KR101912870B1 - 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치 - Google Patents

비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치 Download PDF

Info

Publication number
KR101912870B1
KR101912870B1 KR1020160125253A KR20160125253A KR101912870B1 KR 101912870 B1 KR101912870 B1 KR 101912870B1 KR 1020160125253 A KR1020160125253 A KR 1020160125253A KR 20160125253 A KR20160125253 A KR 20160125253A KR 101912870 B1 KR101912870 B1 KR 101912870B1
Authority
KR
South Korea
Prior art keywords
calibration
signal
noncontact
input
circuit
Prior art date
Application number
KR1020160125253A
Other languages
English (en)
Other versions
KR20180035336A (ko
Inventor
조성환
이진석
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020160125253A priority Critical patent/KR101912870B1/ko
Priority to US15/578,598 priority patent/US10869600B2/en
Priority to PCT/KR2016/014879 priority patent/WO2018062630A1/ko
Publication of KR20180035336A publication Critical patent/KR20180035336A/ko
Application granted granted Critical
Publication of KR101912870B1 publication Critical patent/KR101912870B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • A61B5/0402
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0214Capacitive electrodes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Amplifiers (AREA)

Abstract

본 발명의 실시 예에 따른 비접촉 심전도 측정 회로는, 신호원의 플러스 또는 마이너스 측정신호를 비접촉으로 획득하여 출력하는 비접촉 측정부; 상기 측정신호를 증폭하여 출력단으로 출력하는 증폭 제어부; 및 상기 증폭 제어부의 입력단 및 출력단과 연결되어, 캘리브레이션 모드에서 입력 임피던스의 캘리브레이션을 처리하는 입력 임피던스 캘리브레이션 회로를 포함한다.

Description

비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치{A NON-CONTACT ELECTROCARDIOGRAPHY MONITORING CIRCUIT AND A METHOD FOR NON-CONTACT ELECTROCARDIOGRAPHY MONITORING AND AN APPRATUS FOR ELECTROCARDIOGRAPHY MONITORING}
본 발명은 전위 측정 방법, 회로 및 그 장치에 관한 것이다. 보다 구체적으로, 본 발명은 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치에 관한 것이다.
생체 전기 신호 계측 분야에서, 전통적으로, 신호 검출을 위해서 인체 피부 표면에 전도성 전극이 직접 부착된다. 생체 전기 신호는 인체의 질환 진단이나 치료 경과 등을 위해 필요한 정보를 제공한다. 그러나 신호 계측 과정에서 인체 피부에 직접적으로 전도성 전극을 부착해야 한다. 이로 인하여 피검자는 검사에 대한 거부감을 갖는다.
결과적으로, 피검자가 의식하지 않는 상태에서 장기간 동안 실시간 측정이 이루어져야 하지만, 기존에 사용되던 습식 전극과 건식 전극의 경우 이 조건을 충족하기 어렵다. 따라서, 전기적 비접촉 전극(electrical non-contact electrode 혹은 non-contact electrode)을 이용하고자 하는 방법이 대두되었다.
그러나, 이와 같은 비접촉 방식에 있어서, 피검자가 옷을 입은 상태에서도 피부 표면의 전위를 측정할 수 있도록 하려면, 입력 임피던스를 증가시키기 위한 회로구성이 필요하다. 그러나, 이를 해결하기 위한 기존의 많은 방식들은 입력 임피던스 증가를 위해 정귀환 회로(POSITIVE FEEDBACK)을 구성하고, 이에 대한 저항과 캐패시턴스의 인위적 조절을 채용하고 있다.
그러나, 이와 같은 비접촉 심전도 측정의 임피던스 증가를 위한 기존의 방식들은 먼저, 입력단의 전단 증폭기의 게인이 1인 아날로그 버퍼를 이용해야 한다는 한계가 있다. 즉, 상기 정귀환 구성을 위한 첫 단의 버퍼 게인이 등가 입력으로 제한됨으로써, 회로의 잡음 효율이 좋지 않을 뿐만 아니라, 필요 전력이 증가하게 되는 문제점이 있다. 이는, 저전력 시스템 구성을 어렵게 할 수 있다.
또한, 비접촉 심전도 측정의 정귀환 방식을 위하여는 회로 구성에 대한 직접적이고 인위적인 수정(MANUAL TRIMMING)이 필요한 문제점이 있다. 이는 정귀환 값이 커짐에 따른 시스템 불안정 및 오실레이션을 방지하기 위한 것으로, 추가적인 장비 및 인력과 시간을 필요로 하게 되는 문제점을 야기하게 된다. 이는 결과적으로 제품 양산을 불가능하게 하며, AS를 어렵게 하는 문제점을 가져온다.
이에 따라, 현재로서는 상기 문제점을 해결하지 못하여, 장시간 동안 실시간 모니터링이 가능하면서도 양산가능한 해결방안이 요구되고 있는 실정이다.
(특허문헌 1) KR10-2012-0102201 A1
(특허문헌 2) WO2015-131172 A1
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 저전력 저잡음 회로를 구성하면서도 고입력 임피던스에 기반한 증폭을 가능하게 함으로써, 장시간 동안 실시간 모니터링이 가능하면서도 양산을 가능하게 하는 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치를 제공하는데 그 목적이 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 회로는, 비접촉 심전도 측정 회로에 있어서, 신호원의 플러스 또는 마이너스 측정신호를 비접촉으로 획득하여 출력하는 비접촉 측정부; 상기 측정신호를 증폭하여 출력단으로 출력하는 증폭 제어부; 및 상기 증폭 제어부의 입력단 및 출력단과 연결되어, 캘리브레이션 모드에서 입력 임피던스의 캘리브레이션을 처리하는 입력 임피던스 캘리브레이션 회로를 포함한다.
상기와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 방법은, 비접촉 심전도 측정 방법에 있어서, 포어그라운드 캘리브레이션 모드에서, 증폭 제어부의 입력 임피던스에 대한 캘리브레이션을 처리하는 단계; 상기 캘리브레이션이 종료되면 측정 모드로 진입하는 단계; 측정 모드에서, 신호원의 플러스 또는 마이너스 측정신호를 비접촉으로 획득하는 단계; 및 상기 측정신호를 증폭하여 출력하는 단계를 포함한다.
한편, 상기와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 장치는, 상기 회로를 포함하는 심전도 측정 장치로 구현될 수 있다.
본 발명의 실시 예에 따르면, 입력단의 실드 회로를 이용함으로써 입력단 버퍼의 게인 제한을 자유롭게 하고 이에 따른 1 마이크로 와트 이하의 초저전력, 저잡음 시스템을 구현할 수 있다.
또한, 본 발명의 실시 예에 따르면, 심전도 측정 이전에 자동적으로 수행되는 포어그라운드 캘리브레이션을 통해 고임피던스 증폭을 안정적으로 구동할 수 있다. 이에 따라, 인위적 트리밍의 불편함을 제거할 수 있으며, 추가 장비나 안정성을 위한 인력 및 시간 비용을 배제함으로써 양산 가능성을 크게 높일 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 전체 시스템을 개념적으로 도시한 블록도이다.
도 2는 본 발명의 실시 예에 따른 시스템을 회로로서 구현한 경우를 보다 구체적으로 설명하기 위한 회로도이다.
도 3은 본 발명의 실시 예에 따른 실드 회로를 설명하기 위한 도면이다.
도 4 및 도 5는 본 발명의 실시 예에 따른 캘리브레이션 신호 생성 회로를 설명하기 위한 도면들이다.
도 6은 본 발명의 실시 예에 따른 비접촉 심전도 측정을 위한 캘리브레이션 방법을 설명하기 위한 흐름도이다.
도 7 및 도 8은 본 발명의 실시 예에 따른 캘리브레이션 로직 회로를 설명하기 위한 도면들이다.
이하의 내용은 단지 본 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 본 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.
또한, 본 발명의 원리, 관점 및 실시 예들뿐만 아니라 특정 실시 예를 열거하는 모든 상세한 설명은 이러한 사항의 구조적 및 기능적 균등물을 포함하도록 의도되는 것으로 이해되어야 한다. 또한 이러한 균등물들은 현재 공지된 균등물뿐만 아니라 장래에 개발될 균등물 즉 구조와 무관하게 동일한 기능을 수행하도록 발명된 모든 소자를 포함하는 것으로 이해되어야 한다.
따라서, 예를 들어, 본 명세서의 블록도는 본 발명의 원리를 구체화하는 예시적인 회로의 개념적인 관점을 나타내는 것으로 이해되어야 한다. 이와 유사하게, 모든 흐름도, 상태 변환도, 의사 코드 등은 컴퓨터가 판독 가능한 매체에 실질적으로 나타낼 수 있고 컴퓨터 또는 프로세서가 명백히 도시되었는지 여부를 불문하고 컴퓨터 또는 프로세서에 의해 수행되는 다양한 프로세스를 나타내는 것으로 이해되어야 한다.
프로세서 또는 이와 유사한 개념으로 표시된 기능 블록을 포함하는 도면에 도시된 다양한 소자의 기능은 전용 하드웨어뿐만 아니라 적절한 소프트웨어와 관련하여 소프트웨어를 실행할 능력을 가진 하드웨어의 사용으로 제공될 수 있다. 프로세서에 의해 제공될 때, 상기 기능은 단일 전용 프로세서, 단일 공유 프로세서 또는 복수의 개별적 프로세서에 의해 제공될 수 있고, 이들 중 일부는 공유될 수 있다.
또한 프로세서, 제어 또는 이와 유사한 개념으로 제시되는 용어의 명확한 사용은 소프트웨어를 실행할 능력을 가진 하드웨어를 배타적으로 인용하여 해석되어서는 아니되고, 제한 없이 디지털 신호 프로세서(DSP) 하드웨어, 소프트웨어를 저장하기 위한 롬(ROM), 램(RAM) 및 비 휘발성 메모리를 암시적으로 포함하는 것으로 이해되어야 한다. 주지관용의 다른 하드웨어도 포함될 수 있다.
본 명세서의 청구범위에서, 상세한 설명에 기재된 기능을 수행하기 위한 수단으로 표현된 구성요소는 예를 들어 상기 기능을 수행하는 회로 소자의 조합 또는 펌웨어/마이크로 코드 등을 포함하는 모든 형식의 소프트웨어를 포함하는 기능을 수행하는 모든 방법을 포함하는 것으로 의도되었으며, 상기 기능을 수행하도록 상기 소프트웨어를 실행하기 위한 적절한 회로와 결합된다. 이러한 청구범위에 의해 정의되는 본 발명은 다양하게 열거된 수단에 의해 제공되는 기능들이 결합되고 청구항이 요구하는 방식과 결합되기 때문에 상기 기능을 제공할 수 있는 어떠한 수단도 본 명세서로부터 파악되는 것과 균등한 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.
도 1은 본 발명의 실시 예에 따른 전체 시스템을 개념적으로 도시한 블록도이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 비접촉 심전도 시스템은, 신호원인 신체(200)와 비접촉에 의한 간접적으로 연결되는 심전도 측정 장치(100)로 구성될 수 있으며, 심전도 측정 장치(100)는 제1 비접촉 측정부(110), 제2 비접촉 측정부(120), 제1 능동 실드(111), 제2 능동 실드(121), 제1 레플리카 모델링부(130), 제2 레플리카 모델링부(140), 입력 임피던스 캘리브레이션 회로(150), 증폭 제어부(160) 및 출력부(170)를 포함하여 구성될 수 있다.
제1 비접촉 측정부(110) 및 제2 비접촉 측정부(120)에는 인체와 심전도 측정 장치(100)간 배치되어, 인체와 비접촉식 전극 사이에 형성되는 각각의 축전기 및 전단 증폭기가 구비될 수 있으며, 생체 신호의 주파수 변화에 따른 플러스 전극 및 마이너스 전극별 제1 입력 심전도 신호 및 제2 입력 심전도 신호(ECG, electrocardogram) 를 각각 획득하여 증폭 제어부(160)로 전달한다.
또한, 본 발명의 실시 예에 따르면, 각각의 비접촉 측정부(110, 120)에 대응되는 제1 능동 실드(111) 및 제2 능동 실드(121)가 구비될 수 있다. 각 능동 실드(111, 121)는 입력 심전도 신호 전압에 대한 기생 캐패시턴스를 제거하고, 저전력, 저잡음 구동을 가능하게 하는 실드 회로 및 능동 아날로그 버퍼를 포함할 수 있다. 이에 대하여는 도 3에서 보다 구체적으로 후술하도록 한다.
그리고, 각 레플리카 모델링부(130, 140)는 캐패시턴스 캘리브레이션을 위한 레플리카 노드 전압을 생성하여 입력 임피던스 캘리브레이션 회로(150)로 제공한다. 이는 신호 라인(signal line)에 기생하는 기생 캐패시턴스의 보정에 있어서, 신호 라인에는 기생 캐패시턴스와 입력 신호의 소스 임피던스가 공존하기 때문에 이를 배제하기 위한 것으로, 입력 임피던스 캘리브레이션 회로(150)에서는 상기 레플리카 노드로부터 입력되는 신호를 이용하여 캘리브레이션 처리를 수행할 수 있다.
즉, 원래의 신호 라인을 직접 캘리브레이션 회로에 입력하는 경우 잘못된 보정이 이루어질 수 있다. 따라서, 레플레카 모델링부(130, 140)는 심전도 측정 장치(100)의 캘리브레이션 모드에서 동작하여 입력 임피던스 캘리브레이션 회로(150)로 입력 신호를 출력할 수 있다.
한편, 입력 임피던스 캘리브레이션 회로(150)는 본 발명의 실시 예에 따른 심전도 측정 이전의 포어그라운드(foreground) 캘리브레이션을 수행하여, 입력단 의 기생 캐패시턴스를 최소화하기 위한 회로를 포함할 수 있다.
이를 위해, 입력 임피던스 캘리브레이션 회로(150)에는 상기 레플레카 모델링부(130, 140)와 연결되는 하나 이상의 스위치 회로와, 후술할 캘리브레이션 신호 생성부, 캘리브레이션 로직 처리부 및 정귀환 캐패시터 어레이부를 포함할 수 있다.
이에 따라, 입력 임피던스 캘리브레이션 회로(150)는 캘리브레이션 모드에서 동작하는 레플레카 모델링부(130, 140)의 출력과, 캘리브레이션 신호에 따라 정귀환 캐패시터 어레이에 대한 로직 처리를 수행함으로써 기생 캐패시턴스를 기준값 이내로 최소화할 수 있다. 이를 위해, 캘리브레이션 모드에서는 리셋 페이즈와 캘리브레이션 페이즈가 반복되어 제어될 수 있으며, 이를 위한 각각의 리셋 스위치들이 포함될 수 있다.
한편, 증폭 제어부(160)는 각각의 동작 모드에 따른 입력 신호를 증폭하고, 출력부(170)로 출력하기 위한 코어 증폭기를 포함할 수 있다.
먼저, 증폭 제어부(160)는 먼저 캘리브레이션 모드에서 레플레카 모델링부(130, 140)의 출력에 따라, 코어 증폭기를 통해 증폭하고, 입력 임피던스 캘리브레이션 회로(150)로 증폭된 출력 신호를 출력할 수 있다. 여기서, 입력 임피던스 캘리브레이션 회로(150)는 심전도 측정에 최적화된 상태로 조절할 수 있으며, 비접촉 측정부(110, 120) 입력단은 off 상태로 제어될 수 있다.
이후, 증폭 제어부(160)는 측정 모드에서, 각 비접촉 측정부(110, 120)로부터 입력된 신호가 입력단에서의 능동 실드(111, 121)에 의해 처리됨에 따라 캐패시턴스가 저감되고 임피던스가 증가된 신호를 입력받을 수 있으며, 이로부터 증폭된 심전도 신호를 출력할 수 있다. 이 때, 레플레카 모델링부(130, 140)측 회로는 off 상태로 제어될 수 있다.
출력부(170)는 증폭된 신호로부터 심전도 측정 결과를 출력하기 위한 하나 이상의 출력 모듈을 포함할 수 있다. 출력 모듈은 예를 들어, 생체 정보의 처리, 출력 및 표시 등이 가능한 단말 장치의 구성일 수 있으며, 퍼스널 컴퓨터, 스마트폰, 태블릿 등의 다양한 컴퓨터 장치의 출력 모듈이 예시될 수 있다.
이하에서는 도 2 내지 도 11을 참조하여 보다 구체적인 실시 예를 회로 구성을 통해 설명하도록 한다.
도 2는 본 발명의 실시 예에 따른 시스템을 회로로서 구현한 경우를 보다 구체적으로 설명하기 위한 회로도이다.
도 2를 참조하면 본 발명의 실시 예에 따른 심전도 측정 장치(100)는 회로 소자로 구현되는 제1 비접촉 측정부(110), 제2 비접촉 측정부(120), 제1 능동 실드(111), 제2 능동 실드(121), 제1 레플리카 모델링부(130), 제2 레플리카 모델링부(140), 입력 임피던스 캘리브레이션 회로(150), 증폭 제어부(160) 및 출력부(170)를 포함하여 구성될 수 있다.
전술한 바와 같이, 각각의 비접촉 측정부(110, 120)는 각각의 능동 실드(111, 121)회로를 포함하여 구성될 수 있으며, 각 능동 실드(111, 121) 회로는 저전력 버퍼 설계를 위한 능동 증폭기를 포함할 수 있다.
여기서, 도 3을 참조하면, 각 비접촉 측정부(110, 120)로 입력되는 제1 및 제2 ECG 신호의 주파수 영역은 0.5 내지 50Hz 이며, 입력 신호는 능동 실드(111, 121)로 전달되어 처리될 수 있다.
그리고, 비접촉 측정부(110, 120)의 입력단과 능동 실드 회로 사이의 기생 캐패시턴스 (parasitic capacitance)는 약 20 내지 200pF 수준일 수 있다. 이 때, 필요한 능동 실드의 형태는 게인이 1 인 아날로그 버퍼일 수 있다.
따라서, 본 발명의 실시 예에 따른 능동 실드(111, 121) 회로는 실드의 일측과 출력단이 연결되는 저전력 아날로그 버퍼 증폭기의 입력단이, 비접촉 측정부(110, 120) 입력단과 증폭 제어부(160)의 코어 증폭기 입력단 사이에 병렬 연결되도록 구성할 수 있다. 이에 따라, 입력 신호의 전압은 능동 아날로그 버퍼 및 실드 회로에 의해 필터링될 수 있으며, 게인이 1인 전단 증폭기 없이도 약 100nW수준으로 전력 소모를 낮출 수 있고, 저잡음 처리가 수행될 수 있다.
즉, 도 3에 도시된 바와 같이, 능동 실드(111, 121) 회로는 신호 라인을 감싸는 실드와 출력단이 연결되는 능동 아날로그 버퍼의 입력단을 신호 라인과 연결되도록 구성함으로써, 저전력 저잡음 실드 회로를 구현할 수 있다.
한편, 전술한 바와 같이, 각 레플레카 모델링부(130, 140)는 입력 임피던스 캘리브레이션 회로(150)의 동작을 위한 레플리카 노드 입력 신호를 생성하기 위한 하나 이상의 스위치 및 캐패시턴스를 구비할 수 있다.
전술한 바와 같이, 레플레카 모델링부(130, 140)는 신호 라인에 기생하는 캐패시턴스 보정을 위한 캘리브레이션에 있어서, 원 신호 라인의 소스 임피던스를 배제하기 위한 것으로, 캘리브레이션 모드에서만 동작할 수 있다. 이를 위해, 각 레플레카 모델링부(130, 140)에는 레플리카 노드가 구비될 수 있으며, 노드와 연결되는 스위치 Φcal 은 캘리브레이션 모드에서 on 될수 있다. 이에 반해, 측정 모드에서는 스위치 Φcal이 off될 수 있고, Φeval이 on 될 수 있다.
또한, 도 2에 도시된 바와 같이, 레플리카 노드(Replica Node)에는 신호 라인에 존재하는 캐패시턴스 CESD와 캐패시턴스 Cbuf와 동일한 크기를 갖는 레플리카 캐패시턴스가 구비될 수 있으며, 이에 따라 소스 임피던스가 배제된 상태에서의 정확한 캘리브레이션을 가능하게 한다.
한편, 입력 임피던스 캘리브레이션 회로(150)는 상기 레플레카 모델링부(130, 140) 및 증폭 제어부(160)의 코어 증폭기 출력과 연결되어 입력단의 기생 캐패시턴스를 최소화하기 위한 루프를 구성할 수 있으며, 캘리브레이션 신호 생성부(151), 캘리브레이션 로직 처리부(152) 및 정귀환 캐패시터 어레이부(153)를 포함할 수 있다.
먼저, 캘리브레이션 모드에서 입력 임피던스 캘리브레이션 회로(150)는 전술한 바와 같이, 스위치 동작에 의해 원 신호 라인과의 연결은 off되며, 레플레카 모델링부(130, 140)의 레플리카 노드에 각각 연결될 수 있다.
그리고, 캘리브레이션 신호 생성부(151)에서는 캘리브레이션 모드에서, 캘리브레이션을 위한 소신호 클럭을 생성하여, 캘리브레이션 신호 생성기 및 로직 처리부(152)로 인가할 수 있다.
소신호 클럭에 있어서, 도 4 및 도 5가 참조될 수 있다. 도 4 및 도 5는 본 발명의 실시 예에 따른 캘리브레이션 신호 생성 회로를 설명하기 위한 도면들이다.
본 발명의 실시 예에 다르면, 캘리브레이션 신호 생성 회로는 PMOS 다이오드 스택(stack) 기반의 회로로 구성될 수 있다. 즉, PMOS 다이오드가 연결되는 상태로 스택(stack) 하게 되면, 저전력으로 구동할 수 있는 전압 분배기(voltage divider)를 구현할 수 있다. 이와 같은 방식에 따라, 본 발명의 실시 예에 따른 캘리브레이션 신호 생성부(151)는 2개의 PMOS 다이오드 스택 브랜치(diode-stacked branch) 를 포함할 수 있으며, 두 브랜치간 그 차이를 이용한 캘리브레이션을 위한 소신호 클락을 생성할 수 있다.
예를 들어, 도 4에 도시된 바와 같이, 캘리브레이션 신호 생성부(151)는 브랜치(branch) 1에 대해 13개의 저항 R_MOS를 직렬 연결하여, 5번째 저항에서의 전압 VCAL1을 추출하도록 구성될 수 있으며, branch 2에 대해 8개의 저항 R_MOS를 직렬 연결하여, 3번째 저항에서의 전압 VCAL2을 추출하도록 선택적으로 구성할 수 있다.
이 때, VCAL1과 VCAL2의 차이 값은 아래 식과 같이 나타낼 수 있다.
Figure 112016094436052-pat00001
이에 따라, 생성되는 2개의 브랜치에 대한 전압은 도 5에 도시된 바와 같은 쵸퍼(chopper)에 의해 on 및 off 제어되어, 캘리브레이션을 위한 소신호 클럭 신호(VCAL_SIG)로 출력될 수 있다.
한편, 다시 도 2를 설명하면, 로직 처리부(152)는 상기 캘리브레이션을 위한 신호가 인가된 경우, 미리 결정된 로직에 따라 정귀환 캐패시터 어레이부(153)의 가변 캐패시턴스 C_pf를 반복적으로 조정함으로써 캘리브레이션 처리를 수행할 수 있다.
이를 위하여 로직 처리부(152)는 하기와 같은 로직 처리를 수행하기 위한 하나 이상의 로직 소자를 포함할 수 있다.
먼저, 로직 처리부(152)는 증폭 제어부(160)의 코어 증폭기인 LNA(Low-Noise Amplifier)의 출력단의으로부터 출력 전압을 샘플링할 수 있다.
그리고, 로직 처리부(152)는 샘플링된 출력 전압 신호의 크기가 미리 설정된 로직 임계값(Logic Threshold , Vth) 보다 큰지 또는 작은지를 판단할 수 있다.
그리고, 로직 처리부(152)는 샘플된 전압이 Vth보다 큰 경우, Down신호를 생성하고, 샘플된 전압이 Vth 보다 작은 경우, Up 신호를 생성할 수 있다.
이에 따라, 로직 처리부(152)는 Up신호가 생성되면 PFCW(Positive Feedback Control Word)를 1만큼 증가시키고, Down 신호가 생성되면 PFCW를 1만큼 감소시킴으로써, 정귀환 캐패시터 어레이부(153)의 가변 캐패시턴스의 캐패시턴스를 조정할 수 있다.
그리고, 로직 처리부(152)는 리셋 스위치(Φ_rst)를 제어하여, 신호 입력을 초기화할 수 있으며, 다시 상기 처리과정들을 수행할 수 있다. 그리고, 미리 결정된 중단 조건이 만족될 때까지 상기 처리를 순차적으로 반복 수행할 수 있다.
이후 로직 처리부(152)는 중단 조건이 만족된 경우, 모드 전환 요청을 증폭 제어부(160)로 전달하며, 증폭 제어부(160)는 중단 조건이 만족된 경우, 각 스위치를 제어하여, 입력 임피던스 캘리브레이션 회로(150)와 레플레카 모델링부(130, 140)간 연결을 off시키고, 신호 라인과 연결하여 입력신호를 측정할 수 있는 측정 모드로 동작하게 한다.
이와 같은 로직 처리부(152)의 동작에 대하여, 도 6에서는 본 발명의 실시 예에 따른 비접촉 심전도 측정을 위한 캘리브레이션 방법을 설명하기 위한 흐름도를 개시하고 있다.
도 6에서는 초기 PFCW값이 256이며, 중단 COUNT 값이 512인 경우를 예시한 것으로, 먼저 로직 처리부(152)는 COUNT를 0으로 설정하고, PFCW 값을 256으로 설정하기 위한 신호를 정귀환 캐패시터 어레이부(153)로 출력한다(S101).
그리고, 캘리브레이션 신호 생성부(151)로부터 캘리브레이션 신호가 생성되면(S103), 로직 처리부(152)는 캘리브레이션 신호에 따라 증폭 제어부(160)의 코어 증폭기 출력으로부터 V_out을 샘플링한다(S105).
이후, 로직 처리부(152)는 V_out이 미리 설정된 임계값 V_th 보다 크거나 작은지 판단한다(S107).
여기서, 임계값보다 큰 경우 로직 처리부(152)는 PFCW 값을 1 증가시킬 수 있으며(S109), 임계값보다 작은 경우 로직 처리부(152)는 PFCW 값을 1 감소시킬 수 있다(S111).
이후, 로직 처리부(152)는 COUNT 값을 1 증가시키며(S113), 증가된 값이 미리 결정된 중단조건 512보다 큰지 판단한다(S115).
여기서, 중단조건보다 COUNT가 큰 경우에는 로직 처리부(152)의 종료 페이즈로 진행하여, 측정 모드로 전환될 수 있다.
반면, 중단조건보다 COUNT가 작은 경우에는 리셋 신호에 따른 페이즈 리셋을 처리하고, 중단조건을 만족할 때까지 각각 증가된 COUNT에 기반한 S103 내지 S115 단계를 반복적으로 수행할 수 있다.
여기서, 도 7 및 도 8은 본 발명의 실시 예에 따른 캘리브레이션 로직 회로의 가변캐패시턴스 제어를 보다 구체적으로 설명하기 위한 도면들로서, 로직 처리부(152)는 크게 차분 페이즈 샘플러(Differential Charge Sampler)와 임계 로직 제어회로(Logic Threshold and Control Circuit)로 구분될 수 있다.
차분 페이즈 샘플러는 도 7에 도시된 바와 같이 구성될 수 있으며, 코어 증폭기 LNA의 차분 출력을 입력신호로 수신할 수 있다. 그리고, 차분 페이즈 샘플러는 입력 신호에 따라, GND를 레퍼런스로 하는 레벨 시프트를 처리하여, 캐패시턴스에 저장하기 위한 복수의 절연 스위치를 포함할 수 있다.
한편, 임계 로직 제어회로(Logic Threshold and Control Circuit)는 도 8에 도시된 바와 같이 구성될 수 있다. 임계 로직 제어회로는 전술한 차분 페이즈 샘플러의 출력인 V_LOGIC 을 입력으로 수신할 수 있다. 그리고, 임계 로직 제어회로는 전술한 바와 같은 임계값에 따라 설정된 인버터 로직 임계값(Inverter Logic Threshold) 를 기준으로 하는 Up/Down 신호을 결정하여, PFCW 출력을 위한 9bit counter를 제어할 수 있으며, 상기 카운터 출력에 따라, 전술한 정귀환 캐패시터 어레이부(153)의 가변 캐패시턴스 C_pf가 제어될 수 있다.
한편, 다시 도 2를 참조하면, 전체 심전도 측정 장치(100) 시스템은 상기 캘리브레이션 모드가 종료된 이후, 다시 측정 모드로 전환될 수 있다. 측정 모드 전환에 따라, 캘리브레이션 모드 스위치들(Φ_cal)이 off되고 측정 모드 스위치들(Φ_eval)이 on 전환될 수 있으며, 이에 따라 신체로부터 측정되는 입력 신호가 증폭되고, 출력부(170)의 입력단으로 각각 출력될 수 있다.
이와 같은 구성에 따라, 심전도 측정 장치(100)는 측정 이전의 포어그라운드 캘리브레이션 모드에서, 증폭 제어부의 입력 임피던스에 대한 캘리브레이션을 처리할 수 있으며, 상기 캘리브레이션이 종료되면 측정 모드로 진입하고, 측정 모드에서, 신호원의 플러스 또는 마이너스 측정신호를 비접촉으로 획득하며, 상기 측정신호를 증폭하여 출력할 수 있게 된다.
또한, 이와 같은 본 발명의 실시 예에 따라, 비접촉 측정이 가능한 심전도 측정 장치(100)에 있어서, 1uW 이하 전력을 소모하는 초저전력 저잡음 증폭기를 설계할 수 있고, 이를 통해 장시간 동안 실시간 모니터링이 가능한 헬스케어 시스템을 구축할 수 있다. 특히, 포어그라운드 캘리브레이션을 통해, 인위적인 튜닝이나 트리밍 과정 없이도, 칩 자체적으로 최적의 심전도 측정을 위한 기생 임피던스 최소화 및 시스템 임피던스 최적화를 가능하게 하여, 양산 가능성을 크게 높일 수 있다.
한편, 상술한 본 발명의 다양한 실시 예들에 따른 방법은 프로그램 코드로 구현되어 다양한 비일시적 판독 가능 매체(non-transitory computer readable medium)에 저장된 상태로 각 서버 또는 기기들에 제공될 수 있다.
비일시적 판독 가능 매체란 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로는, 상술한 다양한 어플리케이션 또는 프로그램들은 CD, DVD, 하드 디스크, 블루레이 디스크, USB, 메모리카드, ROM 등과 같은 비일시적 판독 가능 매체에 저장되어 제공될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.

Claims (14)

  1. 비접촉 심전도 측정 회로에 있어서,
    신호원의 플러스 또는 마이너스 측정신호를 비접촉으로 획득하여 출력하는 비접촉 측정부;
    상기 측정신호를 증폭하여 출력단으로 출력하는 증폭 제어부; 및
    상기 증폭 제어부의 입력단 및 출력단과 연결되어, 캘리브레이션 모드에서 입력 임피던스의 캘리브레이션을 처리하는 입력 임피던스 캘리브레이션 회로를 포함하고,
    상기 입력 임피던스 캘리브레이션 회로는,
    상기 캘리브레이션 모드에서 캘리브레이션을 위한 클럭 신호를 생성하는 캘리브레이션 신호 생성기;
    상기 클럭 신호 및 상기 증폭 제어부의 입력 및 출력에 따른 로직 처리를 수행하는 로직 처리부; 및
    상기 로직 처리부의 제어에 따라 가변 제어되는 정귀환 캐패시터 어레이부를 포함하는
    비접촉 심전도 측정 회로.
  2. 제1항에 있어서,
    상기 캘리브레이션 모드에서, 신호 라인과 동일 캐패시턴스를 갖는 캐패시턴스들과 연결되도록 구성된 레플레카 노드의 출력이 상기 증폭 제어부 및 상기 입력 임피던스 캘리브레이션 회로의 입력단과 연결되도록 하는 하나 이상의 레플레카 모델링부를 포함하는
    비접촉 심전도 측정 회로.
  3. 제2항에 있어서,
    상기 캘리브레이션 모드에서, 상기 증폭 제어부의 상기 비접촉 측정부로부터 입력되는 입력단은 off 상태로 제어되는
    비접촉 심전도 측정 회로.
  4. 삭제
  5. 제1항에 있어서,
    상기 캘리브레이션 신호 생성기는, PMOS 다이오드 스택(stack)을 포함하는 제1 브랜치 회로 및 제2 브랜치 회로의 차분 신호를 출력하는 전압 분배기를 포함하는
    비접촉 심전도 측정 회로.
  6. 제1항에 있어서,
    상기 로직 처리부는
    캘리브레이션 모드에서, 상기 증폭 제어부 출력의 샘플링 값과 미리 결정된 임계값간 비교 로직에 따라, 상기 정귀환 캐패시터 어레이부의 가변 캐패시턴스를 반복적으로 조정함으로써 캘리브레이션 처리를 수행하는
    비접촉 심전도 측정 회로.
  7. 제1항에 있어서,
    상기 로직 처리부는
    상기 증폭 제어부의 출력 신호를 샘플링하기 위해, 코어 증폭기의 차분 출력을 입력 신호로 수신하여, GND를 레퍼런스로 하는 레벨 시프트를 처리하고, 샘플링된 신호를 캐패시턴스에 저장하는 차분 페이즈 샘플러를 포함하는
    비접촉 심전도 측정 회로.
  8. 제7항에 있어서,
    상기 로직 처리부는
    상기 차분 페이즈 샘플러의 출력을 입력으로 수신하고, 미리 설정된 인버터 로직 임계값을 기준으로 하는 Up/Down 신호을 결정하여, 정귀환 캐패시터 어레이부와 연결된 카운터를 제어하는 임계 로직 제어회로를 포함하는
    비접촉 심전도 측정 회로.
  9. 제1항에 있어서,
    상기 비접촉 측정부는 능동 실드 회로를 포함하고,
    상기 능동 실드 회로는 입력 신호 라인을 감싸는 실드의 일측과 출력단이 연결되는 아날로그 버퍼 증폭기를 포함하고,
    상기 아날로그 버퍼 증폭기의 입력단은 상기 비접촉 측정부의 입력단과 상기 증폭 제어부의 코어 증폭기 입력단 사이에 병렬 연결되는 것을 특징으로 하는
    비접촉 심전도 측정 회로.
  10. 제1항 내지 제3항, 제5항 내지 제9항 중 어느 한 항에 기재된 비접촉 심전도 측정 회로를 포함하는 비접촉 심전도 측정 장치.
  11. 비접촉 심전도 측정 방법에 있어서,
    포어그라운드 캘리브레이션 모드에서, 증폭 제어부의 입력 임피던스에 대한 캘리브레이션을 처리하는 단계;
    상기 캘리브레이션이 종료되면 측정 모드로 진입하는 단계;
    측정 모드에서, 신호원의 플러스 또는 마이너스 측정신호를 비접촉으로 획득하는 단계; 및
    상기 측정신호를 증폭하여 출력하는 단계를 포함하고,
    상기 캘리브레이션을 처리하는 단계는,
    상기 캘리브레이션 모드에서 캘리브레이션을 위한 클럭 신호를 생성하는 단계;
    상기 클럭 신호에 따른 상기 증폭 제어부에서의 출력 신호를 샘플링하는 단계; 및
    상기 샘플링된 신호와 미리 설정된 로직 임계값을 비교하여, 정귀환 캐패시터 어레이를 제어하기 위한 가변 캐패시턴스 값을 산출하는 단계를 포함하는
    비접촉 심전도 측정 방법.
  12. 삭제
  13. 제11항에 있어서,
    상기 캘리브레이션을 처리하는 단계는,
    상기 가변 캐패시턴스 값이 산출된 경우, 리셋 스위치를 제어하여 신호 입력을 초기화하는 단계; 및
    미리 설정된 중단 조건을 만족할 때까지 상기 샘플링하는 단계, 상기 산출하는 단계 및 상기 초기화하는 단계를 반복 수행하는 단계를 포함하는
    비접촉 심전도 측정 방법.
  14. 제13항에 있어서,
    상기 중단 조건은 중단 카운트 값에 대응되는 것을 특징으로 하는 비접촉 심전도 측정 방법.
KR1020160125253A 2016-09-29 2016-09-29 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치 KR101912870B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020160125253A KR101912870B1 (ko) 2016-09-29 2016-09-29 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치
US15/578,598 US10869600B2 (en) 2016-09-29 2016-12-19 Method for non-contact electrocardiography monitoring, circuit for non-contact electrocardiography monitoring, and apparatus for electrocardiography monitoring using the same
PCT/KR2016/014879 WO2018062630A1 (ko) 2016-09-29 2016-12-19 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160125253A KR101912870B1 (ko) 2016-09-29 2016-09-29 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치

Publications (2)

Publication Number Publication Date
KR20180035336A KR20180035336A (ko) 2018-04-06
KR101912870B1 true KR101912870B1 (ko) 2018-10-30

Family

ID=61759998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160125253A KR101912870B1 (ko) 2016-09-29 2016-09-29 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치

Country Status (3)

Country Link
US (1) US10869600B2 (ko)
KR (1) KR101912870B1 (ko)
WO (1) WO2018062630A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205678B (zh) 2014-09-23 2019-11-29 Rr图形逻辑有限公司 非接触式心电图系统
US10645017B2 (en) 2018-05-09 2020-05-05 Biosig Technologies, Inc. Systems, apparatus, and methods for conveying biomedical signals between a patient and monitoring and treatment devices
DE102019203627A1 (de) * 2019-03-18 2020-09-24 Siemens Healthcare Gmbh Detektion von Störungen bei der Messung von bioelektrischen Signalen
CN112869749A (zh) * 2021-01-15 2021-06-01 天津大学 一种非接触心电检测电路
CN115005842B (zh) * 2022-08-09 2022-11-15 之江实验室 一种频率调制的脑机接口芯片输入阻抗增强方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131172A1 (en) * 2014-02-28 2015-09-03 Northeastern University Instrumentation amplifier with digitally programmable input capacitance cancellation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736721B1 (ko) * 2004-08-31 2007-07-09 재단법인서울대학교산학협력재단 전기적 비접촉 심전도 측정장치 및 그에 따른 측정방법
KR101227413B1 (ko) 2011-03-08 2013-02-12 (주)락싸 전기적 비접촉식 생체 신호 측정 장치 및 그 방법
US9037221B2 (en) 2013-01-16 2015-05-19 University Of Rochester Non-contact electrocardiogram system
KR102265066B1 (ko) 2014-07-17 2021-06-15 삼성전자주식회사 생체 임피던스 측정 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131172A1 (en) * 2014-02-28 2015-09-03 Northeastern University Instrumentation amplifier with digitally programmable input capacitance cancellation

Also Published As

Publication number Publication date
US20180325375A1 (en) 2018-11-15
US10869600B2 (en) 2020-12-22
KR20180035336A (ko) 2018-04-06
WO2018062630A1 (ko) 2018-04-05

Similar Documents

Publication Publication Date Title
KR101912870B1 (ko) 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치
EP3307163B1 (en) Systems for in situ electrochemical imaging
KR20170102516A (ko) 지문 검출 회로 및 전자 디바이스
EP3971694B1 (en) Noise measurement circuit, self-capacitance measurement method, touch chip and electronic device
KR102020802B1 (ko) 비접촉 심전도 측정 방법, 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치
US20230010168A1 (en) Wearable electronic device for detecting biometric information
US20190072512A1 (en) Whole blood measurement method associated to hematocrit
TW201629845A (zh) 指紋檢測電路及電子裝置
US20220346718A1 (en) Biological information measuring device
CN117580500A (zh) 基于mri兼容性节点的ecg测量网络
US9531346B2 (en) Signal processing apparatus and method
WO2022266252A1 (en) Dynamic incremental analog-to-digital conversion interfaces for in-ear electrophysiology
TW201629844A (zh) 指紋檢測電路及電子裝置
CN110236542B (zh) 人体水分状态的提示方法、装置及鼠标
KR102070406B1 (ko) 비접촉 심전도 측정 회로 및 이를 이용한 심전도 측정 장치
Chou et al. Wireless, Multi-Sensor System-on-Chip for pH and Amperometry Powered by Body Heat
JP6530506B2 (ja) 測定信号増幅器および測定信号増幅器のエネルギー供給方法
US20190307402A1 (en) Biological information measurement apparatus, method for controlling the same, and recording medium
CN110959148A (zh) 用于自电容测量的动态范围增强
CN204971254U (zh) 应用于个人便携设备的血压采集电路
US20220076654A1 (en) Electromyography Signal Detection Device
RU197456U1 (ru) Портативный электроэнцефалограф
KR102483988B1 (ko) 생체 신호 측정 장치, 및 생체 신호 측정 장치의 동작 방법
CN112568906B (zh) 检测电路、可穿戴设备检测方法及可穿戴设备
JP6814896B2 (ja) 携帯センサ装置におけるecg測定値の捕捉

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant