KR101911844B1 - Solar cell module - Google Patents

Solar cell module

Info

Publication number
KR101911844B1
KR101911844B1 KR1020170176340A KR20170176340A KR101911844B1 KR 101911844 B1 KR101911844 B1 KR 101911844B1 KR 1020170176340 A KR1020170176340 A KR 1020170176340A KR 20170176340 A KR20170176340 A KR 20170176340A KR 101911844 B1 KR101911844 B1 KR 101911844B1
Authority
KR
South Korea
Prior art keywords
conductive
electrodes
length
solar cell
conductive adhesive
Prior art date
Application number
KR1020170176340A
Other languages
Korean (ko)
Other versions
KR20180000333A (en
Inventor
장대희
김보중
현대선
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020170176340A priority Critical patent/KR101911844B1/en
Publication of KR20180000333A publication Critical patent/KR20180000333A/en
Application granted granted Critical
Publication of KR101911844B1 publication Critical patent/KR101911844B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

본 발명은 태양 전지 모듈에 관한 것이다.
반도체 기판; 반도체 기판의 후면에 제1 방향으로 길게 형성되고, 서로 다른 극성을 갖는 제1 전극들과 제2 전극들을 각각 구비하는 태양 전지들; 및 각각의 태양 전지에 구비된 반도체 기판의 후면에 제1 방향과 교차하는 제2 방향으로 길게 배치되어, 제1, 2 전극들에 도전성 접착제를 통해 접속되거나, 제1, 2 전극들과 절연층에 의해 절연되는 도전성 배선들;을 포함하고, 도전성 접착제 및 절연층 각각의 제1 방향 길이는 도전성 배선들 각각의 선폭 이상이고, 도전성 배선들 사이의 간격보다 좁게 형성되되, 절연층의 제1 방향 길이는 도전성 접착제의 제1 방향 길이보다 크다.
The present invention relates to a solar cell module.
A semiconductor substrate; A plurality of solar cells each having a first electrode and a second electrode, each of the first electrode and the second electrode having a different polarity; And a plurality of first and second electrodes connected to the first and second electrodes through a conductive adhesive, the first and second electrodes being electrically connected to the insulating layer, Wherein a length of each of the conductive adhesive and the insulating layer in a first direction is equal to or greater than a line width of each of the conductive wires and is narrower than an interval between the conductive wires, And the length is larger than the length of the conductive adhesive in the first direction.

Description

태양 전지 모듈{SOLAR CELL MODULE}Solar cell module {SOLAR CELL MODULE}

본 발명은 태양 전지 모듈에 관한 것이다. The present invention relates to a solar cell module.

최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고, 이에 따라 태양 에너지로부터 전기 에너지를 생산하는 태양 전지가 주목 받고 있다.Recently, as energy resources such as oil and coal are expected to be depleted, interest in alternative energy to replace them is increasing, and solar cells that produce electric energy from solar energy are attracting attention.

일반적인 태양 전지는 p형과 n형처럼 서로 다른 도전성 타입(conductive type)에 의해 p-n 접합을 형성하는 반도체부, 그리고 서로 다른 도전성 타입의 반도체부에 각각 연결된 전극을 구비한다. Typical solar cells have a semiconductor portion that forms a p-n junction by different conductive types, such as p-type and n-type, and electrodes connected to semiconductor portions of different conductivity types, respectively.

이러한 태양 전지에 빛이 입사되면 반도체부에서 복수의 전자-정공 쌍이 생성되고, 생성된 전자-정공 쌍은 전하인 전자와 정공으로 각각 분리되어, 전자는 n형의 반도체부 쪽으로 이동하고 정공은 p형의 반도체부 쪽으로 이동한다. 이동한 전자와 정공은 각각 n형의 반도체부와 p형의 반도체부에 연결된 서로 다른 전극에 의해 수집되고 이 전극들을 전선으로 연결함으로써 전력을 얻는다.When light is incident on such a solar cell, a plurality of electron-hole pairs are generated in the semiconductor portion, and the generated electron-hole pairs are separated into electrons and holes, respectively, so that the electrons move toward the n- Type semiconductor portion. The transferred electrons and holes are collected by different electrodes connected to the n-type semiconductor portion and the p-type semiconductor portion, respectively, and electric power is obtained by connecting these electrodes with electric wires.

이와 같은 태양 전지는 복수 개가 인터커넥터에 의해 서로 연결되어 모듈로 형성될 수 있다.A plurality of such solar cells may be formed as modules by being connected to each other by inter connecters.

본 발명은 태양 전지 모듈을 제공하는데 그 목적이 있다.An object of the present invention is to provide a solar cell module.

본 발명에 따른 태양 전지 모듈의 일례는 반도체 기판; 반도체 기판의 후면에 제1 방향으로 길게 형성되고, 서로 다른 극성을 갖는 제1 전극들과 제2 전극들을 각각 구비하는 태양 전지들; 및 각각의 태양 전지에 구비된 반도체 기판의 후면에 제1 방향과 교차하는 제2 방향으로 길게 배치되어, 제1, 2 전극들에 도전성 접착제를 통해 접속되거나, 제1, 2 전극들과 절연층에 의해 절연되는 도전성 배선들;을 포함하고, 도전성 접착제 및 절연층 각각의 제1 방향 길이는 도전성 배선들 각각의 선폭 이상이고, 도전성 배선들 사이의 간격보다 좁게 형성되되, 절연층의 제1 방향 길이는 도전성 접착제의 제1 방향 길이보다 크다.An example of a solar cell module according to the present invention includes a semiconductor substrate; A plurality of solar cells each having a first electrode and a second electrode, each of the first electrode and the second electrode having a different polarity; And a plurality of first and second electrodes connected to the first and second electrodes through a conductive adhesive, the first and second electrodes being electrically connected to the insulating layer, Wherein a length of each of the conductive adhesive and the insulating layer in a first direction is equal to or greater than a line width of each of the conductive wires and is narrower than an interval between the conductive wires, And the length is larger than the length of the conductive adhesive in the first direction.

일례로, 도전성 배선들의 선폭 대비 절연층의 제1 방향 길이의 비율은 1: 1.1 ~ 2 사이일 수 있다.For example, the ratio of the length of the insulating layer in the first direction to the width of the conductive wires may be between 1: 1.1 and 2.

아울러, 도전성 배선들의 선폭 대비 도전성 접착제의 제1 방향 길이는 1: 1 ~ 1.25 사이일 수 있다.In addition, the length of the conductive adhesive in the first direction with respect to the line width of the conductive wiring may be between 1: 1 and 1.25.

또한, 도전성 배선들의 선폭은 1mm 이상 2.5mm 이하이고, 도전성 배선들 사이의 간격은 2mm 이상 반도체 기판의 제2 방향 길이의 0.5배 이하일 수 있고, 보다 바람직하게는 도전성 배선들 사이의 간격은 4mm 이상 8mm 이하일 수 있다.Further, the line width of the conductive wirings may be 1 mm or more and 2.5 mm or less, the distance between the conductive wirings may be 2 mm or more and 0.5 times or less the second direction length of the semiconductor substrate, more preferably, 8 mm or less.

또한, 도전성 접착제의 제1 방향 길이 대비 절연층의 제1 방향 길이의 비율은 1: 1.1 ~ 1.7 사이일 수 있다.The ratio of the length of the insulating layer in the first direction to the length of the conductive adhesive in the first direction may be between 1: 1.1 and 1.7.

일례로, 도전성 접착제의 제1 방향 길이는 1mm ~ 3mm 사이이고, 절연층의 제1 방향 길이는 1.1mm ~ 4mm 사이일 수 있다.For example, the length of the conductive adhesive in the first direction may be between 1 mm and 3 mm, and the length of the insulating layer in the first direction may be between 1.1 mm and 4 mm.

또한, 제1, 2 전극들 각각의 선폭은 도전성 접착제 및 절연층의 제1 방향 길이보다 좁을 수 있다. 일례로, 제1, 2 전극들 각각의 선폭은 180um ~ 400um 사이일 수 있다.The line width of each of the first and second electrodes may be narrower than the first direction length of the conductive adhesive and the insulating layer. For example, the line width of each of the first and second electrodes may be between 180um and 400um.

아울러, 제1 전극과 제2 전극 사이의 간격은 도전성 접착제 및 절연층의 제1 방향 길이보다 좁을 수 있다. 일례로, 제1 전극과 제2 전극 사이의 간격은 0.5mm ~ 1.5mm 사이일 수 있다.In addition, the gap between the first electrode and the second electrode may be narrower than the first direction length of the conductive adhesive and the insulating layer. For example, the distance between the first electrode and the second electrode may be between 0.5 mm and 1.5 mm.

또한, 절연층의 선폭은 도전성 접착제의 선폭보다 클 수 있다. 일례로, 도전성 접착제의 선폭은 제1, 2 전극들 각각의 선폭과 동일할 수 있다.The line width of the insulating layer may be larger than the line width of the conductive adhesive. For example, the line width of the conductive adhesive may be equal to the line width of each of the first and second electrodes.

보다 구체적으로, 도전성 접착제의 선폭은 180um ~ 400um 사이이고, 절연층의 선폭은 200um ~ 450um 사이일 수 있다.More specifically, the line width of the conductive adhesive may be between 180 袖 m and 400 袖 m, and the line width of the insulating layer may be between 200 袖 m and 450 袖 m.

여기서, 각 태양 전지의 반도체 기판은 제1 도전성 타입의 불순물이 도핑되고, 반도체 기판의 후면에는 제1 도전성과 반대인 제2 도전성의 불순물이 도핑되는 에미터부; 및 반도체 기판보다 제1 도전성 타입의 불순물을 고농도로 도핑는 후면 전계부;를 더 포함하고, 제1 전극들 각각은 에미터부에 접속되고, 제2 전극들 각각은 후면 전계부에 접속될 수 있다.Here, the semiconductor substrate of each solar cell is doped with an impurity of the first conductivity type, and the rear surface of the semiconductor substrate is doped with a second conductive impurity opposite to the first conductivity; And a backside electrical portion that heavily dopes impurities of the first conductivity type than the semiconductor substrate, wherein each of the first electrodes is connected to the emitter portion, and each of the second electrodes is connected to the backside electrical portion.

여기서, 도전성 배선들은 제1 전극들에 도전성 접착제를 통해 접속되고, 제2 전극들과의 사이에 절연층에 의해 절연되는 제1 배선들과 제2 전극들에 도전성 접착제를 통해 접속되고, 제1 전극들과의 사이에 절연층에 의해 절연되는 제2 배선들을 포함할 수 있다.Here, the conductive wirings are connected to the first electrodes through a conductive adhesive agent, and are connected to the first wirings and the second electrodes insulated by the insulating layer with the second electrodes through the conductive adhesive agent, And second wires that are insulated from the electrodes by an insulating layer.

아울러, 태양 전지들은 제1 방향과 교차하는 제2 방향으로 서로 바로 이웃하여 배열되고, 서로 직렬 연결되는 제1 태양 전지와 제2 태양 전지를 포함하고, 제1 태양 전지와 제2 태양 전지 사이에는 제1, 2 태양 전지를 서로 직렬 연결하는 인터커넥터를 더 포함할 수 있다.In addition, the solar cells include a first solar cell and a second solar cell arranged immediately adjacent to each other in a second direction intersecting with the first direction and connected to each other in series, and between the first solar cell and the second solar cell The solar cell module may further include an interconnector for serially connecting the first and second solar cells to each other.

여기서, 인터커넥터는 제1 태양 전지와 제2 태양 전지 사이에서 제1 방향으로 길게 배치되고, 인터커넥터에는 제1 태양 전지에 접속된 제1 도전성 배선들과 제2 태양 전지에 접속된 제2 도전성 배선들이 공통으로 접속될 수 있다.Here, the interconnector is disposed in a first direction between the first solar cell and the second solar cell, and the interconnector includes first conductive interconnects connected to the first solar cell and second interconnections connected to the second solar cell, The wirings can be connected in common.

본 발명의 일례에 따른 태양 전지 모듈은 절연층의 제1 방향 길이는 도전성 접착제의 제1 방향 길이보다 크게 형성하여, 도전성 배선이 원하지 않는 전극과 단락되는 것을 보다 효과적으로 방지할 수 있다.In the solar cell module according to an example of the present invention, the length of the insulating layer in the first direction is greater than the length in the first direction of the conductive adhesive, so that the conductive wiring can be more effectively prevented from shorting to an unwanted electrode.

도 1은 본 발명에 따른 태양 전지 모듈에 적용되는 스트링을 후면에서 바라본 형상의 일례이다.
도 2는 도 1에 적용되는 태양 전지의 일례를 나타내는 일부 사시도이다.
도 3은 도 2에 도시된 태양 전지의 제2 방향(y) 단면을 도시한 것이다.
도 4는 도 1에서 CSx1-CSx1 라인에 따른 단면도를 도시한 것이다.
도 5는 도 1 및 도 4에서 설명한 도전성 접착제(251)의 제1 방향(x) 길이(L251) 및 절연층(252)의 제1 방향(x) 길이(L252)에 대해 보다 구체적으로 설명하기 위한 도이다.
도 6은 본 발명에 따른 태양 전지 모듈의 다른 일례를 설명하기 위한 도이다.
FIG. 1 is an example of a shape of a string applied to a solar cell module according to the present invention as viewed from the rear side.
2 is a partial perspective view showing an example of a solar cell applied to FIG.
3 is a cross-sectional view of the solar cell shown in Fig. 2 in the second direction (y).
FIG. 4 is a cross-sectional view taken along line CSx1-CSx1 in FIG.
5 illustrates the length L251 in the first direction x and the length L252 in the first direction x of the insulating layer 252 of the conductive adhesive 251 described in Figs. 1 and 4 Respectively.
6 is a view for explaining another example of the solar cell module according to the present invention.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly illustrate the present invention, parts not related to the description are omitted, and similar parts are denoted by like reference characters throughout the specification.

도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한 어떤 부분이 다른 부분 위에 “전체적”으로 형성되어 있다고 할 때에는 다른 부분의 전체 면에 형성되어 있는 것뿐만 아니라 가장 자리 일부에는 형성되지 않은 것을 뜻한다.In the drawings, the thicknesses are enlarged to clearly indicate layers and regions. When a layer, film, region, plate, or the like is referred to as being "on" another portion, it includes not only the case directly above another portion but also the case where there is another portion in between. Conversely, when a part is "directly over" another part, it means that there is no other part in the middle. Further, when a certain portion is formed as "whole" on another portion, it means not only that it is formed on the entire surface of the other portion but also that it is not formed on the edge portion.

이하에서, 전면이라 함은 직사광이 입사되는 반도체 기판(110)의 일면일 수 있으며, 후면이라 함은 직사광이 입사되지 않거나, 직사광이 아닌 반사광이 입사될 수 있는 반도체 기판(110)의 반대면일 수 있다.Hereinafter, the front surface may be a surface of the semiconductor substrate 110 on which the direct light is incident, and the rear surface may be an opposite surface of the semiconductor substrate 110 on which the direct light is not incident, have.

도 1 내지 도 4는 본 발명에 따른 태양 전지 모듈의 일례를 설명하기 위한 도이고, 도 6은 본 발명에 따른 태양 전지 모듈의 다른 일례를 설명하기 위한 도이다.FIGS. 1 to 4 are views for explaining an example of a solar cell module according to the present invention, and FIG. 6 is a view for explaining another example of a solar cell module according to the present invention.

여기서, 도 1은 본 발명에 따른 태양 전지 모듈에 적용되는 스트링을 후면에서 바라본 형상의 일례이다.Here, FIG. 1 is an example of a shape of a string applied to a solar cell module according to the present invention as viewed from the rear side.

도 1에 도시된 바와 같이, 본 발명에 따른 태양 전지 모듈은 복수의 태양 전지(C1, C2), 복수의 태양 전지(C1, C2)의 후면에 형성된 복수의 제1, 2 전극(141, 142)에 접속되는 복수의 제1 도전성 배선(210)과 복수의 제2 도전성 배선(220), 및 복수의 제1, 2 도전성 배선(210, 220)에 접속되어 복수의 태양 전지(C1, C2)를 직렬 연결하는 인터커넥터(300)을 포함한다.1, a solar cell module according to the present invention includes a plurality of solar cells C1 and C2, a plurality of first and second electrodes 141 and 142 formed on the rear surface of a plurality of solar cells C1 and C2, And a plurality of solar cells C1 and C2 connected to the plurality of first and second conductive wirings 210 and 220. The plurality of first conductive wirings 210 and the plurality of second conductive wirings 220 are connected to the first and second conductive wirings 210 and 220, And an inter connect connector 300 for series connection.

여기서, 복수의 태양 전지(C1, C2) 각각은 적어도 반도체 기판(110) 및 반도체 기판(110)의 후면에 서로 이격되어 제1 방향(x)으로 길게 뻗어 형성되는 복수의 제1 전극(141)과 복수의 제2 전극(142)을 구비한다. Each of the plurality of solar cells C1 and C2 includes a plurality of first electrodes 141 spaced apart from each other at least on the rear surface of the semiconductor substrate 110 and the semiconductor substrate 110 and extending in a first direction x, And a plurality of second electrodes 142.

아울러, 복수의 도전성 배선(200)은 복수의 태양 전지 중 서로 인접한 두 개의 태양 전지 중 어느 하나의 태양 전지에 구비된 복수의 제1 전극(141)과 나머지 하나의 태양 전지에 구비된 복수의 제2 전극(142)을 인터커넥터(300)를 통해 서로 전기적으로 직렬 연결할 수 있다. The plurality of conductive wirings 200 may include a plurality of first electrodes 141 provided in any one of two solar cells adjacent to each other among a plurality of solar cells, The two electrodes 142 may be electrically connected to each other in series through the interconnector 300. [

이를 위하여, 복수의 도전성 배선(200)은 제1, 2 전극(141, 142)의 길이 방향인 제1 방향(x)과 교차하는 제2 방향(y)으로 길게 뻗어 복수의 태양 전지 각각에 접속될 수 있다.The plurality of conductive wirings 200 are elongated in a second direction y intersecting with the first direction x that is the longitudinal direction of the first and second electrodes 141 and 142 and connected to each of the plurality of solar cells .

일례로, 복수의 도전성 배선(200)은 제1 도전성 배선(210)과 제2 도전성 배선(220)을 포함할 수 있다.For example, the plurality of conductive wirings 200 may include the first conductive wirings 210 and the second conductive wirings 220.

보다 구체적으로, 도 1에 도시된 바와 같이, 제1 도전성 배선(210)은 각 태양 전지에 구비된 제1 전극(141)에 도전성 접착제(251)를 통하여 접속되고, 절연성 재질의 절연층(252)에 의해 제2 전극(142)과 절연될 수 있다.More specifically, as shown in FIG. 1, the first conductive wiring 210 is connected to the first electrode 141 provided in each solar cell through a conductive adhesive 251, and an insulating layer 252 made of an insulating material The second electrode 142 may be insulated from the second electrode 142. [

아울러, 제2 도전성 배선(220)은 각 태양 전지에 구비된 제2 전극(142)에 도전성 접착제(251)를 통하여 접속되고, 절연성 재질의 절연층(252)에 의해 제1 전극(141)과 절연될 수 있다.The second conductive wiring 220 is connected to the second electrode 142 provided in each solar cell via the conductive adhesive 251 and is electrically connected to the first electrode 141 and the second electrode 142 by an insulating layer 252 made of an insulating material. Can be insulated.

아울러, 이와 같은 제1, 2 도전성 배선(210, 220) 각각은 복수의 태양 전지 사이에 제1 방향(x)으로 길게 뻗어 배치되는 인터커넥터(300)에 접속될 수 있다. 이에 따라, 복수의 태양 전지는 제2 방향(y)으로 서로 직렬 연결될 수 있다.Each of the first and second conductive wirings 210 and 220 may be connected to an interconnector 300 extending long in a first direction x between a plurality of solar cells. Accordingly, the plurality of solar cells can be connected in series with each other in the second direction (y).

이와 같은 본 발명에 따른 태양 전지 모듈은 제조 공정 중 도전성 배선(200)을 반도체 기판(110)의 후면에 접속시킬 때, 원하지 않는 전극(141 OR 142)과 도전성 배선(200)이 단락되는 것을 최소화하기 위하여, 절연층(252)의 제1 방향(x) 길이(L252)이 도전성 접착제(251)의 제1 방향(x) 길이(L251)보다 크게 형성될 수 있다. 이에 대해서는 도 5에서 보다 구체적으로 설명한다.The solar cell module according to the present invention minimizes the short circuit between the undesired electrode 141 OR 142 and the conductive wiring 200 when the conductive wiring 200 is connected to the rear surface of the semiconductor substrate 110 during the manufacturing process The length L252 of the insulating layer 252 in the first direction x may be greater than the length L251 of the conductive adhesive 251 in the first direction x. This will be described in more detail in Fig.

아울러, 본 발명의 일례에 따른 태양 전지 모듈에서는 인터커넥터(300)가 포함된 경우를 일례로 도시하고, 이에 대해 설명하고 있지만, 도 6에 도시된 바와 같이, 인터커넥터(300)는 생략될 수도 있고, 이와 같이 인터커넥터(300)가 생략된 경우에는 제1 도전성 배선(210)과 제2 도전성 배선(220)이 일체로 형성된 하나의 도전성 배선(200)에 제1 태양 전지(C1)의 제1 전극(141)과 제2 태양 전지(C2)의 제2 전극(142)이 도전성 접착제(251)에 의해 접속되어, 복수의 태양 전지(C1, C2)를 직렬 연결할 수도 있다.Although the solar cell module according to the exemplary embodiment of the present invention includes the interconnector 300 as an example, the interconnector 300 may be omitted as shown in FIG. 6 When the interconnector 300 is omitted, the first conductive interconnections 210 and the second conductive interconnections 220 are formed on one conductive interconnection line 200, The first electrode 141 and the second electrode 142 of the second solar cell C2 are connected by the conductive adhesive 251 so that the plurality of solar cells C1 and C2 can be connected in series.

여기서, 복수의 태양 전지 각각에 대해 보다 구체적으로 설명하면 다음과 같다. Here, each of the plurality of solar cells will be described in more detail as follows.

도 2는 도 1에 적용되는 태양 전지의 일례를 나타내는 일부 사시도이고, 도 3은 도 2에 도시된 태양 전지의 제2 방향(y) 단면을 도시한 것이다.FIG. 2 is a partial perspective view showing an example of a solar cell applied to FIG. 1, and FIG. 3 is a sectional view of the solar cell shown in FIG. 2 in a second direction (y).

도 2 및 도 3에 도시된 바와 같이, 본 발명에 따른 태양 전지의 일례는 반사 방지막(130), 반도체 기판(110), 터널층(180), 에미터부(121), 후면 전계부 (172, back surface field, BSF), 진성 반도체층(150), 패시베이션층(190), 제1 전극(141) 그리고 제2 전극(142)을 구비할 수 있다. 2 and 3, an example of a solar cell according to the present invention includes an antireflection film 130, a semiconductor substrate 110, a tunnel layer 180, an emitter section 121, a rear electric section 172, a passivation layer 190, a first electrode 141, and a second electrode 142. The first electrode 141 and the second electrode 142 are formed on the first semiconductor layer 120 and the second semiconductor layer 120, respectively.

여기서, 반사 방지막(130), 진성 반도체층(150), 터널층(180) 및 패시베이층(190)은 생략될 수도 있으나, 구비된 경우 태양 전지의 효율이 더 향상되므로, 이하에서는 구비된 경우를 일례로 설명한다.Here, the antireflection film 130, the intrinsic semiconductor layer 150, the tunnel layer 180, and the passivation layer 190 may be omitted. However, since the efficiency of the solar cell is improved when provided, As an example.

반도체 기판(110)은 제1 도전성 타입의 불순물을 함유하는 단결정 실리콘, 다결정 실리콘 중 적어도 어느 하나로 형성될 수 있다. 일례로, 반도체 기판(110)은 단결정 실리콘 웨이퍼로 형성될 수 있다.The semiconductor substrate 110 may be formed of at least one of monocrystalline silicon and polycrystalline silicon containing an impurity of the first conductivity type. In one example, the semiconductor substrate 110 may be formed of a single crystal silicon wafer.

여기서, 제1 도전성 타입은 n형 또는 p형 도전성 타입 중 어느 하나일 수 있다. Here, the first conductivity type may be any one of n-type and p-type conductivity types.

반도체 기판(110)이 p형의 도전성 타입을 가질 경우, 붕소(B), 갈륨, 인듐 등과 같은 3가 원소의 불순물이 반도체 기판(110)에 도핑(doping)된다. 하지만, 반도체 기판(110)이 n형의 도전성 타입을 가질 경우, 인(P), 비소(As), 안티몬(Sb) 등과 같이 5가 원소의 불순물이 반도체 기판(110)에 도핑될 수 있다.When the semiconductor substrate 110 has a p-type conductivity type, impurity of a trivalent element such as boron (B), gallium, indium, or the like is doped in the semiconductor substrate 110. However, when the semiconductor substrate 110 has an n-type conductivity type, impurities of pentavalent elements such as phosphorus (P), arsenic (As), and antimony (Sb) may be doped into the semiconductor substrate 110.

이하에서는 이와 같은 반도체 기판(110)의 제1 도전성 타입이 n형인 경우를 일례로 설명한다.Hereinafter, a case where the first conductive type of the semiconductor substrate 110 is n-type will be described as an example.

이러한 반도체 기판(110)의 전면에 복수의 요철면을 가질 수 있다. 이로 인해 반도체 기판(110)의 전면 위에 위치한 에미터부(121) 역시 요철면을 가질 수 있다. The semiconductor substrate 110 may have a plurality of uneven surfaces on the entire surface thereof. Accordingly, the emitter section 121 located on the front surface of the semiconductor substrate 110 may also have an uneven surface.

이로 인해, 반도체 기판(110)의 전면에서 반사되는 빛의 양이 감소하여 반도체 기판(110) 내부로 입사되는 빛의 양이 증가할 수 있다.Accordingly, the amount of light reflected from the front surface of the semiconductor substrate 110 decreases, and the amount of light incident into the semiconductor substrate 110 increases.

반사 방지막(130)은 외부로부터 반도체 기판(110)의 전면으로 입사되는 빛의 반사를 최소화하기 위하여, 반도체 기판(110)의 전면 위에 위치하며, 알루미늄 산화막(AlOx), 실리콘 질화막(SiNx), 실리콘 산화막(SiOx) 및 실리콘 산화질화막(SiOxNy) 중 적어도 하나로 형성될 수 있다. The antireflection film 130 is formed on the front surface of the semiconductor substrate 110 to minimize the reflection of light incident from the outside to the front surface of the semiconductor substrate 110. The antireflection film 130 is formed of an aluminum oxide film (AlOx), a silicon nitride film (SiNx) An oxide film (SiOx), and a silicon oxynitride film (SiOxNy).

터널층(180)은 반도체 기판(110)의 후면 전체에 직접 접촉하여 배치되며, 유전체 재질을 포함할 수 있다. 따라서, 터널층(180)은 도 2 및 도 3에 도시된 바와 같이, 반도체 기판(110)에서 생성되는 캐리어를 통과시킬 수 있다.The tunnel layer 180 is disposed in direct contact with the entire rear surface of the semiconductor substrate 110, and may include a dielectric material. Therefore, the tunnel layer 180 can pass carriers generated in the semiconductor substrate 110, as shown in FIGS.

이와 같은 터널층(180)은 반도체 기판(110)에서 생성된 캐리어를 통과시키며, 반도체 기판(110)의 후면에 대한 패시베이션 기능을 수행할 수 있다.The tunnel layer 180 may pass carriers generated in the semiconductor substrate 110 and passivate the back surface of the semiconductor substrate 110.

아울러, 터널층(180)은 600℃ 이상의 고온 공정에도 내구성이 강한 SiCx 또는 SiOx로 형성되는 유전체 재질로 형성될 수 있다. 그러나 이 외에도 s252icon nitride (SiNx), hydrogenerated SiNx, aluminum oxide (AlOx), s252icon oxynitride (SiON) 또는 hydrogenerated SiON로 형성이 가능하며, 이와 같은 터널층(180)의 두께(T180)는 0.5nm ~ 2.5nm 사이에서 형성될 수 있다.In addition, the tunnel layer 180 may be formed of a dielectric material formed of SiCx or SiOx having high durability even at a high temperature process of 600 DEG C or more. However, the tunnel layer 180 may be formed of s252icon nitride (SiNx), hydrogenerated SiNx, aluminum oxide (AlOx), s252icon oxynitride (SiON), or hydrogenerated SiON. The thickness T180 of the tunnel layer 180 may be 0.5 nm to 2.5 nm As shown in FIG.

에미터부(121)는 반도체 기판(110)의 후면에 배치되며, 일례로, 터널층(180)의 후면의 일부에 직접 접촉하여, 복수 개가 제1 방향(x)으로 길게 배치되며, 제1 도전성 타입과 반대인 제2 도전성 타입을 갖는 다결정 실리콘 재질로 형성될 수 있으며, 에미터부(121)는 터널층(180)을 사이에 두고 반도체 기판(110)과 p-n 접합을 형성할 수 있다.The emitter layer 121 is disposed on the rear surface of the semiconductor substrate 110. For example, a plurality of the emitter layers 121 are arranged in a first direction (x) so as to be in direct contact with a part of the rear surface of the tunnel layer 180, Type emitter layer 121 may be formed of a polycrystalline silicon material having a second conductivity type opposite to that of the emitter layer 121. The emitter layer 121 may form a pn junction with the semiconductor substrate 110 via the tunnel layer 180. [

각 에미터부(121)는 반도체 기판(110)과 p-n접합을 형성하므로, 에미터부(121)는 p형의 도전성 타입을 가질 수 있다. 그러나, 본 발명의 일례와 달리, 반도체 기판(110)이 p형의 도전성 타입을 가질 경우, 에미터부(121)는 n형의 도전성 타입을 가진다. 이 경우, 분리된 전자는 복수의 에미터부(121)쪽으로 이동하고 분리된 정공은 복수의 후면 전계부(172)쪽으로 이동할 수 있다.Since each emitter section 121 forms a p-n junction with the semiconductor substrate 110, the emitter section 121 can have a p-type conductivity type. However, unlike the example of the present invention, when the semiconductor substrate 110 has the p-type conductivity type, the emitter portion 121 has the n-type conductivity type. In this case, the separated electrons move toward the plurality of emitter portions 121 and the separated holes can move toward the plurality of rear electric fields 172.

복수의 에미터부(121)가 p형의 도전성 타입을 가질 경우 에미터부(121)에는 3가 원소의 불순물이 도핑될 수 있고, 반대로 복수의 에미터부(121)가 n형의 도전성 타입을 가질 경우, 에미터부(121)에는 5가 원소의 불순물이 도핑될 수 있다.When the plurality of emitter sections 121 have a p-type conductivity type, the emitter section 121 can be doped with an impurity of a trivalent element. Conversely, when the plurality of emitter sections 121 have an n-type conductivity type , The emitter portion 121 may be doped with an impurity of a pentavalent element.

후면 전계부(172)는 반도체 기판(110)의 후면에 배치되며, 일례로 터널층(180)의 후면 중에서 전술한 복수의 에미터부(121) 각각과 이격된 일부 영역에 직접 접촉하여, 복수 개가 에미터부(121)와 나란한 제1 방향(x)으로 길게 위치하도록 형성될 수 있다. The rear electric field portion 172 is disposed on the rear surface of the semiconductor substrate 110 and is in direct contact with a part of the rear surface of the tunnel layer 180 which is spaced apart from each of the plurality of emitter portions 121, May be formed to be long in a first direction (x) side by side with the emitter part (121).

이와 같은 후면 전계부(172)는 제1 도전성 타입의 불순물이 반도체 기판(110)보다 고농도로 도핑되는 다결정 실리콘 재질로 형성될 수 있다. 따라서, 예를 들어, 기판이 n형 타입의 불순물로 도핑되는 경우, 복수의 후면 전계부(172)는 n+의 불순물 영역일 수 있다.The rear electric field portion 172 may be formed of a polycrystalline silicon material doped with impurities of the first conductivity type at a higher concentration than the semiconductor substrate 110. Thus, for example, when the substrate is doped with an n-type impurity, the plurality of backside electrical paths 172 may be n + impurity regions.

이러한 후면 전계부(172)는 반도체 기판(110)과 후면 전계부(172)와의 불순물 농도 차이로 인한 전위 장벽에 의해 전자의 이동 방향인 후면 전계부(172) 쪽으로의 정공 이동을 방해하는 반면, 후면 전계부(172) 쪽으로의 캐리어(예, 전자) 이동을 용이하게 할 수 있다. The rear electric field 172 disturbs the hole movement toward the rear electric field 172, which is the movement direction of the electrons, due to the potential barrier due to the difference in impurity concentration between the semiconductor substrate 110 and the rear electric field 172, (E. G., Electrons) to the backside electrical < / RTI >

따라서, 후면 전계부(172) 및 그 부근 또는 제1 및 제2 전극(141, 142)에서 전자와 정공의 재결합으로 손실되는 전하의 양을 감소시키고 전자 이동을 가속화시켜 후면 전계부(172)로의 전자 이동량을 증가시킬 수 있다. Thus, the amount of charge lost by recombination of electrons and holes in the rear electric field 172 and in the vicinity thereof or at the first and second electrodes 141 and 142 is reduced and the electron movement is accelerated to the rear electric field 172 The electron transfer amount can be increased.

여기의 도 2 및 도 3에서는 에미터부와 후면 전계부가 터널층의 후면에 다결정 실리콘 재질로 형성된 경우를 일례로 설명하였으나, 이와 다르게, 터널층이 생략된 경우, 에미터부와 후면 전계부는 반도체 기판(110)의 후면 내에 불순물이 확산되어 도핑될 수도 있다. 이와 같은 경우, 에미터부와 후면 전계부는 반도체 기판(110)과 동일한 단결정 실리콘 재질로 형성될 수도 있다.2 and 3, the case where the emitter portion and the rear electric field portion are formed of a polycrystalline silicon material on the rear surface of the tunnel layer has been described as an example. Alternatively, when the tunnel layer is omitted, 110 may be diffused and doped. In this case, the emitter portion and the rear surface electric portion may be formed of the same single-crystal silicon material as the semiconductor substrate 110.

진성 반도체층(150)은 에미터부와 후면 전계부 사이에 노출된 터널층의 후면에 형성될 수 있고, 이와 같은 진성 반도체층(150)은 에미터부(121) 및 후면 전계부(172)와 다르게 제1 도전성 타입의 불순물 또는 제2 도전성 타입의 불순물이 도핑되지 않은 진성 다결정 실리콘층으로 형성될 수 있다.The intrinsic semiconductor layer 150 may be formed on the back surface of the tunnel layer exposed between the emitter portion and the rear electric portion and the intrinsic semiconductor layer 150 may be formed on the back surface of the tunnel layer, The impurity of the first conductivity type or the impurity of the second conductivity type may be formed of an intrinsic polycrystalline silicon layer not doped.

아울러, 도 2 및 도 3에 도시된 바와 같이, 진성 반도체층(150)의 양측면 각각은 에미터부(121)의 측면 및 후면 전계부(172)의 측면에 직접 접촉되는 구조를 가질 수 있다.2 and 3, each of the opposite side surfaces of the intrinsic semiconductor layer 150 may have a structure in which the side surfaces of the emitter layer 121 and the side surfaces of the rear electric section 172 are in direct contact with each other.

패시베이션층(190)은 후면 전계부(172), 진성 반도체층(150) 및 에미터부(121)에 형성되는 다결정 실리콘 재질의 층의 후면에 형성된 뎅글링 본드(dangling bond)에 의한 결함을 제거하여, 반도체 기판(110)으로부터 생성된 캐리어가 뎅글링 본드(dangling bond)에 의해 재결합되어 소멸되는 것을 방지하는 역할을 할 수 있다.The passivation layer 190 is formed by removing a defect caused by a dangling bond formed on the rear surface of the polycrystalline silicon layer formed on the rear electric field portion 172, the intrinsic semiconductor layer 150, and the emitter portion 121 , And to prevent the carriers generated from the semiconductor substrate 110 from being recombined by a dangling bond and disappearing.

이를 위하여, 패시베이션층(190)은 반도체 기판(110)의 후면 중에서 제1, 2 전극(141, 142)이 형성된 부분을 제외한 나머지 부분을 덮도록 형성될 수 있다.For this, the passivation layer 190 may be formed to cover the remaining portion of the rear surface of the semiconductor substrate 110 except for the portion where the first and second electrodes 141 and 142 are formed.

이와 같은 패시베이션층(190)은 유전체층으로 형성될 수 있으며, 일례로, 수소화된 실리콘 질화막(SiNx:H), 수소화된 실리콘 산화막(SiOx:H), 수소화된 실리콘 질화산화막(SiNxOy:H), 수소화된 실리콘 산화질화막(SiOxNy:H), 수소화된 비정질실리콘막(a-Si:H) 중 적어도 어느 하나로 형성될 수 있다.The passivation layer 190 may be formed of a dielectric layer. For example, the passivation layer 190 may include a hydrogenated silicon nitride film (SiNx: H), a hydrogenated silicon oxide film (SiOx: H), a hydrogenated silicon nitride oxide film (SiNxOy: , A hydrogenated amorphous silicon film (a-Si: H), and a silicon oxide nitride film (SiOxNy: H)

제1 전극(141)은 에미터부에 접속하고, 제1 방향(x)으로 길게 뻗어 형성될 수 있다. 이와 같은, 제1 전극(141)은 에미터부(121) 쪽으로 이동한 캐리어, 예를 들어 정공을 수집할 수 있다.The first electrode 141 is connected to the emitter section and may be formed to extend in the first direction (x). The first electrode 141 may collect carriers, for example, holes, which have migrated toward the emitter section 121.

제2 전극(142)은 후면 전계부에 접속하고, 제1 전극(141)과 나란하게 제1 방향(x)으로 길게 뻗어 형성될 수 있다. 이와 같은, 제2 전극(142)은 후면 전계부(172) 쪽으로 이동한 캐리어, 예를 들어, 전자를 수집할 수 있다.The second electrode 142 may be formed to extend in the first direction x in parallel with the first electrode 141, connected to the rear electric field portion. As such, the second electrode 142 may collect carriers, e.g., electrons, that have migrated toward the rear electric section 172.

이와 같은 도 1에 도시된 바와 같이, 제1, 2 전극(141, 142) 각각은 제1 방향(x)으로 길게 뻗어 형성될 수 있고, 제1 전극(141)과 제2 전극(142)이 제2 방향(y)으로 교번하여 배치될 수 있다.1, each of the first and second electrodes 141 and 142 may be extended in a first direction x, and the first electrode 141 and the second electrode 142 may be formed to extend in the first direction x, May be alternately arranged in the second direction (y).

이와 같은 복수의 제1 및 제2 전극(141, 142)은 도전성 배선(200) 및 도전성 접착제(251)와 다른 금속 재질을 포함하여 형성될 수 있다. 일례로, 제1, 2 전극(141, 142) 각각은 티타늄(Ti), 은(Ag), 알루미늄(Al), 니켈-바나듐 합금(NiV), 니켈, 니켈-알루미늄 합금(NixAly), 몰리브데넘(Mo), 주석(Sn) 중 적어도 하나의 재질이 적어도 하나의 층으로 형성될 수 있다. The plurality of first and second electrodes 141 and 142 may be formed of a metal material different from the conductive wiring 200 and the conductive adhesive 251. For example, each of the first and second electrodes 141 and 142 may be formed of one selected from the group consisting of Ti, Ag, Al, NiV, Ni, Ni- At least one material of denium (Mo) and tin (Sn) may be formed of at least one layer.

이와 같은 제1, 2 전극(141, 142)은 스퍼터링(sputtering) 방법, 전자 빔 증착 장비(Electron Beam evaporator), 또는 무전해/전해 도금법 중 어느 하나를 이용하여 형성될 수 있다.The first and second electrodes 141 and 142 may be formed using any one of a sputtering method, an electron beam evaporator (Electron Beam Evaporator), and an electroless / electrolytic plating method.

이와 같은 구조로 제조된 본 발명에 따른 태양 전지에서 제1 전극(141)을 통하여 수집된 정공과 제2 전극(142)을 통하여 수집된 전자는 외부의 회로 장치를 통하여 외부 장치의 전력으로 이용될 수 있다.The holes collected through the first electrode 141 and the electrons collected through the second electrode 142 in the solar cell according to the present invention are used as electric power of the external device through the external circuit device .

본 발명에 따른 태양 전지 모듈에 적용된 태양 전지는 반드시 도 2 및 도 3에만 한정하지 않으며, 태양 전지에 구비되는 제1, 2 전극(141, 142)이 반도체 기판(110)의 후면에만 형성되는 점을 제외하고 다른 구성 요소는 얼마든지 변경이 가능하다. The solar cell applied to the solar cell module according to the present invention is not necessarily limited to only FIGS. 2 and 3, and the first and second electrodes 141 and 142 provided on the solar cell are formed only on the rear surface of the semiconductor substrate 110 Other components can be changed at any time.

예를 들어 본 발명의 태양 전지 모듈에는 제1 전극(141)의 일부 및 에미터부(121)가 반도체 기판(110)의 전면에 위치하고, 제1 전극(141)의 일부가 반도체 기판(110)에 형성된 홀을 통해 반도체 기판(110)의 후면에 형성된 제1 전극(141)의 나머지 일부와 연결되는 MWT 타입의 태양 전지도 적용이 가능하다.For example, in the solar cell module of the present invention, a part of the first electrode 141 and the emitter part 121 are located on the front surface of the semiconductor substrate 110, and a part of the first electrode 141 is formed on the semiconductor substrate 110 The MWT type solar cell connected to the remaining part of the first electrode 141 formed on the rear surface of the semiconductor substrate 110 through the formed hole is also applicable.

이와 같은 태양 전지가 도 1과 같이 도전성 배선(200)과 인터커넥터(300)를 이용하여 직렬 연결된 단면 구조는 다음의 도 4와 같다.The cross-sectional structure in which the solar cell is connected in series using the conductive wiring 200 and the interconnector 300 as shown in FIG. 1 is as shown in FIG.

도 4는 도 1에서 CSx1-CSx1 라인에 따른 단면도를 도시한 것이다.FIG. 4 is a cross-sectional view taken along line CSx1-CSx1 in FIG.

도 4에 도시된 바와 같이, 제1 태양 전지(C1)와 제2 태양 전지(C2)를 포함하는 복수의 태양 전지는 복수 개가 제2 방향(y)으로 배열될 수 있다. As shown in FIG. 4, a plurality of solar cells including the first solar cell C1 and the second solar cell C2 may be arranged in the second direction (y).

이때, 제1, 2 태양 전지(C1, C2)에 구비되는 복수의 제1, 2 전극(141, 142)의 길이 방향이 제1 방향(x)으로 향하도록 배치될 수 있다.At this time, the longitudinal direction of the first and second electrodes 141 and 142 provided in the first and second solar cells C1 and C2 may be oriented in the first direction x.

이와 같이, 제1, 2 태양 전지(C1, C2)가 제2 방향(y)으로 배열된 상태에서, 제1, 2 태양 전지(C1, C2)는 제1, 2 도전성 배선(210, 220)과 인터커넥터(300)에 의해 제2 방향(y)으로 길게 뻗어 직렬 연결되는 하나의 스트링을 형성할 수 있다.The first and second solar cells C1 and C2 are connected to the first and second conductive wirings 210 and 220 while the first and second solar cells C1 and C2 are arranged in the second direction y. And one interconnected string can be formed by the interconnector 300 and extending in the second direction y.

여기서, 제1, 2 도전성 배선(210, 220)과 인터커넥터(300)는 도전성 금속 재질로 형성되고, 제1, 2 도전성 배선(210, 220)은 각 태양 전지의 반도체 기판(110)의 후면에 접속되며, 태양 전지의 직렬 연결을 위하여 각 반도체 기판(110)에 접속된 제1, 2 도전성 배선(210, 220)은 인터커넥터(300)에 접속될 수 있다.The first and second conductive wirings 210 and 220 and the interconnector 300 are formed of a conductive metal and the first and second conductive wirings 210 and 220 are formed on the rear surface of the semiconductor substrate 110 of each solar cell And the first and second conductive wirings 210 and 220 connected to the respective semiconductor substrates 110 for the series connection of the solar cells may be connected to the interconnector 300.

아울러, 복수의 제1, 2 도전성 배선(210, 220)은 단면이 원형을 갖는 도전성 와이어 형태이거나 폭이 두께보다 큰 리본 형태를 가질 수 있다.In addition, the plurality of first and second conductive wirings 210 and 220 may have a conductive wire shape having a circular section or a ribbon shape having a width larger than the thickness.

구체적으로, 복수의 제1 도전성 배선(210)은 복수의 태양 전지(C1, C2) 각각에 구비된 복수의 제1 전극(141)에 중첩되어 도전성 접착제(251)를 통해 접속되고, 절연성 재질의 절연층(252)에 의해 복수의 제2 전극(142)과 절연될 수 있다.More specifically, the plurality of first conductive wirings 210 are connected to the plurality of first electrodes 141 provided in each of the plurality of solar cells C1 and C2 via the conductive adhesive 251, And may be insulated from the plurality of second electrodes 142 by the insulating layer 252.

이때, 복수의 제1 도전성 배선(210) 각각은 도 1 및 도 4에 도시된 바와 같이, 제1, 2 태양 전지 사이에 배치된 인터커넥터(300) 방향 쪽의 반도체 기판(110) 밖으로 돌출되어 배치될 수 있다.1 and 4, each of the plurality of first conductive wirings 210 protrudes out of the semiconductor substrate 110 on the side of the interconnector 300 disposed between the first and second solar cells .

아울러, 복수의 제2 도전성 배선(220)은 복수의 태양 전지(C1, C2) 각각에 구비된 복수의 제2 전극(142)에 중첩되어 도전성 접착제(251)를 통해 접속되고, 절연성 재질의 절연층(252)에 의해 복수의 제1 전극(141)과 절연될 수 있다.The plurality of second conductive wirings 220 are connected to the plurality of second electrodes 142 provided in each of the plurality of solar cells C1 and C2 through the conductive adhesive 251, And may be insulated from the plurality of first electrodes 141 by the layer 252.

이때, 복수의 제2 도전성 배선(220) 각각은 도 1 및 도 4에 도시된 바와 같이, 제1, 2 태양 전지 사이에 배치된 인터커넥터(300) 방향 쪽의 반도체 기판(110) 밖으로 돌출되어 배치될 수 있다.1 and 4, each of the plurality of second conductive wirings 220 protrudes outside the semiconductor substrate 110 on the side of the interconnector 300 disposed between the first and second solar cells .

여기서, 도전성 접착제(251)는 주석(Sn) 또는 주석(Sn)을 포함하는 합금을 포함하는 금속 재질로 형성될 수 있다. 아울러, 이와 같은 도전성 접착제(251)는 주석(Sn) 또는 주석(Sn)을 포함하는 합금을 포함하하는 솔더 패이스트(solder paste), 에폭시에 주석(Sn) 또는 주석(Sn)을 포함하는 합금이 포함된 에폭시 솔더 패이스트(epoxy solder paste) 또는 도전성 패이스트(Conductive psate) 중 어느 하나의 형태로 형성될 수 있다.Here, the conductive adhesive 251 may be formed of a metal material including an alloy containing tin (Sn) or tin (Sn). The conductive adhesive 251 may be a solder paste including an alloy containing tin (Sn) or tin (Sn), an alloy containing tin (Sn) or tin (Sn) May be formed in the form of either an epoxy solder paste or a conductive paste.

일례로, 도전성 접착제(251)가 솔더 패이스트의 형태로 적용된 경우, 솔더 패이스트에는 Sn, SnBi, SnIn, SnAgCu, SnPb, SnBiCuCo, SnBiAg, SnPbAg 또는 SnAg 중 적어도 하나의 금속 재질을 포함할 수 있고, 도전성 접착제(251)가 에폭시 솔더 패이스트의 형태로 적용된 경우, 에폭시 수지 내에 Sn, SnBi, SnIn, SnAgCu, SnPb, SnBiCuCo, SnBiAg, SnPbAg 또는 SnAg 중 적어도 하나의 금속 재질을 포함하여 형성될 수 있다.For example, when the conductive adhesive 251 is applied in the form of a solder paste, the solder paste may include at least one of Sn, SnBi, SnIn, SnAgCu, SnPb, SnBiCuCo, SnBiAg, SnPbAg, or SnAg SnBi, SnIn, SnAgCu, SnPb, SnBiCuCo, SnBiAg, SnPbAg, or SnAg in the epoxy resin when the conductive adhesive 251 is applied in the form of an epoxy solder paste .

아울러, 도전성 접착제(251)가 도전성 패이스트의 형태로 적용된 경우, 에폭시와 같은 수지 내에 Sn, SnBi, Ag, AgIn 또는 AgCu 중 적어도 하나의 금속 재질을 포함하여 형성될 수 있다.When the conductive adhesive 251 is applied in the form of a conductive paste, the conductive adhesive 251 may be formed of a metal such as Sn, SnBi, Ag, AgIn or AgCu in a resin such as epoxy.

여기서, 절연층(252)은 절연성 재질이면 어떠한 것이든 상관 없으며, 일례로, 에폭시 계열의 수지, 폴리이미드, 폴리에틸렌, 아크릴 계열의 수지 또는 실리콘 계열의 수지 중 어느 하나의 절연성 재질이 사용될 수 있다.Here, the insulating layer 252 may be any insulating material. For example, an insulating material such as epoxy resin, polyimide, polyethylene, acryl-based resin, or silicone-based resin may be used.

아울러, 여기서, 도전성 접착제(251)는 도 1의 확대도에 도시된 바와 같이, 도전성 배선(200)과 교차하는 부분에 위치하는 제1 전극 또는 제2 전극의 후면 위에만 위치할 수 있고, 절연층(252)은 도전성 배선(200)과 교차하는 부분에 위치하는 제1 전극 또는 제2 전극의 후면 위뿐만 아니라 주위의 반도체 기판(110)의 후면 위에도 함께 위치할 수 있다. Here, as shown in the enlarged view of FIG. 1, the conductive adhesive 251 may be positioned only on the rear surface of the first electrode or the second electrode located at a portion intersecting the conductive wiring 200, The layer 252 may be located on the rear surface of the first electrode or the second electrode located at the portion intersecting the conductive wiring 200 as well as on the rear surface of the surrounding semiconductor substrate 110. [

이와 같은 위치에 도전성 접착제(251)와 절연층(252)이 형성되도록 함으로써, 원하지 않는 전극과 도전성 배선(200) 사이의 단락을 보다 효과적으로 방지할 수 있다.By forming the conductive adhesive agent 251 and the insulating layer 252 at such a position, a short circuit between an unwanted electrode and the conductive wiring 200 can be more effectively prevented.

이와 같이, 각 태양 전지의 후면에 접속된 복수의 제1 도전성 배선(210) 및 복수의 제2 도전성 배선(220) 중 각 반도체 기판(110)의 밖으로 돌출되는 부분이 도 1 및 도 4에 도시된 바와 같이, 제1, 2 태양 전지(C1, C2) 사이에 배치되는 인터커넥터(300)의 후면에 공통으로 접속될 수 있고, 이에 따라, 복수의 태양 전지(C1, C2)가 제2 방향(y)으로 직렬 연결된 하나의 스트링으로 형성될 수 있다.As described above, a portion of the plurality of first conductive wirings 210 and the plurality of second conductive wirings 220, which are connected to the rear surface of each solar cell, protruding out of each semiconductor substrate 110 is shown in Figs. 1 and 4 The plurality of solar cells C1 and C2 can be connected in common to the rear surface of the interconnector 300 disposed between the first and second solar cells C1 and C2, lt; RTI ID = 0.0 > (y). < / RTI >

이와 같은 구조를 갖는 태양 전지 모듈은 복수 개의 태양 전지 중 제1, 2 도전성 배선(210, 220)과 제1, 2 전극(141, 142) 사이에 접속 불량이 발생한 태양 전지가 있는 경우, 인터커넥터(300)과 복수의 제1, 2 도전성 배선(210, 220) 사이의 접속을 해제하여, 해당 태양 전지만 보다 용이하게 교체할 수 있다.In a solar cell module having such a structure, when there is a solar cell in which a connection failure occurs between the first and second conductive wirings 210 and 220 and the first and second electrodes 141 and 142 among a plurality of solar cells, The connection between the solar cell 300 and the plurality of first and second conductive wirings 210 and 220 is released so that the solar cell can be replaced more easily.

이하에서는 앞서 설명한 도전성 접착제(251)의 제1 방향(x) 길이(L251) 및 절연층(252)의 제1 방향(x) 길이(L252)에 대해 보다 구체적으로 설명한다.The length L251 of the conductive adhesive agent 251 in the first direction x and the length L252 of the insulating layer 252 in the first direction x will be described in more detail below.

도 5는 도 1 및 도 4에서 설명한 도전성 접착제(251)의 제1 방향(x) 길이(L251) 및 절연층(252)의 제1 방향(x) 길이(L252)에 대해 보다 구체적으로 설명하기 위한 도로서, 도전성 배선(200)이 반도체 기판(110)의 후면에 접착된 부분을 확대한 일례이다.5 illustrates the length L251 in the first direction x and the length L252 in the first direction x of the insulating layer 252 of the conductive adhesive 251 described in Figs. 1 and 4 And an enlarged portion of the conductive wiring 200 adhered to the rear surface of the semiconductor substrate 110 is shown.

도 5에서는 전술한 내용과 중복되는 내용에 대한 설명은 생략한다. 아울러, 도 5에서는 도 1 및 도 4에서 설명한 태양 전지 모듈을 일례로 설명하나, 도 6과 같은 태양 전지 모듈의 다른 일례에도 동일하게 적용될 수 있다.In FIG. 5, the description of the contents overlapping with those described above will be omitted. In addition, in FIG. 5, the solar cell module described with reference to FIGS. 1 and 4 will be described as an example, but the same can be applied to another example of the solar cell module as shown in FIG.

도 5에 도시된 바와 같이, 도전성 접착제(251) 및 절연층(252) 각각의 제1 방향 길이(L251, L252)는 도전성 배선들(200) 각각의 선폭(W200) 이상이고, 도전성 배선들(200) 사이의 간격(D200)보다 좁을 수 있다.5, the first directional lengths L251 and L252 of the conductive adhesive 251 and the insulating layer 252 are not less than the line width W200 of each of the conductive interconnections 200, 200, as shown in FIG.

여기서, 도 5에 도시된 바와 같이, 도전성 접착제(251)에서 제1 방향(x)으로의 길이(L251)는 도전성 배선(200)과 중첩되되, 도전성 배선(200)을 중심으로 제1 방향(x)으로 돌출된 도전성 접착제(251)의 제1 방향(x) 양쪽 끝단의 최대 길이를 의미하고, 절연층(252)에서 제1 방향(x)으로의 길이(L252)는 도전성 배선(200)과 중첩되되, 도전성 배선(200)을 중심으로 제1 방향(x)으로 돌출된 절연층(252)의 제1 방향(x) 양쪽 끝단의 최대 길이를 의미한다.5, the length L251 of the conductive adhesive agent 251 in the first direction x overlaps the conductive wiring line 200, and the length L251 of the conductive adhesive agent 251 in the first direction (x) x and the length L252 in the first direction x in the insulating layer 252 corresponds to the maximum length of the conductive wiring 200 in the first direction x. Refers to the maximum length of both ends of the insulating layer 252 protruding in the first direction x about the conductive wiring 200 in the first direction x.

이와 같은 도전성 접착제(251)의 제1 방향 길이(L251)와 절연층(252)의 제1 방향 길이(L252) 각각은 도전성 배선(200)의 선폭(W200)과 동일하거나 더 클 수 있고, 도전성 배선들(200) 사이의 간격(D200) 보다 좁을 수 있다.The first direction length L251 of the conductive adhesive agent 251 and the first direction length L252 of the insulating layer 252 may be equal to or larger than the line width W200 of the conductive wiring line 200, And may be narrower than the distance D200 between the wirings 200. [

이때, 절연층(252)의 제1 방향 길이(L252)는 도전성 접착제(251)의 제1 방향 길이(L251)보다 크게 형성될 수 있다. 이와 같이, 도전성 접착제(251) 및 절연층(252) 각각의 제1 방향(x) 길이(L251, L252)는 도전성 배선들(200) 각각의 선폭(W200) 이상으로 형성하고, 도전성 배선들(200) 사이의 간격(D200)보다 좁게 형성하는 것은 도전성 배선(200)을 반도체 기판(110)의 후면에 접속시키는 태빙 공정 중, 도전성 배선(200)이 도전성 접착제(251)에 충분히 접속되도록 하여, 접촉 저항이 충분히 낮게 형성되도록 하기 위함다.The length L252 of the insulating layer 252 in the first direction may be greater than the length L251 of the conductive adhesive 251 in the first direction. The lengths L251 and L252 in the first direction x of each of the conductive adhesive agent 251 and the insulating layer 252 are formed to be equal to or larger than the line width W200 of each of the conductive interconnections 200, The conductive wiring 200 is sufficiently connected to the conductive adhesive 251 during the tableting process for connecting the conductive wiring 200 to the back surface of the semiconductor substrate 110, So that the contact resistance is formed sufficiently low.

아울러, 도전성 접착제(251)의 제1 방향 길이(L251)를 절연층(252)의 제1 방향 길이(L252)보다 크게 하는 것은 앞서 간략히 기재한 바와 같이, 도전성 배선(200)을 반도체 기판(110)의 후면에 접속시키는 태빙 공정 중, 원하지 않는 전극(141 or 142)과 도전성 배선(200)이 단락되는 것을 최소화하기 위함이다.The length L251 of the conductive adhesive agent 251 in the first direction is made larger than the length L252 of the insulating layer 252 in the first direction as described above, The shorting between the electrode 141 or 142 and the conductive wiring 200 is minimized.

즉, 도전성 접착제(251)의 제1 방향 길이(L251)가 절연층(252)의 제1 방향 길이(L252)과 동일하거나 더 큰 경우, 도전성 접착제(251)가 인접한 다른 극성의 전극까지 퍼져 접속될 가능성이 있고, 이로 인하여 원하지 않는 전극(141 or 142)과 도전성 배선(200)이 단락될 수 있는데, 본 발명과 같이, 절연층(252)의 제1 방향 길이(L252)이 도전성 접착제(251)의 제1 방향 길이(L251)보다 크게 형성되는 경우, 태빙 공정 중 도전성 접착제(251)가 제2 방향으로 퍼지더라도, 인접한 다른 극성의 전극에 접속될 가능성을 사전에 방지할 수 있다. 이에 따라, 태양 전지 모듈의 불량 가능성을 최소화할 수 있다.That is, when the first direction length L251 of the conductive adhesive agent 251 is equal to or larger than the first direction length L252 of the insulating layer 252, the conductive adhesive agent 251 spreads to adjacent electrodes of other polarity The electrode 141 or 142 and the conductive wiring 200 may be short-circuited because the length L252 of the insulating layer 252 in the first direction is smaller than that of the conductive adhesive 251 Of the conductive adhesive agent 251 is larger than the first directional length L251 of the conductive adhesive agent 251 in the second direction, it is possible to prevent the possibility that the conductive adhesive agent 251 is connected to the adjacent electrodes of different polarities in advance. Accordingly, the possibility of failure of the solar cell module can be minimized.

보다 구체적으로, 절연층(252)의 제1 방향 길이(L252)는 도전성 배선들(200)의 선폭(W200)보다 크고, 도전성 배선들(200) 사이의 간격(D200)보다 작게 형성되되, 일례로, 도전성 배선들(200)의 선폭(W200) 대비 절연층(252)의 제1 방향 길이(L252)의 비율은 1: 1.1 ~ 2 사이로 형성될 수 있다.More specifically, the length L252 of the insulating layer 252 in the first direction is larger than the line width W200 of the conductive lines 200 and smaller than the distance D200 between the conductive lines 200, The ratio of the first direction length L252 of the insulating layer 252 to the line width W200 of the conductive wirings 200 may be between 1: 1.1 and 2.

이와 같이, 절연층(252)의 제1 방향 길이(L252)를 도전성 배선들(200)의 선폭(W200)보다 크게 하되, 1:1.1 이상으로 형성함으로써, 도전성 배선들(200) 중 일부가 다소 삐뚤어지게 배치되더라도, 도전성 배선(200)과 원하지 않는 전극 사이의 단락을 적절하게 방지할 수 있도록 공정 마진을 확보할 수 있고, 1:2 이하로 형성함으로써, 과도한 절연층(252)의 사용을 방지하여 제조 비용을 절감할 수 있다.As described above, the length L252 of the insulating layer 252 in the first direction is set to be larger than the line width W200 of the conductive wirings 200, but is set to 1: 1.1 or more, so that some of the conductive wirings 200 are somewhat It is possible to ensure a process margin so as to appropriately prevent a short circuit between the conductive wirings 200 and the undesired electrode and to prevent the excessive use of the insulating layer 252 by setting the ratio to 1: So that the manufacturing cost can be reduced.

일례로, 도전성 배선들(200)의 선폭(W200)은 1mm 이상 2.5mm 이하로 형성될 수 있고, 도전성 배선들(200) 사이의 간격(D200)은 2mm 이상 반도체 기판의 제2 방향 길이의 0.5배 이하로 형성될 수 있다. 보다 바람직하게, 도전성 배선들(200) 사이의 간격(D200)은 4mm 이상 8mm 이하일 수 있다.For example, the line width W200 of the conductive wirings 200 may be 1 mm or more and 2.5 mm or less, and the distance D200 between the conductive wirings 200 may be 0.5 mm or more Fold or less. More preferably, the distance D200 between the conductive wirings 200 may be 4 mm or more and 8 mm or less.

아울러, 절연층(252)의 제1 방향 길이(L252)는 전술한 도전성 배선들(200)의 선폭(W200)보다 크거나 같고 도전성 배선들(200) 사이의 간격(D200)보다 작게 형성되되, 전술한 공정 마진, 단락 방지 및 제조 비용을 고려하여, 바람직하게는, 1.1mm ~ 4mm 사이로 형성될 수 있다.The length L252 of the insulating layer 252 in the first direction is greater than or equal to the line width W200 of the conductive lines 200 and less than the distance D200 between the conductive lines 200, In consideration of the above-mentioned process margin, short-circuit prevention, and manufacturing cost, it may preferably be formed to be between 1.1 mm and 4 mm.

또한, 도전성 접착제(251)의 제1 방향 길이(L251)은 도전성 배선들(200)의 선폭(W200)과 동일하거나 더 크고, 절연층(252)의 제1 방향 길이(L252)보다 작게 형성될 수 있다.The length L251 of the conductive adhesive agent 251 in the first direction is equal to or larger than the line width W200 of the conductive lines 200 and smaller than the length L252 of the insulating layer 252 in the first direction .

일례로, 도전성 배선들(200)의 선폭(W200) 대비 도전성 접착제(251)의 제1 방향 길이(L251)는 1: 1 ~ 1.25 사이로 형성될 수 있다.For example, the length L251 of the conductive adhesive 251 in the first direction to the line width W200 of the conductive lines 200 may be between 1: 1 and 1.25.

이와 같이, 도전성 배선들(200)의 선폭(W200) 대비 도전성 접착제(251)의 제1 방향 길이(L251)가 1:1 이상이 되도록 함으로써, 도전성 배선(200)이 도전성 접착제(251)를 통해 원하는 전극에 보다 안정적으로 접착될 수 있고, 도전성 배선(200)과 해당 전극 사이의 접촉 저항을 충분히 낮게 확보할 수 있고, 1:1.25 이하가 되도록 함으로써, 도전성 접착제(251)의 사용을 최소화하여 제조 비용을 절감할 수 있다. As described above, by making the length L251 of the conductive adhesive agent 251 in the first direction equal to or greater than 1: 1 with respect to the line width W200 of the conductive lines 200, the conductive line 200 is electrically connected to the conductive adhesive agent 251 The contact resistance between the conductive wiring 200 and the corresponding electrode can be sufficiently low and can be set to 1: 1.25 or less so that the use of the conductive adhesive 251 can be minimized The cost can be reduced.

일례로, 도전성 접착제(251)의 제1 방향 길이(L251)는 전술한 도전성 배선들(200)의 선폭(W200)보다 크거나 같고 절연층(252)의 제1 방향 길이(L252)보다 작게 형성되되, 전술한 접촉 저항과 제조 비용을 고려하여, 바람직하게는, 1mm ~ 3mm 사이로 형성될 수 있다.The length L251 of the conductive adhesive 251 in the first direction is set to be greater than or equal to the line width W200 of the conductive interconnections 200 and smaller than the length L252 of the insulating layer 252 in the first direction In consideration of the above-mentioned contact resistance and manufacturing cost, it may preferably be formed to be between 1 mm and 3 mm.

여기서, 도전성 접착제(251)의 제1 방향 길이(L251) 대비 절연층(252)의 제1 방향 길이(L252)의 비율은 1: 1.1 ~ 1.7 사이로 형성될 수 있다. 여기서, 1:1.1 이상이 되도록 하여, 원하지 않는 전극과 도전성 배선(200)이 단락을 방지할 수 있고, 1:1.7 이하가 되도록 하여, 절연층(252)이 필요 이상으로 과도하게 많이 사용되는 것을 방지하면서, 태빙 공정 중 적절한 공정 마진을 확보할 수 있다.The ratio of the first direction length L252 of the insulating layer 252 to the first direction length L251 of the conductive adhesive agent 251 may be between 1: 1.1 and 1.7. Here, it is preferable that the insulating layer 252 is used in an excessively large amount in excess of 1: 1.1 so that the undesired electrode and the conductive wiring 200 can be prevented from short-circuiting, It is possible to secure an appropriate process margin in the tabletting process.

아울러, 이때, 제1, 2 전극들(141, 142) 각각의 선폭(W141, W142)은 도전성 접착제(251) 및 절연층(252)의 제1 방향 길이(L252)보다 좁게 형성되되, 일례로, 제1, 2 전극들(141, 142) 각각의 선폭(W141, W142)은 180um ~ 400um 사이로 형성될 수 있다.At this time, the line widths W141 and W142 of the first and second electrodes 141 and 142 are narrower than the first directional length L252 of the conductive adhesive 251 and the insulating layer 252. For example, And the line widths W141 and W142 of the first and second electrodes 141 and 142 may be between 180um and 400um.

아울러, 제1 전극(141)과 제2 전극(142) 사이의 간격(DE)은 도전성 접착제(251) 및 절연층(252)의 제1 방향 길이(L252)보다 좁을 수 있다. 일례로, 제1 전극(141)과 제2 전극(142) 사이의 간격(DE)은 0.5mm ~ 1.5mm 사이일 수 있다.The distance DE between the first electrode 141 and the second electrode 142 may be narrower than the length L252 of the conductive adhesive 251 and the insulating layer 252 in the first direction. For example, the distance DE between the first electrode 141 and the second electrode 142 may be between 0.5 mm and 1.5 mm.

또한, 도전성 접착제(251)의 선폭(W251)은 도전성 접착제(251)의 제1 방향 길이(L251)보다 좁고, 절연층(252)의 선폭(W252)은 절연층(252)의 제1 방향 길이(L252)보다 좁게 형성될 수 있다.The line width W251 of the conductive adhesive agent 251 is narrower than the first directional length L251 of the conductive adhesive agent 251 and the line width W252 of the insulating layer 252 is smaller than the line width W252 of the insulating adhesive layer 252 in the first direction length (L252).

보다 구체적으로, 절연층(252)의 선폭(W252)은 단락 방지를 고려하여 도전성 접착제(251)의 선폭(W251)보다 크게 형성될 수 있다. 일례로, 절연층(252)의 선폭(W252)은 200um ~ 450um 사이로 형성될 수 있고, 도전성 접착제(251)의 선폭(W251)은 180um ~ 400um 사이로 형성될 수 있다.More specifically, the line width W252 of the insulating layer 252 may be formed to be larger than the line width W251 of the conductive adhesive 251 in consideration of short-circuit prevention. For example, the line width W252 of the insulating layer 252 may be between 200um and 450um, and the line width W251 of the conductive adhesive 251 may be between 180um and 400um.

이때, 도전성 접착제(251)의 선폭(W251)은 제1, 2 전극들(141, 142) 각각의 선폭(W141, W142)과 실질적으로 동일하게 형성될 수 있다.The line width W251 of the conductive adhesive 251 may be substantially equal to the line widths W141 and W142 of the first and second electrodes 141 and 142, respectively.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, Of the right.

Claims (7)

반도체 기판; 상기 반도체 기판의 후면에 제1 방향으로 연장되고, 서로 다른 극성을 갖는 제1 전극들과 제2 전극들을 각각 구비하는 태양 전지들; 및
상기 각 태양 전지의 제1 전극들과 교차하는 제2 방향으로 연장되고, 상기 제1 전극들에 접속되는 복수의 제1 도전성 배선들;
상기 각 태양 전지의 제2 전극들과 교차하는 제2 방향으로 연장되고, 상기 제2 전극들에 접속되는 복수의 제2 도전성 배선들;
상기 제1 도전성 배선들과 상기 제1 전극들 사이의 교차점 및 상기 제2 도전성 배선들과 상기 제2 전극들 사이의 교차점에 형성되는 도전성 접착제; 및
상기 제1 도전성 배선들과 상기 제2 전극들 사이의 교차점 및 상기 제2 도전성 배선들과 상기 제1 전극들 사이의 교차점에 형성되는 절연층;을 포함하고,
상기 태양 전지들 중에서 제1 태양 전지의 상기 제1 전극들에 접속된 상기 복수의 제1 도전성 배선들은 상기 제1 태양 전지의 일측면에 인접하여 위치한 제2 태양 전지의 상기 제2 전극들에 상기 도전성 접착제를 통해 접속되고,
상기 제1 태양 전지의 상기 제2 전극들에 접속된 상기 복수의 제2 도전성 배선들은 상기 제1 태양 전지의 타측면에 인접하여 위치한 제3 태양 전지의 상기 제1 전극들에 상기 도전성 접착제를 통해 접속되고,
상기 제1, 2 전극들 각각의 선폭은 180um ~ 400um 사이이고, 상기 제1, 2 전극 사이의 간격은 0.5mm ~ 1.5mm 사이이고,
상기 제1, 2 도전성 배선들 각각의 선폭은 상기 제1, 2 전극들의 각 선폭보다 큰 범위로 형성되되, 1mm 이상 2.5mm 이하이고,
상기 제1, 2 도전성 배선들 사이의 간격은 4mm 이상 8mm 이하이고,
상기 도전성 접착제의 상기 제1 방향 길이는 상기 도전성 배선들의 선폭보다 크고, 상기 도전성 배선들 선폭의 1.25배 이하이고,
상기 절연층의 상기 제1 방향 길이는 상기 도전성 접착제의 상기 제1 방향 길이보다 크고, 상기 도전성 배선들 사이의 간격보다 좁고,
상기 도전성 접착제의 상기 제2 방향 선폭은 상기 제1, 2 전극들 각각의 선폭과 같거나 크되, 180um ~ 400um 사이이고,
상기 절연층의 상기 제2 방향 선폭은 상기 도전성 접착제의 상기 제2 방향 선폭보다 크되, 200um ~ 450um 사이이고,
상기 도전성 접착제의 상기 제1 방향 길이 대비 절연층의 상기 제1 방향 길이의 비율은 1: 1.1 ~ 1.7 사이인 태양 전지 모듈.
A semiconductor substrate; Solar cells each having first and second electrodes having different polarities and extending in a first direction on a rear surface of the semiconductor substrate; And
A plurality of first conductive wirings extending in a second direction intersecting the first electrodes of each solar cell and connected to the first electrodes;
A plurality of second conductive wirings extending in a second direction intersecting the second electrodes of each solar cell and connected to the second electrodes;
A conductive adhesive formed at an intersection between the first conductive wires and the first electrodes and an intersection between the second conductive wires and the second electrodes; And
And an insulating layer formed at an intersection between the first conductive wirings and the second electrodes and at an intersection between the second conductive wirings and the first electrodes,
Wherein the plurality of first conductive wirings connected to the first electrodes of the first solar cell among the solar cells are connected to the second electrodes of the second solar cell located adjacent to one side of the first solar cell, And connected via a conductive adhesive,
The plurality of second conductive wirings connected to the second electrodes of the first solar cell are connected to the first electrodes of the third solar cell located adjacent to the other side of the first solar cell through the conductive adhesive Respectively,
Wherein a line width of each of the first and second electrodes is in the range of 180um to 400um, a distance between the first and second electrodes is in a range of 0.5mm to 1.5mm,
Wherein a line width of each of the first and second conductive wirings is greater than a line width of the first and second electrodes and is 1 mm or more and 2.5 mm or less,
The distance between the first and second conductive wirings is 4 mm or more and 8 mm or less,
The length of the conductive adhesive in the first direction is larger than the line width of the conductive lines, 1.25 times or less of the line width of the conductive lines,
The length of the insulating layer in the first direction is larger than the length in the first direction of the conductive adhesive, is narrower than the distance between the conductive wires,
The line width of the conductive adhesive in the second direction is equal to or greater than a line width of each of the first and second electrodes,
Wherein the second directional line width of the insulating layer is greater than the second directional line width of the conductive adhesive,
Wherein the ratio of the length of the insulating layer in the first direction to the length in the first direction of the conductive adhesive is between 1: 1.1 and 1.7.
제1 항에 있어서,
상기 도전성 배선들의 선폭 대비 절연층의 상기 제1 방향 길이의 비율은 1: 1.1 ~ 2 사이인 태양 전지 모듈.
The method according to claim 1,
Wherein the ratio of the length of the insulating layer to the line width of the conductive wirings in the first direction is between 1: 1.1 and 2.
삭제delete 제1 항에 있어서,
상기 도전성 접착제의 상기 제1 방향 길이는 1mm ~ 3mm 사이이고, 상기 절연층의 상기 제1 방향 길이는 1.1mm ~ 4mm 사이인 태양 전지 모듈.
The method according to claim 1,
The length of the conductive adhesive in the first direction is between 1 mm and 3 mm, and the length of the insulating layer in the first direction is between 1.1 mm and 4 mm.
제1 항에 있어서,
상기 제1, 2 전극들 각각의 선폭은 상기 도전성 접착제 및 상기 절연층의 상기 제1 방향 길이보다 좁은 태양 전지 모듈.
The method according to claim 1,
Wherein a line width of each of the first and second electrodes is narrower than a length of the conductive adhesive and the insulating layer in the first direction.
제1 항에 있어서,
상기 제1 전극과 상기 제2 전극 사이의 간격은 상기 도전성 접착제 및 상기 절연층의 상기 제1 방향 길이보다 좁은 태양 전지 모듈.
The method according to claim 1,
Wherein an interval between the first electrode and the second electrode is narrower than a length in the first direction of the conductive adhesive and the insulating layer.
제1 항에 있어서,
상기 각 태양 전지의 반도체 기판은 제1 도전성 타입의 불순물이 도핑되고,
상기 반도체 기판의 후면에는 상기 제1 도전성과 반대인 제2 도전성의 불순물이 도핑되는 에미터부; 및 상기 반도체 기판보다 상기 제1 도전성 타입의 불순물을 고농도로 도핑되는 후면 전계부;를 더 포함하고,
상기 제1 전극들 각각은 상기 에미터부에 접속되고, 상기 제2 전극들 각각은 상기 후면 전계부에 접속되는 태양 전지 모듈.
The method according to claim 1,
The semiconductor substrate of each solar cell is doped with an impurity of the first conductivity type,
An emitter portion doped with a second conductive impurity opposite to the first conductivity to the rear surface of the semiconductor substrate; And a rear electric field portion doped with impurities of the first conductivity type at a high concentration from the semiconductor substrate,
Wherein each of the first electrodes is connected to the emitter section, and each of the second electrodes is connected to the rear electric section.
KR1020170176340A 2017-12-20 2017-12-20 Solar cell module KR101911844B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170176340A KR101911844B1 (en) 2017-12-20 2017-12-20 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170176340A KR101911844B1 (en) 2017-12-20 2017-12-20 Solar cell module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170009514A Division KR20170028907A (en) 2017-01-20 2017-01-20 Solar cell module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020180123900A Division KR101975586B1 (en) 2018-10-17 2018-10-17 Solar cell module

Publications (2)

Publication Number Publication Date
KR20180000333A KR20180000333A (en) 2018-01-02
KR101911844B1 true KR101911844B1 (en) 2018-10-26

Family

ID=61004452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170176340A KR101911844B1 (en) 2017-12-20 2017-12-20 Solar cell module

Country Status (1)

Country Link
KR (1) KR101911844B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102520639B1 (en) 2018-05-02 2023-04-11 삼성디스플레이 주식회사 Touch sensing device and display device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003724A (en) * 2009-06-18 2011-01-06 Sanyo Electric Co Ltd Solar cell module
JP2015138975A (en) 2014-01-20 2015-07-30 エルジー エレクトロニクス インコーポレイティド Solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175893B1 (en) * 2014-02-24 2020-11-06 엘지전자 주식회사 Manufacturing method of solar cell module
KR20150100146A (en) * 2014-02-24 2015-09-02 엘지전자 주식회사 Solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003724A (en) * 2009-06-18 2011-01-06 Sanyo Electric Co Ltd Solar cell module
JP2015138975A (en) 2014-01-20 2015-07-30 エルジー エレクトロニクス インコーポレイティド Solar cell module

Also Published As

Publication number Publication date
KR20180000333A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
KR101661859B1 (en) Solar cell module and manufacturing method thereof
KR101816164B1 (en) Solar cell module
KR101658733B1 (en) Solar cell module
KR101612955B1 (en) Interconnector and solar cell module having the same
KR101630526B1 (en) Solar cell
KR101642231B1 (en) Solar cell module
KR101642158B1 (en) Solar cell module
KR101747339B1 (en) Solar cell module
US10714642B2 (en) Solar cell and solar cell module
KR101714778B1 (en) Solar cell module
KR101911844B1 (en) Solar cell module
KR101806978B1 (en) Solar cell module
KR101684156B1 (en) Solar cell module
KR101816181B1 (en) Solar cell module
KR101788160B1 (en) Solar cell module
JP6321099B2 (en) Solar cell module
KR101656622B1 (en) Solar cell module and manufacturing method thereof
KR101975586B1 (en) Solar cell module
KR20170028907A (en) Solar cell module
KR101788170B1 (en) Solar cell and solar cell module
KR102183580B1 (en) Solar cell and solar cell module
KR101816180B1 (en) Solar cell module
KR102367369B1 (en) Solar cell module
KR20170009805A (en) Solar cell and solar cell module
KR20160063130A (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent