. 양적 형질은 일반적으로 많은 수의 유전자에 의하여 영향을 받을 뿐만 아니라 여러 가지 환경요인에 의해서도 상당히 영향을 받는다. 따라서 양적 형질에 있어서는 이에 영향하는 개별적인 유전자 작용이나 특성과 같은 것을 구명하는 것이 질적 형질(qualitative trait)보다 극히 곤란하다. 때문에, 양적 형질의 유전을 연구하는데 통계적 방법이 강력한 수단으로 사용되고 있으며 양적 형질에 영향하는 유전적 요인을 여러 환경 요인으로부터 분리하여 효과적으로 추정하고자 하는 연구가 여러 학자들에 의해 수행되어 왔다. 품종 개량을 위한 분자 유전학적 기법의 이용은 DNA 수준에서의 개체의 유전적 소질에 대한 연구를 가능토록 할 수 있을 것이며, 개량 대상형질에 관련된 유전자, 즉 주유전자(major gene) 혹은 양적 형질 유전자좌위(QTL: Quantitative Trait Loci)에 대한 직접적인 선발 혹은 양적 형질 유전자좌위(QTL)에 연관되어 있는 유전적 표지(genetic marker)에 대한 선발을 통해 유전적 소질을 실현시킬 수 있는 도구를 제공할 수 있다. 표현형 정보에만 의존하는 것이 아니라 분자 유전학적인 정보의 추가적인 이용을 통해 유전적 개량을 보다 가속화할 수 있을 것이다. 따라서 오늘날은 이러한 양적형질 유전자좌를 연구하기 위해서 고밀도 분자 유전지도 작성을 통해 유전자를 찾고, 그 기능을 밝히는 등의 접근이 많이 이루어지고 있다. 현재까지 고밀도 분자 유전지도를 작성하기 위해 RFLP(restriction fragment-length polymorphism), RAPD (randomly amplified polymorphism) 및 AFLP (amplified fragment length polymorphism) 등 다양한 DNA 마커가 개발되었다(Genetics, 148:479-494, 1998). Agronomically important traits in crop breeding are not independent single genes but quantitative traits that are controlled by numerous genes on the entire chromosome. Quantitative traits are generally affected not only by a large number of genes but also by various environmental factors. Thus, in quantitative traits, it is extremely difficult to qualify traits such as individual gene actions or traits that affect them. Therefore, statistical methods have been used as a powerful tool for studying quantitative traits, and studies have been conducted by several scholars to effectively isolate genetic factors affecting quantitative traits from various environmental factors. The use of molecular genetic techniques for breed improvement will enable the study of the genetic predisposition of individuals at the DNA level, and it will be possible to identify genes related to the target traits to be improved, that is, major genes or loci of quantitative traits (QTL), or selection of genetic markers associated with quantitative trait loci (QTLs) can provide a tool for realizing a genetic locus. By using molecular genetic information rather than relying solely on phenotypic information, genetic improvement can be accelerated. Therefore, in order to study such a quantitative trait locus today, many approaches such as finding a gene through high density molecular genetic mapping and revealing its function are being performed. To date, various DNA markers have been developed, including restriction fragment-length polymorphism (RFLP), randomly amplified polymorphism (RAPD) and amplified fragment length polymorphism (AFLP) to generate high density molecular genetic maps ( Genetics , 148: 479-494, 1998 ).

기존의 DNA 마커들은 식별방법이 간편하지 못하고, 고비용과 많은 소요시간이 걸린다. 게다가 출현빈도가 낮다는 한계를 가지고 있다. 최근에 개발된 SNP(single nucleotide polymorphism)는 품종 또는 개체간에 훨씬 높은 다형성을 보여주며, 골고루 분포하기 때문에 이용가치가 높아 표지인자로 많은 연구가 이루어지고 있다.Conventional DNA markers are not easy to identify, costly and take a long time. Moreover, the frequency of appearance is low. Recently developed SNPs (single nucleotide polymorphism) show a much higher polymorphism among varieties or individuals, and are widely used as markers because of their high utilization value because they are distributed evenly.

이러한 배경하에서, 본 발명자들은 키다리병 저항성 벼 품종을 구별하는데 효율적으로 이용될 수 있는 DNA 마커를 개발하기 위하여 예의 노력한 결과, 키다리병 저항성과 관련된 QTL을 결정하기 위한 새로운 CAPS 마커를 개발하여 유전 및 분자지도 작성에 활용하는 한편, 키다리병 저항성 품종인 남평벼와 키다리병 민감성이며 동진벼에서 파생된 돌연변이 계통인 동진AD 간의 교배로부터 파생된 후대 집단을 육성하고, 이에 존재하는 분자표지 중 PCR 및 아가로스 겔을 이용하여 쉽게 분석할 수 있으며, 정확하게 키다리병 저항성 품종을 선발할 Indel(insertion/deletion) 마커를 개발함으로써 본 발명을 완성하였다.Under these circumstances, the present inventors have made intensive efforts to develop DNA markers that can be efficiently used to distinguish rice cultivars resistant to Kidney Disease. As a result, they have developed a new CAPS marker for determining QTL associated with Kidney Disease Resistance, In addition, it is used for the mapping, and the succeeding group derived from the crossing between the Kindari disease resistant varieties such as Nambyeongbyeon and Kidari disease and the mutant strain Dongjin AD, which is sensitive to the Kindari disease, is cultivated and PCR and agarose gel And developed an Indel (insertion / deletion) marker which can be easily analyzed by using the strain and accurately select the strain resistant to the genus.

한국등록특허 제10-1509076호Korean Patent No. 10-1509076

Nature Genet., 42:961-967, 2010Nature Genet., 42: 961-967, 2010 Genetics, 148:479-494, 1998Genetics, 148: 479-494, 1998

본 발명의 목적은 키다리병 저항성 벼 품종 선별용 조성물, 상기 조성물을 포함하는 키다리병 저항성 벼 품종 선별 키트, 상기 조성물을 이용한 키다리병 저항성 벼 품종 선별 방법, 및 키다리병 저항성 벼 품종 생산 방법을 제공하기 위한 것이다.It is an object of the present invention to provide a composition for screening a rice blast resistance resistant rice variety, a kit for screening a susceptible rice variety with the above-mentioned composition, a method for screening a susceptible rice variety for a susceptible disease, and a method for producing a susceptible rice varieties .

본 발명의 다른 목적은 남평벼 및 동진AD 간의 교배로부터 파생된 후대 집단의 키다리병 저항성과 관련된 양적형질 유전자좌(QTLs, quantitative trait loci)를 결정하기 위한 유전지도 작성용 CAPS(cleaved amplified polymorphic sequences) 마커 증폭용 프라이머 세트, 및 상기 남평벼 및 동진AD의 후대 집단의 키다리병 저항성 관련 양적형질 유전자좌를 결정하기 위한 유전지도를 제작하는 방법을 제공하기 위한 것이다.Another object of the present invention is to provide cleaved amplified polymorphic sequences (CAPS) markers for genetic mapping to determine the quantitative trait loci associated with the resistance of the tympanic resistance of the succeeding population derived from crosses between Nampwa and Dongjin AD And a method for producing a genetic map for determining a quantitative trait locus related to a susceptibility of a succeeding population of the Nam Pyeong and Dongjin AD.

상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 1625IND에 대한 서열번호 249 및 250으로 표시되는 프라이머 쌍, 및 1675IND에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍으로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 쌍을 포함하는, 키다리병 저항성 벼 품종 선별용 조성물을 제공한다.In one aspect to accomplish the above object, the present invention provides a primer pair comprising a pair of primers represented by SEQ ID NOS: 249 and 250 for 1625 IND, and a pair of primers represented by SEQ ID NOS: 251 and 252 for 1675 IND The present invention provides a composition for screening a rice blast resistance resistant rice variety comprising the above primer pair.

본 발명에서 용어, "키다리병(bakanae disease)"은 푸사리움균(Fusarium fujikuroi)에 의해 발생하는 대표적인 종자전염성병으로, 벼의 묘종 또는 본답 이식 직후부터 잎이 옅은 노란색이 되면서 도장(徒長)하여 풀의 길이가 건전주의 2배 가까이 되는 병징을 보인다. 종자전염의 병해로, 벼의 개화기도장 후 고사한 포기 위에 형성된 병원균의 분생포자가 비산해 감염되어 이병종자가 된다. 또한 파종 전 최아(催芽)하기 위해 물에 침지할 때 이병종자가 섞여있으면 새로운 감염이 일어난다. 병원균이 침범하고 있으면 발아하지 않거나 발아하더라도 곧 고사한다. 고사하지 않은 것은 전술한 바와 같이 도장하여 전형적인 증상을 나타내지만 말기에는 고사한다. In the present invention, the term " bakanae disease " is a representative seed infectious disease caused by Fusarium fujikuroi , and the leaves become pale yellow immediately after the seedling of the rice or the transplant The length of the pool is close to twice that of healthy. In the pathogenesis of seed transmission, the fungus of the pathogen formed on the fungus after the flowering of the rice is scattered and becomes infected. In addition, new infections occur when the seeds are mixed when immersed in water to pre-sow. If pathogens are invading, they do not germinate or die soon. The untreated is painted as described above and exhibits typical symptoms, but is terminated at the end.

본 발명에서 용어, "키다리병 저항성 벼"는 벼에서 키다리병이 발병하지 못하도록 하는 형질을 갖는 식물체로 키다리병에 내성을 갖는 벼를 말한다. 상기 저항성은 병원체의 침해를 받았을 때 병에 잘 걸리지 않는 성질을 의미하는 것으로 내병성(disease resistance)이라는 용어를 사용하기도 한다. In the present invention, the term " rice paddy rice resistance " refers to a rice plant resistant to pandemic disease, which has a trait that prevents the occurrence of pandemic disease in rice. The term resistance refers to the property that when a pathogen is infected, it does not easily catch disease, and the term disease resistance is also used.

본 발명에서 용어, "벼(Oryza stiva)"는 외떡잎식물 벼목 화본과의 한해살이풀로, 동인도 원산의 식용작물로 논이나 밭에 심는다. 높이는 1m 정도이고 잎은 가늘고 길며 성숙하면 줄기 끝에 이삭이 나와 7월 말에서 8월 경 꽃이 핀 후 열매를 맺는다. 벼의 열매를 찧은 것을 쌀이라고 하며, 전세계 인구의 40% 정도가 쌀을 주식량(主食糧)으로 한다. 벼속에 속하는 식물로는 20여 종(種) 이상이 알려져 있으나 실제로 재배되고 있는 것은 벼(O. sativa)가 대부분이다. 이병될 수 있는 질병으로는 키다리병, 도열병, 흰잎마름병, 줄무늬잎마름병, 오갈병 및 충해(혹명나방, 벼멸구) 등이 알려져 있다.In the present invention, the term " rice ( Oryza stiva "is an annual plant of the monocotyledonous liana, and it is planted in rice field and field with the edible crops of the East Indies. It is about 1m high and the leaves are thin and long. Rice is the main food of 40% of the world's population and more than 20 kinds of plants belong to the rice family. (O. sativa) are mostly cultivated. Kidari disease, blast disease, blight of blight, blight of stripe leaf blight, mildew disease, and mite (moth, moth) are known.

본 발명에서 용어, "프라이머"는 자유 3' 말단에 수산화기(free 3' hydroxyl group)를 가지는 짧은 핵산 서열로 상보적인 주형(template)과 염기쌍(base pair)을 형성할 수 있고 주형의 복사를 위한 시작 지점으로 기능을 하는 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 중합효소 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오타이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다. The term " primer " in the present invention is a short nucleic acid sequence having a free 3 'hydroxyl group at the free 3' end and can form a base pair with a complementary template. Means a nucleic acid sequence functioning as a starting point. Primers can initiate DNA synthesis in the presence of reagents for polymerization (i. E., DNA polymerase or reverse transcriptase) and four different nucleotide triphosphates at the appropriate buffer solution and temperature.

본 발명에서 이용되는 프라이머는 타겟 핵산에 상보적인 혼성화 뉴클레오타이드 서열을 포함한다. 용어 "상보적"은 소정의 어닐링(annealing) 또는 혼성화 조건하에서 프라이머가 타겟 핵산 서열에 선택적으로 혼성화 할 정도로 충분히 상보적인 것을 의미하며, 실질적으로 상보적(substantially complementary) 및 완전히 상보적(perfectly complementary)인 것을 모두 포괄하는 의미를 가지며, 바람직하게는 완전히 상보적인 것을 의미한다.The primers used in the present invention include a hybridization nucleotide sequence complementary to the target nucleic acid. The term " complementary " means that under certain annealing or hybridization conditions the primer is sufficiently complementary to selectively hybridize to the target nucleic acid sequence, and is substantially complementary and perfectly complementary, , And preferably means completely complementary.

또 하나의 양태로서, 본 발명은 (a) 벼 시료에서 게놈 DNA를 분리하는 단계; (b) 상기 분리된 게놈 DNA를 주형으로 하고, 1625IND에 대한 서열번호 249 및 250으로 표시되는 프라이머 쌍; 및 1675IND에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍으로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 쌍을 이용하여, 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및 (c) 상기 증폭 산물을 검출하는 단계를 포함하는, 키다리병 저항성 벼 품종 선별 방법을 제공한다.In another aspect, the present invention provides a method of producing a rice plant, comprising: (a) separating genomic DNA from a rice sample; (b) a pair of primers represented by SEQ ID NOS: 249 and 250 for the 1625 IND using the separated genomic DNA as a template; And amplifying the target sequence by performing amplification reaction using at least one primer pair selected from the group consisting of primers represented by SEQ ID NOS: 251 and 252 for 1675 IND; And (c) detecting the amplification product.

본 발명에서 용어, "시료"는 키다리병에 감염될 수 있는 벼의 조직을 말하며, 종자, 뿌리, 잎, 줄기 또는 화기(꽃), 이삭을 포함하는 식물체의 조직에서 유래한 모든 기관 및 세포, 캘러스, 식물 조직의 선발, 배양 및 식물체의 재분화를 위해 형질전환된 조직을 포함할 수 있으며, 이에 제한되는 것은 아니다.The term " sample " in the present invention refers to a tissue of rice that can be infected with a pox, and includes all organs and cells derived from the tissue of a plant including seed, root, leaf, stem or flower, A callus, a plant tissue selection, a culture, and a transformed tissue for regeneration of the plant.

본 발명에서 용어, "증폭 반응"은 핵산 분자를 증폭하는 반응을 의미한다. 다양한 증폭 반응들이 당업계에 보고되어 있으며, 이는 중합효소 연쇄반응(PCR)(미국 특허 제4,683,195, 4,683,202, 및 4,800,159호), 역전사-중합효소 연쇄반응(RT-PCR)(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), Miller, H. I.(WO 89/06700) 및 Davey, C. 등(EP 329,822)의 방법, 리가아제 연쇄 반응(ligase chain reaction; LCR), Gap-LCR(WO 90/01069), 복구 연쇄 반응(repair chain reaction; EP 439,182), 전사-중재 증폭(transcription-mediated amplification; TMA)(WO 88/10315), 자가 유지 염기서열 복제(self sustained sequence replication)(WO 90/06995), 타깃 폴리뉴클레오티드 염기서열의 선택적 증폭(selective amplification of target polynucleotide sequences)(미국 특허 제6,410,276호), 컨센서스 서열 프라이밍 중합효소 연쇄 반응(consensus sequence primed polymerase chain reaction; CPPCR)(미국 특허 제4,437,975호), 임의적 프라이밍 중합효소 연쇄 반응(arbitrarily primed polymerase chain reaction; AP-PCR)(미국 특허 제5,413,909호 및 제5,861,245호), 핵산 염기서열 기반 증폭(nucleic acid sequence based amplification; NASBA)(미국 특허 제5,130,238호, 제5,409,818호, 제5,554,517호, 및 제6,063,603호), 가닥 치환 증폭(strand displacement amplification) 및 고리-중재 항온성 증폭(loop-mediated isothermal amplification; LAMP)를 포함하나, 이에 한정되지는 않는다. 사용 가능한 다른 증폭방법들은 미국특허 제5,242,794, 5,494,810, 4,988,617호 및 미국 특허 제09/854,317호에 기술되어 있다.The term " amplification reaction " in the present invention means a reaction for amplifying a nucleic acid molecule. A variety of amplification reactions have been reported in the art, including polymerase chain reaction (PCR) (US Pat. Nos. 4,683,195, 4,683,202 and 4,800,159), reverse-transcription polymerase chain reaction (RT-PCR) (Sambrook et al., Molecular Cloning. (LCR) method, the method of Lambert, HI (WO 89/06700) and Davey, C. et al (EP 329,822) Gap-LCR (WO 90/01069), repair chain reaction (EP 439,182), transcription-mediated amplification (TMA) (WO 88/10315), self sustained sequence (WO 90/06995), selective amplification of target polynucleotide sequences (US Patent No. 6,410, 276), consensus sequence primed polymerase chain reaction (CPPCR) (U.S. Patent No. 4,437,975), arbitrary priming (U.S. Patent Nos. 5,413,909 and 5,861,245), nucleic acid sequence based amplification (NASBA) (U.S. Patent Nos. 5,130,238, 5,409,818 5,554,517, and 6,063,603), strand displacement amplification and loop-mediated isothermal amplification. LAMP), but is not limited thereto. Other amplification methods that may be used are described in U.S. Patent Nos. 5,242,794, 5,494,810, 4,988,617 and U.S. Patent No. 09 / 854,317.

본 발명에서 용어, "표적 서열"은 저항성 품종에서 특이적으로 검출되는 Indel 마커들일 수 있다. 바람직하게, 상기 표적 서열은 서열번호 249 및 250으로 표시되는 프라이머 쌍; 및 서열번호 251 및 252로 표시되는 프라이머 쌍에 의해 증폭되어 검출될 수 있다.As used herein, the term " target sequence " may be Indel markers specifically detected in resistant cultivars. Preferably, the target sequence comprises a pair of primers represented by SEQ ID NOS: 249 and 250; And the primer pairs represented by SEQ ID NOS: 251 and 252, respectively.

본 발명에서 용어, "Indel(Insertion/deletion) 마커"는 DNA의 염기배열에서 일부 염기가 중간에 삽입되거나(insertion) 결실된(deletion) 변이를 총칭한다. 상기 Indel 마커는 표준유전체와 실험에 사용된 품종의 유전체 정보를 비교 분석하는 방법을 통해 표준유전체보다 삽입(insertion) 또는 결실(deletion)된 영역을 탐색하고 그 정보를 바탕으로 프라이머를 제작한다. 따라서 그 증폭 결과는 표준유전체와 비교하여 밴드크기가 큰 경우(insertion)와 작은 경우(deletion)의 두 종류 타입을 나타낼 수 있다. 본 발명에서 용어, "마커(marker)"는 유전적으로 불특정 연관된 유전자좌를 동정할 때 참고점으로 사용되는 염기서열을 의미하며, 상기 용어, "유전자좌"는 분자 마커의 유전자 지도상의 위치를 의미한다. The term " Indel (insertion / deletion) marker " in the present invention collectively refers to a mutation in which some bases are inserted or deleted in the nucleotide sequence of DNA. The Indel marker searches for insertion or deletion regions of the standard dielectric by comparing and analyzing the genomic information of the genotypes used in the experiment and the primers based on the information. Therefore, the amplification result can show two types of insertion and deletion in comparison with the standard genome. In the present invention, the term " marker " means a base sequence used as a reference point when identifying genetically unrelated loci, and the term " locus " means a position on a genetic map of a molecular marker.

본 발명에서 용어, "표준유전체"는 본 발명의 품종 인식함에 있어 기준이 되는 작물의 품종의 유전체를 의미한다. 바람직하게는 남평벼의 유전체가 될 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the term " standard dielectric " refers to a genome of a variety of crops which is a standard for recognizing the breeds of the present invention. But it is not limited thereto.

본 발명에서 용어, "검출"은 시료내의 키다리병 저항성 유전자의 존재여부를 확인하는데 사용되는 Indel 마커인 1625IND 또는 1675IND의 존재유무를 확인하는 것을 말한다.In the present invention, the term " detection " refers to confirming the presence or absence of the Indel marker 1625IND or 1675IND used for confirming the presence of the keypad disease resistance gene in the sample.

본 발명의 일 실시예에서는 남평벼 유래 DNA 마커인 1625IND 및 1675IND Indel 마커 2종을 개발하고, 상기 개발된 마커를 이용하여 벼에서 키다리병 저항성 품종의 선별 효율을 검정한 결과, 아가로스 겔 상에서 상기 마커를 사용하여 키다리병 저항성 품종을 효율적으로 선별할 수 있음을 확인할 수 있었다(도 9).In one embodiment of the present invention, 1625IND and 1675IND Indel markers, which are DNA markers derived from Nambyeong Rice, were developed and the selection efficiency of the rice cultivars resistant to Kinderian disease was tested using the developed markers. As a result, on the agarose gel, (Fig. 9). It was confirmed that the strain of the present invention can be efficiently screened for resistance to the insect resistance.

구체적으로, 상기 단계 (a)는 벼 시료에서 게놈 DNA를 분리하는 단계로, 사용될 수 있는 시료의 예는 상기에서 설명한 바와 같으며, 이에 제한되는 것은 아니다. 벼 시료에서 게놈 DNA를 분리하는 방법은 DNA 추출 키트를 사용할 수 있으며, 당업계에 공지된 방법을 당업자에 의해 용이하게 변형시켜 사용할 수 있다. Specifically, the step (a) is a step of isolating genomic DNA from a rice sample. Examples of samples that can be used are as described above, but are not limited thereto. A DNA extraction kit can be used as a method of isolating genomic DNA from a rice sample, and a method known in the art can be easily modified by those skilled in the art.

상기 단계 (b)는 단계 (a)에서 분리된 게놈 DNA를 주형으로 하고, 키다리병 저항성을 갖는 유전자 또는 그의 단편에 특이적으로 결합 가능한 프라이머 쌍을 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계이다. 본 발명의 일 실시예에서는 서열번호 249 및 250으로 표시되는 프라이머 쌍; 및 서열번호 251 및 252로 표시되는 프라이머 쌍으로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 쌍을 사용하여 키다리병 저항성 유전자를 갖는 시료에서 상기 유전자를 증폭하는 반응을 수행하였고, 상기 프라이머 쌍을 이용한 경우 표적서열의 증폭을 확인할 수 있었다. 상기 핵산 서열의 증폭 방법은 중합효소연쇄반응(PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭 시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 Q복제효소(replicase)를 통한 증폭 또는 당업계에 알려진 핵산 분자를 증폭하기 위한 임의의 기타 적당한 방법을 사용할 수 있고, 당업계에 공지된 방법을 당업자에 의해 적절하게 변형하여 사용할 수 있다. 본 발명의 일 실시예에서는 중합효소연쇄반응을 이용하여 표적 서열을 증폭시켰다.The step (b) comprises amplifying the target sequence by using the genomic DNA isolated in step (a) as a template and performing amplification reaction using a primer pair capable of specifically binding to a gene having resistance to a tympanic disease or a fragment thereof . In one embodiment of the present invention, a pair of primers represented by SEQ ID NOS: 249 and 250; And a pair of primers represented by SEQ ID NOS: 251 and 252 were used to amplify the gene in a sample having a keypad disease resistance gene, and when the primer pair was used, the target sequence Was amplified. The method for amplifying the nucleic acid sequence may be selected from the group consisting of a polymerase chain reaction (PCR), a ligase chain reaction, nucleic acid sequence-based amplification, a transcription-based amplification system, Any other suitable method for amplifying nucleic acid molecules known in the art can be used, such as by strand displacement amplification or amplification through Q-replicase, and methods known in the art can be used by the skilled person And can be used. In one embodiment of the present invention, the target sequence was amplified using a polymerase chain reaction.

또한, 상기 증폭된 핵산 서열은 검출 가능한 표지물질을 추가로 표지할 수 있다. 상기 표지 물질은 효소, 리간드, 발색물, 미소입자, 방사성 동위원소, 형광, 인광 물질로 이루어진 그룹 중에서 선택될 수 있으며, 이에 제한되는 것은 아니다. In addition, the amplified nucleic acid sequence may further be labeled with a detectable labeling substance. The labeling substance may be selected from the group consisting of an enzyme, a ligand, a coloring material, a microparticle, a radioactive isotope, a fluorescence, and a phosphorescent material, but is not limited thereto.

검출 표지자로 사용되는 효소로는 아세틸콜린에스테라제, 알칼라인 포스파타제, β-D-갈락토시다제, 호스래디쉬 퍼옥시다제, β-락타마제 등을 포함하며, 리간드로는 바이오틴 유도체 등을 포함하며, 발색물질로는 아크리디늄 에스테르, 이소루미놀 유도체 등을 포함하며, 미소입자로는 콜로이드, 금, 착색된 라텍스 등을 포함하며, 방사성 동위원소로는 37Co, 3H, 125I, 125I-볼톤(Bonton) 헌터(Hunter) 시약 등을 포함하며, 형광 물질에는 Cy3, Cy5, 플루오레세인 아이소티오시안산염(FITC), 테트라메틸로다민 아이소티오시안산염(RITC), 알렉사(Alexa), 4,4,-다이플루오로-4-보로-3a,4a-다이아자-s-인다센(BODIPY), 텍사스 레드(Texas Red) 또는 비오틴을 사용할 수 있다. Examples of the enzyme used as a detection marker include acetylcholinesterase, alkaline phosphatase,? -D-galactosidase, horseradish peroxidase,? -Lactamase and the like, and ligands include biotin derivatives and the like And colloid, gold, colored latex and the like, and the radioactive isotope includes 37Co, 3H, 125I, and 125I-Bolton ( Bonton) Hunter reagent and the like, and the fluorescent material includes Cy3, Cy5, fluororesin isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (RITC), Alexa, 4,4 -Difluoro-4-boro-3a, 4a-diaza-s-indacene (BODIPY), Texas Red or biotin.

상기 단계 (c)는 단계 (b)의 증폭 산물을 검출하는 단계를 포함하는, 키다리병 저항성 유전자를 가진 벼 품종을 선별하는 단계이다. 상기 증폭산물을 검출하는 방법은 증폭산물을 전기영동하여 검출할 수 있다. 전기영동의 구체적인 예로는 자동 전기영동장치(칩 및 모세관 방식포함), 아크릴아미드 겔, 고속액체크로마토그래피(HPLC), 또는 아가로스 겔 전기영동일 수 있으며, 이에 제한되는 것은 아니다.Wherein said step (c) comprises the step of detecting the amplification product of step (b). The method for detecting the amplification product can be detected by electrophoresis of the amplification product. Specific examples of electrophoresis include, but are not limited to, automated electrophoresis (including chip and capillary methods), acrylamide gel, high performance liquid chromatography (HPLC), or agarose gel electrophoresis.

또 다른 하나의 양태로서, 본 발명은 1625IND에 대한 서열번호 249 및 250으로 표시되는 프라이머 쌍, 및 1675IND에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍으로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 쌍; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 키다리병 저항성 벼 품종 선별 키트를 제공한다.In yet another embodiment, the present invention provides a primer pair comprising at least one primer pair selected from the group consisting of a pair of primers represented by SEQ ID NOS: 249 and 250 for 1625 IND and a pair of primers represented by SEQ ID NOS: 251 and 252 for 1675 IND; And a reagent for carrying out an amplification reaction.

본 발명의 키트는 키다리병 저항성 유전자의 존재를 확인할 수 있는 Indel의 존재 유무를 확인하여 키다리병 저항성 벼를 선별할 수 있다. 본 발명의 키트는 상기 Indel의 유무를 측정하기 위한 프라이머 뿐만 아니라 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성성분 조성물, 용액 또는 장치가 포함될 수 있다. 구체적으로 본 발명에서 상기 Indel의 존재 유무를 측정하기 위한 키트는 서열번호 249 및 250으로 표시되는 프라이머 쌍, 및 1675IND에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍으로 구성된 군으로부터 선택된 서열을 포함하는 하나 이상의 프라이머 쌍을 포함할 수 있는 키트일 수 있다.The kit of the present invention can identify the resistance to rice plants by confirming the presence or absence of Indel which can confirm the presence of the resistance gene of the rice blast resistance. The kit of the present invention may include not only a primer for measuring the presence of the Indel but also one or more other component compositions, solutions or devices suitable for the assay method. Specifically, in the present invention, the kit for measuring the presence or absence of the Indel comprises a sequence selected from the group consisting of a primer pair represented by SEQ ID NO: 249 and 250, and a primer pair represented by SEQ ID NO: 251 and 252 against 1675 IND And may be a kit that may include one or more primer pairs.

본 발명에 따른 키다리병 저항성 벼 품종 선별 키트에는 DNA 중합효소, dNTPs 및/또는 반응완충액을 추가로 포함할 수 있으며, 이에 제한되지 않는다. 여기서 완충액은 PCR 반응에 필요할 수 있고, 이는 당업계에서 통상적으로 공지된 조성을 가지며, 예를 들면 Tris-HCl, MgCl2, KCl 등을 포함할 수 있다. 본 발명에 따른 키다리병 저항성 벼 품종 선별 키트는 PCR 산물의 증폭 여부를 확인할 수 있는 전기영동에 필요한 성분들을 추가로 포함할 수 있다.The tympanic resistance-resistant rice selection kit according to the present invention may further include DNA polymerase, dNTPs and / or a reaction buffer, but is not limited thereto. Wherein the buffer may be required for the PCR reaction, which has a conventionally known composition in the art and may include, for example, Tris-HCl, MgCl2, KCl, and the like. The kit of the present invention may further comprise components necessary for electrophoresis to confirm amplification of the PCR product.

또 다른 하나의 양태로서, 본 발명은 (a) 키다리병 저항성 품종과 키다리병 민감성 품종 간의 교배로부터 파생된 후대 집단을 획득하는 단계; (b) 상기 획득한 후대 집단의 벼 시료에서 게놈 DNA를 분리하는 단계; (c) 상기 분리된 게놈 DNA를 주형으로 하고, 1625IND에 대한 서열번호 249 및 250으로 표시되는 프라이머 쌍, 및 1675IND에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍으로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 쌍을 이용하여, 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및 (d) 상기 증폭 산물을 검출하여 저항성 여부를 판단하는 단계를 포함하는, 키다리병 저항성 벼 품종 생산 방법을 제공한다.In yet another aspect, the present invention provides a method of producing a medicament for the treatment of (a) obtaining a progeny population derived from breeding between a Kidney Disease resistant strain and a Kidney Disease susceptible variety; (b) separating the genomic DNA from the rice samples obtained in the later group; (c) one or more primers selected from the group consisting of a pair of primers represented by SEQ ID NOS: 249 and 250 for 1625 IND and a pair of primers represented by SEQ ID NOS: 251 and 252 for 1675 IND using the separated genomic DNA as a template Amplifying the target sequence by performing amplification reaction using the pair; And (d) detecting the amplification product to determine resistance.

본 발명에서 용어, "후대 집단"은 품종간의 교배에 의하여 만들어진 잡종 집단으로, 이에 제한되지는 않으나, 바람직하게는, 본 발명의 키다리병 저항성 품종인 남평벼 및 키다리병 감수성 계통인 동진AD와의 교배에 의해 생산된 2세대(F2) 또는 3세대(F3) 계통(line; pedigree)일 수 있다. In the present invention, the term " later group " is a hybrid group produced by cross breeding, including, but not limited to, crossbreeding of the susceptible strain of the present invention, (F2) or third generation (F3) line (pedigree) produced by the manufacturer.

본 발명의 키다리병 저항성 벼 품종 생산에 사용될 수 있는 키다리병 저항성 품종은 남평벼 및 상기 남평벼와의 교배에 의해 생산된 2세대(F2) 또는 3세대(F3) 계통 중 저항성을 나타내는 품종일 수 있다. The resistant strain of the present invention which can be used in the production of the rice blast resistance resistant rice varieties of the present invention may be a rice blast resistant strain among the second generation (F2) or third generation (F3) strain produced by crossing between the Nam Pyong rice and the Nam Pyung rice.

한편, 상기 키다리병 감수성 품종은 상기 키다리병 저항성 품종으로 판명되지 않은 모든 벼 품종을 제한없이 포함한다. 또는 상기 본 발명에 따른 DNA 마커를 이용한 키다리병 저항성 벼 품종 선별 방법에 따라 키다리병 감수성을 갖는 것으로 판정된 벼 품종일 수 있다.On the other hand, the susceptible varieties of Kidari disease include all rice varieties which are not proved to be resistant to Kidari disease. Or the rice varieties determined to have susceptibility to Kidari disease according to the method for screening the susceptible rice varieties using the DNA marker according to the present invention.

본 발명에서 용어, "시료", "키다리병 저항성" 및 "검출"은 상기에서 설명한 바와 같다. In the present invention, the terms "sample", "resistance to keypad disease" and "detection" are as described above.

또한, 표적서열을 증폭 및 검출하는 방법은 상기에서 설명한 바와 같다. In addition, the method of amplifying and detecting the target sequence is as described above.

바람직하게, 상기 표적서열의 증폭 및 검출을 통해 증폭산물의 크기가 키다리병 저항성 품종인 남평벼의 증폭산물 크기와 동일한 것으로 확인된 경우 해당 품종을 키다리병 저항성 품종으로 판단할 수 있다. 즉, 증폭산물의 크기 차이에 따라 키다리병 저항성 여부를 판단할 수 있다.Preferably, if the size of the amplified product is confirmed to be the same as the size of the amplified product of Nampegwa, a resistant strain of Kidari disease, by amplification and detection of the target sequence, the corresponding strain can be judged as a resistant strain of Kidari disease. That is, it is possible to judge whether or not the resistance to the keypad disease is caused by the difference in size of the amplified product.

본 발명의 일 실시예에서는 남평벼 유래 DNA 마커인 1625IND 및 1675IND Indel 마커 2종을 이용하여 아가로스 겔 상에서 키다리병 저항성 품종을 선별해 본 결과, 키다리병 감수성 품종인 동진벼, 화영벼, 주남벼, 호품벼, 안미벼, 일미벼, 하이아미, 삼광벼, 운광벼, 설향찰벼, 칠보벼, 오대벼, 조운, 동안벼, 금오벼, 화성벼, 낙동벼, 기호벼, 팔달벼, 진흥벼, 조동지, 다마금, 중생은방주 및 주지도는 키다리병 저항성 품종인 남평벼 및 새누리벼와는 다른 크기의 전기영동 밴드를 나타냄을 확인할 수 있었다(도 9).In one embodiment of the present invention, the susceptible varieties of Kidari disease on agarose gels were selected using 1625IND and 1675IND Indel markers, which are DNA markers derived from Nambyeong Rice. As a result, susceptible varieties of Kidari disease, Dongjinbyeon, Anambi, Ilhami, Haami, Samgwangbyeon, Ungwangbyeol, Sogyeongjangbyeol, Chungbokpyeon, Ohdabyeong, Chowun, Hyeonpyeong, (Fig. 9). It can be seen from Fig. 9 that the rice bran of the present invention exhibits electrophoretic bands different in size from those of the susceptible rice cultivars such as Kidari disease and Shanori rice.

또 다른 하나의 양태로서, 본 발명은 JNC010055에 대한 서열번호 1 및 2로 표시되는 프라이머 쌍, JNC010084에 대한 서열번호 3 및 4로 표시되는 프라이머 쌍, JNC010086에 대한 서열번호 5 및 6으로 표시되는 프라이머 쌍, JNS01057에 대한 서열번호 7 및 8로 표시되는 프라이머 쌍, JNC010139에 대한 서열번호 9 및 10으로 표시되는 프라이머 쌍, JNS01030에 대한 서열번호 11 및 12로 표시되는 프라이머 쌍, JNC010565에 대한 서열번호 13 및 14로 표시되는 프라이머 쌍, JNC010809에 대한 서열번호 15 및 16으로 표시되는 프라이머 쌍, JNC011008에 대한 서열번호 17 및 18로 표시되는 프라이머 쌍, JNC011512에 대한 서열번호 19 및 20으로 표시되는 프라이머 쌍, JNC011753에 대한 서열번호 21 및 22로 표시되는 프라이머 쌍, JNC011767에 대한 서열번호 23 및 24로 표시되는 프라이머 쌍, JNC011804에 대한 서열번호 25 및 26으로 표시되는 프라이머 쌍, JNC011850에 대한 서열번호 27 및 28로 표시되는 프라이머 쌍, JNC011887에 대한 서열번호 29 및 30으로 표시되는 프라이머 쌍, JNC020021에 대한 서열번호 31 및 32로 표시되는 프라이머 쌍, JNC020047에 대한 서열번호 33 및 34로 표시되는 프라이머 쌍, JNC020052에 대한 서열번호 35 및 36으로 표시되는 프라이머 쌍, JNC020058에 대한 서열번호 37 및 38로 표시되는 프라이머 쌍, JNC020069에 대한 서열번호 39 및 40으로 표시되는 프라이머 쌍, JNC020149에 대한 서열번호 41 및 42로 표시되는 프라이머 쌍, JNC020176에 대한 서열번호 43 및 44로 표시되는 프라이머 쌍, JNC020186에 대한 서열번호 45 및 46으로 표시되는 프라이머 쌍, JNC030012에 대한 서열번호 47 및 48로 표시되는 프라이머 쌍, JNC030028에 대한 서열번호 49 및 50으로 표시되는 프라이머 쌍, JNC030131에 대한 서열번호 51 및 52로 표시되는 프라이머 쌍, JNC030134에 대한 서열번호 53 및 54로 표시되는 프라이머 쌍, JNC030270에 대한 서열번호 55 및 56으로 표시되는 프라이머 쌍, JNC030275에 대한 서열번호 57 및 58로 표시되는 프라이머 쌍, JNC030408에 대한 서열번호 59 및 60으로 표시되는 프라이머 쌍, JNC030411에 대한 서열번호 61 및 62로 표시되는 프라이머 쌍, JNC030606에 대한 서열번호 63 및 64로 표시되는 프라이머 쌍, JNC040003에 대한 서열번호 65 및 66으로 표시되는 프라이머 쌍, JNC040055에 대한 서열번호 67 및 68로 표시되는 프라이머 쌍, JNC040202에 대한 서열번호 69 및 70으로 표시되는 프라이머 쌍, JNC040270에 대한 서열번호 71 및 72로 표시되는 프라이머 쌍, JNC040277에 대한 서열번호 73 및 74로 표시되는 프라이머 쌍, JNC040334에 대한 서열번호 75 및 76으로 표시되는 프라이머 쌍, JNC050091에 대한 서열번호 77 및 78로 표시되는 프라이머 쌍, JNC050127에 대한 서열번호 79 및 80으로 표시되는 프라이머 쌍, JNC050148에 대한 서열번호 81 및 82로 표시되는 프라이머 쌍, JNC050159에 대한 서열번호 83 및 84로 표시되는 프라이머 쌍, JNC050166에 대한 서열번호 85 및 86으로 표시되는 프라이머 쌍, JNC050174에 대한 서열번호 87 및 88로 표시되는 프라이머 쌍, JNC050178에 대한 서열번호 89 및 90으로 표시되는 프라이머 쌍, JNC050194에 대한 서열번호 91 및 92로 표시되는 프라이머 쌍, JNC050197에 대한 서열번호 93 및 94로 표시되는 프라이머 쌍, JNC050199에 대한 서열번호 95 및 96으로 표시되는 프라이머 쌍, JNC060015에 대한 서열번호 97 및 98로 표시되는 프라이머 쌍, JNC060019에 대한 서열번호 99 및 100으로 표시되는 프라이머 쌍, JNC060286에 대한 서열번호 101 및 102로 표시되는 프라이머 쌍, JNC060295에 대한 서열번호 103 및 104로 표시되는 프라이머 쌍, JNC060434에 대한 서열번호 105 및 106으로 표시되는 프라이머 쌍, JNC060623에 대한 서열번호 107 및 108로 표시되는 프라이머 쌍, JNC062136에 대한 서열번호 109 및 110으로 표시되는 프라이머 쌍, JNC064053에 대한 서열번호 111 및 112로 표시되는 프라이머 쌍, JNC064080에 대한 서열번호 113 및 114로 표시되는 프라이머 쌍, JNC064090에 대한 서열번호 115 및 116으로 표시되는 프라이머 쌍, JNC070004에 대한 서열번호 117 및 118로 표시되는 프라이머 쌍, JNC070005에 대한 서열번호 119 및 120으로 표시되는 프라이머 쌍, JNC070013에 대한 서열번호 121 및 122로 표시되는 프라이머 쌍, JNC070112에 대한 서열번호 123 및 124로 표시되는 프라이머 쌍, JNC070134에 대한 서열번호 125 및 126으로 표시되는 프라이머 쌍, JNC070337에 대한 서열번호 127 및 128로 표시되는 프라이머 쌍, JNC070424에 대한 서열번호 129 및 130으로 표시되는 프라이머 쌍, JNC070431에 대한 서열번호 131 및 132로 표시되는 프라이머 쌍, JNC070437에 대한 서열번호 133 및 134로 표시되는 프라이머 쌍, JNC070474에 대한 서열번호 135 및 136으로 표시되는 프라이머 쌍, JNC080171에 대한 서열번호 137 및 138로 표시되는 프라이머 쌍, JNC080409에 대한 서열번호 139 및 140으로 표시되는 프라이머 쌍, JNC080486에 대한 서열번호 141 및 142로 표시되는 프라이머 쌍, JNC080498에 대한 서열번호 143 및 144로 표시되는 프라이머 쌍, JNC080501에 대한 서열번호 145 및 146으로 표시되는 프라이머 쌍, JNC080505에 대한 서열번호 147 및 148로 표시되는 프라이머 쌍, JNC080506에 대한 서열번호 149 및 150으로 표시되는 프라이머 쌍, JNC090001에 대한 서열번호 151 및 152로 표시되는 프라이머 쌍, JNC090015에 대한 서열번호 153 및 154로 표시되는 프라이머 쌍, JNC090019에 대한 서열번호 155 및 156으로 표시되는 프라이머 쌍, JNC090024에 대한 서열번호 157 및 158로 표시되는 프라이머 쌍, JNC090029에 대한 서열번호 159 및 160으로 표시되는 프라이머 쌍, JNC090043에 대한 서열번호 161 및 162로 표시되는 프라이머 쌍, JNC090046에 대한 서열번호 163 및 164로 표시되는 프라이머 쌍, JNC090053에 대한 서열번호 165 및 166으로 표시되는 프라이머 쌍, JNC090060에 대한 서열번호 167 및 168로 표시되는 프라이머 쌍, JNC100027에 대한 서열번호 169 및 170으로 표시되는 프라이머 쌍, JNC100057에 대한 서열번호 171 및 172로 표시되는 프라이머 쌍, JNC100137에 대한 서열번호 173 및 174로 표시되는 프라이머 쌍, JNC100164에 대한 서열번호 175 및 176으로 표시되는 프라이머 쌍, JNC100175에 대한 서열번호 177 및 178로 표시되는 프라이머 쌍, JNC100202에 대한 서열번호 179 및 180으로 표시되는 프라이머 쌍, JNC100206에 대한 서열번호 181 및 182로 표시되는 프라이머 쌍, JNC110013에 대한 서열번호 183 및 184로 표시되는 프라이머 쌍, JNC110050에 대한 서열번호 185 및 186으로 표시되는 프라이머 쌍, JNC110432에 대한 서열번호 187 및 188로 표시되는 프라이머 쌍, JNC111059에 대한 서열번호 189 및 190으로 표시되는 프라이머 쌍, JNC111269에 대한 서열번호 191 및 192로 표시되는 프라이머 쌍, JNC111346에 대한 서열번호 193 및 194로 표시되는 프라이머 쌍, JNC111531에 대한 서열번호 195 및 196으로 표시되는 프라이머 쌍, JNC111652에 대한 서열번호 197 및 198로 표시되는 프라이머 쌍, JNC111851에 대한 서열번호 199 및 200으로 표시되는 프라이머 쌍, JNC112037에 대한 서열번호 201 및 202로 표시되는 프라이머 쌍, JNC112157에 대한 서열번호 203 및 204로 표시되는 프라이머 쌍, JNC112511에 대한 서열번호 205 및 206으로 표시되는 프라이머 쌍, JNC112653에 대한 서열번호 207 및 208로 표시되는 프라이머 쌍, JNC112736에 대한 서열번호 209 및 210으로 표시되는 프라이머 쌍, JNC112853에 대한 서열번호 211 및 212로 표시되는 프라이머 쌍, JNC112884에 대한 서열번호 213 및 214로 표시되는 프라이머 쌍, JNC113082에 대한 서열번호 215 및 216으로 표시되는 프라이머 쌍, JNC113160에 대한 서열번호 217 및 218로 표시되는 프라이머 쌍, JNC113212에 대한 서열번호 219 및 220으로 표시되는 프라이머 쌍, JNC120005에 대한 서열번호 221 및 222로 표시되는 프라이머 쌍, JNC120091에 대한 서열번호 223 및 224로 표시되는 프라이머 쌍, JNC120123에 대한 서열번호 225 및 226으로 표시되는 프라이머 쌍, JNC120149에 대한 서열번호 227 및 228로 표시되는 프라이머 쌍, JNC120161에 대한 서열번호 229 및 230으로 표시되는 프라이머 쌍, JNC120176에 대한 서열번호 231 및 232로 표시되는 프라이머 쌍, JNC120219에 대한 서열번호 233 및 234로 표시되는 프라이머 쌍, JNC120491에 대한 서열번호 235 및 236으로 표시되는 프라이머 쌍, JNC120546에 대한 서열번호 237 및 238로 표시되는 프라이머 쌍, JNC120785에 대한 서열번호 239 및 240으로 표시되는 프라이머 쌍, JNC120803에 대한 서열번호 241 및 242로 표시되는 프라이머 쌍, JNC120907에 대한 서열번호 243 및 244로 표시되는 프라이머 쌍, JNC120937에 대한 서열번호 245 및 246으로 표시되는 프라이머 쌍, 및 JNC121053에 대한 서열번호 247 및 248로 표시되는 프라이머 쌍을 모두 포함하는, 남평벼 및 동진AD 간의 교배로부터 파생된 후대 집단의 키다리병 저항성과 관련된 양적형질 유전자좌(QTLs, quantitative trait loci)를 결정하기 위한 유전지도 작성용 CAPS(cleaved amplified polymorphic sequences) 마커 증폭용 프라이머 세트를 제공한다.In yet another embodiment, the present invention provides a primer pair represented by SEQ ID NOs: 1 and 2 for JNC010055, a primer pair represented by SEQ ID NOs: 3 and 4 for JNC010084, a primer pair represented by SEQ ID NOs: 5 and 6 for JNC010086 Pair, a pair of primers represented by SEQ ID NOs: 7 and 8 for JNS01057, a pair of primers represented by SEQ ID NOs: 9 and 10 for JNC010139, a pair of primers represented by SEQ ID NOs: 11 and 12 for JNS01030, And 14, a pair of primers represented by SEQ ID NOs: 15 and 16 for JNC010809, a pair of primers represented by SEQ ID NOs: 17 and 18 for JNC011008, a pair of primers represented by SEQ ID NOs: 19 and 20 for JNC011512, The primer pair shown in SEQ ID NOs: 21 and 22 for JNC011753, the primer pair shown in SEQ ID NOs: 23 and 24 for JNC011767, the sequence for JNC011804 A pair of primers represented by SEQ ID NOS: 27 and 28 for JNC011850, a pair of primers represented by SEQ ID NOS: 29 and 30 for JNC011887, a pair of primers represented by SEQ ID NOS: 31 and 32 for JNC020021, Pair, a pair of primers represented by SEQ ID NOS: 33 and 34 for JNC020047, a pair of primers represented by SEQ ID NOS: 35 and 36 for JNC020052, a pair of primers represented by SEQ ID NOS: 37 and 38 for JNC020058, a pair of primers represented by SEQ ID NO: 39 And 40, a pair of primers represented by SEQ ID NOs: 41 and 42 for JNC020149, a pair of primers represented by SEQ ID NOs: 43 and 44 for JNC020176, a pair of primers represented by SEQ ID NOs: 45 and 46 for JNC020186, The primer pair shown in SEQ ID NO: 47 and 48 for JNC030012, the primer pair shown in SEQ ID NO: 49 and 50 for JNC030028, the JNC0301 51 and 52 for JNC030134, a pair of primers represented by SEQ ID NOs: 53 and 54 for JNC030134, a pair of primers represented by SEQ ID NOs: 55 and 56 for JNC030270, a pair of primers represented by SEQ ID NOs: 57 and 58 for JNC030275 59 and 60 for JNC030408, a pair of primers represented by SEQ ID NOs: 61 and 62 for JNC030411, a pair of primers represented by SEQ ID NOs: 63 and 64 for JNC030606, a pair of primers represented by SEQ ID NO: The primer pair shown in SEQ ID NO: 65 and 66, the primer pair shown in SEQ ID NO: 67 and 68 for JNC040055, the primer pair shown in SEQ ID NO: 69 and 70 for JNC040202, and the SEQ ID NO: 71 and 72 for JNC040270 Primer pair shown in SEQ ID NO: 73 and 74 for JNC040277, primer pair shown in SEQ ID NO: 75 and 76 for JNC040334 79 and 80 for JNC050127, a pair of primers represented by SEQ ID NOs: 81 and 82 for JNC050148, a pair of primers represented by SEQ ID NO: 77 and 78 for JNC050091, a pair of primers represented by SEQ ID NO: 83, and 84, a pair of primers represented by SEQ ID NOs: 85 and 86 for JNC050166, a pair of primers represented by SEQ ID NOs: 87 and 88 for JNC050174, a pair of primers represented by SEQ ID NOs: 89 and 90 for JNC050178 The primer pair shown in SEQ ID NO: 91 and 92 for JNC050194, the primer pair shown in SEQ ID NO: 93 and 94 for JNC050197, the primer pair shown in SEQ ID NO: 95 and 96 for JNC050199, the SEQ ID NO: 97 for JNC060015, 98, a pair of primers represented by SEQ ID NOs: 99 and 100 for JNC060019, a pair of primers represented by SEQ ID NOs: 101 and 102 for JNC060286 The primer pair shown in SEQ ID NO: 103 and 104 for JNC060295, the primer pair shown in SEQ ID NO: 105 and 106 for JNC060434, the primer pair shown in SEQ ID NO: 107 and 108 for JNC060623, the primer pair for JNC062136 A pair of primers represented by SEQ ID NOs: 109 and 110, a pair of primers represented by SEQ ID NOs: 111 and 112 for JNC064053, a pair of primers represented by SEQ ID NOs: 113 and 114 for JNC064080, and a pair of SEQ ID NOs: 115 and 116 for JNC064090 Primer pair shown in SEQ ID NOs: 117 and 118 for JNC070004, primer pair shown in SEQ ID NOs: 119 and 120 for JNC070005, primer pair shown in SEQ ID NOs: 121 and 122 for JNC070013, SEQ ID NO: 123 and 124, a pair of primers represented by SEQ ID NOs: 125 and 126 for JNC070134, a pair of primers represented by JNC070337 129 and 130 for JNC070424, a pair of primers represented by SEQ ID Nos. 131 and 132 for JNC070431, and a pair of primers represented by SEQ ID NOS: 133 and 134 for JNC070437, respectively Primer pair shown in SEQ ID NO: 135 and 136 for JNC070474, primer pair shown in SEQ ID NO: 137 and 138 for JNC080171, primer pair shown in SEQ ID NO: 139 and 140 for JNC080409, primer pair shown in JNC080486 for JNC080486 A pair of primers represented by SEQ ID NOs: 141 and 142, a pair of primers represented by SEQ ID NOs: 143 and 144 for JNC080498, a pair of primers represented by SEQ ID NOs: 145 and 146 for JNC080501, and a pair of SEQ ID NOs: 147 and 148 for JNC080505 Primer pair, the primer pair shown in SEQ ID NO: 149 and 150 for JNC080506, SEQ ID NO: 151 and 152 for JNC090001 The primer pair shown in SEQ ID NOs: 153 and 154 for JNC090015, the primer pair shown in SEQ ID NOs: 155 and 156 for JNC090019, the primer pair shown in SEQ ID NOs: 157 and 158 for JNC090024, the primer pair for JNC090029 The primer pair shown in SEQ ID NOs: 159 and 160, the primer pair shown in SEQ ID NOs: 161 and 162 for JNC090043, the primer pair shown in SEQ ID NOs: 163 and 164 for JNC090046, the SEQ ID NOs: 165 and 166 for JNC090053 Primer pair shown in SEQ ID NOs: 167 and 168 for JNC090060, primer pair shown in SEQ ID NOs: 169 and 170 for JNC100027, primer pair shown in SEQ ID NOs: 171 and 172 for JNC100057, and primer pair shown in SEQ ID NO: 173 and 174, a pair of primers represented by SEQ ID NOs: 175 and 176 for JNC100164, a pair of primers represented by JNC1 179 and 180 for JNC100202, a pair of primers represented by SEQ ID NOs: 181 and 182 for JNC100206, and a pair of primers represented by SEQ ID NOS: 183 and 184 for JNC110013 Primer pair shown in SEQ ID NO: 185 and 186 for JNC110050, primer pair shown in SEQ ID NO: 187 and 188 for JNC110432, primer pair shown in SEQ ID NO: 189 and 190 for JNC111059, primer pair shown in JNC111269 191 and 192 for JNC111346, a pair of primers represented by SEQ ID NOS: 193 and 194 for JNC111346, a pair of primers represented by SEQ ID NOS: 195 and 196 for JNC111531, and SEQ ID NOS: 197 and 198 for JNC111652 Primer pair shown in SEQ ID NO: 199 and 200 for JNC111851, SEQ ID NO: 201 for JNC112037 and 202, a pair of primers represented by SEQ ID NOs: 203 and 204 for JNC112157, a pair of primers represented by SEQ ID NOs: 205 and 206 for JNC112511, a pair of primers represented by SEQ ID NOs: 207 and 208 for JNC112653, a pair of primers represented by JNC112736 The primer pair shown in SEQ ID NO: 209 and 210 for JNC112853, the primer pair shown in SEQ ID NO: 211 and 212 for JNC112853, the primer pair shown in SEQ ID NO: 213 and 214 for JNC112884, and the SEQ ID NOs: 215 and 216 for JNC113082 Primer pair shown in SEQ ID NOs: 217 and 218 for JNC113160, primer pair shown in SEQ ID NOs: 219 and 220 for JNC113212, primer pair shown in SEQ ID NO: 221 and 222 for JNC120005, primer pair shown in JNC120091 for JNC120091 A pair of primers represented by SEQ ID NOS: 223 and 224, a pair of primers represented by SEQ ID NOS: 225 and 226 for JNC120123, The primer pair shown in SEQ ID NOs: 227 and 228 for JNC120149, the primer pair shown in SEQ ID NOs: 229 and 230 for JNC120161, the primer pair shown in SEQ ID NOs: 231 and 232 for JNC120176, SEQ ID NOs: 233 and 234 for JNC120219 , Primer pairs represented by SEQ ID NOS: 235 and 236 for JNC120491, primer pairs represented by SEQ ID NOS: 237 and 238 for JNC120546, primer pairs represented by SEQ ID NOS: 239 and 240 for JNC120785, primer pairs represented by JNC120803 243 and 244 for JNC120907, a pair of primers represented by SEQ ID Nos. 245 and 246 for JNC120937, and a pair of primers represented by SEQ ID NOS: 247 and 248 for JNC12053 Derived from the mating between Nampyeong and Dongjin AD, including all of the displayed primer pairs. It provides a quantitative trait loci (QTLs, quantitative trait loci) genetic map for creating CAPS (cleaved amplified polymorphic sequences) markers for amplification primers for determining the associated performance.

본 발명에서 용어, "남평벼 및 동진AD 간의 교배로부터 파생된 후대 집단"은 본 명세서에서 '남평벼 및 동진AD의 교배 후대 F2 집단'으로 혼용되어 사용되며, 키다리병 저항성 품종인 남평벼와 키다리병 감수성 계통인 동진AD를 교배하여 육성된 자식계통으로 이루어진 집단이다.In the present invention, the term "a group derived from mating between Nampyeong and Dongjin AD" is used in the present specification in combination with "F2 group of mating hybrid of Nampeung and Dongjin AD" It is a group of child lines that were breed by crossing Dongjin AD.

본 발명에서 용어, "양적형질 유전자좌(quantitative trait loci; QTL)"는 키다리병 저항성 관련 유전자좌에 존재하는 대립형질들의 변이에 의하여 발현되는 형질을 말한다.In the present invention, the term " quantitative trait loci (QTL) " refers to a trait that is expressed by a mutation of alleles present in a locus associated with resistance to a keypad disease.

본 발명에서 용어, "CAPS(cleaved amplified polymorphic sequence) 마커"는 단일염기 다형성(SNP; Single Nucleotide Polymorphism) 중 제한효소 자리에 위치한 SNP를 일컫는다. 본 발명의 일 실시예에서, CAPS 마커는 남평벼 및 동진AD 두 모본 간의 특이적인 SNP 중 제한효소(ApaL Ⅰ, BamH Ⅰ, Bgl Ⅱ, BspT104Ⅰ, Cla Ⅰ, EcoR Ⅰ, EcoR Ⅴ, EcoT22 Ⅰ, Fok Ⅰ, Hind Ⅲ, Kpn Ⅰ, Mlu Ⅰ, Nde Ⅰ, Not Ⅰ, PshB Ⅰ, Pvu Ⅱ, Sac Ⅰ, Sac Ⅱ, Sca Ⅰ, SnaB Ⅰ, Stu Ⅰ, Xba Ⅰ, Xho Ⅰ) 자리에 위치한 SNP를 선정하여 후보 CAPS 마커로 개발할 수 있다.The term " cleaved amplified polymorphic sequence (CAPS) marker " in the present invention refers to a SNP located in a restriction enzyme site in a single nucleotide polymorphism (SNP). In one embodiment of the present invention, the CAPS marker is selected from the restriction enzymes (ApaL I, BamHI, Bgl II, BspT104I, Cla I, EcoR I, EcoR V, EcoT22 I, Fok I , Hind III, Kpn I, Mlu I, Nde I, Not I, PshB I, Pvu II, Sac I, Sac II, Sca I, SnaB I, Stu I, Xba I and Xho I) It can be developed as a candidate CAPS marker.

한편, 본 발명에서는 키다리병 저항성 관련 QTL 연구를 수행하기 위해 차세대 대량 염기서열 분석(Nest Generation Sequencing, NGS)을 통해 남평벼 및 동진AD 사이의 특이적인 SNP를 CAPS(cleaved amplified polymorphic sequences) 마커로 개발한 후, 남평벼 및 동진AD 간의 교배로부터 파생된 후대 집단의 키다리병 저항성과 관련된 유전자좌를 결정하기 위한 도 5로 표시되는 유전지도를 제공한다. 상기 유전지도는 DNA 마커간의 벼 유전체 상에서의 물리적인 위치를 파악하여 작성할 수 있다.Meanwhile, in the present invention, a specific SNP between CAPS (cleaved amplified polymorphic sequences) markers was developed through Nest Generation Sequencing (NGS) to carry out a QTL study on the resistance to Kidney Disease 5 to determine the locus associated with the resistance to Kidney disease of the succeeding group derived from the cross between the Nongpyeong and the Dongjin AD. The genetic map can be generated by identifying the physical location of the DNA marker on the rice rice genome.

본 발명에 따른 남평벼 유래 DNA 마커를 포함하는 키다리병 저항성 벼 품종 선별용 조성물을 이용하여 효율적으로 키다리병 저항성 및 감수성 개체를 구분할 수 있으며, 본 발명의 DNA 마커는 MAS(Marker Assisted Selection)를 통한 키다리병 저항성을 개선한 벼 육종에 유용하게 사용될 수 있다. 이에, 벼 키다리병 저항성 품종 개발 촉진으로 인해 키다리병에 대한 피해 절감 및 농약 사용량 또한 절감할 수 있다.The DNA marker of the present invention can be efficiently distinguished from the susceptibility of susceptible individuals by using the composition for screening the susceptible rice varieties comprising the DNA markers derived from the Nambyeong plant according to the present invention. It can be used for rice breeding with improved disease resistance. Therefore, the promotion of the development of Rice Kidney Disease Resistant Varieties can reduce the damage to the Kidari disease and reduce the amount of pesticide use.

도 1은 벼 키다리병 저항성 검정 결과를 나타낸 사진으로, (A) 키다리병균 접종 후 기내 배양 및, (B) 키다리병 감수성 벼 품종인 주남벼와 키다리병 저항성 벼 품종인 남평벼의 키다리병균 접종 후 4주차의 고사 정도를 나타낸 사진이다.
도 2는 키다리병 저항성 벼 품종인 남평벼와 감수성 계통인 동진AD 간의 교배후대 F2 집단의 포장 재배를 나타낸 사진이다.
도 3은 유전체재해석(resequencing)에 의한 남평벼와 동진AD에 대한 단일염기서열변이(SNP; Single Nucleotide Polymorphism) 검출 결과를 나타낸 도로, (A) 남평벼 및 동진AD의 유전체재해석(resequencing) 데이터 분석 결과와, (B) 남평벼와 동진AD 간의 단일염기서열변이(SNP)들의 염색체별 분포를 나타낸 도이다.
도 4는 본 발명의 신규 CAPS(Cleaved Amplified Polymorphic Sequences) 마커를 이용한 (A) 모본 다형성 검정 결과 및, (B) 남평벼 및 동진AD의 F2 집단의 유전자형 분석 결과를 나타낸 전기영동 사진이다.
도 5는 본 발명의 구체예에 따른 남평벼 및 동진AD의 교배 후대 F2 집단의 유전지도를 나타낸 도이다. 여기에서, 염색체 숫자는 각 지도 위에 표기되어 있으며, 각 마커의 이름은 염색체 오른쪽에 표시되어 있고, 각 염색체의 맨 위에서부터 첫번째 마커로부터의 유전적 거리가 왼편에 표시되어 있다. 유전적 거리 단위는 cM(centimorgan)이며, Kosambi function으로 계산하였다.
도 6은 벼 키다리병에 대한 기내 검정 실시에 따른, 본 발명의 남평벼 및 동진AD의 교배 후대 F2 계통들의 고사율 분포를 나타낸 그래프이다.
도 7은 본 발명의 구체예에 따른 남평벼 및 동진AD의 교배 후대 F2 집단에서 측정된 벼 키다리병 저항성 관련 QTL(quantitative trait loci) 분석 결과를 나타낸 도이다.
도 8은 본 발명의 구체예에 따른 벼 키다리병 저항성 관련 1번 염색체 QTL 부위의 LRR(leucine rich repeat) 패밀리에 속하는 유전자 2종(Os01g0601625, Os01g0601675) 위치 및 본 발명의 키다리병 저항성 벼 품종 선발마커(1625IND, 1675IND)를 도출한 상기 LRR 유전자의 InDel(Insertion/Deletion) 부위를 나타낸 개략도이다. 여기에서, InDel 부위는 적색으로 표시하였다.
도 9는 본 발명의 키다리병 저항성 벼 품종 선발마커인 1625IND 및 1675IND를 이용한, 국내 자포니카 벼 품종들의 유전자형 분석 결과를 나타낸 전기영동 사진이다.
FIG. 1 is a photograph showing the results of rice typhus resistance test. FIG. 4 (A) shows the in-vitro culture after inoculation with Kidari disease and (B) 4th day after inoculation of Kidneybirds, which are susceptible rice varieties, This is a photograph showing the degree of death of a person.
Fig. 2 is a photograph showing the cultivation of the F2 group of the mating hybrid between the Nambu paddy, a susceptible rice variety, and the susceptible strain, Dongjin AD.
FIG. 3 is a graph showing the results of single nucleotide polymorphism (SNP) detection for Nam-Pyeong and Dongjin ADs by resequencing and analysis of resequencing data of (A) Nampyeong and Dongjin AD And (B) chromosomal distribution of single nucleotide sequence variants (SNPs) between Nampyeong and Dongjin AD.
4 is an electrophoresis image showing a result of a polymorphism test of (A) using the novel CAPS (Cleaved Amplified Polymorphic Sequences) marker of the present invention and (B) a genotype analysis result of the F2 population of Nampyeong and Dongjin AD.
FIG. 5 is a diagram showing the genetic map of the F2 group of the succeeding mating of Nampyeong and Dongjin AD according to an embodiment of the present invention. Here, chromosome numbers are shown on each map, with the name of each marker on the right side of the chromosome, and the genetic distance from the top of each chromosome to the first marker is shown on the left. The genetic distance unit is cM (centimorgan), which is calculated by the Kosambi function.
FIG. 6 is a graph showing a mortality distribution of the F2 lines of the hybridization of Nambu paddy rice and Dongjin AD of the present invention, according to the in-flight test of rice typhus.
FIG. 7 is a graph showing the results of quantitative trait loci (QTL) analysis of rice hind resistance against rice, which was measured in the F2 group of the mating seedlings of Nampyeong and Dongjin AD according to an embodiment of the present invention.
FIG. 8 is a graph showing the relationship between the positions of two genes (Os01g0601625, Os01g0601675) belonging to the LRR (leucine rich repeat) family of chromosome 1 QTL region related to the resistance to rice tiller disease according to the embodiment of the present invention, (Insertion / Deletion) region of the LRR gene derived from the region (1625IND, 1675IND). Here, the InDel region is shown in red.
FIG. 9 is an electrophoresis image showing genotyping results of domestic Japonica rice cultivars using 1625IND and 1675IND, which are the selection markers of the rice blight-resistant rice varieties of the present invention.

이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the constitution and effects of the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

실시예Example 1: 벼  1: rice 키다리병Kidari bottle 저항성 검정 Resistance test

키다리병균 감염에 따른 품종간 고사 정도를 검정하기 위해 기내 배양한 키다리병균을 접종한 후 4주차에 각각의 품종에 대한 고사 정도를 조사하였다. 조사 방법은 잎의 3/4이상이 건조(dry), 시듦(wilt), 마름병(blight)이 진행된 것을 대상으로 고사율을 %로 조사하였다.In order to test the degree of death of the cultivars according to the infecting strain of Kidari, the inoculated cultivar of Kidari was inoculated at 4th week. Survey method was as follows: The rate of mortality was evaluated as the percentage of dryness, wilt, and blight of more than 3/4 of the leaves.

키다리병 저항성 정도에 대한 기내검정 결과, 하기 표 1에 나타난 바와 같이, 국내에서 육성된 벼 우량 품종들 가운데 비교적 키다리병에 저항성을 보이는 것으로 보고(전남농업기술원(2002), 국립농업과원(2005, 2011))된 바 있는 남평벼의 경우, 고사율이 30.8%로 나타났다. 이에 반해, 기타 품종들(조운, 운봉40호, 하이아미, 인월벼, 팔달벼, 화영벼, 운광벼, 화성벼, 진흥벼, 일미벼, 기호벼, 호품벼, 오대벼, 진부43호, 동진벼, 금오벼, 칠보벼, 동안벼, 설향찰벼, 안미벼, 소비벼, 영안벼, 낙동벼 및 주남벼)은 42.9% 내지 100.0%의 고사율을 보였으며, 이를 통해 남평벼가 기타 품종들에 비해 낮은 고사율을 보임을 확인하였다. 이로써, 종래 보고된 바와 같이 남평벼가 키다리병에 대한 저항성을 지닌 품종임을 알 수 있었다(도 1).As shown in Table 1, the results of in-flight tests on the degree of resistance to Kidari disease indicate that Kidari disease is relatively resistant among the rice cultivars cultivated in Korea (Jeonnam Agricultural Research and Extension Services (2002), National Agricultural Research Service (2005) , 2011)), the mortality rate was 30.8%. On the other hand, other varieties (Chowun, Unbong 40, Haiami, Inwol Rice, Paddal Rice, Hwangyoung Rice, Ungwang Rice, Hwasung Rice, Jinheung Rice, The rice cultivars of Namwolbyeon were lower than those of other cultivars by the ratio of 42.9% to 100.0%, which was higher than that of other cultivars. Respectively. As a result, it was found that the Nampega rice was resistant to Kidari disease as previously reported (Fig. 1).

한편, 원품종인 동진벼를 사용하여 국립농업과학원 농업생명자원부에서 개발한 동진AD는 벼 삽입돌연변이집단(Plant J., 39(2): 252-263, 2004)의 한 계통으로, 동진벼에 비하여 키가 약간 큰 특성을 보이며, 동진벼와 마찬가지로 키다리병 저항성 정도에 대한 기내검정 결과, 96.7%의 높은 고사율을 나타내었다.On the other hand, Dongjin AD developed by the Ministry of Agriculture and Life Resources of the National Academy of Agricultural Science using the original varieties of Dongjinbyeong is a line of the rice insertion mutation group ( Plant J. , 39 (2): 252-263, 2004) And 96.7%, respectively, as a result of the in vitro test for the resistance to the disease.

키다리병균 접종 4주차 경과 후, 벼 품종들의 고사율(%)(%) Of rice varieties after 4th week of inoculation with Kidari disease 품종kind 고사율(Mortality rate %% )) 남평벼Nam Pyung 30.830.8 조운Joan 42.942.9 운봉40호Unbong 40 43.343.3 하이아미High ami 48.348.3 인월벼Inwol Rice 63.663.6 팔달벼Pallad Rice 64.364.3 화영벼Hwadong 65.565.5 운광벼Ugwanghwa 71.471.4 화성벼Hwaseong 71.471.4 진흥벼Jinheung Rice 93.393.3 일미벼Il-myeong 96.696.6 기호벼Sign rice 96.696.6 호품벼Rice paddy 100.0100.0 오대벼Osaka 100.0100.0 진부43호Jindo No. 43 100.0100.0 동진벼Dong Jin-Pyo 100.0100.0 금오벼Kumo rice 100.0100.0 칠보벼Clover rice 100.0100.0 동안벼During the rice 100.0100.0 설향찰벼Suh Hyang-chul 100.0100.0 안미벼An Mibyeong 100.0100.0 소비벼Consumption rice 100.0100.0 영안벼Young An Rice 100.0100.0 낙동벼Naktong 100.0100.0 주남벼Juana 100.0100.0 동진ADDongjin AD 96.796.7

실시예Example 2: 벼  2: rice 키다리병Kidari bottle 저항성 유전자  Resistance gene 맵핑Mapping (mapping) 및 mapping and 키다리병Kidari bottle 저항성 품종 선별마커 개발 Development of selective markers for resistant varieties

상기 실시예 1에서 벼 키다리병 저항성 정도에 대한 기내 검정 결과를 통해 남평벼가 키다리병에 대한 저항성을 지닌 품종임을 확인하였다.The results of the in vitro tests on the rice resistance of rice hind legs in Example 1 confirmed that the rice hind pods were resistant to Kidari disease.

이에, 벼 키다리병 저항성 유전자의 위치를 밝히기 위해, 벼 키다리병 저항성 품종인 남평벼와 감수성 계통인 동진AD와의 교배 후대 F2 집단을 육성하고, 상기 육성한 남평벼 및 동진AD의 유전체재해석(resequencing)을 통해 두 폼종간 변이영역을 탐색하였으며, 이를 토대로 키다리병 저항성 관련 QTL을 결정하기 위한 유전자 지도 작성용 CAPS 마커를 도출하였다. 아울러, 벼 키다리병에 대한 남평벼 및 동진AD의 교배 후대 F2 집단의 저항성을 검정하고, 이를 기반으로 벼 키다리병 저항성 QTL 맵핑을 수행하였다. 한편, 키다리병 저항성 관련 QTL 맵핑을 토대로 키다리병 저항성 품종 선별마커를 발굴하였다.In order to investigate the location of rice resistance genes, we have developed F2 group of mating hybrid of Nipyeongbyeo, which is a rice - resistant strain of rice, and Dongjin AD, which is a susceptible strain, and resequencing of the cultivated Nongpyeong and Dongjin AD And the CAPS markers for genetic mapping were derived to determine the QTL related to the resistance to Kidari disease. In addition, we tested the resistance of the F2 group of the mating seedling of Nippei and Dongjin AD to the rice seedlings and performed the QTL mapping of rice seedling resistance. On the other hand, the QDAR resistance resistant breed marker was identified based on the QTL mapping related to the resistance to Kidari disease.

실시예Example 2-1: 변이영역 탐색 및 CAPS  2-1: Mutation area search and CAPS 마커Marker 개발과, 이를 기반으로 한  Development, based on this 남평벼Nam Pyung  And 동진AD의Dongjin AD 교배 후대 집단의  Mating 키다리병Kidari bottle 저항성 관련  Resistance-related 양적형질Quantitative trait 유전자좌Locus (( QTLsQTLs , quantitative trait loci)를 결정하기 위한 유전 지도 작성, quantitative trait loci)

변이영역을 탐색하는 방법은 컴퓨터 프로그램 등을 사용하여, 분석하고자 하는 품종의 염기서열 정보를 표준유전체와 비교하면서 단일염기서열변이(SNP; Single Nucleotide Polymorphism)를 검출하였다. To detect the mutation region, a single nucleotide polymorphism (SNP) was detected using a computer program or the like, comparing the nucleotide sequence information of the variety to be analyzed with the standard genome.

구체적으로, 재조합자식 유전집단의 모본인 남평벼와 동진AD를 자포니카(Japonica) Nipponbare 서열을 기준으로 유전체재해석(resequencing)을 수행하였다. 각각 약 30x의 유전체 염기서열 데이터를 생산하였으며, 이들 간의 비교분석을 통해 남평벼와 동진AD간 단일염기서열변이(SNP)를 약 17만개를 발굴하였다(도 3).Specifically, resequencing was performed based on the Nipponbare sequence of Japonica (Nipponbare), which is a member of the recombinant heritable group, Nambuki and Dongjin AD. Genomic DNA sequence data of about 30x each were produced, and about 170,000 single nucleotide sequence variants (SNPs) were found between Nampyeong and Dongjin AD through comparative analysis between them (Fig. 3).

상기 발굴된 SNP들 가운데 제한효소(ApaL Ⅰ, BamH Ⅰ, Bgl Ⅱ, BspT104Ⅰ, Cla Ⅰ, EcoR Ⅰ, EcoR Ⅴ, EcoT22 Ⅰ, Fok Ⅰ, Hind Ⅲ, Kpn Ⅰ, Mlu Ⅰ, Nde Ⅰ, Not Ⅰ, PshB Ⅰ, Pvu Ⅱ, Sac Ⅰ, Sac Ⅱ, Sca Ⅰ, SnaB Ⅰ, Stu Ⅰ, Xba Ⅰ, Xho Ⅰ) 인식부위에 위치한 SNP들을 대상으로 새로운 CAPS(Cleaved Amplified Polymorphic Sequences) 마커 124종을 개발하였다(표 2 및 표 3). 이를 이용하여 남평벼 및 동진AD의 교배 후대 F2 집단의 유전자형을 분석하여 유전지도를 작성하였다(도 4 및 도 5). 이때, 유전지도는 MapDisto(v. 1.7) 프로그램을 사용하여 작성하였다(Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Molecular Breeding 30:1231-1235 (DOI 10.1007/s11032-012-9706-y)).Among the above identified SNPs, restriction enzymes (ApaL Ⅰ, BamH Ⅰ, Bgl Ⅱ, BspT104 Ⅰ, Cla Ⅰ, EcoR Ⅰ, EcoR Ⅴ, EcoT22 Ⅰ, Fok Ⅰ, Hind Ⅲ, Kpn Ⅰ, Mlu Ⅰ, Nde Ⅰ, We have developed 124 new Cleaved Amplified Polymorphic Sequence (CAPS) markers for SNPs located at recognition sites of PshB Ⅰ, Pvu Ⅱ, Sac Ⅰ, Sac Ⅱ, Sca Ⅰ, SnaB Ⅰ, Stu Ⅰ, Xba Ⅰ and Xho Ⅰ Table 2 and Table 3). Genotypes were analyzed by genotyping the F2 group of the mating hybrid of Nampyeong and Dongjin AD (FIG. 4 and FIG. 5). Genetic maps were generated using MapDisto (v. 1.7) program (Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Molecular Breeding 30: 1231-1235 (DOI 10.1007 / s11032-012-9706 -y)).

동진AD 및 남평벼 특이적 CAPS 마커 정보 Dongjin AD and Nampyeong specific CAPS marker information 마커명Marker name
(Marker name)(Marker name)
염색체chromosome
(chromosome)(chromosome)
위치(bp)Location (bp)
(position)(position)
SNPSNP 제한효소Restriction enzyme
(Restriction enzyme)(Restriction enzyme)
동진ADDongjin AD 남평벼Nam Pyung JNC010055JNC010055 1One 6,637,1606,637,160 AA GG BamHⅠBamHI JNC010084JNC010084 1One 10,922,11010,922,110 TT CC EcoRⅠEcoR I JNC010086JNC010086 1One 11,737,80411,737,804 CC TT PvuⅡPvuII JNS01057JNS01057 1One 20,118,45220,118,452 GG AA BspT104ⅠBspT104I JNC010139JNC010139 1One 21,781,63421,781,634 GG TT BglⅡBglII JNS01030JNS01030 1One 23,362,39723,362,397 TT CC HindⅢHindIII JNC010565JNC010565 1One 23,727,13423,727,134 AA TT EcoRⅠEcoR I JNC010809JNC010809 1One 24,100,19124,100,191 AA CC EcoRⅤEcoRV JNC011008JNC011008 1One 24,466,86624,466,866 CC TT HindⅢHindIII JNC011512JNC011512 1One 31,955,36731,955,367 TT CC BglⅡBglII JNC011753JNC011753 1One 33,311,10933,311,109 GG AA EcoRⅤEcoRV JNC011767JNC011767 1One 34,349,77234,349,772 AA CC BglⅡBglII JNC011804JNC011804 1One 35,080,91835,080,918 CC AA HindⅢHindIII JNC011850JNC011850 1One 37,620,85837,620,858 TT CC PvuⅡPvuII JNC011887JNC011887 1One 38,493,51338, 493, 513 AA GG EcoRⅠEcoR I JNC020021JNC020021 22 3,231,8633,231,863 AA TT EcoRⅤEcoRV JNC020047JNC020047 22 3,506,5073,506,507 GG AA StuⅠStuI JNC020052JNC020052 22 4,372,7124,372,712 TT GG EcoRⅠEcoR I JNC020058JNC020058 22 4,961,2824,961,282 GG AA NdeⅠNde I JNC020069JNC020069 22 8,042,3748,042,374 TT CC MluⅠMlu I JNC020149JNC020149 22 24,683,41924,683,419 AA GG EcoRⅤEcoRV JNC020176JNC020176 22 26,281,92526,281,925 GG TT BamHⅠBamHI JNC020186JNC020186 22 28,085,08128,085,081 AA GG EcoRⅠEcoR I JNC030012JNC030012 33 4,262,8594,262,859 GG AA EcoRⅠEcoR I JNC030028JNC030028 33 4,321,2514,321,251 GG AA PvuⅡPvuII JNC030131JNC030131 33 4,803,0864,803,086 GG AA BamHⅠBamHI JNC030134JNC030134 33 4,871,5794,871,579 GG AA HindⅢHindIII JNC030270JNC030270 33 5,798,1315,798,131 TT CC KpnⅠKpn I JNC030275JNC030275 33 5,818,9435,818,943 GG TT EcoRⅠEcoR I JNC030408JNC030408 33 6,218,5566,218,556 GG CC BamHⅠBamHI JNC030411JNC030411 33 6,226,0916,226,091 GG AA BamHⅠBamHI JNC030606JNC030606 33 32,346,71732,346,717 CC AA EcoRⅠEcoR I JNC040003JNC040003 44 981,521981,521 CC TT EcoRⅤEcoRV JNC040055JNC040055 44 1,283,4861,283,486 TT CC HindⅢHindIII JNC040202JNC040202 44 5,112,8495,112,849 CC TT PvuⅡPvuII JNC040270JNC040270 44 17,321,77717,321,777 AA GG EcoRⅤEcoRV JNC040277JNC040277 44 18,706,20618,706,206 CC TT KpnⅠKpn I JNC040334JNC040334 55 30,754,43930,754,439 CC TT SacⅠSac I JNC050091JNC050091 55 2,315,3012,315,301 GG AA HindⅢHindIII JNC050127JNC050127 55 4,663,9674,663,967 AA GG SacⅠSac I JNC050148JNC050148 55 7,480,0497,480,049 AA GG EcoRⅤEcoRV JNC050159JNC050159 55 9,442,9859,442,985 TT GG MluⅠMlu I JNC050166JNC050166 55 12,092,38812,092,388 TT AA BspT104ⅠBspT104I JNC050174JNC050174 55 17,340,75717,340,757 GG CC FokⅠFokI JNC050178JNC050178 55 17,593,58517,593,585 GG AA SnaBⅠSnaBI JNC050194JNC050194 55 20,982,83520,982,835 AA TT NdeⅠNde I JNC050197JNC050197 55 23,451,21723,451,217 TT CC SacⅡSacII JNC050199JNC050199 55 23,847,83323,847,833 CC TT PvuⅡPvuII JNC060015JNC060015 66 6,635,2256,635,225 AA GG FokⅠFokI JNC060019JNC060019 66 7,752,9807,752,980 CC TT PshBⅠPshBI JNC060286JNC060286 66 11,251,90411,251,904 GG AA HindⅢHindIII JNC060295JNC060295 66 12,644,94212,644,942 TT GG FokⅠFokI JNC060434JNC060434 66 13,182,98113,182,981 GG AA EcoRⅠEcoR I JNC060623JNC060623 66 13,479,46913,479,469 AA CC EcoRⅤEcoRV JNC062136JNC062136 66 16,033,71216,033,712 AA GG EcoRⅤEcoRV JNC064053JNC064053 66 20,452,55820,452,558 TT GG PvuⅡPvuII JNC064080JNC064080 66 20,976,27620,976,276 CC TT StuⅠStuI JNC064090JNC064090 66 23,842,82823,842,828 TT CC EcoT22ⅠEcoT22I JNC070004JNC070004 77 3,610,3703,610,370 TT GG ClaⅠCla I JNC070005JNC070005 77 7,862,7427,862,742 GG TT ScaⅠSca I JNC070013JNC070013 77 17,277,93617,277,936 AA CC XbaⅠXba I JNC070112JNC070112 77 18,992,45118,992,451 CC TT ClaⅠCla I JNC070134JNC070134 77 19,369,06619,369,066 GG AA HindⅢHindIII JNC070337JNC070337 77 20,600,79020,600,790 TT CC HindⅢHindIII JNC070424JNC070424 77 21,098,44521,098,445 TT AA EcoRⅠEcoR I JNC070431JNC070431 77 21,356,84221,356,842 GG AA SacⅠSac I JNC070437JNC070437 77 23,104,84223,104,842 AA GG KpnⅠKpn I JNC070474JNC070474 77 25,614,75125,614,751 AA GG BamHⅠBamHI JNC080171JNC080171 88 5,273,8115,273,811 AA GG HindⅢHindIII JNC080409JNC080409 88 7,639,6127,639,612 GG AA EcoRⅠEcoR I JNC080486JNC080486 88 8,374,3838,374,383 CC TT NotⅠNot I JNC080498JNC080498 88 13,005,85113,005,851 AA TT PshBⅠPshBI JNC080501JNC080501 88 15,673,34315,673,343 CC TT EcoRⅠEcoR I JNC080505JNC080505 88 18,626,10018,626,100 AA TT StuⅠStuI JNC080506JNC080506 88 19,203,45519,203,455 TT AA StuⅠStuI JNC090001JNC090001 99 1,742,3711,742,371 GG AA XhoⅠXho I JNC090015JNC090015 99 9,306,3799,306,379 AA TT PvuⅡPvuII JNC090019JNC090019 99 12,001,82812,001,828 AA TT StuⅠStuI JNC090024JNC090024 99 12,691,11012,691,110 GG AA EcoT22ⅠEcoT22I JNC090029JNC090029 99 14,626,58314,626,583 AA GG FokⅠFokI JNC090043JNC090043 99 17,218,98317,218,983 TT CC EcoRⅤEcoRV JNC090046JNC090046 99 17,760,39817,760,398 AA GG FokⅠFokI JNC090053JNC090053 99 19,579,31519,579,315 GG TT HindⅢHindIII JNC090060JNC090060 99 21,208,25121,208,251 AA GG EcoRⅠEcoR I JNC100027JNC100027 1010 3,852,5183,852,518 AA GG FokⅠFokI JNC100057JNC100057 1010 15,431,65615,431,656 GG TT SacⅠSac I JNC100137JNC100137 1010 15,632,83215,632,832 -- TT HindⅢHindIII JNC100164JNC100164 1010 16,682,90816,682,908 GG TT EcoT22ⅠEcoT22I JNC100175JNC100175 1010 17,351,41317,351,413 TT AA ApaLⅠApaL I JNC100202JNC100202 1010 21,256,79721,256,797 TT CC MluⅠMlu I JNC100206JNC100206 1010 22,389,67522,389,675 TT GG EcoRⅠEcoR I JNC110013JNC110013 1111 1,113,9591,113,959 TT CC XbaⅠXba I JNC110050JNC110050 1111 2,931,9772,931,977 AA GG EcoRⅠEcoR I JNC110432JNC110432 1111 3,903,6123,903,612 AA CC EcoRⅤEcoRV JNC111059JNC111059 1111 5,386,0255,386,025 AA GG HindⅢHindIII JNC111269JNC111269 1111 7,505,1907,505,190 CC TT XbaⅠXba I JNC111346JNC111346 1111 19,263,78819,263,788 AA TT EcoRⅤEcoRV JNC111531JNC111531 1111 19,930,11219,930,112 TT CC EcoRⅠEcoR I JNC111652JNC111652 1111 20,451,56120,451,561 TT AA EcoRⅠEcoR I JNC111851JNC111851 1111 20,924,92620,924,926 GG TT HindⅢHindIII JNC112037JNC112037 1111 21,467,42521,467,425 AA TT EcoRⅠEcoR I JNC112157JNC112157 1111 21,929,85621,929,856 TT CC EcoRⅤEcoRV JNC112511JNC112511 1111 23,042,14523,042,145 AA TT EcoRⅠEcoR I JNC112653JNC112653 1111 23,615,95623,615,956 AA GG HindⅢHindIII JNC112736JNC112736 1111 24,002,73924,002,739 AA GG EcoRⅠEcoR I JNC112853JNC112853 1111 25,834,30225,834,302 GG CC BglⅡBglII JNC112884JNC112884 1111 26,261,26726,261,267 GG AA EcoRⅤEcoRV JNC113082JNC113082 1111 27,391,29827,391,298 TT CC HindⅢHindIII JNC113160JNC113160 1111 27,815,55227,815,552 GG AA SacⅠSac I JNC113212JNC113212 1111 28,485,93228,485,932 GG TT PvuⅡPvuII JNC120005JNC120005 1212 3,984,4183,984,418 GG AA HindⅢHindIII JNC120091JNC120091 1212 4,465,2984,465,298 GG CC EcoRⅤEcoRV JNC120123JNC120123 1212 6,808,4476,808,447 AA TT XbaⅠ Xba I JNC120149JNC120149 1212 14,170,96314,170,963 TT CC EcoRⅤEcoRV JNC120161JNC120161 1212 14,586,07814,586,078 TT GG EcoRⅠEcoR I JNC120176JNC120176 1212 16,995,17116,995,171 GG CC EcoRⅤEcoRV JNC120219JNC120219 1212 18,063,11718,063,117 GG AA HindⅢHindIII JNC120491JNC120491 1212 19,130,58019,130,580 CC TT EcoRⅤEcoRV JNC120546JNC120546 1212 20,039,78020,039,780 TT CC EcoRⅠEcoR I JNC120785JNC120785 1212 21,113,69721,113,697 GG AA EcoRⅠEcoR I JNC120803JNC120803 1212 23,727,02223,727,022 CC TT EcoRⅤEcoRV JNC120907JNC120907 1212 25,296,06725,296,067 AA CC EcoRⅤEcoRV JNC120937JNC120937 1212 26,998,10026,998,100 AA GG BamHⅠBamHI JNC121053JNC121053 1212 27,204,86427,204,864 AA GG EcoRⅠEcoR I

본 발명의 CAPS 마커 검출용 프라이머 서열The primer sequence for CAPS marker detection of the present invention 마커명Marker name
(Marker name)(Marker name)
정방향 프라이머Forward primer
(Forward primer)(Forward primer)
서열번호SEQ ID NO: 역방향 프라이머Reverse primer
(Reverse primer)(Reverse primer)
서열번호SEQ ID NO:
JNC010055JNC010055 AGGAAATCCATCTGGACCAAAGGAAATCCATCTGGACCAA 1One TATGCAACCTCGATGAGCAATATGCAACCTCGATGAGCAA 22 JNC010084JNC010084 GCGTCTCTAACGATGCCTTCGCGTCTCTAACGATGCCTTC 33 GTGGTCATGGATGACGAGTGGTGGTCATGGATGACGAGTG 44 JNC010086JNC010086 CTGCAACACGGGTATTCAGACTGCAACACGGGTATTCAGA 55 TCAGCGATGTTCATCAGGAGTCAGCGATGTTCATCAGGAG 66 JNS01057JNS01057 GTAGGGCTTGGGATCGGTTCGTAGGGCTTGGGATCGGTTC 77 TGTGGCGGATTTCTAGAAGGATGTGGCGGATTTCTAGAAGGA 88 JNC010139JNC010139 TTCTTTCTTCCCCACACACATTCTTTCTTCCCCACACACA 99 CTGATGACGCTACAGCCAAACTGATGACGCTACAGCCAAA 1010 JNS01030JNS01030 AATGGCGAGCTCAACTCCAAAATGGCGAGCTCAACTCCAA 1111 TGCACCACCTGTACCAGGAATGCACCACCTGTACCAGGAA 1212 JNC010565JNC010565 TGCATTTCCAGCCCTTTAACTGCATTTCCAGCCCTTTAAC 1313 TGGAAGACTTGGGAATCCATTGGAAGACTTGGGAATCCAT 1414 JNC010809JNC010809 CCACATCATCACCCCTCTTTCCACATCATCACCCCTCTTT 1515 TTCCTAACAACGTCGCTCCTTTCCTAACAACGTCGCTCCT 1616 JNC011008JNC011008 TCTTGGCCTTCTTTGAAACGTCTTGGCCTTCTTTGAAACG 1717 CGGCGACTAGTACACCAACGCGGCGACTAGTACACCAACG 1818 JNC011512JNC011512 CAGCTGTTAGGTGCGTTGTGCAGCTGTTAGGTGCGTTGTG 1919 TGGAATGTCGCAAAACTACGTGGAATGTCGCAAAACTACG 2020 JNC011753JNC011753 GCATATGGTCATTGGTCGATGCATATGGTCATTGGTCGAT 2121 GCCATTTCGATAGCCATGTTGCCATTTCGATAGCCATGTT 2222 JNC011767JNC011767 ACCGTCTGTCTGTTGCGTTAACCGTCTGTCTGTTGCGTTA 2323 CTGCATGGTTTCACATGGACCTGCATGGTTTCACATGGAC 2424 JNC011804JNC011804 GAGCAAAAGGGTAGGTGCTGGAGCAAAAGGGTAGGTGCTG 2525 CCGTTGACCCTGTGGAATAGCCGTTGACCCTGTGGAATAG 2626 JNC011850JNC011850 ATGCGCATTTGTTGTGTCATATGCGCATTTGTTGTGTCAT 2727 GAATCGAGTTGCCCTAGCTGGAATCGAGTTGCCCTAGCTG 2828 JNC011887JNC011887 TCGATTTGGTCATTTGGTGATCGATTTGGTCATTTGGTGA 2929 CTTCCGGTTTGTGCGTACTTCTTCCGGTTTGTGCGTACTT 3030 JNC020021JNC020021 CCCATTAAGCATTTGCCTTTCCCATTAAGCATTTGCCTTT 3131 TGCGGAATATGTTGCCTAGATGCGGAATATGTTGCCTAGA 3232 JNC020047JNC020047 GTTGCCGTCAAGGTGCTATCGTTGCCGTCAAGGTGCTATC 3333 TTGCCTTAGCTTTTCCACTGATTGCCTTAGCTTTTCCACTGA 3434 JNC020052JNC020052 CTCCTTTCCGTTGACAGCTCCTCCTTTCCGTTGACAGCTC 3535 TGCCTTGTCAGACGATTGAATGCCTTGTCAGACGATTGAA 3636 JNC020058JNC020058 ATCCGGCACTTATGTGTGGTATCCGGCACTTATGTGTGGT 3737 GGAGAAAAGTCCGGTTTGGTGGAGAAAAGTCCGGTTTGGT 3838 JNC020069JNC020069 TGTGTTGAAATGGGGATTCATGTGTTGAAATGGGGATTCA 3939 GCGAGGTTTCTCGTAAGTGCGCGAGGTTTCTCGTAAGTGC 4040 JNC020149JNC020149 GGGGATGTTCCCTCGTTTACGGGGATGTTCCCTCGTTTAC 4141 CCGAGAAGAGCAGGTACGTCCCGAGAAGAGCAGGTACGTC 4242 JNC020176JNC020176 GGTGATATGCCTCAACGACAGGTGATATGCCTCAACGACA 4343 AGGCTCACCTTCTGCACAGTAGGCTCACCTTCTGCACAGT 4444 JNC020186JNC020186 CGCGTTGGTCCCACTATTATCGCGTTGGTCCCACTATTAT 4545 GGGCTACACAAGCTGCCTTAGGGCTACACAAGCTGCCTTA 4646 JNC030012JNC030012 TCTTACTCCCTCGCTCATGGTCTTACTCCCTCGCTCATGG 4747 AACAGCAGCCACAAAGAACAAACAGCAGCCACAAAGAACA 4848 JNC030028JNC030028 CATCAAAGCTGCTCGATTCACATCAAAGCTGCTCGATTCA 4949 ATAGTATGCTCCCCGGGTTTATAGTATGCTCCCCGGGTTT 5050 JNC030131JNC030131 AAGGCAAAGAGTGCCACAACAAGGCAAAGAGTGCCACAAC 5151 CACCCTAGCAGAGGATCTCGCACCCTAGCAGAGGATCTCG 5252 JNC030134JNC030134 CATGAGCCACCTCCTTTGATCATGAGCCACCTCCTTTGAT 5353 TACATTGTATGCCGCATGGTTACATTGTATGCCGCATGGT 5454 JNC030270JNC030270 AGACCGTTTGCTGTTGCTCTAGACCGTTTGCTGTTGCTCT 5555 TCGTCGAGAGGAAGAAGACCTCGTCGAGAGGAAGAAGACC 5656 JNC030275JNC030275 CTCAGCCAGTCCAACAAGGTCTCAGCCAGTCCAACAAGGT 5757 CCCAACAACGACCAGACCTACCCAACAACGACCAGACCTA 5858 JNC030408JNC030408 CCCGGACATTGAACTTGACTCCCGGACATTGAACTTGACT 5959 AGTGGTTTTCCCCAACAGTGAGTGGTTTTCCCCAACAGTG 6060 JNC030411JNC030411 CCCATCACCGGTACACTTCTCCCATCACCGGTACACTTCT 6161 GGTTGAACGCTCCTTCAGTTGGTTGAACGCTCCTTCAGTT 6262 JNC030606JNC030606 CGCACACTAGGGAGAGAGGACGCACACTAGGGAGAGAGGA 6363 GAATGAGTTTTGTCGCCTACGGAATGAGTTTTGTCGCCTACG 6464 JNC040003JNC040003 TAGATCGCGTCAAGGGCTACTAGATCGCGTCAAGGGCTAC 6565 ATTTAAAGGCGCTTTGGATGATTTAAAGGCGCTTTGGATG 6666 JNC040055JNC040055 CAGGATTCGCCAGTACATCACAGGATTCGCCAGTACATCA 6767 ATGAGCATTGTTGGTGCAAAATGAGCATTGTTGGTGCAAA 6868 JNC040202JNC040202 GTCTGGGACATACCGCTGTTGTCTGGGACATACCGCTGTT 6969 GAGCTCAGGAAGATCCACGAGAGCTCAGGAAGATCCACGA 7070 JNC040270JNC040270 TGTTGTCCCCCGAGTAACTTTGTTGTCCCCCGAGTAACTT 7171 CACAAGCATTGGTTGATGGTCACAAGCATTGGTTGATGGT 7272 JNC040277JNC040277 CATCCATGTTGCATGGCTAACATCCATGTTGCATGGCTAA 7373 CCTTTCCCAGTCACCTTTCACCTTTCCCAGTCACCTTTCA 7474 JNC040334JNC040334 TGAGACGGCGACTGATAGTGTGAGACGGCGACTGATAGTG 7575 AAATGCGAGACGCATCTTTTAAATGCGAGACGCATCTTTT 7676 JNC050091JNC050091 AAGGGATATGTGCCTCTTGGAAGGGATATGTGCCTCTTGG 7777 ACCAATCCTTTTCCCTGCTTACCAATCCTTTTCCCTGCTT 7878 JNC050127JNC050127 CGTGAAACCCACATGTCAACCGTGAAACCCACATGTCAAC 7979 GGAGGGAGGAGGAGAACAAGGGAGGGAGGAGGAGAACAAG 8080 JNC050148JNC050148 GCGGTGGGGTAGTTTCTTCTGCGGTGGGGTAGTTTCTTCT 8181 CAACACGACGCACTAAGCATCAACACGACGCACTAAGCAT 8282 JNC050159JNC050159 GTGCGTTTGGTAGGAGCATTGTGCGTTTGGTAGGAGCATT 8383 ATTCTCCAGCATCCCACATTATTCTCCAGCATCCCACATT 8484 JNC050166JNC050166 TGGGCTTCTTTGGGACTAGATGGGCTTCTTTGGGACTAGA 8585 GGATAAACATGCCGGGTTTTGGATAAACATGCCGGGTTTT 8686 JNC050174JNC050174 GTAGGGCATGAGCGATGTTTGTAGGGCATGAGCGATGTTT 8787 TGCGTGGAACATTAAATATGGATGCGTGGAACATTAAATATGGA 8888 JNC050178JNC050178 TCACGCGAGAGACTTCCATATCACGCGAGAGACTTCCATA 8989 GGGGATGTTCACTTGTGAGGGGGGATGTTCACTTGTGAGG 9090 JNC050194JNC050194 CCGAATAAGCCTGAAGTTGGCCGAATAAGCCTGAAGTTGG 9191 CCTCCCAAAAGTTGGAATCACCTCCCAAAAGTTGGAATCA 9292 JNC050197JNC050197 GCAGTGGAGAGAAGGGTGACGCAGTGGAGAGAAGGGTGAC 9393 GGGAGGAGGCAAGAAGTAGGGGGAGGAGGCAAGAAGTAGG 9494 JNC050199JNC050199 TGCGCAAGATTATTCCAGTGTGCGCAAGATTATTCCAGTG 9595 ATGTCACACCCCAATCTGGTATGTCACACCCCAATCTGGT 9696 JNC060015JNC060015 TCGATTTGGTGGAAACTTGATCGATTTGGTGGAAACTTGA 9797 CATGCTTGGGTGATGAAAAACATGCTTGGGTGATGAAAAAA 9898 JNC060019JNC060019 TGAAGCTAGGGGGAAGAACATGAAGCTAGGGGGAAGAACA 9999 AGGAGGGCCACTGGAAGTATAGGAGGGCCACTGGAAGTAT 100100 JNC060286JNC060286 TAGGATCGCTTGATCCGAACTAGGATCGCTTGATCCGAAC 101101 AAGACATGCAAGAGGCAACCAAGACATGCAAGAGGCAACC 102102 JNC060295JNC060295 AATGGAGCGCGCTAAAGTAAAATGGAGCGCGCTAAAGTAA 103103 TTGGAAGTCTACCGGTTTCCTTGGAAGTCTACCGGTTTCC 104104 JNC060434JNC060434 TTGGCTTCTGCTATCCCAGTTTGGCTTCTGCTATCCCAGT 105105 GCAAGTGAATAAACCCCTGCTGCAAGTGAATAAACCCCTGCT 106106 JNC060623JNC060623 GGCTTTGGTCAAACCTCATTGGCTTTGGTCAAACCTCATT 107107 CCAAGCCAAAGATTCCACATCCAAGCCAAAGATTCCACAT 108108 JNC062136JNC062136 GATCGAAGCTGAACCACCATGATCGAAGCTGAACCACCAT 109109 TAGCGGGTGATTGAGAGTCCTAGCGGGTGATTGAGAGTCC 110110 JNC064053JNC064053 CAAGATTCAAAACAACACGTTCACAAGATTCAAAACAACACGTTCA 111111 GAAAGTTTTCGCACGGACTGGAAAGTTTTCGCACGGACTG 112112 JNC064080JNC064080 GTGGAGTTGCATTGCTCAGAGTGGAGTTGCATTGCTCAGA 113113 AACTTCCCGTGTGTTCTGTGTAACTTCCCGTGTGTTCTGTGT 114114 JNC064090JNC064090 AGGAGTATTGGCCCATGTGAAGGAGTATTGGCCCATGTGA 115115 GGTGGTGGTGGGATTAAATGGGTGGTGGTGGGATTAAATG 116116 JNC070004JNC070004 TGGTGTAGAGCATTGCCTTGTGGTGTAGAGCATTGCCTTG 117117 CGTCCACACACAGGGATTTTCGTCCACACACAGGGATTTT 118118 JNC070005JNC070005 TTCAACGGGTGGGATGTATTTTCAACGGGTGGGATGTATT 119119 ATGGGTGTGTCACCCTGTCTATGGGTGTGTCACCCTGTCT 120120 JNC070013JNC070013 CCTAAATGAGCCGTGCCTAACCTAAATGAGCCGTGCCTAA 121121 TCATGTCTTGCCATTTTTGCTCATGTCTTGCCATTTTTGC 122122 JNC070112JNC070112 ATCGTCGAGTTTTCCGTCAAATCGTCGAGTTTTCCGTCAA 123123 TCCACCAGTACATGCGAAGATCCACCAGTACATGCGAAGA 124124 JNC070134JNC070134 CGATGGTTTCATGCTCACAACGATGGTTTCATGCTCACAA 125125 GCAGCAGTGGCTCCTGTAGGCAGCAGTGGCTCCTGTAG 126126 JNC070337JNC070337 CACGTCGATCCGGTTAGTCTCACGTCGATCCGGTTAGTCT 127127 TCGTGCGACAGAGGAATCTATCGTGCGACAGAGGAATCTA 128128 JNC070424JNC070424 ATCGCTGCATTTACCGAGTCATCGCTGCATTTACCGAGTC 129129 GCAGCAGTGATGAAGTCCAAGCAGCAGTGATGAAGTCCAA 130130 JNC070431JNC070431 GAACGTGCTGTTCTCCGAGTGAACGTGCTGTTCTCCGAGT 131131 CTGGTTGTTTTGACGACGTTCTGGTTGTTTTGACGACGTT 132132 JNC070437JNC070437 AGACTGGGCACCTTGTATCGAGACTGGGCACCTTGTATCG 133133 TGGGACAAACTATGCAGTCGTGGGACAAACTATGCAGTCG 134134 JNC070474JNC070474 GCTGCTGCTTCTCTTTTCCAGCTGCTGCTTCTCTTTTCCA 135135 GCGAAATTTGGATGGGATTAGCGAAATTTGGATGGGATTA 136136 JNC080171JNC080171 TGACGCTTACGTGGCAGTTTTGACGCTTACGTGGCAGTTT 137137 GTACACGGGGTGCGGTTATCGTACACGGGGTGCGGTTATC 138138 JNC080409JNC080409 TGCACACGACCACTGGAGTATGCACACGACCACTGGAGTA 139139 CCCTAACACGGTTCATGTGCCCCTAACACGGTTCATGTGC 140140 JNC080486JNC080486 CGAAGACGAAGACGGTGACTTCGAAGACGAAGACGGTGACTT 141141 GCCTCCTCCGGCTAATCTTTGCCTCCTCCGGCTAATCTTT 142142 JNC080498JNC080498 GCGACTGACGAAGTGACGAGGCGACTGACGAAGTGACGAG 143143 TGTGGAGGGAACCGGTAACTTGTGGAGGGAACCGGTAACT 144144 JNC080501JNC080501 CCGTGGGTACAAATCATGGACCGTGGGTACAAATCATGGA 145145 AGTGCACGGAACCCACTACAAGTGCACGGAACCCACTACA 146146 JNC080505JNC080505 ATCCGAGCCATGGAAAAATGATCCGAGCCATGGAAAAATG 147147 ACCTGCCGAGATGTTTGAGGACCTGCCGAGATGTTTGAGG 148148 JNC080506JNC080506 AATCCGCATGGAATTCGGTAAATCCGCATGGAATTCGGTA 149149 GGCGATAGTGAGGTCGGTTCGGCGATAGTGAGGTCGGTTC 150150 JNC090001JNC090001 CACAGTGGGCAAGGTCAGATCACAGTGGGCAAGGTCAGAT 151151 ATAGCCTTTTGGGCGTGTTGATAGCCTTTTGGGCGTGTTG 152152 JNC090015JNC090015 TGGGTCGTCGACGTATCGTATGGGTCGTCGACGTATCGTA 153153 AAGATGAGGACGTGGCATCCAAGATGAGGACGTGGCATCC 154154 JNC090019JNC090019 TGGAGATTGCCTTCTGACAAGATGGAGATTGCCTTCTGACAAGA 155155 CAACGGTGTAATCGGATTGTCAACGGTGTAATCGGATTGT 156156 JNC090024JNC090024 GGGTGGGTCGATGATAAGGAGGGTGGGTCGATGATAAGGA 157157 TTGCGAGCTGCTTGTTTAGCTTGCGAGCTGCTTGTTTAGC 158158 JNC090029JNC090029 CCTCGGCAAAAAGAAACGACCCTCGGCAAAAAGAAACGAC 159159 AGCCTGTTCTGCAGGACCTCAGCCTGTTCTGCAGGACCTC 160160 JNC090043JNC090043 GAGGAAGCTTCGGTTTGCTGGAGGAAGCTTCGGTTTGCTG 161161 TCGTCCATATCCTGCCTGTGTCGTCCATATCCTGCCTGTG 162162 JNC090046JNC090046 AGGACCCATTACGCTGATGCAGGACCCATTACGCTGATGC 163163 ACGGCCATTTCAATTCCCTAACGGCCATTTCAATTCCCTA 164164 JNC090053JNC090053 CGACACCCTCACCTTCACAACGACACCCTCACCTTCACAA 165165 TGGCTGAGTGCGTCATGTAATGGCTGAGTGCGTCATGTAA 166166 JNC090060JNC090060 CGGAGCTAAGGCCTGATTTGCGGAGCTAAGGCCTGATTTG 167167 CGAGTTTTTGCGGCTTTTTACGAGTTTTTGCGGCTTTTTA 168168 JNC100027JNC100027 TGTGGAAGAATGGAGAGTCACGTGTGGAAGAATGGAGAGTCACG 169169 TGTGTGTTTGGCCTTTGGTCTGTGTGTTTGGCCTTTGGTC 170170 JNC100057JNC100057 CGAGCTCCTCGACCCATCTACGAGCTCCTCGACCCATCTA 171171 AGTTCCGGTCCGCTTTGATTAGTTCCGGTCCGCTTTGATT 172172 JNC100137JNC100137 CCATCCCTGCCAATTCTGAGCCATCCCTGCCAATTCTGAG 173173 ATCCCCAACGTGATCTTCCAATCCCCAACGTGATCTTCCA 174174 JNC100164JNC100164 TGGCAATTTTCCCCTATTTCGTGGCAATTTTCCCCTATTTCG 175175 TGAGACGGAGGGAGTAACATGCTGAGACGGAGGGAGTAACATGC 176176 JNC100175JNC100175 CAGCGAGAAATGCCCAGAAGCAGCGAGAAATGCCCAGAAG 177177 TGCCACGTCAGCAAAACTAGGTGCCACGTCAGCAAAACTAGG 178178 JNC100202JNC100202 CGCCCATTGATCCAGTGAACCGCCCATTGATCCAGTGAAC 179179 TTGATTCCACATGGCTGCTCTTGATTCCACATGGCTGCTC 180180 JNC100206JNC100206 CCAGAAGCTGGTGCAGCAATCCAGAAGCTGGTGCAGCAAT 181181 TGGTTTTCAAGGGCCACAATTGGTTTTCAAGGGCCACAAT 182182 JNC110013JNC110013 CACGGCGGTGAACAGACATCACGGCGGTGAACAGACAT 183183 TACGGGCTTGGTTCGGTATGTACGGGCTTGGTTCGGTATG 184184 JNC110050JNC110050 TGGCAATGGCAATCAATGTGTGGCAATGGCAATCAATGTG 185185 TGGGTTGTTGGTGTGTCCATTGGGTTGTTGGTGTGTCCAT 186186 JNC110432JNC110432 CTCCTGCCATTCTGCCACTGCTCCTGCCATTCTGCCACTG 187187 TGGCAGCAGCAATGAGTTCTTGGCAGCAGCAATGAGTTCT 188188 JNC111059JNC111059 CGATGAGCCAATAGTCGGTTTCCGATGAGCCAATAGTCGGTTTC 189189 CCTTCTCTGACCGTGCTCCTCCTTCTCTGACCGTGCTCCT 190190 JNC111269JNC111269 TCGCCTCTCACCGTATCGTTTCGCCTCTCACCGTATCGTT 191191 AGGGGCAGTAAAGCCAGGAGAGGGGCAGTAAAGCCAGGAG 192192 JNC111346JNC111346 GGCCATCCACATGGAGTACGGGCCATCCACATGGAGTACG 193193 ACAGCACCCTGGTGGTTGATACAGCACCCTGGTGGTTGAT 194194 JNC111531JNC111531 AGCCGTACGTCCAATGGAGAAGCCGTACGTCCAATGGAGA 195195 TCGATTCGTATTCGCTCCGTATCGATTCGTATTCGCTCCGTA 196196 JNC111652JNC111652 AAGGCGGTCAAAAGCTCGTTAAGGCGGTCAAAAGCTCGTT 197197 CCCTTCCTCCTCCCCTTCTTCCCTTCCTCCTCCCCTTCTT 198198 JNC111851JNC111851 CCCGAGTGAGAAGCACTCCACCCGAGTGAGAAGCACTCCA 199199 GCTCAAGGTCCCCCTCAGTTGCTCAAGGTCCCCCTCAGTT 200200 JNC112037JNC112037 TGTTTCCTCACTTTGGCTCTCCTGTTTCCTCACTTTGGCTCTCC 201201 CCAGGTTGGAAAGGTTGGTTTCCAGGTTGGAAAGGTTGGTTT 202202 JNC112157JNC112157 CACATGCATGCAACGAGACACACATGCATGCAACGAGACA 203203 TGCTTTTTGAAAGGGGGAGATGCTTTTTGAAAGGGGGAGA 204204 JNC112511JNC112511 TGCACGACCAATGTCGGATATGCACGACCAATGTCGGATA 205205 CGCAAGGCGTAGCTTCAGACCGCAAGGCGTAGCTTCAGAC 206206 JNC112653JNC112653 TCGAAGGAAGTCGACAGCAATCGAAGGAAGTCGACAGCAA 207207 ACAGAAGCAGTGGCCCATGTACAGAAGCAGTGGCCCATGT 208208 JNC112736JNC112736 ACCAGGAAACTGCGAGACGAACCAGGAAACTGCGAGACGA 209209 GACCTCGCAGCTGATGTGTGGACCTCGCAGCTGATGTGTG 210210 JNC112853JNC112853 TCATATGGAGGCCGTTCGTTTCATATGGAGGCCGTTCGTT 211211 GCGTGTTTGATCGAGGCTTTGCGTGTTTGATCGAGGCTTT 212212 JNC112884JNC112884 CGGCTTGGAGAGCCCTTATTCGGCTTGGAGAGCCCCTTATT 213213 CGCAGGGGAACACCACTATCCGCAGGGGAACACCACTATC 214214 JNC113082JNC113082 CAGCCGGATCAGAACCAGACCAGCCGGATCAGAACCAGAC 215215 TCGGCTACCGAGCTTGAATCTCGGCTACCGAGCTTGAATC 216216 JNC113160JNC113160 GCCTGATGAACCGTTGGTGTGCCTGATGAACCGTTGGTGT 217217 TGGGGAATTCATGGAAGGAATGGGGAATTCATGGAAGGAA 218218 JNC113212JNC113212 TCTCCTGCCCAAGAACCAGATCTCCTGCCCAAGAACCAGA 219219 GGGACGAACACGCTCTTGAAGGGACGAACACGCTCTTGAA 220220 JNC120005JNC120005 ACCTGGAAGCCGGTGATCTTACCTGGAAGCCGGTGATCTT 221221 GTGAGGCTTTGGGACACCACGTGAGGCTTTGGGACACCAC 222222 JNC120091JNC120091 TGCAGGAGGAGGAAGCTAAGGTGCAGGAGGAGGAAGCTAAGG 223223 CGCAAATATTGGCCGCTTTACGCAAATATTGGCCGCTTTA 224224 JNC120123JNC120123 GCGCGTACTATTTCGGTTGGGCGCGTACTATTTCGGTTGG 225225 AGCACATTTGGTGGGTGTGAAGCACATTTGGTGGGTGTGA 226226 JNC120149JNC120149 CCTGGCATCTAGTTCCACCTGCCTGGCATCTAGTTCCACCTG 227227 TGATGTTGACAAAGGGGTTGGTGATGTTGACAAAGGGGTTGG 228228 JNC120161JNC120161 TACGGTCAGCCACCGAGTTTTACGGTCAGCCACCGAGTTT 229229 GCCTGCACCGTCAACGTATGCCTGCACCGTCAACGTAT 230230 JNC120176JNC120176 GGTCATTTGCCCTTCCACAAGGTCATTTGCCCTTCCACAAA 231231 TTGTGCCGCCTAATCAAAGCTTGTGCCGCCTAATCAAAGC 232232 JNC120219JNC120219 CCCACCGCTCCATATTGGTCCCACCGCTCCATATTGGT 233233 GGAGAACATGGCATCGATCAGGAGAACATGGCATCGATCA 234234 JNC120491JNC120491 GTGTTGCGCTGTTGTTGCTCGTGTTGCGCTGTTGTTGCTC 235235 GCACACCGCCAACCAACTAGCACACCGCCAACCAACTA 236236 JNC120546JNC120546 CTTCCATGGCTGACCAGCTTCTTCCATGGCTGACCAGCTT 237237 TTCAAACCCAGGTCGGAGAATTCAAACCCAGGTCGGAGAA 238238 JNC120785JNC120785 AGATGGCACTTTGGGGTTGAAGATGGCACTTTGGGGTTGA 239239 CGGTCAAATGGCAAATCCTGCGGTCAAATGGCAAATCCTG 240240 JNC120803JNC120803 CGTCATACCACCCTGCACAACGTCATACCACCCTGCACAA 241241 TTGGTTGCATGGTTTCTTGGTTGGTTGCATGGTTTCTTGG 242242 JNC120907JNC120907 TCAGCGAATACCACCGTCAATCAGCGAATACCACCGTCAA 243243 CGTGCTCTTGTCCAAAACGACGTGCTCTTGTCCAAAACGA 244244 JNC120937JNC120937 TGATGCCTGAAGTAGCTTGTGCTGATGCCTGAAGTAGCTTGTGC 245245 TGCAACAATTGAAGCCTTGCTTGCAACAATTGAAGCCTTGCT 246246 JNC121053JNC121053 GATGGACATTTGGGCATGTGGATGGACATTTGGGCATGTG 247247 AGCAGTGGTGCGCTCAATTTAGCAGTGGTGCGCTCAATTT 248248

실시예Example 2-2:  2-2: 남평벼Nam Pyung  And 동진AD의Dongjin AD 교배 후대 집단의  Mating 키다리병Kidari bottle 저항성 검정 결과 및, 이를 기반으로 한 키다리병 저항성 관련 QTL 맵핑 The results of the resistance test and QTL mapping related to the resistance to the secondary resistance based on this result

키다리병 저항성 관련 QTL 맵핑을 위해, 우선적으로 키다리병균 감염에 따른 남평벼 및 동진AD의 교배 후대 F2 집단의 고사율을 측정하였다. 구체적으로, 남평벼 및 동진AD의 교배 후대 F2 집단 235 개체들에 대하여 각 개체에서 수확한 F3 종자 20개를 MS 배지에 심은 후 키다리병균을 감염시키고, 기내검정을 실시하여 F2 계통의 고사율을 측정하였다. For the QTL mapping related to the resistance to Kidney disease, the mortality rate of the F2 group of the mating hybrid group of Nampyeong and Dongjin AD was determined by preference to Kidari disease. Specifically, 20 F3 seeds harvested from each individual were seeded on MS medium for 235 individuals in the F2 group of the succeeding matings of Nambwa and Dongjin AD, and then infected with the Kidari germs and subjected to in vitro tests to determine the fatal rate of the F2 strain Respectively.

남평벼 및 동진AD의 교배 후대 F2 집단의 벼 키다리병 저항성 정도에 대한 기내검정 결과, 하기 도 6에 나타난 바와 같이, 0 내지 10%의 고사율을 나타내는 F2 계통들의 수가 많았으며, 대다수 F2 계통들은 50% 이하의 고사율을 나타내는 것으로 측정되었다. 이로써, 남평벼 및 동진AD의 교배 후대 집단이 키다리병에 대한 저항성이 높음을 알 수 있었다.As shown in FIG. 6, the number of F2 lines showing a high rate of 0-10% was high, and the majority of F2 lineages were 50 %. ≪ / RTI > As a result, it was found that the mating group of Myeongpyeong and Dongjin AD had a high resistance to Kidari disease.

상기 남평벼 및 동진AD 교배 후대 F2 집단의 키다리병 반응데이터 및 상기 실시예 2-1에서 도출한 CAPS 마커를 토대로 작성한 유전지도를 이용하여 벼 키다리병 저항성 QTL 맵핑을 수행하였다. 그 결과, 하기 도 7에 나타난 바와 같이, 1번 염색체 70.7 cM 부위에서 벼 키다리병 저항성 주동 QTL(major quantitative trait loci)이 탐색되었다.The QTL mapping of rice hind pod resistance was performed using the genetic maps generated based on the Kindergarten reaction data of the F2 group of the next generation of the Mt. Pyeong and the Dongjin AD and the CAPS marker derived from the Example 2-1. As a result, as shown in FIG. 7, the major QTL (major quantitative trait loci) was detected in the 70.7 cM region of chromosome 1.

실시예Example 2-3:  2-3: 키다리병Kidari bottle 저항성 품종  Resistant varieties 선별마커Select marker 개발 Development

상기 실시예 2-2에서 탐색된 QTL 부위에서, 병저항성과 관련성이 있는 것으로 보고된 LRR(leucine rich repeat) 패밀리에 속하는 유전자 2종(Os01g0601625, Os01g0601675)을 남평벼 및 동진AD에서 각각 분리하여 염기서열을 분석하였다(도 8). 이를 토대로, 상기 LRR 유전자 2종에서 발견된 동진AD와 남평벼간 InDel(Insertion/Deletion) 부위에서 InDel 마커 2종(1625IND, 1675IND)을 개발하였다(표 4). Two genes (Os01g0601625, Os01g0601675) belonging to the family of LRR (leucine rich repeat) reported to be related to disease resistance were isolated from the QTL region discovered in Example 2-2, (Fig. 8). Based on this, two kinds of InDel markers (1625IND, 1675IND) were developed in the InDel (Insertion / Deletion) region between Dongjin AD and Nampyeong rice, which were found in the two LRR genes (Table 4).

상기 동진AD와 남평벼간 InDel(Insertion/Deletion) 부위로부터 발굴한 신규 InDel 마커, 1625IND 및 1675IND 2종을 키다리병 저항성 벼 품종 선발마커로 유용하게 사용할 수 있음을 확인하기 위하여, 국내 벼 자포니카 품종 26품종의 벼의 잎에서 추출된 게놈 DNA를 주형으로 하고, 상기 신규 InDel 마커 2종을 이용하여 PCR을 수행하였다. 이때 PCR은 PCR 증폭 조건으로 94℃에서 3분간 가열한 다음, 94℃에서 40초, 62℃에서 40초, 72℃에서 100초 가열하는 단계로 구성된 일련의 과정을 총 35회(cycle) 반복한 후, 이를 72℃에서 5분간 더 가열하는 조건으로 진행하였다. PCR 반응이 끝난 후 증폭된 PCR 산물은 전기영동 장치를 이용하여 1% 아가로즈 겔 상에 전개한 후 UV 하에서 전개된 반응 산물의 밴드를 확인하였다.In order to confirm that the new InDel marker, 1625IND and 1675IND, which were excavated from the InDel (Insertion / Deletion) site between the above-mentioned Dongjin AD and Nampyeong Rice, could be useful as a selection marker for the resistance to rice seedlings, 26 varieties of domestic rice Japonica PCR was carried out using the genomic DNA extracted from the leaves of rice leaves as a template and using the two new InDel markers. At this time, the PCR was repeated for 35 cycles in total under the conditions of PCR amplification at 94 ° C for 3 minutes, followed by heating at 94 ° C for 40 seconds, 62 ° C for 40 seconds, and 72 ° C for 100 seconds After that, it was further heated at 72 캜 for 5 minutes. After the PCR reaction, the amplified PCR products were developed on a 1% agarose gel using an electrophoresis apparatus and the band of the reaction product developed under UV was confirmed.

국내 벼 자포니카 품종 27품종(동진벼, 동진AD, 남평벼, 화영벼, 주남벼, 호품벼, 안미벼, 일미벼, 하이아미, 삼광벼, 운광벼, 설향찰벼, 칠보벼, 새누리벼, 오대벼, 조운, 동안벼, 금오벼, 화성벼, 낙동벼, 기호벼, 팔달벼, 진흥벼, 조동지, 다마금, 중생은방주, 주지도)의 유전자형을 분석한 결과, 키다리병 저항성 품종으로 알려져 있는 남평벼 및 새누리벼를 제외한, 키다리병 감수성 품종인 나머지 25종의 모든 벼 품종들은 남평벼 및 새누리벼와는 다른 크기의 전기영동 밴드를 나타내었다(도 9).This study was carried out to investigate the effect of rice cultivar on the growth of rice varieties of Japonica japonica (27 varieties) (Dongjinbyeon, Dongjin AD, Nambyeongbyeon, Hwajeongbyeon, Juanbyeon, Hapyeongbyeon, Anmyeongbyeon, The genotypes of Kumari rice, Hwasungbyeon, Nakdongbyeon, Sinjungbyeon, Paddalbyeon, Chinheungbyeong, Chojungbyeon, Tamagumi, All of the remaining 25 species of susceptible rice varieties showed electrophoretic bands of different size from those of Nambung and Sawnori rice (Fig. 9).

따라서 상기 결과를 통해, 동진AD와 남평벼간 InDel(Insertion/Deletion) 부위로부터 신규 발굴한 InDel 마커, 즉, 1625IND 및 1675IND 2종은 키다리병 저항성 벼 품종 선발마커로 유용하게 사용할 수 있음을 알 수 있었다.Therefore, it was found from the above results that the InDel markers newly discovered from the InDel (Insertion / Deletion) region between the Dongjin AD and the Nampyeong Rice, that is, the two 1625IND and 1675IND markers, .

본 발명의 키다리병 저항성 벼 품종 선별용 InDel(Insertion/Deletion) 마커 프라이머 서열InDel (Insertion / Deletion) marker primer sequence for selection of rice blight-resistant rice varieties of the present invention 마커명Marker name
(Marker name)(Marker name)
정방향 프라이머Forward primer
(Forward primer)(Forward primer)
서열번호SEQ ID NO: 역방향 프라이머Reverse primer
(Reverse primer)(Reverse primer)
서열번호SEQ ID NO:
1625IND1625IND AAACAAGTTGGTTGGCGAGCTACAAACAAGTTGGTTGGCGAGCTAC 249249 AGATTACGCCTTGGAACCTGTTAAGATTACGCCTTGGAACCTGTTA 250250 1675IND1675IND TTTCTACTAAGTCACGTAGCATGCTCCTTTCTACTAAGTCACGTAGCATGCTCC 251251 ATGTTCGTCGTATGCATAGCCAAACATGTTCGTCGTATGCATAGCCAAAC 252252

<110> Republic of Korea <120> Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker <130> P16R12D1610 <160> 252 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010055_F <400> 1 aggaaatcca tctggaccaa 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010055_R <400> 2 tatgcaacct cgatgagcaa 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010084_F <400> 3 gcgtctctaa cgatgccttc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010084_R <400> 4 gtggtcatgg atgacgagtg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010086_F <400> 5 ctgcaacacg ggtattcaga 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010086_R <400> 6 tcagcgatgt tcatcaggag 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNS01057_F <400> 7 gtagggcttg ggatcggttc 20 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNS01057_R <400> 8 tgtggcggat ttctagaagg a 21 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010139_F <400> 9 ttctttcttc cccacacaca 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010139_R <400> 10 ctgatgacgc tacagccaaa 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNS01030_F <400> 11 aatggcgagc tcaactccaa 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNS01030_R <400> 12 tgcaccacct gtaccaggaa 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010565_F <400> 13 tgcatttcca gccctttaac 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010565_R <400> 14 tggaagactt gggaatccat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010809_F <400> 15 ccacatcatc acccctcttt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010809_R <400> 16 ttcctaacaa cgtcgctcct 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011008_F <400> 17 tcttggcctt ctttgaaacg 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011008_R <400> 18 cggcgactag tacaccaacg 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011512_F <400> 19 cagctgttag gtgcgttgtg 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011512_R <400> 20 tggaatgtcg caaaactacg 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011753_F <400> 21 gcatatggtc attggtcgat 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011753_R <400> 22 gccatttcga tagccatgtt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011767_F <400> 23 accgtctgtc tgttgcgtta 20 <210> 24 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> JNC011767_R <400> 24 ctgcatggtt tcacatggac suncdscrpt ion 33 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011804_F <400> 25 gagcaaaagg gtaggtgctg 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011804_R <400> 26 ccgttgaccc tgtggaatag 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011850_F <400> 27 atgcgcattt gttgtgtcat 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011850_R <400> 28 gaatcgagtt gccctagctg 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011887_F <400> 29 tcgatttggt catttggtga 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011887_R <400> 30 cttccggttt gtgcgtactt 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020021_F <400> 31 cccattaagc atttgccttt 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020021_R <400> 32 tgcggaatat gttgcctaga 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020047_F <400> 33 gttgccgtca aggtgctatc 20 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC020047_R <400> 34 ttgccttagc ttttccactg a 21 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020052_F <400> 35 ctcctttccg ttgacagctc 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020052_R <400> 36 tgccttgtca gacgattgaa 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020058_F <400> 37 atccggcact tatgtgtggt 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020058_R <400> 38 ggagaaaagt ccggtttggt 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020069_F <400> 39 tgtgttgaaa tggggattca 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020069_R <400> 40 gcgaggtttc tcgtaagtgc 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020149_F <400> 41 ggggatgttc cctcgtttac 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020149_R <400> 42 ccgagaagag caggtacgtc 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020176_F <400> 43 ggtgatatgc ctcaacgaca 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020176_R <400> 44 aggctcacct tctgcacagt 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020186_F <400> 45 cgcgttggtc ccactattat 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020186_R <400> 46 gggctacaca agctgcctta 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030012_F <400> 47 tcttactccc tcgctcatgg 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030012_R <400> 48 aacagcagcc acaaagaaca 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030028_F <400> 49 catcaaagct gctcgattca 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030028_R <400> 50 atagtatgct ccccgggttt 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030131_F <400> 51 aaggcaaaga gtgccacaac 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030131_R <400> 52 caccctagca gaggatctcg 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030134_F <400> 53 catgagccac ctcctttgat 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030134_R <400> 54 tacattgtat gccgcatggt 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030270_F <400> 55 agaccgtttg ctgttgctct 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030270_R <400> 56 tcgtcgagag gaagaagacc 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030275_F <400> 57 ctcagccagt ccaacaaggt 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030275_R <400> 58 cccaacaacg accagaccta 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030408_F <400> 59 cccggacatt gaacttgact 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030408_R <400> 60 agtggttttc cccaacagtg 20 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030411_F <400> 61 cccatcaccg gtacacttct 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030411_R <400> 62 ggttgaacgc tccttcagtt 20 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030606_F <400> 63 cgcacactag ggagagagga 20 <210> 64 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC030606_R <400> 64 gaatgagttt tgtcgcctac g 21 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040003_F <400> 65 tagatcgcgt caagggctac 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040003_R <400> 66 atttaaaggc gctttggatg 20 <210> 67 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040055_F <400> 67 caggattcgc cagtacatca 20 <210> 68 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040055_R <400> 68 atgagcattg ttggtgcaaa 20 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040202_F <400> 69 gtctgggaca taccgctgtt 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040202_R <400> 70 gagctcagga agatccacga 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040270_F <400> 71 tgttgtcccc cgagtaactt 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040270_R <400> 72 cacaagcatt ggttgatggt 20 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040277_F <400> 73 catccatgtt gcatggctaa 20 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040277_R <400> 74 cctttcccag tcacctttca 20 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040334_F <400> 75 tgagacggcg actgatagtg 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040334_R <400> 76 aaatgcgaga cgcatctttt 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050091_F <400> 77 aagggatatg tgcctcttgg 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050091_R <400> 78 accaatcctt ttccctgctt 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050127_F <400> 79 cgtgaaaccc acatgtcaac 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050127_R <400> 80 ggagggagga ggagaacaag 20 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050148_F <400> 81 gcggtggggt agtttcttct 20 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050148_R <400> 82 caacacgacg cactaagcat 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050159_F <400> 83 gtgcgtttgg taggagcatt 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050159_R <400> 84 attctccagc atcccacatt 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050166_F <400> 85 tgggcttctt tgggactaga 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050166_R <400> 86 ggataaacat gccgggtttt 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050174_F <400> 87 gtagggcatg agcgatgttt 20 <210> 88 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC050174_R <400> 88 tgcgtggaac attaaatatg ga 22 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050178_F <400> 89 tcacgcgaga gacttccata 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050178_R <400> 90 ggggatgttc acttgtgagg 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050194_F <400> 91 ccgaataagc ctgaagttgg 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050194_R <400> 92 cctcccaaaa gttggaatca 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050197_F <400> 93 gcagtggaga gaagggtgac 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050197_R <400> 94 gggaggaggc aagaagtagg 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050199_F <400> 95 tgcgcaagat tattccagtg 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050199_R <400> 96 atgtcacacc ccaatctggt 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060015_F <400> 97 tcgatttggt ggaaacttga 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060015_R <400> 98 catgcttggg tgatgaaaaa 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060019_F <400> 99 tgaagctagg gggaagaaca 20 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060019_R <400> 100 aggagggcca ctggaagtat 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060286_F <400> 101 taggatcgct tgatccgaac 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060286_R <400> 102 aagacatgca agaggcaacc 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060295_F <400> 103 aatggagcgc gctaaagtaa 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060295_R <400> 104 ttggaagtct accggtttcc 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060434_F <400> 105 ttggcttctg ctatcccagt 20 <210> 106 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC060434_R <400> 106 gcaagtgaat aaacccctgc t 21 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060623_F <400> 107 ggctttggtc aaacctcatt 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060623_R <400> 108 ccaagccaaa gattccacat 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC062136_F <400> 109 gatcgaagct gaaccaccat 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC062136_R <400> 110 tagcgggtga ttgagagtcc 20 <210> 111 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> JNC064053_F <400> 111 caagattcaa aacaacacgt tca 23 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064053_R <400> 112 gaaagttttc gcacggactg 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064080_F <400> 113 gtggagttgc attgctcaga 20 <210> 114 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC064080_R <400> 114 aacttcccgt gtgttctgtg t 21 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064090_F <400> 115 aggagtattg gcccatgtga 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064090_R <400> 116 ggtggtggtg ggattaaatg 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070004_F <400> 117 tggtgtagag cattgccttg 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070004_R <400> 118 cgtccacaca cagggatttt 20 <210> 119 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070005_F <400> 119 ttcaacgggt gggatgtatt 20 <210> 120 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070005_R <400> 120 atgggtgtgt caccctgtct 20 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070013_F <400> 121 cctaaatgag ccgtgcctaa 20 <210> 122 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070013_R <400> 122 tcatgtcttg ccatttttgc 20 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070112_F <400> 123 atcgtcgagt tttccgtcaa 20 <210> 124 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070112_R <400> 124 tccaccagta catgcgaaga 20 <210> 125 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070134_F <400> 125 cgatggtttc atgctcacaa 20 <210> 126 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC070134_R <400> 126 gcagcagtgg ctcctgtag 19 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070337_F <400> 127 cacgtcgatc cggttagtct 20 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070337_R <400> 128 tcgtgcgaca gaggaatcta 20 <210> 129 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070424_F <400> 129 atcgctgcat ttaccgagtc 20 <210> 130 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070424_R <400> 130 gcagcagtga tgaagtccaa 20 <210> 131 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070431_F <400> 131 gaacgtgctg ttctccgagt 20 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070431_R <400> 132 ctggttgttt tgacgacgtt 20 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070437_F <400> 133 agactgggca ccttgtatcg 20 <210> 134 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070437_R <400> 134 tgggacaaac tatgcagtcg 20 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070474_F <400> 135 gctgctgctt ctcttttcca 20 <210> 136 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070474_R <400> 136 gcgaaatttg gatgggatta 20 <210> 137 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080171_F <400> 137 tgacgcttac gtggcagttt 20 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080171_R <400> 138 gtacacgggg tgcggttatc 20 <210> 139 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080409_F <400> 139 tgcacacgac cactggagta 20 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080409_R <400> 140 ccctaacacg gttcatgtgc 20 <210> 141 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC080486_F <400> 141 cgaagacgaa gacggtgact t 21 <210> 142 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080486_R <400> 142 gcctcctccg gctaatcttt 20 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080498_F <400> 143 gcgactgacg aagtgacgag 20 <210> 144 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080498_R <400> 144 tgtggaggga accggtaact 20 <210> 145 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080501_F <400> 145 ccgtgggtac aaatcatgga 20 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080501_R <400> 146 agtgcacgga acccactaca 20 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080505_F <400> 147 atccgagcca tggaaaaatg 20 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080505_R <400> 148 acctgccgag atgtttgagg 20 <210> 149 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080506_F <400> 149 aatccgcatg gaattcggta 20 <210> 150 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080506_R <400> 150 ggcgatagtg aggtcggttc 20 <210> 151 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090001_F <400> 151 cacagtgggc aaggtcagat 20 <210> 152 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090001_R <400> 152 atagcctttt gggcgtgttg 20 <210> 153 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090015_F <400> 153 tgggtcgtcg acgtatcgta 20 <210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090015_R <400> 154 aagatgagga cgtggcatcc 20 <210> 155 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC090019_F <400> 155 tggagattgc cttctgacaa ga 22 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090019_R <400> 156 caacggtgta atcggattgt 20 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090024_F <400> 157 gggtgggtcg atgataagga 20 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090024_R <400> 158 ttgcgagctg cttgtttagc 20 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090029_F <400> 159 cctcggcaaa aagaaacgac 20 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090029_R <400> 160 agcctgttct gcaggacctc 20 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090043_F <400> 161 gaggaagctt cggtttgctg 20 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090043_R <400> 162 tcgtccatat cctgcctgtg 20 <210> 163 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090046_F <400> 163 aggacccatt acgctgatgc 20 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090046_R <400> 164 acggccattt caattcccta 20 <210> 165 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090053_F <400> 165 cgacaccctc accttcacaa 20 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090053_R <400> 166 tggctgagtg cgtcatgtaa 20 <210> 167 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090060_F <400> 167 cggagctaag gcctgatttg 20 <210> 168 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090060_R <400> 168 cgagtttttg cggcttttta 20 <210> 169 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC100027_F <400> 169 tgtggaagaa tggagagtca cg 22 <210> 170 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100027_R <400> 170 tgtgtgtttg gcctttggtc 20 <210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100057_F <400> 171 cgagctcctc gacccatcta 20 <210> 172 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100057_R <400> 172 agttccggtc cgctttgatt 20 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100137_F <400> 173 ccatccctgc caattctgag 20 <210> 174 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100137_R <400> 174 atccccaacg tgatcttcca 20 <210> 175 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC100164_F <400> 175 tggcaatttt cccctatttc g 21 <210> 176 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC100164_R <400> 176 tgagacggag ggagtaacat gc 22 <210> 177 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100175_F <400> 177 cagcgagaaa tgcccagaag 20 <210> 178 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC100175_R <400> 178 tgccacgtca gcaaaactag g 21 <210> 179 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100202_F <400> 179 cgcccattga tccagtgaac 20 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100202_R <400> 180 ttgattccac atggctgctc 20 <210> 181 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100206_F <400> 181 ccagaagctg gtgcagcaat 20 <210> 182 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100206_R <400> 182 tggttttcaa gggccacaat 20 <210> 183 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC110013_F <400> 183 cacggcggtg aacagacat 19 <210> 184 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110013_R <400> 184 tacgggcttg gttcggtatg 20 <210> 185 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110050_F <400> 185 tggcaatggc aatcaatgtg 20 <210> 186 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110050_R <400> 186 tgggttgttg gtgtgtccat 20 <210> 187 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110432_F <400> 187 ctcctgccat tctgccactg 20 <210> 188 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110432_R <400> 188 tggcagcagc aatgagttct 20 <210> 189 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC111059_F <400> 189 cgatgagcca atagtcggtt tc 22 <210> 190 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111059_R <400> 190 ccttctctga ccgtgctcct 20 <210> 191 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111269_F <400> 191 tcgcctctca ccgtatcgtt 20 <210> 192 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111269_R <400> 192 aggggcagta aagccaggag 20 <210> 193 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111346_F <400> 193 ggccatccac atggagtacg 20 <210> 194 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111346_R <400> 194 acagcaccct ggtggttgat 20 <210> 195 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111531_F <400> 195 agccgtacgt ccaatggaga 20 <210> 196 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC111531_R <400> 196 tcgattcgta ttcgctccgt a 21 <210> 197 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111652_F <400> 197 aaggcggtca aaagctcgtt 20 <210> 198 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111652_R <400> 198 cccttcctcc tccccttctt 20 <210> 199 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111851_F <400> 199 cccgagtgag aagcactcca 20 <210> 200 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111851_R <400> 200 gctcaaggtc cccctcagtt 20 <210> 201 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC112037_F <400> 201 tgtttcctca ctttggctct cc 22 <210> 202 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC112037_R <400> 202 ccaggttgga aaggttggtt t 21 <210> 203 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112157_F <400> 203 cacatgcatg caacgagaca 20 <210> 204 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112157_R <400> 204 tgctttttga aagggggaga 20 <210> 205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112511_F <400> 205 tgcacgacca atgtcggata 20 <210> 206 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112511_R <400> 206 cgcaaggcgt agcttcagac 20 <210> 207 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112653_F <400> 207 tcgaaggaag tcgacagcaa 20 <210> 208 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112653_R <400> 208 acagaagcag tggcccatgt 20 <210> 209 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112736_F <400> 209 accaggaaac tgcgagacga 20 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112736_R <400> 210 gacctcgcag ctgatgtgtg 20 <210> 211 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112853_F <400> 211 tcatatggag gccgttcgtt 20 <210> 212 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112853_R <400> 212 gcgtgtttga tcgaggcttt 20 <210> 213 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> JNC112884_F <400> 213 cggcttggag agcccttatt suncdscrpt ion 33 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112884_R <400> 214 cgcaggggaa caccactatc 20 <210> 215 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113082_F <400> 215 cagccggatc agaaccagac 20 <210> 216 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113082_R <400> 216 tcggctaccg agcttgaatc 20 <210> 217 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113160_F <400> 217 gcctgatgaa ccgttggtgt 20 <210> 218 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113160_R <400> 218 tggggaattc atggaaggaa 20 <210> 219 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113212_F <400> 219 tctcctgccc aagaaccaga 20 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113212_R <400> 220 gggacgaaca cgctcttgaa 20 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120005_F <400> 221 acctggaagc cggtgatctt 20 <210> 222 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120005_R <400> 222 gtgaggcttt gggacaccac 20 <210> 223 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120091_F <400> 223 tgcaggagga ggaagctaag g 21 <210> 224 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120091_R <400> 224 cgcaaatatt ggccgcttta 20 <210> 225 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120123_F <400> 225 gcgcgtacta tttcggttgg 20 <210> 226 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120123_R <400> 226 agcacatttg gtgggtgtga 20 <210> 227 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120149_F <400> 227 cctggcatct agttccacct g 21 <210> 228 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120149_R <400> 228 tgatgttgac aaaggggttg g 21 <210> 229 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120161_F <400> 229 tacggtcagc caccgagttt 20 <210> 230 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120161_R <400> 230 gcctgcaccg tcaacgtat 19 <210> 231 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120176_F <400> 231 ggtcatttgc ccttccacaa 20 <210> 232 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120176_R <400> 232 ttgtgccgcc taatcaaagc 20 <210> 233 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120219_F <400> 233 cccaccgctc catattggt 19 <210> 234 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120219_R <400> 234 ggagaacatg gcatcgatca 20 <210> 235 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120491_F <400> 235 gtgttgcgct gttgttgctc 20 <210> 236 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120491_R <400> 236 gcacaccgcc aaccaacta 19 <210> 237 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120546_F <400> 237 cttccatggc tgaccagctt 20 <210> 238 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120546_R <400> 238 ttcaaaccca ggtcggagaa 20 <210> 239 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120785_F <400> 239 agatggcact ttggggttga 20 <210> 240 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120785_R <400> 240 cggtcaaatg gcaaatcctg 20 <210> 241 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120803_F <400> 241 cgtcatacca ccctgcaca 19 <210> 242 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120803_R <400> 242 ttggttgcat ggtttcttgg 20 <210> 243 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120907_F <400> 243 tcagcgaata ccaccgtcaa 20 <210> 244 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120907_R <400> 244 cgtgctcttg tccaaaacga 20 <210> 245 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC120937_F <400> 245 tgatgcctga agtagcttgt gc 22 <210> 246 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120937_R <400> 246 tgcaacaatt gaagccttgc t 21 <210> 247 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC121053_F <400> 247 gatggacatt tgggcatgtg 20 <210> 248 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC121053_R <400> 248 agcagtggtg cgctcaattt 20 <210> 249 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 1625IND_F <400> 249 aaacaagttg gttggcgagc tac 23 <210> 250 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 1625IND_R <400> 250 agattacgcc ttggaacctg tta 23 <210> 251 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 1675IND_F <400> 251 tttctactaa gtcacgtagc atgctcc 27 <210> 252 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 1675IND_R <400> 252 atgttcgtcg tatgcatagc caaac 25 <110> Republic of Korea <120> Composition of DNA marker derived from Nampyeongbyeo for          selecting rice variety resistant to bakanae disease and method of          selecting rice variety resistant to bakanae disease using the DNA          marker <130> P16R12D1610 <160> 252 <170> KoPatentin 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010055_F <400> 1 aggaaatcca tctggaccaa 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010055_R <400> 2 tatgcaacct cgatgagcaa 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010084_F <400> 3 gcgtctctaa cgatgccttc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010084_R <400> 4 gtggtcatgg atgacgagtg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010086_F <400> 5 ctgcaacacg ggtattcaga 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010086_R <400> 6 tcagcgatgt tcatcaggag 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNS01057_F <400> 7 gtagggcttg ggatcggttc 20 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNS01057_R <400> 8 tgtggcggat ttctagaagg a 21 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010139_F <400> 9 ttctttcttc cccacacaca 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010139_R <400> 10 ctgatgacgc tacagccaaa 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNS01030_F <400> 11 aatggcgagc tcaactccaa 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNS01030_R <400> 12 tgcaccacct gtaccaggaa 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010565_F <400> 13 tgcatttcca gccctttaac 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010565_R <400> 14 tggaagactt gggaatccat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010809_F <400> 15 ccacatcatc acccctcttt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC010809_R <400> 16 ttcctaacaa cgtcgctcct 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011008_F <400> 17 tcttggcctt ctttgaaacg 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011008_R <400> 18 cggcgactag tacaccaacg 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011512_F <400> 19 cagctgttag gtgcgttgtg 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011512_R <400> 20 tggaatgtcg caaaactacg 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011753_F <400> 21 gcatatggtc attggtcgat 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011753_R <400> 22 gccatttcga tagccatgtt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011767_F <400> 23 accgtctgtc tgttgcgtta 20 <210> 24 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> JNC011767_R <400> 24 ctgcatggtt tcacatggac suncdscrpt ion 33 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011804_F <400> 25 gagcaaaagg gtaggtgctg 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011804_R <400> 26 ccgttgaccc tgtggaatag 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011850_F <400> 27 atgcgcattt gttgtgtcat 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011850_R <400> 28 gaatcgagtt gccctagctg 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011887_F <400> 29 tcgatttggt catttggtga 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC011887_R <400> 30 cttccggttt gtgcgtactt 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020021_F <400> 31 cccattaagc atttgccttt 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020021_R <400> 32 tgcggaatat gttgcctaga 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020047_F <400> 33 gttgccgtca aggtgctatc 20 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC020047_R <400> 34 ttgccttagc ttttccactg a 21 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020052_F <400> 35 ctcctttccg ttgacagctc 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020052_R <400> 36 tgccttgtca gacgattgaa 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020058_F <400> 37 atccggcact tatgtgtggt 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020058_R <400> 38 ggagaaaagt ccggtttggt 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020069_F <400> 39 tgtgttgaaa tggggattca 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020069_R <400> 40 gcgaggtttc tcgtaagtgc 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020149_F <400> 41 ggggatgttc cctcgtttac 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020149_R <400> 42 ccgagaagag caggtacgtc 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020176_F <400> 43 ggtgatatgc ctcaacgaca 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020176_R <400> 44 aggctcacct tctgcacagt 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020186_F <400> 45 cgcgttggtc ccactattat 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC020186_R <400> 46 gggctacaca agctgcctta 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030012_F <400> 47 tcttactccc tcgctcatgg 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030012_R <400> 48 aacagcagcc acaaagaaca 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030028_F <400> 49 catcaaagct gctcgattca 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030028_R <400> 50 atagtatgct ccccgggttt 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030131_F <400> 51 aaggcaaaga gtgccacaac 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030131_R <400> 52 caccctagca gaggatctcg 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030134_F <400> 53 catgagccac ctcctttgat 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030134_R <400> 54 tacattgtat gccgcatggt 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030270_F <400> 55 agaccgtttg ctgttgctct 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030270_R <400> 56 tcgtcgagag gaagaagacc 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030275_F <400> 57 ctcagccagt ccaacaaggt 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030275_R <400> 58 cccaacaacg accagaccta 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030408_F <400> 59 cccggacatt gaacttgact 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030408_R <400> 60 agtggttttc cccaacagtg 20 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030411_F <400> 61 cccatcaccg gtacacttct 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030411_R <400> 62 ggttgaacgc tccttcagtt 20 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC030606_F <400> 63 cgcacactag ggagagagga 20 <210> 64 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC030606_R <400> 64 gaatgagttt tgtcgcctac g 21 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040003_F <400> 65 tagatcgcgt caagggctac 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040003_R <400> 66 atttaaaggc gctttggatg 20 <210> 67 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040055_F <400> 67 caggattcgc cagtacatca 20 <210> 68 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040055_R <400> 68 atgagcattg ttggtgcaaa 20 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040202_F <400> 69 gtctgggaca taccgctgtt 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040202_R <400> 70 gagctcagga agatccacga 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040270_F <400> 71 tgttgtcccc cgagtaactt 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040270_R <400> 72 cacaagcatt ggttgatggt 20 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040277_F <400> 73 catccatgtt gcatggctaa 20 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040277_R <400> 74 cctttcccag tcacctttca 20 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040334_F <400> 75 tgagacggcg actgatagtg 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC040334_R <400> 76 aaatgcgaga cgcatctttt 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050091_F <400> 77 aagggatatg tgcctcttgg 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050091_R <400> 78 accaatcctt ttccctgctt 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050127_F <400> 79 cgtgaaaccc acatgtcaac 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050127_R <400> 80 ggagggagga ggagaacaag 20 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050148_F <400> 81 gcggtggggt agtttcttct 20 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050148_R <400> 82 caacacgacg cactaagcat 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050159_F <400> 83 gtgcgtttgg taggagcatt 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050159_R <400> 84 attctccagc atcccacatt 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050166_F <400> 85 tgggcttctt tgggactaga 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050166_R <400> 86 ggataaacat gccgggtttt 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050174_F <400> 87 gtagggcatg agcgatgttt 20 <210> 88 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC050174_R <400> 88 tgcgtggaac attaaatatg ga 22 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050178_F <400> 89 tcacgcgaga gacttccata 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050178_R <400> 90 ggggatgttc acttgtgagg 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050194_F <400> 91 ccgaataagc ctgaagttgg 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050194_R <400> 92 cctcccaaaa gttggaatca 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050197_F <400> 93 gcagtggaga gaagggtgac 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050197_R <400> 94 gggaggaggc aagaagtagg 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050199_F <400> 95 tgcgcaagat tattccagtg 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC050199_R <400> 96 atgtcacacc ccaatctggt 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060015_F <400> 97 tcgatttggt ggaaacttga 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060015_R <400> 98 catgcttggg tgatgaaaaa 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060019_F <400> 99 tgaagctagg gggaagaaca 20 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060019_R <400> 100 aggagggcca ctggaagtat 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060286_F <400> 101 taggatcgct tgatccgaac 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060286_R <400> 102 aagacatgca agaggcaacc 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060295_F <400> 103 aatggagcgc gctaaagtaa 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060295_R <400> 104 ttggaagtct accggtttcc 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060434_F <400> 105 ttggcttctg ctatcccagt 20 <210> 106 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC060434_R <400> 106 gcaagtgaat aaacccctgc t 21 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060623_F <400> 107 ggctttggtc aaacctcatt 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC060623_R <400> 108 ccaagccaaa gattccacat 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC062136_F <400> 109 gatcgaagct gaaccaccat 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC062136_R <400> 110 tagcgggtga ttgagagtcc 20 <210> 111 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> JNC064053_F <400> 111 caagattcaa aacaacacgt tca 23 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064053_R <400> 112 gaaagttttc gcacggactg 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064080_F <400> 113 gtggagttgc attgctcaga 20 <210> 114 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC064080_R <400> 114 aacttcccgt gtgttctgtg t 21 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064090_F <400> 115 aggagtattg gcccatgtga 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC064090_R <400> 116 ggtggtggtg ggattaaatg 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070004_F <400> 117 tggtgtagag cattgccttg 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070004_R <400> 118 cgtccacaca cagggatttt 20 <210> 119 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070005_F <400> 119 ttcaacgggt gggatgtatt 20 <210> 120 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070005_R <400> 120 atgggtgtgt caccctgtct 20 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070013_F <400> 121 cctaaatgag ccgtgcctaa 20 <210> 122 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070013_R <400> 122 tcatgtcttg ccatttttgc 20 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070112_F <400> 123 atcgtcgagt tttccgtcaa 20 <210> 124 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070112_R <400> 124 tccaccagta catgcgaaga 20 <210> 125 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070134_F <400> 125 cgatggtttc atgctcacaa 20 <210> 126 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC070134_R <400> 126 gcagcagtgg ctcctgtag 19 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070337_F <400> 127 cacgtcgatc cggttagtct 20 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070337_R <400> 128 tcgtgcgaca gaggaatcta 20 <210> 129 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070424_F <400> 129 atcgctgcat ttaccgagtc 20 <210> 130 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070424_R <400> 130 gcagcagtga tgaagtccaa 20 <210> 131 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070431_F <400> 131 gaacgtgctg ttctccgagt 20 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070431_R <400> 132 ctggttgttt tgacgacgtt 20 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070437_F <400> 133 agactgggca ccttgtatcg 20 <210> 134 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070437_R <400> 134 tgggacaaac tatgcagtcg 20 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070474_F <400> 135 gctgctgctt ctcttttcca 20 <210> 136 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC070474_R <400> 136 gcgaaatttg gatgggatta 20 <210> 137 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080171_F <400> 137 tgacgcttac gtggcagttt 20 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080171_R <400> 138 gtacacgggg tgcggttatc 20 <210> 139 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080409_F <400> 139 tgcacacgac cactggagta 20 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080409_R <400> 140 ccctaacacg gttcatgtgc 20 <210> 141 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC080486_F <400> 141 cgaagacgaa gacggtgact t 21 <210> 142 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080486_R <400> 142 gcctcctccg gctaatcttt 20 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080498_F <400> 143 gcgactgacg aagtgacgag 20 <210> 144 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080498_R <400> 144 tgtggaggga accggtaact 20 <210> 145 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080501_F <400> 145 ccgtgggtac aaatcatgga 20 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080501_R <400> 146 agtgcacgga acccactaca 20 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080505_F <400> 147 atccgagcca tggaaaaatg 20 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080505_R <400> 148 acctgccgag atgtttgagg 20 <210> 149 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080506_F <400> 149 aatccgcatg gaattcggta 20 <210> 150 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC080506_R <400> 150 ggcgatagtg aggtcggttc 20 <210> 151 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090001_F <400> 151 cacagtgggc aaggtcagat 20 <210> 152 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090001_R <400> 152 atagcctttt gggcgtgttg 20 <210> 153 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090015_F <400> 153 tgggtcgtcg acgtatcgta 20 <210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090015_R <400> 154 aagatgagga cgtggcatcc 20 <210> 155 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC090019_F <400> 155 tggagattgc cttctgacaa ga 22 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090019_R <400> 156 caacggtgta atcggattgt 20 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090024_F <400> 157 gggtgggtcg atgataagga 20 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090024_R <400> 158 ttgcgagctg cttgtttagc 20 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090029_F <400> 159 cctcggcaaa aagaaacgac 20 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090029_R <400> 160 agcctgttct gcaggacctc 20 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090043_F <400> 161 gaggaagctt cggtttgctg 20 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090043_R <400> 162 tcgtccatat cctgcctgtg 20 <210> 163 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090046_F <400> 163 aggacccatt acgctgatgc 20 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090046_R <400> 164 acggccattt caattcccta 20 <210> 165 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090053_F <400> 165 cgacaccctc accttcacaa 20 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090053_R <400> 166 tggctgagtg cgtcatgtaa 20 <210> 167 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090060_F <400> 167 cggagctaag gcctgatttg 20 <210> 168 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC090060_R <400> 168 cgagtttttg cggcttttta 20 <210> 169 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC100027_F <400> 169 tgtggaagaa tggagagtca cg 22 <210> 170 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100027_R <400> 170 tgtgtgtttg gcctttggtc 20 <210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100057_F <400> 171 cgagctcctc gacccatcta 20 <210> 172 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100057_R <400> 172 agttccggtc cgctttgatt 20 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100137_F <400> 173 ccatccctgc caattctgag 20 <210> 174 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100137_R <400> 174 atccccaacg tgatcttcca 20 <210> 175 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC100164_F <400> 175 tggcaatttt cccctatttc g 21 <210> 176 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC100164_R <400> 176 tgagacggag ggagtaacat gc 22 <210> 177 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100175_F <400> 177 cagcgagaaa tgcccagaag 20 <210> 178 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC100175_R <400> 178 tgccacgtca gcaaaactag g 21 <210> 179 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100202_F <400> 179 cgcccattga tccagtgaac 20 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100202_R <400> 180 ttgattccac atggctgctc 20 <210> 181 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100206_F <400> 181 ccagaagctg gtgcagcaat 20 <210> 182 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC100206_R <400> 182 tggttttcaa gggccacaat 20 <210> 183 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC110013_F <400> 183 cacggcggtg aacagacat 19 <210> 184 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110013_R <400> 184 tacgggcttg gttcggtatg 20 <210> 185 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110050_F <400> 185 tggcaatggc aatcaatgtg 20 <210> 186 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110050_R <400> 186 tgggttgttg gtgtgtccat 20 <210> 187 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110432_F <400> 187 ctcctgccat tctgccactg 20 <210> 188 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC110432_R <400> 188 tggcagcagc aatgagttct 20 <210> 189 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC111059_F <400> 189 cgatgagcca atagtcggtt tc 22 <210> 190 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111059_R <400> 190 ccttctctga ccgtgctcct 20 <210> 191 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111269_F <400> 191 tcgcctctca ccgtatcgtt 20 <210> 192 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111269_R <400> 192 aggggcagta aagccaggag 20 <210> 193 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111346_F <400> 193 ggccatccac atggagtacg 20 <210> 194 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111346_R <400> 194 acagcaccct ggtggttgat 20 <210> 195 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111531_F <400> 195 agccgtacgt ccaatggaga 20 <210> 196 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC111531_R <400> 196 tcgattcgta ttcgctccgt a 21 <210> 197 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111652_F <400> 197 aaggcggtca aaagctcgtt 20 <210> 198 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111652_R <400> 198 cccttcctcc tccccttctt 20 <210> 199 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111851_F <400> 199 cccgagtgag aagcactcca 20 <210> 200 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC111851_R <400> 200 gctcaaggtc cccctcagtt 20 <210> 201 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC112037_F <400> 201 tgtttcctca ctttggctct cc 22 <210> 202 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC112037_R <400> 202 ccaggttgga aaggttggtt t 21 <210> 203 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112157_F <400> 203 cacatgcatg caacgagaca 20 <210> 204 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112157_R <400> 204 tgctttttga aagggggaga 20 <210> 205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112511_F <400> 205 tgcacgacca atgtcggata 20 <210> 206 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112511_R <400> 206 cgcaaggcgt agcttcagac 20 <210> 207 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112653_F <400> 207 tcgaaggaag tcgacagcaa 20 <210> 208 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112653_R <400> 208 acagaagcag tggcccatgt 20 <210> 209 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112736_F <400> 209 accaggaaac tgcgagacga 20 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112736_R <400> 210 gacctcgcag ctgatgtgtg 20 <210> 211 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112853_F <400> 211 tcatatggag gccgttcgtt 20 <210> 212 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112853_R <400> 212 gcgtgtttga tcgaggcttt 20 <210> 213 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> JNC112884_F <400> 213 cggcttggag agcccttatt suncdscrpt ion 33 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC112884_R <400> 214 cgcaggggaa caccactatc 20 <210> 215 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113082_F <400> 215 cagccggatc agaaccagac 20 <210> 216 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113082_R <400> 216 tcggctaccg agcttgaatc 20 <210> 217 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113160_F <400> 217 gcctgatgaa ccgttggtgt 20 <210> 218 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113160_R <400> 218 tggggaattc atggaaggaa 20 <210> 219 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113212_F <400> 219 tctcctgccc aagaaccaga 20 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC113212_R <400> 220 gggacgaaca cgctcttgaa 20 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120005_F <400> 221 acctggaagc cggtgatctt 20 <210> 222 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120005_R <400> 222 gtgaggcttt gggacaccac 20 <210> 223 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120091_F <400> 223 tgcaggagga ggaagctaag g 21 <210> 224 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120091_R <400> 224 cgcaaatatt ggccgcttta 20 <210> 225 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120123_F <400> 225 gcgcgtacta tttcggttgg 20 <210> 226 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120123_R <400> 226 agcacatttg gtgggtgtga 20 <210> 227 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120149_F <400> 227 cctggcatct agttccacct g 21 <210> 228 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120149_R <400> 228 tgatgttgac aaaggggttg g 21 <210> 229 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120161_F <400> 229 tacggtcagc caccgagttt 20 <210> 230 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120161_R <400> 230 gcctgcaccg tcaacgtat 19 <210> 231 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120176_F <400> 231 ggtcatttgc ccttccacaa 20 <210> 232 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120176_R <400> 232 ttgtgccgcc taatcaaagc 20 <210> 233 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120219_F <400> 233 cccaccgctc catattggt 19 <210> 234 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120219_R <400> 234 ggagaacatg gcatcgatca 20 <210> 235 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120491_F <400> 235 gtgttgcgct gttgttgctc 20 <210> 236 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120491_R <400> 236 gcacaccgcc aaccaacta 19 <210> 237 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120546_F <400> 237 cttccatggc tgaccagctt 20 <210> 238 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120546_R <400> 238 ttcaaaccca ggtcggagaa 20 <210> 239 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120785_F <400> 239 agatggcact ttggggttga 20 <210> 240 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120785_R <400> 240 cggtcaaatg gcaaatcctg 20 <210> 241 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> JNC120803_F <400> 241 cgtcatacca ccctgcaca 19 <210> 242 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120803_R <400> 242 ttggttgcat ggtttcttgg 20 <210> 243 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120907_F <400> 243 tcagcgaata ccaccgtcaa 20 <210> 244 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC120907_R <400> 244 cgtgctcttg tccaaaacga 20 <210> 245 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> JNC120937_F <400> 245 tgatgcctga agtagcttgt gc 22 <210> 246 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> JNC120937_R <400> 246 tgcaacaatt gaagccttgc t 21 <210> 247 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC121053_F <400> 247 gatggacatt tgggcatgtg 20 <210> 248 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> JNC121053_R <400> 248 agcagtggtg cgctcaattt 20 <210> 249 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 1625IND_F <400> 249 aaacaagttg gttggcgagc tac 23 <210> 250 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 1625IND_R <400> 250 agattacgcc ttggaacctg tta 23 <210> 251 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 1675IND_F <400> 251 tttctactaa gtcacgtagc atgctcc 27 <210> 252 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 1675IND_R <400> 252 atgttcgtcg tatgcatagc caaac 25

Claims (9)

서열번호 249 및 250으로 표시되는 프라이머 쌍을 포함하는, 키다리병 저항성 벼 품종 선별용 조성물.
A composition for screening a rice blast resistance-resistant rice variety comprising a pair of primers represented by SEQ ID NOs: 249 and 250.
(a) 벼 시료에서 게놈 DNA를 분리하는 단계;
(b) 상기 분리된 게놈 DNA를 주형으로 하고, 서열번호 249 및 250으로 표시되는 프라이머 쌍을 이용하여, 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및
(c) 상기 증폭 산물을 검출하는 단계를 포함하는, 키다리병 저항성 벼 품종 선별 방법.
(a) separating genomic DNA from a rice sample;
(b) amplifying the target sequence by performing amplification reaction using the separated genomic DNA as a template and using primer pairs represented by SEQ ID NOs: 249 and 250; And
(c) detecting the amplification product.
제2항에 있어서, 상기 시료는 벼의 종자, 뿌리, 잎, 줄기, 꽃 또는 이삭 조직으로부터 유래한 것인, 키다리병 저항성 벼 품종 선별 방법.
3. The method according to claim 2, wherein the sample is derived from rice seeds, roots, leaves, stems, flowers or ear tissue.
서열번호 249 및 250으로 표시되는 프라이머 쌍, 및 증폭 반응을 수행하기 위한 시약을 포함하는, 키다리병 저항성 벼 품종 선별 키트.
A pair of primers represented by SEQ ID NOS: 249 and 250, and a reagent for carrying out an amplification reaction.
제4항에 있어서, 상기 증폭 반응을 수행하기 위한 시약은 DNA 중합효소, dNTPs, 및 반응완충액을 포함하는 것인, 키다리병 저항성 벼 품종 선별 키트.
5. The kit of claim 4, wherein the reagent for carrying out the amplification reaction comprises a DNA polymerase, dNTPs, and a reaction buffer.
(a) 키다리병 저항성 품종과 키다리병 민감성 품종 간의 교배로부터 파생된 후대 집단을 획득하는 단계;
(b) 상기 획득한 후대 집단의 벼 시료에서 게놈 DNA를 분리하는 단계;
(c) 상기 분리된 게놈 DNA를 주형으로 하고, 서열번호 249 및 250으로 표시되는 프라이머 쌍을 이용하여, 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및
(d) 상기 증폭 산물을 검출하여 저항성 여부를 판단하는 단계를 포함하는, 키다리병 저항성 벼 품종 생산 방법.
(a) obtaining a progeny population derived from crossbreeding between a susceptible and resistant strain;
(b) separating the genomic DNA from the rice samples obtained in the later group;
(c) amplifying the target sequence by performing amplification reaction using the separated genomic DNA as a template and using primer pairs represented by SEQ ID NOS: 249 and 250; And
(d) detecting the amplified product to determine resistance.
제6항에 있어서, 상기 키다리병 저항성 품종은 남평벼; 남평벼와의 교배에 의해 생산된 육성종 중 저항성을 나타내는 품종; 및 제2항의 선별 방법에 따른 키다리병 저항성 벼 품종으로 구성된 군으로부터 선택되는 것인, 키다리병 저항성 벼 품종 생산 방법.
[Claim 7] The method according to claim 6, Among the breeding species produced by crossing with Nampyeong, breeds showing resistance; And the second step of the method according to claim 2, wherein the strain is selected from the group consisting of rice bran-resistant rice varieties.
삭제delete 삭제delete
KR1020160151432A 2016-11-14 2016-11-14 Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker KR101922420B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160151432A KR101922420B1 (en) 2016-11-14 2016-11-14 Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160151432A KR101922420B1 (en) 2016-11-14 2016-11-14 Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker

Publications (2)

Publication Number Publication Date
KR20180054070A KR20180054070A (en) 2018-05-24
KR101922420B1 true KR101922420B1 (en) 2018-11-28

Family

ID=62296643

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160151432A KR101922420B1 (en) 2016-11-14 2016-11-14 Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker

Country Status (1)

Country Link
KR (1) KR101922420B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081964B1 (en) * 2018-11-26 2020-02-26 대한민국 SNP marker for selecting rice cultivars resistant to bakanae disease of rice and use thereof
KR102081973B1 (en) * 2018-11-26 2020-02-26 대한민국 SNP marker for selecting rice cultivars resistant to bakanae disease of rice and use thereof
KR102267339B1 (en) * 2019-07-15 2021-06-22 대한민국 DNA markers for selection of rice plants having resistance to rice bakanae disease derived from Samgwangbyeo
KR102234489B1 (en) * 2019-10-21 2021-04-01 대한민국 Composition for selecting variety resistant to rice bakanae disease containing qBK1 gene comprising DNA marker and method for selecting variety resistant to rice bakanae disease using DNA marker
KR102359018B1 (en) * 2020-07-31 2022-02-08 대한민국 DNA markers for selection of line of rice plants having resistance to pre-harvest sprouting derived from Odaebyeo

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509076B1 (en) * 2013-10-18 2015-04-08 대한민국 Composition comprising DNA marker for selecting rice variety containing bakanae disease-resistant BK1 gene and method of selecting rice variety resistant to bakanae disease using the DNA marker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509076B1 (en) * 2013-10-18 2015-04-08 대한민국 Composition comprising DNA marker for selecting rice variety containing bakanae disease-resistant BK1 gene and method of selecting rice variety resistant to bakanae disease using the DNA marker

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Abdul Fiyaz et al_ Rice 2016 9:45
GenBank Accession No BABO01039966
GenBank Accession No BABO01039974
Hyeonso Ji et al_ Mol Genet Genomics 2017 pp 1_8
허연재 등 한국육종학회지 제46권 별책 1호 122면
허연재 등 한국육종학회지 제46권 별책 1호 19면

Also Published As

Publication number Publication date
KR20180054070A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
US11041167B2 (en) Methods and compositions for selecting soybean plants resistant to Phytophthora root rot
Yang et al. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene
KR101922420B1 (en) Composition comprising DNA marker derived from Nampyeongbyeo for selecting rice variety resistant to bakanae disease and method of selecting rice variety resistant to bakanae disease using the DNA marker
Yang et al. Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding
KR101509076B1 (en) Composition comprising DNA marker for selecting rice variety containing bakanae disease-resistant BK1 gene and method of selecting rice variety resistant to bakanae disease using the DNA marker
US10337072B2 (en) Copy number detection and methods
US10947602B2 (en) Methods of making gray leaf spot resistant maize
US11459621B2 (en) Methods and compositions for producing corn plants with resistance to late wilt
US10161009B2 (en) Compositions and methods for selecting maize plants with resistance to anthracnose stalk rot
KR102234489B1 (en) Composition for selecting variety resistant to rice bakanae disease containing qBK1 gene comprising DNA marker and method for selecting variety resistant to rice bakanae disease using DNA marker
KR101961656B1 (en) Composition comprising InDel DNA marker derived from Gayabyeo for selecting rice variety resistant to brown planthopper and method of selecting rice variety resistant to brown planthopper using the InDel DNA marker
Kim et al. Development of a high-resolution melting marker for selecting Fusarium crown and root rot resistance in tomato
Wu et al. Identification and Molecular Mapping of the Gene YrFL in Wheat Cultivar Flanders with Durable Resistance to Stripe Rust
US11319554B2 (en) Cucumber mosaic virus resistant pepper plants
KR20220010372A (en) Biomarker for detecting resistance against disease or insect in rice and uses thereof
US20170137840A1 (en) Compositions and methods for selecting maize plants with resistance to bacterial stalk rot
KR101570754B1 (en) Composition for selecting green rice leafhopper-resistant variety containing Grh1 gene comprising DNA marker RM18166, RM18171, and Indel 15040
CN112094940B (en) Indel marker linked with cucumber long hypocotyl gene lh1 as well as primer, kit and application thereof
RU2740404C1 (en) Dna-marker for selection of spring barley varieties, resistant to spotting atrobrunneis hordeum
US10138526B2 (en) Molecular markers associated with stem canker resistance in soybean
US10883148B2 (en) Molecular markers associated with Orobanche resistance in sunflower
US20160050864A1 (en) Methods for Producing Soybean Plants with Improved Fungi Resistance and Compositions Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant