KR101912805B1 - Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same - Google Patents
Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same Download PDFInfo
- Publication number
- KR101912805B1 KR101912805B1 KR1020160135895A KR20160135895A KR101912805B1 KR 101912805 B1 KR101912805 B1 KR 101912805B1 KR 1020160135895 A KR1020160135895 A KR 1020160135895A KR 20160135895 A KR20160135895 A KR 20160135895A KR 101912805 B1 KR101912805 B1 KR 101912805B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- ldh
- hybrid structure
- nanosheet
- dimensional hybrid
- Prior art date
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 20
- 239000002135 nanosheet Substances 0.000 claims abstract description 62
- 239000002184 metal Substances 0.000 claims abstract description 58
- 229910052751 metal Inorganic materials 0.000 claims abstract description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 238000001338 self-assembly Methods 0.000 claims abstract description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract 2
- 150000004706 metal oxides Chemical class 0.000 claims abstract 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 47
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 39
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 36
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 28
- 229910021645 metal ion Inorganic materials 0.000 claims description 27
- 239000003446 ligand Substances 0.000 claims description 26
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 24
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 22
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 18
- 239000011148 porous material Substances 0.000 claims description 17
- OYFRNYNHAZOYNF-UHFFFAOYSA-N 2,5-dihydroxyterephthalic acid Chemical compound OC(=O)C1=CC(O)=C(C(O)=O)C=C1O OYFRNYNHAZOYNF-UHFFFAOYSA-N 0.000 claims description 14
- -1 H 2 O Chemical compound 0.000 claims description 12
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 claims description 12
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 12
- 239000003960 organic solvent Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 9
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 claims description 7
- GPNNOCMCNFXRAO-UHFFFAOYSA-N 2-aminoterephthalic acid Chemical compound NC1=CC(C(O)=O)=CC=C1C(O)=O GPNNOCMCNFXRAO-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 6
- 150000002460 imidazoles Chemical class 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 238000000527 sonication Methods 0.000 claims description 4
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- 239000002082 metal nanoparticle Substances 0.000 claims 2
- 229920000098 polyolefin Polymers 0.000 claims 2
- 239000007795 chemical reaction product Substances 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 41
- 239000010936 titanium Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000013086 titanium-based metal-organic framework Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000007146 photocatalysis Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- YTHVDKOZFFPNTM-UHFFFAOYSA-N 2,3-dihydroxyterephthalic acid 2,5-dihydroxyterephthalic acid Chemical compound OC=1C(=C(C(=O)O)C=CC1C(=O)O)O.OC1=C(C=C(C(=C1)C(=O)O)O)C(=O)O YTHVDKOZFFPNTM-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- 239000005968 1-Decanol Substances 0.000 description 1
- 125000006414 CCl Chemical group ClC* 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZKGNPQKYVKXMGJ-UHFFFAOYSA-N N,N-dimethylacetamide Chemical compound CN(C)C(C)=O.CN(C)C(C)=O ZKGNPQKYVKXMGJ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- ATKIGFUAOXHQMV-UHFFFAOYSA-N octan-1-ol Chemical compound CCCCCCCCO.CCCCCCCCO ATKIGFUAOXHQMV-UHFFFAOYSA-N 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- ZWPWUVNMFVVHHE-UHFFFAOYSA-N terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1.OC(=O)C1=CC=C(C(O)=O)C=C1 ZWPWUVNMFVVHHE-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B1/008—Nanostructures not provided for in groups B82B1/001 - B82B1/007
-
- B01J35/004—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
- B82B3/0038—Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
본 발명은 자기조립형 3차원 혼성 구조체, 이의 제조방법 및 이를 이용한 광촉매에 관한 것으로 표면전하를 띠는 박리된 금속 이중층 수산화물(LDH) 나노시트와 금속 산화물을 반응시켜 자기조립을 수행하여 상기 금속 이중층 수산화물(LDH) 나노시트 사이에 금속-유기 구조체(MOF)가 삽입되도록 형성함으로써, 마이크로기공이 0.1 내지 1.0 cm3/g 및 메조기공이 0.1 내지 1.0 cm3/g으로 동시에 형성되고 광학적, 화학적으로 안정성이 낮은 금속-유기 구조체(MOF)를 이용함에도 우수한 안정성을 확보할 수 있다.The present invention relates to a self-assembled three-dimensional hybrid structure, a method of manufacturing the same, and a photocatalyst using the same, wherein self-assembly is performed by reacting a metal oxide with a separated metal double layer hydroxide (LDH) nanosheet having a surface charge, Organic structure (MOF) is inserted between the hydroxide (LDH) nanosheets so that the micropores are formed at 0.1 to 1.0 cm 3 / g and the mesopores are formed simultaneously at 0.1 to 1.0 cm 3 / g, Excellent stability can be secured even though a low-stability metal-organic structure (MOF) is used.
Description
본 발명은 박리된 금속 이중층 수산화물(LDH) 나노시트 표면에 자기조립으로 금속-유기 구조체(MOF)를 형성시켜 제조된 3차원 혼성 구조체, 이의 제조방법 및 이를 이용한 광촉매에 관한 것이다.The present invention relates to a three-dimensional hybrid structure produced by self-assembling a metal-organic structure (MOF) on the surface of a peeled metal double layer hydroxide (LDH) nanosheet, a method for producing the same, and a photocatalyst using the same.
광촉매(photocatalysis)란 태양광을 비롯한 다양한 광에 의해 화학반응을 촉진시켜 촉매반응을 하는 물질을 뜻한다. 식물의 엽록소에서 일어나는 광합성이 바로 대표적인 광촉매 시스템(photocatalysis system)이라고 할 수 있다. Photocatalysis refers to a substance that catalyzes a chemical reaction by a variety of light sources, including sunlight. Photosynthesis occurring in the chlorophyll of a plant is a representative photocatalysis system.
광촉매 시스템으로는 물을 분해하여 산소와 수소를 생산하는 물분해(water splitting), CO2를 이용하여 메탄올과 메탄을 생산하는 CO2 저감(CO2 reduction), 인체에 유해한 유기물들을 분해하는 광분해(photo degradation) 등이 있다.Photocatalyst system is decomposed with water to decompose water to produce oxygen and hydrogen (water splitting), CO 2 reduction that produce methanol and methane by using CO 2 (CO 2 reduction), photolysis for decomposing the harmful organic matters to the body ( photo degradation.
이러한 광촉매 시스템은 외부에서 에너지를 얻지 않고 태양광만을 이용하여 독자적으로 작용을 하는 시스템으로, 여기에 사용되는 광촉매 또한 인체에 무해하고 특정조건하에 재사용이 가능하기 때문에 차세대 청정 에너지원이라 할 수 있다.This photocatalytic system is a system that exerts its own action by using only sunlight without obtaining energy from the outside. Since the photocatalyst used here is harmless to the human body and can be reused under specific conditions, it can be considered as a next generation clean energy source.
특히, 물분해는 다음과 같은 식에 의해 물을 분해하여 수소가스를 생산한다.In particular, water decomposition produces hydrogen gas by decomposing water by the following equation.
H2O → 1/2O2 + H2 (△G = 237 KJ/mol)H 2 O → 1 / 2O 2 + H 2 (ΔG = 237 KJ / mol)
물분해는 태양광을 흡수하여 전자가 가전자대(valence band)에서 전도대(conduction band)로 들떠 반응을 일으키는 광촉매를 필요로 한다. 광촉매는 값이 저렴하고 인체에 무해하고 안정성이 뛰어나야 하며, 물과 직접적으로 반응하는 경우가 많기 때문에 친수성이어야 한다.Water decomposition requires a photocatalyst that absorbs sunlight, causing electrons to exude from the valence band to the conduction band. The photocatalyst should be hydrophilic because it is inexpensive, harmless to the human body, excellent in stability, and often reacts directly with water.
물분해 반응의 표준 깁스 자유에너지 변화(standard Gibbs free energy change)인 △G° 값은 237 kJ/mol이고, 밴드갭 에너지는 1.23 eV로서, TiO2는 이러한 조건들을 충족하기 때문에 광촉매로 주로 사용되었다. 그러나 상기 TiO2의 밴드갭 에너지는 3.0 eV로 가시광을 이용하기에는 부적합하다.The standard Gibbs free energy change of the water decomposition reaction is 237 kJ / mol, the band gap energy is 1.23 eV, and TiO 2 is mainly used as a photocatalyst since it satisfies these conditions . However, the band gap energy of the TiO 2 is 3.0 eV, which is not suitable for using visible light.
전자가 들뜨게 되면 들뜬 전자가 다시 홀과 결합하는 재결합이 발생하게 되는데, 이 현상이 일어나게 되면 수소 발생의 효율이 떨어지고 심하게 되면 반응이 일어나지 않게 된다. 따라서 이를 방지하기 위하여 election trap으로 작용하는 공촉매를 촉매 표면에 코팅하는 방법을 사용하는데 이 방법을 사용하면 제조단가가 높아지며 촉매를 제조하기 번거로운 면이 있다.When the electrons are excited, the recombination occurs in which the excited electrons are recombined with the holes. If this phenomenon occurs, the efficiency of hydrogen generation is decreased. Therefore, in order to prevent this, a method of coating a cocatalyst acting as an election trap on the surface of the catalyst is used. However, when this method is used, the manufacturing cost is increased and there is a problem of producing the catalyst.
한편, 태양광은 자외선(300~400 nm), 가시광선(400~700 nm), 근적외선(700~2500 nm) 영역의 빛을 가지며, 이중 가시광은 지면에 조사되는 태양광 중 약 43%를 차지한다.On the other hand, sunlight has light in the range of ultraviolet rays (300 to 400 nm), visible light (400 to 700 nm) and near infrared rays (700 to 2500 nm), and visible light occupies about 43% do.
광촉매로 주로 사용되는 TiO2의 경우에는 400 nm 이하의 빛만을 흡수하기 때문에 지표면에 조사되는 태양광 중 5% 정도밖에 이용하지 못한다. 이에, 상기 문제점을 보완하기 위하여 가시광 염료를 이용한 염료감응 광촉매(dye-sensitized photocatalysis)가 개발되었으나, 대표적으로 많이 사용하는 루테늄(ruthenium)을 이용한 염료의 가격이 비싸고 환경적으로 안정적이지 못하다는 단점이 있다.In the case of TiO 2 , which is mainly used as a photocatalyst, only 5% of the sunlight irradiated on the ground surface is used because it absorbs light of 400 nm or less. In order to solve the above problems, a dye-sensitized photocatalysis using visible light dyes has been developed. However, dye-sensitized photocatalysis using expensive ruthenium is expensive and environmentally unstable. have.
따라서, 광촉매로 이용하기 위하여 광촉매로서의 효능이 우수하며 제조가 간편할 뿐만 아니라 안정적인 물질이 요구되고 있다. Therefore, the photocatalyst is excellent in the effect as a photocatalyst for use as a photocatalyst, and is not only easy to manufacture but also requires a stable substance.
본 발명의 목적은 박리된 금속 이중층 수산화물(LDH) 나노시트 표면에 자기조립으로 금속-유기 구조체(MOF)를 형성시켜 제조된 3차원 혼성 구조체를 제공하는데 있다.It is an object of the present invention to provide a three-dimensional hybrid structure produced by self-assembling a metal-organic structure (MOF) on the surface of a separated metal double layer hydroxide (LDH) nanosheet.
또한, 본 발명의 다른 목적은 상기 3차원 혼성 구조체를 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for manufacturing the three-dimensional hybrid structure.
또한, 본 발명의 또 다른 목적은 상기 3차원 혼성 구조체를 이용한 광촉매를 제공하는데 있다.It is still another object of the present invention to provide a photocatalyst using the three-dimensional hybrid structure.
상기한 목적을 달성하기 위한 본 발명의 3차원 혼성 구조체는 표면에 리간드가 위치한 박리된 금속 이중층 수산화물(LDH) 나노시트와 금속이온을 반응시켜 상기 박리된 금속 이중층 수산화물(LDH) 나노시트 표면에 자기조립으로 금속-유기 구조체(MOF)가 형성된 것으로서, In order to accomplish the above object, the present invention provides a three-dimensional hybrid structure comprising a metal double-layer hydroxide (LDH) nanosheet on which a ligand is located, The metal-organic structure (MOF) is formed by assembly,
2개 이상의 박리된 금속 이중층 수산화물(LDH) 나노시트 표면이 금속-유기 구조체(MOF)로 연결되어 3차원 구조로 형성될 수 있다. Two or more separated metal double-layer hydroxide (LDH) nanosheet surfaces may be connected by a metal-organic structure (MOF) to form a three-dimensional structure.
상기 3차원 혼성 구조체는 마이크로기공이 0.01 내지 1.0 cm3/g으로 형성되고 메조기공이 0.01 내지 1.0 cm3/g으로 형성될 수 있다.The three-dimensional hybrid structure may have a micropores of 0.01 to 1.0 cm 3 / g and a mesopore of 0.01 to 1.0 cm 3 / g.
상기 3차원 혼성 구조체는 마이크로기공과 메조기공이 1 : 0.01-1의 부피비로 형성될 수 있다.The three-dimensional hybrid structure may have micropores and mesopores in a volume ratio of 1: 0.01-1.
상기 박리된 금속 이중층 수산화물(LDH) 나노시트는 하기 [화학식 1]로 표시되는 화합물일 수 있다:The exfoliated metal double layer hydroxide (LDH) nanosheet may be a compound represented by the following Chemical Formula 1:
[화학식 1][Chemical Formula 1]
[MII (1-x)MIII x(OH)2][An-]x/n·zH2O;[M II (1-x) M III x (OH) 2 ] [A n- ] x / n .zH 2 O;
상기 화학식 1에 있어서, 상기 MII는 Ca2 +, Mg2 +, Zn2 +, Ni2 +, Mn2 +, Co2 +, Fe2 +, Cu2 + 및 이들의 혼합금속으로 이루어진 군에서 선택되며,In the general formula 1, wherein M II is a Ca 2 +, Mg 2 +, Zn 2 +, Ni 2 +, Mn 2 +, Co 2 +, Fe 2 +, Cu 2 + , and from the group consisting of mixed metal Selected,
상기 MIII은 Fe3 +, Al3 +, Cr3 +, Mn3 +, Ga3 +, Co3 +, Ni3 + 및 이들의 혼합금속으로 이루어진 군에서 선택되고,Wherein M III is selected from 3 + Fe, Al + 3, Cr + 3, Mn + 3, Ga + 3, Co + 3, Ni + 3, and the group consisting of mixed metal,
상기 An-는 수산화 이온(OH-), 질산 이온(NO3 -), PO4 3 -, HPO4 2 -, H2PO4 - 및 이들의 조합으로 이루어지는 군으로부터 선택되며,Wherein A n- is selected from the group consisting of hydroxide ions (OH - ), nitrate ions (NO 3 - ), PO 4 3 - , HPO 4 2 - , H 2 PO 4 -
0<x<1이고, z는 0.1 내지 15의 실수임.0 < x < 1, and z is a real number of 0.1 to 15.
상기 금속-유기 구조체(MOF)는 하기 [화학식 2]로 표시되는 화합물일 수 있다:The metal-organic structure (MOF) may be a compound represented by the following Chemical Formula 2:
[화학식 2](2)
[Mx(L)y(S)z]·S;[M x (L) y (S) z ] S;
상기 M은 Li+, Mg2 +, Al3 +, Ti2 +, Ti3 +, Ti4 +, V3 +, V4 +, V5 +, Cr2 +, Cr3 +, Mn2 +, Mn3 +, Mn4 +, Mn6 +, Mn7 +, Fe2+, Fe3 +, Co2 +, Co3 +, Ni2 +, Cu+, Cu2 +, Zn2 +, Ag+ 및 이들의 혼합금속으로 이루어진 군에서 선택될 수 있으며,Wherein M is Li +, Mg 2 +, Al 3 +, Ti 2 +, Ti 3 +, Ti 4 +, V 3 +, V 4 +, V 5 +, Cr 2 +, Cr 3 +, Mn 2 +, Mn 3 +, Mn 4 +, Mn 6 +, Mn 7 +, Fe 2+, Fe 3 +, Co 2 +, Co 3 +, Ni 2 +, Cu +, Cu 2 +, Zn 2 +, Ag + , and And mixtures of these metals,
상기 L(리간드)은 2-아미노 테레프탈릭산(2-aminoterephthalic acid, NH2-H2BDC), 테레프탈릭산(terephthalic acid, H2BDC), 2,5-디히드록시 테레프탈릭산 (2,5-dihydroxyterephthalic acid, H2DOBDC), 트리메식산(trimesic acid, H3BTC), 이미다졸(imidazole, IM) 및 1-메틸 이미다졸(1-methyl imidazole, CH3-IM)로 이루어진 군에서 선택된 1종 이상일 수 있고.The L (ligand) may be selected from the group consisting of 2-aminoterephthalic acid (NH 2 -H 2 BDC), terephthalic acid (H 2 BDC), 2,5-dihydroxyterephthalic acid dihydroxyterephthalic acid, H 2 DOBDC), trimesic acid (H 3 BTC), imidazole (IM) and 1-methyl imidazole (CH 3 -IM) It can be more than a species.
상기 S(용매)는 디메틸포름아미드(N,N-Dimethyl Formamide, DMF), 포름알데히드(Formaldehyde, FA), 디에틸포름아미드(N,N-Diethyl Formamide, DEF), 디메틸아세트아미드(Dimethylacetamide, DMA), 메탄올(methanol, MeOH), 에탄올 (ethanol, EtOH), 테트라하이드로퓨란(Tetrahydrofuran, THF), 물(water, H2O), 1-메틸-2-피롤리디논(1-Methyl-2-pyrrolidinone, NMP), 디메틸설폭시드(Dimethyl Sulfoxide, DMSO), 다이에틸 에테르(Diethyl Ether, Ether) 및 이들의 혼합용매로 이루어진 군에서 선택될 수 있으며,The S (solvent) may be selected from the group consisting of N, N-Dimethyl Formamide (DMF), Formaldehyde (FA), N, N-Diethyl Formamide (DEF), Dimethylacetamide ), Methanol (MeOH), ethanol (EtOH), tetrahydrofuran (THF), water (H 2 O), 1-methyl- N-dimethylformamide (NMP), dimethyl sulfoxide (DMSO), diethyl ether (Ether), and mixed solvents thereof.
1<x<3이고, 1<y<3이며, 1<z<3의 실수임1 <x <3, 1 <y <3, and 1 <z <3
또한, 상기한 다른 목적을 달성하기 위한 본 발명의 3차원 혼성 구조체를 제조하는 방법은 (A) 표면전하를 띠는 박리된 금속 이중층 수산화물(LDH) 나노시트와 리간드를 유기용매에 첨가하여 초음파(sonication) 처리하는 단계; 및According to another aspect of the present invention, there is provided a method for fabricating a three-dimensional hybrid structure, comprising the steps of: (A) adding an exfoliated metal double layer hydroxide (LDH) nanosheet and a ligand to an organic solvent to form an ultrasonic wave sonication); And
(B) 상기 초음파 처리된 용액에 금속이온을 첨가하여 반응시켜 자기조립을 수행하는 단계를 포함하여 2개 이상의 박리된 금속 이중층 수산화물(LDH) 나노시트 표면이 금속-유기 구조체(MOF)로 연결되어 3차원 구조로 형성된 3차원 혼성 구조체를 제공할 수 있다.(B) performing a self-assembly by adding metal ions to the ultrasound-treated solution and reacting the metal ions to form a metal-organic structure (MOF), wherein two or more separated metal double layer hydroxide (LDH) A three-dimensional hybrid structure formed by a three-dimensional structure can be provided.
상기 금속 이중층 수산화물(LDH) 나노시트 사이에 금속-유기 구조체(MOF)가 삽입된 3차원 혼성 구조체를 제공할 수 있다.Dimensional hybrid structure in which a metal-organic structure (MOF) is inserted between the metal double layer hydroxide (LDH) nanosheets.
상기 (A)단계에서 박리된 금속 이중층 수산화물(LDH) 나노시트와 리간드는 1 : 5 내지 200의 중량비로 혼합될 수 있다.The metal double layer hydroxide (LDH) nanosheet and the ligand which are separated in the step (A) may be mixed in a weight ratio of 1: 5 to 200.
상기 (A)단계에서 리간드는 2-아미노 테레프탈릭산(2-aminoterephthalic acid, NH2-H2BDC), 테레프탈릭산(terephthalic acid, H2BDC), 2,5-디히드록시 테레프탈릭산(2,5-dihydroxyterephthalic acid, H2DOBDC), 트리메식산(trimesic acid, H3BTC), 이미다졸(imidazole, IM) 및 1-메틸 이미다졸(1-methyl imidazole, CH3-IM)로 이루어진 군에서 선택된 1종 이상일 수 있다.In the step (A), the ligand is selected from the group consisting of 2-aminoterephthalic acid (NH 2 -H 2 BDC), terephthalic acid (H 2 BDC), 2,5-dihydroxyterephthalic acid 5-dihydroxyterephthalic acid, H 2 DOBDC), trimesic acid (H 3 BTC), imidazole (IM) and 1-methyl imidazole (CH 3 -IM) It may be at least one selected.
상기 (A)단계에서 유기용매는 디메틸포름아미드(N,N-Dimethyl Formamide, DMF), 포름알데히드(Formaldehyde, FA), 디에틸포름아미드(N,N-Diethyl Formamide, DEF), 디메틸아세트아미드(Dimethylacetamide, DMA), 메탄올(methanol, MeOH), 에탄올(ethanol, EtOH), 테트라하이드로퓨란(Tetrahydrofuran, THF), 물(water, H2O), 1-메틸-2-피롤리디논(1-Methyl-2-pyrrolidinone, NMP), 디메틸설폭시드(Dimethyl Sulfoxide, DMSO), 다이에틸 에테르(Diethyl Ether, Ether) 및 이들의 혼합용매로 이루어진 군에서 선택될 수 있다.In step (A), the organic solvent may be selected from the group consisting of N, N-Dimethyl Formamide (DMF), formaldehyde (FA), N, N-Diethyl Formamide (DEF), dimethylacetamide Dimethylacetamide, DMA), methanol, MeOH, ethanol, EtOH, Tetrahydrofuran, THF, water, H 2 O, 1-methyl -2-pyrrolidinone, NMP, dimethylsulfoxide (DMSO), diethyl ether (Ether), and mixed solvents thereof.
상기 (A)단계에서 사용된 박리된 금속 이중층 수산화물(LDH) 나노시트와 (B)단계에서 사용된 금속이온은 1 : 5 내지 200의 중량비로 혼합될 수 있다.The separated metal double layer hydroxide (LDH) nanosheet used in the step (A) and the metal ion used in the step (B) may be mixed in a weight ratio of 1: 5 to 200.
상기 (B)단계에서 사용된 금속이온은 Li+, Mg2 +, Al3 +, Ti2 +, Ti3 +, Ti4 +, V3 +, V4 +, V5 +, Cr2 +, Cr3 +, Mn2+, Mn3 +, Mn4 +, Mn6 +, Mn7 +, Fe2 +, Fe3 +, Co2 +, Co3 +, Ni2 +, Cu+, Cu2+, Zn2 +, Ag+ 및 이들의 혼합금속이온으로 이루어진 군에서 선택될 수 있다.The metal ion used in the step (B) is Li +, Mg 2 +, Al 3 +, Ti 2 +, Ti 3 +, Ti 4 +, V 3 +, V 4 +, V 5 +, Cr 2 +, Cr 3 +, Mn 2+, Mn 3 +, Mn 4 +, Mn 6 +, Mn 7 +, Fe 2 +, Fe 3 +, Co 2 +, Co 3 +, Ni 2 +, Cu +, Cu 2+ , Zn 2 + , Ag +, and mixed metal ions thereof.
상기 (B)단계에서 자기조립은 50 내지 200 ℃에서 10 내지 24시간 동안 수행될 수 있다.In the step (B), the self-assembly may be performed at 50 to 200 ° C for 10 to 24 hours.
또한, 상기한 또 다른 목적을 달성하기 위한 본 발명의 광촉매는 상기 3차원 혼성 구조체를 포함할 수 있다.According to another aspect of the present invention, there is provided a photocatalyst comprising the three-dimensional hybrid structure.
상기 광촉매는 물을 분해하여 수소를 생성시키는 광촉매일 수 있다.The photocatalyst may be a photocatalyst that decomposes water to generate hydrogen.
본 발명의 3차원 혼성 구조체는 박리된 금속 이중층 수산화물(LDH) 나노시트 표면에서 자기조립으로 금속-유기 구조체(MOF)가 형성되어 혼성화된 것으로서, 메조기공(직경: 2.0-50.0 nm)에 비하여 직경이 작은 마이크로기공(직경: 0.1-1.9 nm)이 월등히 많이 생성되므로 질소 흡착/탈착이 우수한다.The three-dimensional hybrid structure of the present invention is formed by self-assembling a metal-organic structure (MOF) on the surface of a separated metal double layer hydroxide (LDH) nanosheet, and is hybridized to a mesopore (diameter: 2.0-50.0 nm) Since these small micro pores (diameter: 0.1-1.9 nm) are generated so much, nitrogen adsorption / desorption is excellent.
또한, 본 발명의 3차원 혼성 구조체는 상대적으로 광학적, 화학적 안정성이 낮은 금속-유기 구조체(MOF)를 이용함에도 우수한 안정성을 확보할 수 있다.In addition, the three-dimensional hybrid structure of the present invention can secure excellent stability even though a metal-organic structure (MOF) having a relatively low optical and chemical stability is used.
이와 같이, 안정적이며 마이크로기공이 다수개로 형성된 3차원 혼성 구조체는 광촉매로도 응용될 수 있다.As described above, the three-dimensional hybrid structure, which is stable and has a plurality of micropores, can also be used as a photocatalyst.
도 1은 본 발명의 일 실시예에 따라 3차원 혼성 구조체를 제조하는 과정을 나타낸 흐름도이다.
도 2는 금속 이중층 수산화물(LDH)로부터 박리된 금속 이중층 수산화물(LDH) 나노시트를 제조하는 과정을 나타낸 흐름도이다.
도 3a는 본 발명의 실시예 1에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 표면을 SEM으로 촬영한 사진이며, 도 3b는 본 발명의 실시예 1에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 표면을 SEM으로 촬영한 사진이다.
도 4는 본 발명의 실시예 1 및 2에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 N2 흡착-탈착 등온선도를 나타낸 그래프이다.
도 5는 본 발명의 실시예 1 및 2에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체에 형성된 마이크로기공의 크기 분포를 측정한 그래프이다.
도 6a는 본 발명의 제조예 3에 따라 제조된 Ti-MOF와 실시예 1 및 실시예 2에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 확산반사 UV-vis 흡수 스펙트럼 그래프이며, 도 6b는 도 6a의 흡수 스펙트럼을 확대시킨 그래프이다.1 is a flowchart illustrating a process of fabricating a three-dimensional hybrid structure according to an embodiment of the present invention.
2 is a flow chart illustrating a process for producing a metal double layer hydroxide (LDH) nanosheet from a metal double layer hydroxide (LDH).
FIG. 3A is a SEM photograph of the surface of a Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure manufactured according to Example 1 of the present invention, and FIG. 3B is a cross- @ ZnCr-LDH The three-dimensional hybrid structure was photographed by SEM.
4 is a graph showing N 2 adsorption-desorption isotherms of a Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure produced according to Examples 1 and 2 of the present invention.
FIG. 5 is a graph showing the size distribution of micro pores formed on the Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure produced according to Examples 1 and 2 of the present invention.
6A is a diffuse reflection UV-vis absorption spectrum graph of the Ti-MOF prepared according to Production Example 3 of the present invention and the Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure produced according to Example 1 and Example 2, FIG. 6B is an enlarged graph of the absorption spectrum of FIG. 6A. FIG.
본 발명은 박리된 금속 이중층 수산화물(LDH) 나노시트 표면에 자기조립으로 금속-유기 구조체(MOF)를 형성시켜 제조된 3차원 혼성 구조체, 이의 제조방법 및 이를 이용한 광촉매에 관한 것이다.The present invention relates to a three-dimensional hybrid structure produced by self-assembling a metal-organic structure (MOF) on the surface of a peeled metal double layer hydroxide (LDH) nanosheet, a method for producing the same, and a photocatalyst using the same.
본 발명은 고정화된 표면에서의 반응으로 흔히 발생되는 2차원 구조체(LDH 나노시트)의 부분적인 결정화 및 2차원 구조체의 용액 내 분산화도 낮음을 해결하여 완성하였다. 또한, 낮은 비표면적 및 구조적 불안정성을 보이는 박리된 금속 이중층 수산화물(LDH) 나노시트의 문제점을 3차원 혼성 구조체를 제조함으로써 해결하였다.
The present invention solves the problem of partial crystallization of a two-dimensional structure (LDH nanosheet) often generated by reaction on an immobilized surface and low dispersion of a two-dimensional structure in solution. In addition, the problem of the peeled metal double layer hydroxide (LDH) nanosheets exhibiting low specific surface area and structural instability is solved by manufacturing a three-dimensional hybrid structure.
이하, 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.
본 발명의 3차원 혼성 구조체는 표면에 리간드가 위치한 박리된 금속 이중층 수산화물(LDH) 나노시트와 금속이온을 반응시켜, 상기 박리된 금속 이중층 수산화물(LDH) 나노시트 표면에 자기조립으로 금속-유기 구조체(MOF)를 형성시켜 2개 이상의 금속 이중층 수산화물(LDH) 나노시트의 표면을 금속-유기 구조체(MOF)가 연결하도록 형성된다.The three-dimensional hybrid structure of the present invention can be produced by reacting a metal ion with a separated metal double-layer hydroxide (LDH) nanosheet on which a ligand is present on the surface, and by self-assembling to the surface of the separated metal double layer hydroxide (LDH) (MOF) to form the metal-organic structure (MOF) to connect the surface of two or more metal double layer hydroxide (LDH) nanosheets.
구체적으로, 통상의 금속 이중층 수산화물(LDH)을 낱장의 나노층으로 박리시켜 비표면적을 넓히고, 리간드가 위치한 박리된 금속 이중층 수산화물(LDH) 나노시트의 표면에서 금속이온과 상기 리간드의 반응으로 자기조립을 유도하여 상기 금속 이중층 수산화물(LDH) 나노시트와 금속-유기 구조체(MOF)가 혼성화되도록 하여 혼성 구조체를 형성한다. Specifically, a conventional metal double layer hydroxide (LDH) is peeled off as a single nano layer to broaden the specific surface area, and the self-assembly of the metal ion and the ligand on the surface of the separated metal double layer hydroxide (LDH) (LDH) nanosheets and a metal-organic structure (MOF) are hybridized to form a hybrid structure.
종래에는 금속이나 탄소표면에서 금속이나 유기 리간드가 자기조립하여 2차원의 금속-유기 구조체(MOF)를 성장시키는 기술이 있었지만, 이는 고정화된 표면에서 에피택시얼(epitaxial) 성장을 이루므로 2개 이상의 2차원 구조체가 단원자 층으로 혼성화되는 3차원 혼성 구조체를 수득할 수 없었다.Conventionally, there has been a technique of self-assembling a metal or an organic ligand on a metal or carbon surface to grow a two-dimensional metal-organic structure (MOF). However, since this leads to epitaxial growth on the immobilized surface, It was impossible to obtain a three-dimensional hybrid structure in which the two-dimensional structure was hybridized with the monolayer.
그러나 본 발명은 2차원 구조체인 박리된 금속 이중층 수산화물(LDH) 나노시트 2개 이상이 연결되도록, 금속 이중층 수산화물(LDH) 나노시트 표면에서의 결정성장의 제어를 통해 금속-유기 구조체(MOF)의 자기조립을 유도하여 2차원 구조체인 박리된 금속 이중층 수산화물(LDH) 나노시트 2개 이상이 단원자 층으로 혼성화되므로 3차원 혼성 구조체를 수득할 수 있다. However, the present invention relates to a method for preparing a metal-organic structure (MOF) by controlling the crystal growth on the surface of a metal double layer hydroxide (LDH) nanosheet such that two or more separated metal double layer hydroxide (LDH) nanosheets, Two or more separated metal double-layer hydroxide (LDH) nanosheets as a two-dimensional structure are induced to self-assemble, so that a three-dimensional hybrid structure can be obtained because the two or more nanosheets are hybridized to a monolayer.
상기 박리된 금속 이중층 수산화물(LDH) 나노시트 대신 통상의 금속 이중층 수산화물(LDH)을 사용하는 경우에는 비표면적이 낮아 광촉매 효율이 높지 않으며, 금속-유기 구조체(MOF)가 형성되지 않으므로 3차원의 혼성 구조체를 제조할 수 없다.When a conventional metal double layer hydroxide (LDH) is used instead of the exfoliated metal double layer hydroxide (LDH) nanosheet, the specific surface area is low and the efficiency of the photocatalyst is not high and the metal-organic structure (MOF) The structure can not be manufactured.
상기 금속 이중층 수산화물(LDH) 나노시트는 하기 [화학식 1]로 표시되는 금속 이중층 수산화물(LDH) 나노시트를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The metal double layer hydroxide (LDH) nanosheet may include, but is not limited to, a metal double layer hydroxide (LDH) nanosheet represented by the following formula (1).
[화학식 1][Chemical Formula 1]
[MII (1-x)MIII x(OH)2][An-]x/n·zH2O;[M II (1-x) M III x (OH) 2 ] [A n- ] x / n .zH 2 O;
상기 화학식 1에 있어서, 상기 MII는 Ca2 +, Mg2 +, Zn2 +, Ni2 +, Mn2 +, Co2 +, Fe2 +, Cu2 + 및 이들의 혼합금속으로 이루어진 군에서 선택되며,In the general formula 1, wherein M II is a Ca 2 +, Mg 2 +, Zn 2 +, Ni 2 +, Mn 2 +, Co 2 +, Fe 2 +, Cu 2 + and in the group consisting of a mixture of these metals Selected,
상기 MIII은 Fe3 +, Al3 +, Cr3 +, Mn3 +, Ga3 +, Co3 +, Ni3 + 및 이들의 혼합금속으로 이루어진 군에서 선택되고,Wherein M III is selected from 3 + Fe, Al + 3, Cr + 3, Mn + 3, Ga + 3, Co + 3, Ni + 3, and the group consisting of mixed metal,
상기 An-는 수산화 이온(OH-), 질산 이온(NO3 -), PO4 3 -, HPO4 2 -, H2PO4 - 및 이들의 조합으로 이루어지는 군으로부터 선택되며,Wherein A n- is selected from the group consisting of hydroxide ions (OH - ), nitrate ions (NO 3 - ), PO 4 3 - , HPO 4 2 - , H 2 PO 4 -
0<x<1이고, z는 0.1 내지 15의 실수이다.0 < x < 1, and z is a real number of 0.1 to 15.
상기 화학식 1로 표현되는 금속 이중층 수산화물(LDH) 나노시트는 공침 단계를 거친 후, 금속 이중층 수산화물염을 1-부탄올(1-butanol), 1-헥사놀(1-hexanol), 1-옥타놀(1-octanol), 1-데카놀(1-decanol), CCl4, 크실렌(xylene) 및 포름아마이드(HCONH2; formamide)로 이루어지는 군으로부터 선택되는 1 종 이상의 용매와 반응시켜 양이온 표면 전하를 갖는 금속 이중층 수산화물염의 형태로 용해하는 단계(박리화)를 통하여 나노시트 형태로 제조될 수 있다. 상기 용매의 종류는 상기 금속 이중층 수산화물염을 용해할 수 있는 것이면 제한되는 것은 아니다.The metal double layer hydroxide (LDH) nanosheet represented by Chemical Formula 1 is subjected to a coprecipitation step and then the metal double layer hydroxide salt is reacted with 1-butanol, 1-hexanol, 1-octanol 1-octanol, 1-decanol, CCl 4 , xylene, and formamide to form a metal double layer having a cation surface charge, (Release) in the form of a hydroxide salt in the form of nanosheets. The type of the solvent is not limited as long as it can dissolve the metal double layer hydroxide salt.
또한, 상기 리간드는 금속 이중층 수산화물(LDH) 나노시트들 사이를 연결하는 물질이라면 특별히 제한되지 않지만, 바람직하게는 2-아미노 테레프탈릭산(2-aminoterephthalic acid, NH2-H2BDC), 테레프탈릭산(terephthalic acid, H2BDC), 2,5-디히드록시 테레프탈릭산(2,5-dihydroxyterephthalic acid, H2DOBDC), 트리메식산(trimesic acid, H3BTC), 이미다졸 imidazole, IM) 및 1-메틸 이미다졸(1-methyl imidazole, CH3-IM)로 이루어진 군에서 선택된 1종 이상을 들 수 있다.Further, the ligand is not particularly limited as long as it is a material that connects the metal double layer hydroxide (LDH) nanosheets, but preferably 2-aminoterephthalic acid (NH 2 -H 2 BDC), terephthalic acid terephthalic acid, H 2 BDC), 2,5-dihydroxyterephthalic acid (H 2 DOBDC), trimesic acid (H 3 BTC), imidazole, IM) and 1 Methyl imidazole (CH 3 -IM), and the like.
또한, 상기 금속이온은 Li+, Mg2 +, Al3 +, Ti2 +, Ti3 +, Ti4 +, V3 +, V4 +, V5 +, Cr2 +, Cr3+, Mn2 +, Mn3 +, Mn4 +, Mn6+, Mn7 +, Fe2 +, Fe3 +, Co2 +, Co3 +, Ni2 +, Cu+, Cu2 +, Zn2 +, Ag+ 및 이들의 혼합금속이온으로 이루어진 군에서 선택될 수 있다.In addition, the metal ion is + Li, Mg + 2, Al + 3, Ti + 2, Ti + 3, Ti + 4, V + 3, V + 4, V + 5, Cr 2 +, Cr 3+, Mn 2 +, Mn 3 +, Mn 4 +, Mn 6+, Mn 7 +, Fe 2 +, Fe 3 +, Co 2 +, Co 3 +, Ni 2 +, Cu +, Cu 2 +, Zn 2 +, Ag + and mixed metal ions thereof.
상기 리간드 및 금속이온을 이용하여 자기조립된 금속-유기 구조체(MOF)는 하기 [화학식 2]로 표시되는 화합물일 수 있다.The metal-organic structure (MOF) self-assembled using the ligand and the metal ion may be a compound represented by the following formula (2).
[화학식 2](2)
[Mx(L)y(S)z]·S;[M x (L) y (S) z ] S;
상기 M(금속이온)은 Li+, Mg2 +, Al3 +, Ti2 +, Ti3 +, Ti4 +, V3 +, V4 +, V5 +, Cr2 +, Cr3 +, Mn2 +, Mn3 +, Mn4 +, Mn6+, Mn7 +, Fe2 +, Fe3 +, Co2 +, Co3 +, Ni2 +, Cu+, Cu2 +, Zn2 +, Ag+ 및 이들의 혼합금속이온으로 이루어진 군에서 선택될 수 있으며,The M (metal ions) is Li +, Mg 2 +, Al 3 +, Ti 2 +, Ti 3 +, Ti 4 +, V 3 +, V 4 +, V 5 +, Cr 2 +, Cr 3 +, Mn 2 +, Mn 3 +, Mn 4 +, Mn 6+, Mn 7 +, Fe 2 +, Fe 3 +, Co 2 +, Co 3 +, Ni 2 +, Cu +, Cu 2 +, Zn 2 + , Ag +, and mixed metal ions thereof,
상기 L(리간드)은 2-아미노 테레프탈릭산(2-aminoterephthalic acid, NH2-H2BDC), 테레프탈릭산(terephthalic acid, H2BDC), 2,5-디히드록시 테레프탈릭산 (2,5-dihydroxyterephthalic acid, H2DOBDC), 트리메식산(trimesic acid, H3BTC), 이미다졸(imidazole, IM) 및 1-메틸 이미다졸(1-methyl imidazole, CH3-IM)로 이루어진 군에서 선택된 1종 이상일 수 있고.The L (ligand) may be selected from the group consisting of 2-aminoterephthalic acid (NH 2 -H 2 BDC), terephthalic acid (H 2 BDC), 2,5-dihydroxyterephthalic acid dihydroxyterephthalic acid, H 2 DOBDC), trimesic acid (H 3 BTC), imidazole (IM) and 1-methyl imidazole (CH 3 -IM) It can be more than a species.
상기 S(용매)는 디메틸포름아미드 (N,N-Dimethyl Formamide, DMF), 포름알데히드(Formaldehyde, FA), 디에틸포름아미드(N,N-Diethyl Formamide, DEF), 디메틸아세트아미드(Dimethylacetamide, DMA), 메탄올(methanol, MeOH), 에탄올 (ethanol, EtOH), 테트라하이드로퓨란(Tetrahydrofuran, THF), 물(water, H2O), 1-메틸-2-피롤리디논(1-Methyl-2-pyrrolidinone, NMP), 디메틸설폭시드(Dimethyl Sulfoxide, DMSO), 다이에틸 에테르(Diethyl Ether, Ether) 및 이들의 혼합용매로 이루어진 군에서 선택될 수 있으며,The S (solvent) may be selected from the group consisting of N, N-Dimethyl Formamide (DMF), Formaldehyde (FA), N, N-Diethyl Formamide (DEF), Dimethylacetamide ), Methanol (MeOH), ethanol (EtOH), tetrahydrofuran (THF), water (H 2 O), 1-methyl- N-dimethylformamide (NMP), dimethyl sulfoxide (DMSO), diethyl ether (Ether), and mixed solvents thereof.
1<x<3이고, 1<y<3이며, 1<z<3의 실수이다.1 <x <3, 1 <y <3, and 1 <z <3.
이와 같이 제조된 3차원 혼성 구조체는 0.01 내지 1.0 cm3/g의 마이크로기공과 0.01 내지 1.0 cm3/g의 메조기공이 함께 형성됨으로써, 총 기공부피에 대하여 마이크로기공이 50 내지 85%로 형성된다. 또한, 상기 마이크로기공과 메조기공은 1 : 0.01-1.0의 부피비, 바람직하게는 1 : 0.2-0.4의 부피비로 형성되어 비표면적이 넓은 구조체로 제조된다.In this way the produced three-dimensional hybrid structure is 0.01 to 1.0 being mesopores of micro pore and 0.01 to 1.0 cm 3 / g are formed together in cm 3 / g, the micro pore is formed from 50 to 85% based on the total pore volume . Also, the micropores and the mesopores are formed at a volume ratio of 1: 0.01 to 1.0, preferably 1: 0.2 to 0.4, to form a structure having a large specific surface area.
또한, 3차원 혼성 구조체는 BET 표면적이 500 m2/g 이상, 바람직하게는 500 내지 2000 m2/g, 더욱 바람직하게는 600 내지 1300 m2/g이다.
Further, the three-dimensional hybrid structure has a BET surface area of 500 m 2 / g or more, preferably 500 to 2000 m 2 / g, and more preferably 600 to 1300 m 2 / g.
또한, 본 발명은 3차원 혼성 구조체를 제조하는 방법을 도 1을 참고하여 설명한다.Further, the present invention is described with reference to Fig. 1, for a method of manufacturing a three-dimensional hybrid structure.
본 발명의 3차원 혼성 구조체의 제조방법은 (A) 표면전하를 띠는 박리된 금속 이중층 수산화물(LDH) 나노시트와 리간드를 유기용매에 첨가하여 초음파(sonication) 처리하는 단계; 및A method for producing a three-dimensional hybrid structure according to the present invention comprises the steps of: (A) adding an exfoliated metal double layer hydroxide (LDH) nanosheet and a ligand to an organic solvent and sonication; And
(B) 상기 초음파 처리된 용액에 금속이온을 첨가하여 반응시켜 자기조립을 수행하는 단계;를 포함함으로써 2개 이상의 박리된 금속 이중층 수산화물(LDH) 나노시트 표면이 금속-유기 구조체(MOF)로 연결되어 3차원 구조로 형성된 3차원 혼성 구조체를 제공할 수 있다.(B) attaching a metal ion to the ultrasonic treated solution, and performing a self-assembly by reacting the metal ion, the two or more separated metal double-layer hydroxide (LDH) nanosheet surfaces are connected to the metal-organic structure (MOF) So that a three-dimensional hybrid structure formed in a three-dimensional structure can be provided.
먼저, 상기 (A)단계에서는 박리된 금속 이중층 수산화물(LDH) 나노시트와 리간드를 유기용매에 첨가하여 1 내지 3시간 동안 초음파 처리함으로써 용해시킨다.First, in step (A), the separated metal double layer hydroxide (LDH) nanosheets and ligands are dissolved in an organic solvent by sonication for 1 to 3 hours.
상기 리간드는 상기 표면전하를 띠는 박리된 금속 이중층 수산화물(LDH) 나노시트의 표면에 위치하여 금속 이중층 수산화물(LDH) 나노시트들 사이를 연결하며 자기조립으로 금속-유기 구조체(MOF)가 형성되는 것을 유도하는 것이다. The ligand is located on the surface of the peeled metal double layer hydroxide (LDH) nanosheet bearing the surface charge to connect the metal double layer hydroxide (LDH) nanosheets and form the metal-organic structure (MOF) by self-assembly It is to induce something.
상기 박리된 금속 이중층 수산화물(LDH) 나노시트와 리간드는 1 : 5 내지 200의 중량비, 바람직하게는 1 : 20 내지 100의 중량비로 혼합된다. LDH 나노시트를 기준으로 리간드의 함량이 상기 하한치 미만인 경우에는 자기조립으로 금속-유기 구조체(MOF)가 형성되지 못할 수 있으며, 상기 상한치 초과인 경우에는 비표면적이 넓은 구조체를 형성할 수 없다.The exfoliated metal double layer hydroxide (LDH) nanosheets and ligands are mixed in a weight ratio of 1: 5 to 200, preferably 1:20 to 100. If the content of the ligand is less than the lower limit based on the LDH nanosheet, the metal-organic structure (MOF) may not be formed by self-assembly. If the content exceeds the upper limit, a structure having a large specific surface area can not be formed.
상기 유기용매는 본 발명의 3차원 혼성 구조체가 넓은 비표면적을 가지면서 새로운 기능성을 부여하기 위하여 사용하는 것으로서, 특히 자기조립으로 금속-유기 구조체(MOF)가 형성되고, 상기 금속-유기 구조체(MOF)가 LDH 나노시트와 혼성을 이루도록 3차원 혼성 구조체를 형성하도록 한다. 상기 유기용매로는 디메틸포름아미드 (N,N-Dimethyl Formamide, DMF), 포름알데히드 (Formaldehyde, FA), 디에틸포름아미드(N,N-Diethyl Formamide, DEF), 디메틸아세트아미드 (Dimethylacetamide, DMA), 메탄올 (methanol, MeOH), 에탄올(ethanol, EtOH), 테트라하이드로퓨란(Tetrahydrofuran, THF), 물(water, H2O), 1-메틸-2-피롤리디논 (1-Methyl-2-pyrrolidinone, NMP), 디메틸설폭시드(Dimethyl Sulfoxide, DMSO), 다이에틸 에테르(Diethyl Ether, Ether) 및 이들의 혼합용매로 이루어진 군에서 선택될 수 있으며, 바람직하게는 1종 또는 2종의 유기용매를 1 : 1-20의 중량비로 혼합하여 사용하는 것이다.The organic solvent is used for imparting new functionality while having a wide specific surface area of the three-dimensional hybrid structure of the present invention. In particular, a metal-organic structure (MOF) is formed by self- ) To form a three-dimensional hybrid structure so as to hybridize with the LDH nanosheet. Examples of the organic solvent include N, N-dimethyl formamide (DMF), formaldehyde (FA), N, N-Diethyl formamide (DEF), dimethylacetamide , Methanol, MeOH, ethanol, EtOH, tetrahydrofuran, water, H 2 O, 1-Methyl-2-pyrrolidinone NMP), dimethyl sulfoxide (DMSO), diethyl ether (Ether), and mixed solvents thereof. Preferably, the organic solvent is selected from the group consisting of 1 : 1 to 20 by weight.
다음으로, 상기 (B)단계에서는 상기 초음파 처리된 용액에 금속이온을 첨가하여 반응시킴으로써 자기조립으로 금속-유기 구조체(MOF)가 형성되어 상기 금속-유기 구조체(MOF)와 LDH 나노시트가 혼성을 이루는 3차원 혼성 구조체가 제조된다.Next, in the step (B), a metal-organic structure (MOF) is formed by self-assembly by adding metal ions to the ultrasonic wave treated solution to react the metal-organic structure (MOF) with the LDH nanosheet The resulting three-dimensional hybrid structure is fabricated.
상기 금속이온은 상기 금속 이중층 수산화물(LDH) 나노시트의 표면에 위치하여 상기 LDH 나노시트들을 연결하는 기둥 역할을 하는 리간드와 반응하여 자기조립으로 금속-유기 구조체(MOF)가 형성되는 것을 유도하는 것으로서, 상기 금속이온과 리간드 중 하나만 사용하면 금속-유기 구조체(MOF)가 형성되지 않으므로 금속이온과 리간드를 함께 사용하는 것이 바람직하다.The metal ion is located on the surface of the metal double layer hydroxide (LDH) nanosheet and reacts with a ligand serving as a pillar connecting the LDH nanosheets to induce the formation of a metal-organic structure (MOF) by self-assembly If only one of the metal ion and the ligand is used, a metal-organic structure (MOF) is not formed, so that it is preferable to use a metal ion and a ligand together.
또한, 도 1에 도시된 바와 같이 리간드는 각 LDH 나노시트들 전면에 위치하고 있지만, 상기 리간드 및 금속이온을 전구체로 이용하여 자기조립된 금속-유기 구조체(MOF)는 각 LDH 나노시트 표면의 일부에 형성되어 2개 이상의 LDH 나노시트들을 연결함으로써 3차원 구조체를 형성한다.1, the ligand is located on the front surface of each LDH nanosheets, but the self-assembled metal-organic structure (MOF) using the ligand and metal ion as a precursor is formed on a part of the surface of each LDH nanosheet To form a three-dimensional structure by connecting two or more LDH nanosheets.
상기 금속이온은 상기 (A)단계에서 박리된 금속 이중층 수산화물(LDH) 나노시트 1 중량부를 기준으로 5 내지 200 중량부, 바람직하게는 5 내지 100 중량부로 사용된다. LDH 나노시트를 기준으로 금속이온의 함량이 상기 하한치 미만인 경우에는 자기조립으로 금속-유기 구조체(MOF)가 형성되지 못할 수 있으며, 상기 상한치 초과인 경우에는 3차원으로 구조체가 형성되지 않고 비표면적이 넓은 구조체를 제조할 수 없다.The metal ion is used in an amount of 5 to 200 parts by weight, preferably 5 to 100 parts by weight based on 1 part by weight of the metal double layer hydroxide (LDH) nanosheet stripped in the step (A). If the content of the metal ion is less than the lower limit based on the LDH nanosheet, the metal-organic structure (MOF) may not be formed by self-assembly. If the content exceeds the upper limit, the structure is not formed in three dimensions, A wide structure can not be manufactured.
상기 (B)단계는 50 내지 200 ℃, 바람직하게는 100 내지 150 ℃에서 10 내지 24시간, 바람직하게는 14 내지 18시간 동안 수행된다. 온도 및 시간이 상기 범위를 벗어나는 경우에는 3차원 혼성 구조체가 형성되지 않을 수 있다. The step (B) is carried out at 50 to 200 ° C, preferably at 100 to 150 ° C for 10 to 24 hours, preferably for 14 to 18 hours. When the temperature and time are out of the above range, a three-dimensional hybrid structure may not be formed.
이와 같이 제조된 3차원 혼성 구조체는 물을 분해하여 수소나 산소를 생산할 수 있는 광촉매로 이용될 수 있다.
The thus prepared three-dimensional hybrid structure can be used as a photocatalyst capable of decomposing water to produce hydrogen or oxygen.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such variations and modifications are intended to be within the scope of the appended claims.
제조예Manufacturing example 1. One. ZnZn -- CrCr LDHLDH 합성 synthesis
ZnZn -- CrCr LDHLDH 분말 powder
나노시트를 제조하기 위해서는 나이트레이트 형태(nitrate form)의 순수 Zn-Cr LDH가 필요하며 이를 합성하기 위해서, 이전에 보고된 문헌을 참조하여(Prevot, V.; Forano, C.; Besse, J. P. Inorg. Chem. 1998, 37, 4293-4301) 합성하였다. 우선 상온에서 Zn2 + (Zn(NO3)2·6H2O, 0.66M), Cr3 + (Cr(NO3)3·9H2O, 0.33M), NaNO3(1.98M)를 몰비 2:1:3으로 물과 같은 극성 용매 중에서 직접적 공침에 의해 준비되었다. 공침할 때 2M NaOH 용액을 이용하여 천천히 pH 5.5±0.5로 맞추어 주었으며 카보네이트(carbonate)형태의 LDH 합성을 방지하기 위해서 N2 가스를 지속적으로 흘려주었다. pH를 맞춘 후 용액의 온도를 60 ℃로 유지하고 24시간 강렬히 교반하였다. 반응완료 후 원심분리기를 통해서 보라색 시료를 분리하였으며 증류수로 반응하지 않고 남은 이온을 없애기 위해서 여러번 세척하였다. 분리된 젖은 분말을 60 ℃ 오븐에서 하루 동안 건조시켜 최종 Zn-Cr LDH 분말을 수득하였다. In order to prepare nanosheets, a nitrate form of pure Zn-Cr LDH is required. To synthesize the nanosheets, refer to the previously reported literature (Prevot, V .; Forano, C .; Besse, JP Inorg Chem. 1998, 37, 4293-4301). First, Zn + 2 at room temperature (Zn (NO 3) 2 · 6H 2 O, 0.66M), Cr 3 + (Cr (NO 3) 3 · 9H 2 O, 0.33M), NaNO the 3 (1.98M) 2 molar ratio : 1: 3 in a polar solvent such as water. When coprecipitated, the solution was slowly adjusted to pH 5.5 ± 0.5 with 2M NaOH solution, and N 2 gas was continuously flown to prevent the formation of LDH in the form of carbonate. After adjusting the pH, the temperature of the solution was maintained at 60 캜 and stirred vigorously for 24 hours. After completion of the reaction, the purple sample was separated through a centrifuge and washed several times to remove the remaining ions without reacting with distilled water. The separated wet powder was dried in an oven at < RTI ID = 0.0 > 60 C < / RTI & Powder.
ZnZn -- CrCr LDHLDH 나노시트 합성 Nanosheet synthesis
상기 합성된 층상구조인 Zn-Cr LDH 분말을 낱장의 LDH 나노시트로 유도하기 위한 박리화 과정을 이전 문헌(Li,L.; Ma, R.; Ebina,Y.; Iyi, N.; Sasaki, T. Chem . Mater. 2005, 17, 4386-4391)을 참조하여 합성하였다. 위해서 N2 가스의 지속적인 버블링 하에서 포름아마이드 용액에 LDH 분말(0.5g~1g/L)을 격렬한 교반에 의하여 수행시켜 Zn-Cr LDH 나노시트를 수득하였다.
(Li, L .; Ma, R .; Ebina, Y .; Iyi, N .; Sasaki, R., et al.) For deriving the synthesized layered structure of Zn-Cr LDH powder into a single LDH nanosheet, T. Chem . Mater. 2005, 17, 4386-4391). LDH powder (0.5 g to 1 g / L) was subjected to vigorous stirring in a formamide solution under continuous bubbling of N 2 gas to obtain a Zn-Cr LDH nanosheet.
제조예Manufacturing example 2. 2. 박리화되지Not stripped 않는 not 카보네이트Carbonate 형태의 Form ZnCrZnCr -- LDHLDH 제조 Produce
박리화가 되지 않는 ZnCr-LDH 형태를 제조하기 위해서 상기 제조예 1과 동일하게 실시하되, NaNO3 대신 Na2CO3을 사용하였으며, N2 가스의 버블링은 수행하지 않았다.
In order to produce ZnCr-LDH not to be peeled off, Na 2 CO 3 was used instead of NaNO 3 , and bubbling of N 2 gas was not performed.
제조예Manufacturing example 3. 3. TiTi -MOF 제조-MOF manufacture
1.08 g의 NH2-BDC를 7 ml의 혼합 용매(무수 메탄올:DMF = 1:1 중량비)에 첨가하여 용해시킨 후 0.51 ml의 Ti(BuO)4를 첨가하여 150 ℃에서 16시간 동안 오븐에서 유지시킨 후 상온에서 냉각시켜 노란색 결정 생성물을 수득한 다음 이를 여과하여 Ti-MOF를 수득하였다.
1.08 g of NH 2 -BDC was added to and dissolved in 7 ml of a mixed solvent (anhydrous methanol: DMF = 1: 1 by weight), and then 0.51 ml of Ti (BuO) 4 was added and the mixture was maintained in an oven at 150 ° C. for 16 hours And then cooled at room temperature to obtain a yellow crystalline product, which was then filtered to obtain Ti-MOF.
실시예Example 1. Ti-MOF@ZnCr-LDH(30 mg) 3차원 혼성 구조체의 제조 1. Preparation of Ti-MOF @ ZnCr-LDH (30 mg) three-dimensional hybrid structure
1.08 g의 NH2-BDC와 제조예 1에서 제조된 30 mg의 ZnCr-LDH 나노시트를 7 ml의 혼합 용매(무수 메탄올:DMF = 1:1 중량비)에 첨가하여 2시간 동안 초음파처리하여 용해시킨 후 용해되지 않은 입자는 침전시키고 용해된 용액만 따로 반응기로 옮겼다. 상기 반응기로 옮겨진 용액에 0.51 ml의 Ti(BuO)4를 첨가하여 150 ℃에서 16시간 동안 오븐에서 유지시킨 후 상온에서 냉각시켜 노란색 결정 생성물을 수득한 다음 이를 여과하였다. 상기 수득된 생성물을 DMF로 세척하여 미반응물을 제거하고 메탄올 및 DMF로 세척한 후 진공하에서 건조시켜 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체 0.285 g을 얻었다.
1.08 g of NH 2 -BDC and 30 mg of ZnCr-LDH nanosheet prepared in Preparation Example 1 were added to 7 ml of a mixed solvent (methanol anhydride: DMF = 1: 1 weight ratio) and sonicated for 2 hours to dissolve The undissolved particles precipitated and only the dissolved solution was transferred to the reactor separately. After to the solution was transferred to the reactor the addition of 0.51 ml of Ti (BuO) 4 kept in an oven for 16 hours at 150 ℃ was cooled at room temperature, the resulting yellow crystalline product was then filtered. The obtained product was washed with DMF to remove unreacted material, washed with methanol and DMF, and then dried under vacuum to obtain Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure 0.285 g was obtained.
실시예Example 2. Ti-MOF@ZnCr-LDH(100 mg) 3차원 혼성 구조체의 제조 2. Preparation of Ti-MOF @ ZnCr-LDH (100 mg) three-dimensional hybrid structure
상기 실시예 1과 동일하게 실시하되, ZnCr-LDH를 100 mg으로 사용하여 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체를 얻었다.
The same procedure as in Example 1 was carried out except that 100 mg of ZnCr-LDH was used to obtain a Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure.
비교예Comparative Example 1. 일반 1. General ZnZn -- CrCr LDHLDH 를 이용한 3차원 혼성 구조체의 제조Fabrication of Three-Dimensional Hybrid Structure
상기 이종적층된(heterolayered) ZCT 나노하이브리드는 N2 분위기 중 상온에서의 지속적인 교반 하에서 상기 제조예 2에서 제조된 박리되지 않은 ZnCr-LDH의 포름아마이드 분산액 및 적층된 티탄 산화물 나노시트를 혼합함으로써 합성되었다. 상기 재적층된 ZCT 나노하이브리드는 6,000 rpm 에서 원심분리에 의해 회수되었고, 포름아마이드 및 무수에탄올(absolute ethanol)로 세정하고, 최종적으로 65 ℃에서 24시간 동안 진공 건조되었다. 적층된 티탄 산화물에 대한 Zn-Cr-LDH의 몰비는 전하 균형(1:0.91), 면적 균형(1:1.46) 및 중간체 조성(1:1.16)에 기초하여 상기 나노시트의 층상 재적층을 조정하기 위해 변경되었다.
The heterolayered ZCT nanohybrid was synthesized by mixing the unexposed ZnCr-LDH formamide dispersion prepared in Preparation Example 2 and the laminated titanium oxide nanosheet in an N 2 atmosphere under constant stirring at room temperature . The re-deposited ZCT nanohybrid was recovered by centrifugation at 6,000 rpm, rinsed with formaldehyde and absolute ethanol, and finally vacuum-dried at 65 ° C for 24 hours. The molar ratio of Zn-Cr-LDH to the deposited titanium oxide was adjusted by adjusting the layered layer of the nanosheet based on charge balance (1: 0.91), area balance (1: 1.46) and intermediate composition (1: .
<< 시험예Test Example >>
비교예 1은 3차원 혼성 구조체로 제조되지 않아 실험을 실시하지 못하였다.In Comparative Example 1, the three-dimensional hybrid structure was not fabricated and the experiment was not conducted.
시험예Test Example 1. One. SEMSEM 촬영 shooting
도 3a는 본 발명의 실시예 1에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 표면을 SEM으로 촬영한 사진이며, 도 3b는 본 발명의 실시예 1에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 표면을 SEM으로 촬영한 사진이다.FIG. 3A is a SEM photograph of the surface of a Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure manufactured according to Example 1 of the present invention, and FIG. 3B is a cross- @ ZnCr-LDH The three-dimensional hybrid structure was photographed by SEM.
도 3a 및 3b에 도시된 바와 같이, 본 발명의 실시예 1 및 2에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체는 수 마이크로미터 크기의 사각 평판(square plate) 형태로 제조된 것을 확인하였다.
As shown in FIGS. 3A and 3B, the Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure manufactured according to the first and second embodiments of the present invention is formed into a square plate having a size of several micrometers Respectively.
시험예Test Example 2. 2. 비표면적Specific surface area 및 기공 부피 측정 And pore volume measurement
BET 표면적(m2/g)은 ASTM D3663-03에 따라 측정하였으며, 사용된 피흡착물은 77K의 질소였다. BET 플롯의 직선부는 0.05 내지 0.25의 상대 압력에서 획득되었으며, 포어 부피는 0.990의 상대 압력 (P/Po)에서 등온선의 흡착 분지로부터 결정되었다. 샘플은 측정 전 250 ℃에서 최소 24시간 동안 건조 질소 퍼지로 탈가스화하였다. 마이크로 기공은 직경이 0.1-1.9 nm인 것을 의미하며, 메조 기공은 직경이 2.0-50.0 nm인 것을 의미한다.The BET surface area (m 2 / g) was measured in accordance with ASTM D3663-03 and the solvent used was 77 K of nitrogen. The straight portion of the BET plot was obtained at a relative pressure of 0.05 to 0.25 and the pore volume was determined from the adsorption branch of the isotherm at a relative pressure (P / Po) of 0.990. The samples were degassed with a dry nitrogen purge for at least 24 hours at 250 캜 before measurement. The micropores mean that the diameter is 0.1-1.9 nm, and the mesopores mean that the diameter is 2.0-50.0 nm.
위 표 1에 나타낸 바와 같이, 본 발명의 실시예 1 및 2에 따라 제조된 3차원 구조체의 BET 표면적은 제조예 1에서 제조된 박리화된 Zn-Cr LDH 나노시트의 BET 표면적인 166 m2/g에 비하여 월등히 높아진 것을 확인하였다. As shown in Table 1 above, the BET surface area of the three-dimensional structure produced according to Examples 1 and 2 of the present invention is 166 m 2 / g, which is the BET surface area of the exfoliated Zn-Cr LDH nanosheet prepared in Production Example 1, g, respectively.
또한, t-plot 방법을 통하여 마이크로기공부피를 계산한 결과 실시예 1 및 2에 따라 제조된 3차원 구조체는 마이크로기공이 총 기공부피의 78 내지 80%를 차지하므로 메조기공에 비하여 마이크로기공이 많이 형성된 것을 확인하였다.
Further, as a result of calculation of the micro-pore volume through the t-plot method, the micro-pores occupied 78 to 80% of the total pore volume of the three-dimensional structure manufactured according to Examples 1 and 2, .
시험예 3. 질소 흡착/탈착 측정Test Example 3. Nitrogen adsorption / desorption measurement
도 4는 본 발명의 실시예 1 및 2에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 N2 흡착-탈착 등온선도를 나타낸 그래프이다. 상기 흡착/탈착 등온선은 ASTM D4222-03에 따라 측정하였다.4 is a graph showing N 2 adsorption-desorption isotherms of a Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure produced according to Examples 1 and 2 of the present invention. The adsorption / desorption isotherms were measured according to ASTM D4222-03.
도 4에 도시된 바와 같이, 실시예 1 및 2의 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체는 모두 저압영역 및 고압영역에서 주목할만한 질소 흡착 및 탈착을 나타내는 것을 확인하였으며, 이력현상(hysteresis)이 발생하지 않았다.
As shown in FIG. 4, it was confirmed that the Ti-MOF @ ZnCr-LDH three-dimensional hybrid structures of Examples 1 and 2 exhibited remarkable nitrogen adsorption and desorption at a low pressure region and at a high pressure region, and hysteresis, Did not occur.
시험예 4. 마이크로기공 측정Test Example 4. Micro pore measurement
도 5는 본 발명의 실시예 1 및 2에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체에 형성된 마이크로기공의 크기 분포를 측정한 그래프이다. 상기 마이크로기공의 크기 분포는 HorvathKawazoe 방법을 통해 77K에서 질소 흡착 실험으로부터 추측된 것이다.FIG. 5 is a graph showing the size distribution of micro pores formed on the Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure produced according to Examples 1 and 2 of the present invention. The size distribution of the micropores was estimated from the nitrogen adsorption experiment at 77K by the Horvath Kawazoe method.
도 5에 도시된 바와 같이, 실시예 1의 3차원 혼성 구조체는 0.42 내지 0.51 nm 기공 크기가 가장 많이 존재하였으며, 실시예 2의 3차원 혼성 구조체는 0.45 내지 0.56 nm 기공 크기가 가장 많이 존재하는 것을 확인하였다.
As shown in FIG. 5, the three-dimensional hybrid structures of Example 1 had the largest pore sizes of 0.42 to 0.51 nm, and the three-dimensional hybrid structures of Example 2 had the largest pore sizes of 0.45 to 0.56 nm Respectively.
시험예 5. 광 에너지 흡수 밴드 갭Test Example 5. Light energy absorption band gap
도 6a는 본 발명의 제조예 3에 따라 제조된 Ti-MOF와 실시예 1 및 실시예 2에 따라 제조된 Ti-MOF@ZnCr-LDH 3차원 혼성 구조체의 확산반사 UV-vis 흡수 스펙트럼 그래프이며, 도 6b는 도 6a의 흡수 스펙트럼을 확대시킨 그래프이다.6A is a diffuse reflection UV-vis absorption spectrum graph of the Ti-MOF prepared according to Production Example 3 of the present invention and the Ti-MOF @ ZnCr-LDH three-dimensional hybrid structure produced according to Example 1 and Example 2, FIG. 6B is an enlarged graph of the absorption spectrum of FIG. 6A. FIG.
도 6a 및 6b에 도시된 바와 같이, 실시예 1과 2에 따라서 합성된 3차원 혼성 구조체는 제조예 3의 Ti-MOF과는 상이한 광 에너지 흡수 밴드 갭을 가지는 것을 확인하였다. 특히, 도 6b에 도시된 바와 같이 제조예 3의 Ti-MOF과는 1.8-2.2 eV 구간에서 광 에너지 흡수를 하지 못하지만 실시예 1과 2의 3차원 혼성 구조체는 광 에너지 흡수를 보이는 것을 확인하였다.As shown in FIGS. 6A and 6B, it was confirmed that the three-dimensional hybrid structure synthesized according to Examples 1 and 2 had a light energy absorption bandgap different from that of Production Example 3 of Ti-MOF. In particular, as shown in FIG. 6B, it was confirmed that the three-dimensional hybrid structures of Examples 1 and 2 exhibited optical energy absorption although they could not absorb the light energy in the 1.8-2.2 eV interval from the Ti-MOF of Production Example 3.
Claims (17)
상기 3차원 구조는 i) 상기 박리된 금속 이중층 수산화물(LDH) 나노시트와 리간드를 유기용매에 첨가하여 초음파 처리를 수행함으로써 표면에 리간드가 위치한 박리된 금속 이중층 수산화물(LDH) 나노시트를 제조한 후 ii) 상기 표면에 리간드가 위치한 박리된 금속 이중층 수산화물(LDH) 나노시트와 금속이온을 50 내지 200 ℃에서 반응시켜 상기 박리된 금속 이중층 수산화물(LDH) 나노시트 표면에 자기조립으로 금속-유기 구조체(MOF)를 형성한 것이고,
상기 유기용매는 디메틸포름아미드(N,N-Dimethyl Formamide, DMF)와, 포름알데히드 (Formaldehyde, FA), 디에틸포름아미드(N,N-Diethyl Formamide, DEF), 디메틸아세트아미드 (Dimethylacetamide, DMA), 메탄올 (methanol, MeOH), 에탄올 (ethanol, EtOH), 테트라하이드로퓨란(Tetrahydrofuran, THF), 물 (water, H2O), 1-메틸-2-피롤리디논(1-Methyl-2-pyrrolidinone, NMP), 디메틸설폭시드 (Dimethyl Sulfoxide, DMSO) 및 다이에틸 에테르(Diethyl Ether, Ether)로 이루어진 군에서 선택된 1종이 1 : 1-20의 중량비로 혼합된 것을 특징으로 하는 3차원 혼성 구조체.Two or more separated metal double-layer hydroxide (LDH) nanosheet surfaces are connected by a metal-organic structure (MOF) to form a three-dimensional structure,
The three-dimensional structure is formed by: i) removing the separated metal double layer hydroxide (LDH) nanosheet and a ligand to an organic solvent and performing ultrasonic treatment to prepare a separated metal double layer hydroxide (LDH) nanosheet having a ligand on the surface thereof ii) reacting the metal nanoparticles with a metal ion at a temperature ranging from 50 to 200 ° C to form a metal-organic structure (self-assembled) on the surface of the exfoliated metal double layer hydroxide (LDH) nanosheet MOF)
The organic solvent is selected from the group consisting of N, N-Dimethyl Formamide (DMF), formaldehyde (FA), N, N-Diethyl Formamide (DEF), dimethylacetamide , Methanol, MeOH, ethanol, EtOH, tetrahydrofuran, water, H 2 O, 1-Methyl-2-pyrrolidinone (NMP), dimethyl sulfoxide (DMSO), and diethyl ether (Ether) are mixed at a weight ratio of 1: 1-20.
[화학식 1]
[MII (1-x)MIII x(OH)2][An-]x/n·zH2O;
상기 화학식 1에 있어서, MII는 Ca2 +, Mg2 +, Zn2 +, Ni2 +, Mn2 +, Co2 +, Fe2 +, Cu2 + 및 이들의 혼합금속으로 이루어진 군에서 선택되며,
MIII은 Fe3 +, Al3 +, Cr3 +, Mn3 +, Ga3 +, Co3 +, Ni3 + 및 이들의 혼합금속으로 이루어진 군에서 선택되고,
An-는 수산화 이온(OH-), 질산 이온(NO3 -), PO4 3 -, HPO4 2 -, H2PO4 - 및 이들의 조합으로 이루어지는 군으로부터 선택되며,
0<x<1이고, z는 0.1 내지 15의 실수임.2. The three-dimensional hybrid structure according to claim 1, wherein the exfoliated metal double layer hydroxide (LDH) nanosheet is a compound represented by the following Chemical Formula 1:
[Chemical Formula 1]
[M II (1-x) M III x (OH) 2 ] [A n- ] x / n .zH 2 O;
In the general formula 1, M II is Ca 2 +, Mg 2 +, Zn 2 +, Ni 2 +, Mn 2 +, Co 2 +, Fe 2 +, Cu 2 + , and selected from the group consisting of mixed metal And,
M III is selected from 3 + Fe, Al + 3, Cr + 3, Mn + 3, Ga + 3, Co + 3, Ni + 3, and the group consisting of mixed metal,
A n- is selected from the group consisting of hydroxide ions (OH - ), nitrate ions (NO 3 - ), PO 4 3 - , HPO 4 2 - , H 2 PO 4 -
0 < x < 1, and z is a real number of 0.1 to 15.
(B) 상기 초음파 처리된 용액에 금속 산화물을 첨가하여 50 내지 200 ℃에서 반응시켜 자기조립을 수행하는 단계;를 포함하되,
상기 유기용매는 디메틸포름아미드(N,N-Dimethyl Formamide, DMF)와, 포름알데히드 (Formaldehyde, FA), 디에틸포름아미드(N,N-Diethyl Formamide, DEF), 디메틸아세트아미드 (Dimethylacetamide, DMA), 메탄올 (methanol, MeOH), 에탄올 (ethanol, EtOH), 테트라하이드로퓨란(Tetrahydrofuran, THF), 물 (water, H2O), 1-메틸-2-피롤리디논(1-Methyl-2-pyrrolidinone, NMP), 디메틸설폭시드 (Dimethyl Sulfoxide, DMSO) 및 다이에틸 에테르(Diethyl Ether, Ether)로 이루어진 군에서 선택된 1종이 1 : 1-20의 중량비로 혼합된 것을 사용하여 2개 이상의 박리된 금속 이중층 수산화물(LDH) 나노시트 표면이 금속-유기 구조체(MOF)로 연결되어 3차원 구조로 형성된 3차원 혼성 구조체의 제조방법. (A) adding an exfoliated metal double layer hydroxide (LDH) nanosheet and a ligand, which have a surface charge, to an organic solvent and sonication; And
(B) adding a metal oxide to the ultrasonic treated solution and performing a self-assembly by reacting at 50 to 200 ° C,
The organic solvent is selected from the group consisting of N, N-Dimethyl Formamide (DMF), formaldehyde (FA), N, N-Diethyl Formamide (DEF), dimethylacetamide , Methanol, MeOH, ethanol, EtOH, tetrahydrofuran, water, H 2 O, 1-Methyl-2-pyrrolidinone (NMP), dimethyl sulfoxide (DMSO), and diethyl ether (Ether) are mixed at a weight ratio of 1: 1-20 to form two or more separated metal double layers A method for producing a three-dimensional hybrid structure in which a surface of a hydroxide (LDH) nanosheet is connected to a metal-organic structure (MOF) to form a three-dimensional structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160135895A KR101912805B1 (en) | 2016-10-19 | 2016-10-19 | Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160135895A KR101912805B1 (en) | 2016-10-19 | 2016-10-19 | Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180043061A KR20180043061A (en) | 2018-04-27 |
KR101912805B1 true KR101912805B1 (en) | 2018-10-29 |
Family
ID=62081402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160135895A KR101912805B1 (en) | 2016-10-19 | 2016-10-19 | Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101912805B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10933400B1 (en) | 2020-08-24 | 2021-03-02 | King Abdulaziz University | Synthesis of 3D-porous Sr(II)/Ir(III) layered hydroxide balls composed of hexagonal sheets for water purification |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109847756B (en) * | 2019-04-02 | 2021-11-16 | 河北大学 | Nickel-based nano catalyst with hollow structure and preparation method and application thereof |
CN110075853B (en) * | 2019-04-12 | 2021-11-23 | 济南大学 | Electrocatalytic fully-decomposed water CoZn-LDHs-ZIF @ C composite structure material, and preparation method and application thereof |
CN110090628B (en) * | 2019-04-29 | 2021-08-24 | 济南大学 | Eu-MOF/EDTA-NiAl-CLDH fluorescent micromotor based on kapok fiber and application thereof |
CN110387049A (en) * | 2019-07-01 | 2019-10-29 | 浙江大学 | A kind of preparation method and application of two-dimensional metallic organic frame nanometer sheet |
CN110252415A (en) * | 2019-07-11 | 2019-09-20 | 佛山科学技术学院 | For eliminating the preparation method of the amino functional MOFs of indoor formaldehyde |
CN110639534B (en) * | 2019-09-17 | 2022-02-18 | 中国科学院福建物质结构研究所 | Oxygen evolution electrocatalytic material and preparation method and application thereof |
CN110560045A (en) * | 2019-09-23 | 2019-12-13 | 桂林理工大学 | Bi2WO6intercalation MgAl-LDH material and preparation method and application thereof |
KR102358487B1 (en) * | 2020-01-17 | 2022-02-04 | 주식회사 이노넵 | Sparsely pillared organic-inorganic hybrid compound |
CN111796011B (en) * | 2020-08-01 | 2022-11-29 | 青岛科技大学 | Cobalt-aluminum hydrotalcite nanosheet @ ZIF-67 modified electrode, preparation method thereof and application in naphthol detection |
CN112054214B (en) * | 2020-09-02 | 2022-04-12 | 山东大学 | Hollow LDH/MnO2Nano cage composite material and preparation method and application thereof |
CN112341631B (en) * | 2020-10-30 | 2022-06-10 | 陕西科技大学 | Method for synthesizing ZnAl-MOF-LDH nano material based on template-oriented method |
KR102366563B1 (en) * | 2020-11-24 | 2022-02-23 | 한국에너지기술연구원 | Hybrid composite comprising metal-organic framework and two-dimensional sheet |
CN116282221A (en) * | 2023-03-06 | 2023-06-23 | 西北大学 | ZIF-67 modified NiFe-LDH wave-absorbing material, preparation method and application |
CN116422374B (en) * | 2023-04-18 | 2024-09-20 | 哈尔滨工业大学 | Preparation method of LDH/UiO-66-NH2 binary composite photocatalytic material and method for degrading diclofenac |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015535797A (en) | 2012-09-28 | 2015-12-17 | エスシージー ケミカルズ カンパニー,リミテッド | Modification of layered double hydroxides |
KR101639381B1 (en) * | 2015-05-29 | 2016-07-13 | 이화여자대학교 산학협력단 | Porous nanohybrid composite, preparing method of the same, and carbon dioxide absorbent including the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101415729B1 (en) * | 2012-05-07 | 2014-07-07 | 포항공과대학교 산학협력단 | Synthesis of layered double hydroxide or mixed oxide embedding nanoparticles |
KR101645202B1 (en) * | 2013-01-14 | 2016-08-03 | 이화여자대학교 산학협력단 | A porous nanohybrid containing graphene, preparing method for the same, and a visible light photocatalyst including the same |
KR101465990B1 (en) * | 2014-05-14 | 2014-11-27 | 이화여자대학교 산학협력단 | Mesoporous nanohybrid, preparing method of the same, and photocatalyst including the same |
-
2016
- 2016-10-19 KR KR1020160135895A patent/KR101912805B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015535797A (en) | 2012-09-28 | 2015-12-17 | エスシージー ケミカルズ カンパニー,リミテッド | Modification of layered double hydroxides |
KR101639381B1 (en) * | 2015-05-29 | 2016-07-13 | 이화여자대학교 산학협력단 | Porous nanohybrid composite, preparing method of the same, and carbon dioxide absorbent including the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10933400B1 (en) | 2020-08-24 | 2021-03-02 | King Abdulaziz University | Synthesis of 3D-porous Sr(II)/Ir(III) layered hydroxide balls composed of hexagonal sheets for water purification |
Also Published As
Publication number | Publication date |
---|---|
KR20180043061A (en) | 2018-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101912805B1 (en) | Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same | |
Tan et al. | Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures | |
Dong et al. | Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity | |
Zeng et al. | Core–shell CdS@ ZIF-8 structures for improved selectivity in photocatalytic H 2 generation from formic acid | |
EP3708540B1 (en) | A preparation method for zeolitic imidazolate frameworks | |
Mirzadeh et al. | Synthesis of nanomaterials with desirable morphologies from metal–organic frameworks for various applications | |
Lee et al. | Advanced fabrication of metal–organic frameworks: template-directed formation of polystyrene@ ZIF-8 core–shell and hollow ZIF-8 microspheres | |
US9347141B2 (en) | Nanowire mesh solar fuels generator | |
Karimi et al. | Modulated formation of metal-organic frameworks by oriented growth over mesoporous silica | |
Cao et al. | A facile approach to constructing Pd@ PCN–Se nano-composite catalysts for selective alcohol oxidation reactions | |
Liu et al. | An effective “precursor-transformation” route toward the high-yield synthesis of ZIF-8 tubes | |
Zhou et al. | A General Polymer‐Oriented Acid‐Mediated Self‐Assembly Approach toward Crystalline Mesoporous Metal Sulfides | |
Gao et al. | Facile synthesis of monodisperse meso-microporous Ta 3 N 5 hollow spheres and their visible light-driven photocatalytic activity | |
Shen et al. | An unsaturated metal site-promoted approach to construct strongly coupled noble metal/HNb 3 O 8 nanosheets for efficient thermo/photo-catalytic reduction | |
Lei et al. | Additive-free hydrothermal synthesis of novel bismuth vanadium oxide dendritic structures as highly efficient visible-light photocatalysts | |
Zhou et al. | Porphyrin based metal–organic framework films: nucleation and growth | |
Liang et al. | Coordination Defect‐Induced Frustrated Lewis Pairs in Polyoxo‐metalate‐Based Metal–Organic Frameworks for Efficient Catalytic Hydrogenation | |
Nguyen et al. | A new porphyrinic vanadium-based MOF constructed from infinite V (OH) O 4 chains: syntheses, characterization and photoabsorption properties | |
Li et al. | Boosting photocatalytic hydrogen production activity by a microporous Cu II-MOF nanoribbon decorated with Pt nanoparticles | |
CN111013543B (en) | Porous CuBTC ligand assembly synthesis method | |
US20130315787A1 (en) | Nanocrystals and methods and uses thereof | |
JP5686674B2 (en) | Method for producing composite catalyst | |
Zeng et al. | Porous Cu2O microcubes derived from a metal-formate framework as photocatalyst for degradation of methyl orange | |
KR102093124B1 (en) | A method for manufacturing metal-zif particle using spray-pyrolysis | |
CN110655103A (en) | Porous CuO/In2O3Dodecahedral complex and method for preparing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |