KR101908082B1 - Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal - Google Patents

Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal Download PDF

Info

Publication number
KR101908082B1
KR101908082B1 KR1020170025204A KR20170025204A KR101908082B1 KR 101908082 B1 KR101908082 B1 KR 101908082B1 KR 1020170025204 A KR1020170025204 A KR 1020170025204A KR 20170025204 A KR20170025204 A KR 20170025204A KR 101908082 B1 KR101908082 B1 KR 101908082B1
Authority
KR
South Korea
Prior art keywords
filter
nickel
cobalt
manganese
coating
Prior art date
Application number
KR1020170025204A
Other languages
Korean (ko)
Other versions
KR20180098734A (en
Inventor
권순모
한태희
권오상
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Priority to PCT/KR2017/002118 priority Critical patent/WO2018155745A1/en
Priority to KR1020170025204A priority patent/KR101908082B1/en
Publication of KR20180098734A publication Critical patent/KR20180098734A/en
Application granted granted Critical
Publication of KR101908082B1 publication Critical patent/KR101908082B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 니켈-코발트-망간 복합수산화물[NixCoyMn1-y(OH)2]의 이종원소 코팅 방법에 관한 기술로서, 공침반응 후단 공정인 세정 공정 중에 이종원소를 동시에 코팅하는 방법으로 별도의 이종원소 코팅공정이 필요하지 않는다. 또한, 액상법으로 코팅을 하기 때문에 균일한 전구체 코팅이 가능하다. The present invention relates to a method of coating a heterogeneous element of a nickel-cobalt-manganese composite hydroxide [Ni x Co y Mn 1-y (OH) 2 ], which is a method of simultaneously coating two different elements during a washing step, No separate hetero-element coating process is required. In addition, since it is coated by the liquid phase method, uniform precursor coating is possible.

Description

니켈―코발트―망간 복합전구체의 이종원소 코팅 방법{Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal}Coating method for Ni-Co-Mn composite precursor with hetrogenous metal [

본 발명은 리튬과 함께 혼합하여 리튬이차전지의 양극 활물질로 사용되는 니켈-코발트-망간 복합전구체인 NixCoyMn1-x-y(OH)2의 표면에 균일하게 이종원소가 코팅되는 방법에 관한 기술이다.The present invention relates to a method for uniformly coating a surface of Ni x Co y Mn 1-xy (OH) 2 , which is a nickel-cobalt-manganese composite precursor used as a cathode active material of a lithium secondary battery, Technology.

휴대용의 소형 전기ㆍ전자기기의 보급 확산에 따라 니켈수소전지나 리튬이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 리튬은 매우 이온화 경향이 큰 금속으로 고전압 발현이 가능하여 에너지 밀도가 높은 전지에 각광을 받고 있는 물질이다.Development of new secondary batteries such as a nickel hydride battery and a lithium secondary battery is progressing actively due to the spread of portable small electric and electronic devices. Among them, the lithium secondary battery uses carbon such as graphite as an anode active material, a metal oxide containing lithium as a cathode active material, and a non-aqueous solvent as an electrolyte. Lithium is a highly ionized metal, and is capable of high-voltage development, and is a source of energy for high energy density batteries.

리튬이차전지에 사용되는 양극 활물질로는 리튬을 함유하고 있는 리튬 전이금속산화물이 주로 사용되고 있으며, 코발트계, 니켈계, 삼성분계(코발트, 니켈 및 망간이 공존) 등의 층상계 리튬 전이금속 복합산화물이 90% 이상 사용되고 있다. 예를 들어, Li2CO3와 NixCoyMn1-x-y(OH)2계 전구체를 혼합 소성 가공하여 양극 소재로 사용하고 있다. 통상 NixCoyMn1-x-y(OH)2 전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제), NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 NixCoyMn1-x-y(OH)2이 고상으로 합성된 후 침전된다.Lithium transition metal oxides containing lithium are mainly used as the positive electrode active material used in the lithium secondary battery, and layered lithium transition metal complex oxides such as cobalt, nickel, ternary system (coexisting cobalt, nickel and manganese) Have been used for more than 90%. For example, Li 2 CO 3 and Ni x Co y Mn 1-xy (OH) 2 precursors are mixed and calcined to be used as a cathode material. In general, the Ni x Co y Mn 1-xy (OH) 2 precursor is prepared by coprecipitation. After the nickel salt, manganese salt and cobalt salt are dissolved in distilled water, an aqueous ammonia solution (chelating agent), aqueous NaOH solution ), The Ni x Co y Mn 1-xy (OH) 2 is synthesized as a solid phase and precipitated.

리튬이차전지의 양극 활물질의 출력특성을 높이기 위하여, 양극 물질 내의 니켈의 함량을 높일 필요가 있으나, 니켈의 함량을 높이는 경우에는 리튬으로 인하여 안정성이 떨어지는 단점이 공존한다. 특히, 이러한 니켈계 리튬 복합산화물 중에서 니켈의 함량이 50%를 초과하는 니켈 고함량(Ni-rich) 조성에서는 충방전에 따른 전지특성의 열화가 문제가 된다. 이는 양극과 전해액 반응으로 인한 양극 활물질로부터 니켈의 용출에 의한 것으로 알려져 있으며, 특히 고온 수명 특성의 저하를 가져오는 것으로 알려져 있다. 또한, 니켈 고함량(Ni-rich) 조성에서는 구조적 안정성 및 화학적 안정성이 떨어져 양극의 열안정성, 특히 고온에서 열 안정성의 저하가 심각한 문제점으로 지적되고 있다.In order to increase the output characteristics of the positive electrode active material of the lithium secondary battery, it is necessary to increase the content of nickel in the positive electrode material. However, when the content of nickel is increased, there is a disadvantage in that stability is deteriorated due to lithium. Particularly, in such a nickel-based lithium composite oxide, nickel content (Ni-rich) composition having a nickel content of more than 50% causes deterioration of battery characteristics due to charging and discharging. This is known to be caused by the elution of nickel from the cathode active material due to the reaction of the anode and the electrolyte, and is known to lead to deterioration of high temperature lifetime characteristics. In addition, structural stability and chemical stability are deteriorated in the nickel-rich (Ni-rich) composition, which is pointed out as a serious problem in the thermal stability of the anode, particularly the deterioration of thermal stability at high temperatures.

이러한 문제점으로 인해 최근에는 니켈-코발트-망간 양극 활물질 전구체에 이종원소로 일부를 치환하거나 양극 활물질의 표면에 이종원소를 코팅함으로써 열안정성, 용량, 사이클 특성들을 개선하려는 많은 시도가 이루어지고 있으나, 아직 그 개선의 정도가 미흡하다. 예를 들어, 특허등록 제10-1493932호는 실리콘 산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법에 관한 기술을 공개하고 있다.In recent years, attempts have been made to improve the thermal stability, capacity and cycle characteristics by replacing a part of the nickel-cobalt-manganese cathode active material precursor with a heterogeneous element or coating the surface of the cathode active material with a hetero element. The degree of improvement is insufficient. For example, Patent Registration No. 10-1493932 discloses a technique for a cathode active material for a lithium secondary battery coated with silicon oxide and a manufacturing method thereof.

특히, 종래에는 니켈-코발트-망간 양극 활물질 전구체에 이종원소를 코팅하기 위해서는, 니켈-코발트-망간 양극 활물질의 제조->세정->이종원소의 코팅을 통해 제조하는 것이 일반적으로서, 이종원소의 코팅 단계 전에 세정 단계를 먼저 거치는 것이 일반적이었다.In particular, conventionally, in order to coat a nickel / cobalt-manganese cathode active material precursor with a hetero element, nickel / cobalt / manganese cathode active material preparation, cleaning, It was common to go through the cleaning step first.

대한민국특허등록 제10-1493932호Korean Patent Registration No. 10-1493932 대한민국특허등록 제10-1275845호Korean Patent Registration No. 10-1275845

본 발명의 목적은 니켈-코발트-망간 복합전구체인 NixCoyMn1-x-y(OH)2에 이종원소의 코팅 방법을 제공하되, 종래 기술보다 전체적으로 단계가 줄어들어 공정이 단순화되는 기술을 제공하는 것이다.It is an object of the present invention to provide a coating method of Ni x Co y Mn 1-xy (OH) 2 which is a nickel-cobalt-manganese composite precursor, .

특히, 본 발명은 별도의 코팅 공정이 필요없이, 다른 공정을 이용하여 니켈-코발트-망간 복합전구체에 이종원소의 코팅이 이루어지는 기술을 제공하는 것을 목적으로 한다. In particular, it is an object of the present invention to provide a technique in which a nickel-cobalt-manganese composite precursor is coated with a heterogeneous material using another process without the need for a separate coating process.

본 발명은 황산니켈, 황산코발트 및 황산망간의 전이금속 수용액을 공침법에 의하여 복합전구체[NixCoyMn1-x-y(OH)2, 여기서, 0<x<1, 0<y<1, 0<x+y<1]로 제조하는 단계(I); 및 필터가 설치된 가압식 여과기에서 이종원소가 용해된 세정액으로 상기에서 제조된 복합전구체를 세정함과 동시에 이종원소의 코팅이 이루어지는 단계(Ⅱ)를 포함하는 니켈―코발트―망간 복합전구체의 이종원소 코팅 방법을 제공한다.In the present invention, a transition metal aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate is prepared by coprecipitation using a complex precursor (Ni x Co y Mn 1-xy (OH) 2 , where 0 <x <1, 0 <y < 0 &lt; x + y &lt;1]; And a step (II) of washing the complex precursor prepared above with a cleaning liquid in which a hetero-element is dissolved in a pressurized filter equipped with a filter and coating a heterogeneous element, and a step (II) of coating a heterogeneous element with a nickel- to provide.

특히, 상기 세정액은 NaOH 수용액을 사용하는 것이 바람직하다.In particular, it is preferable to use an aqueous NaOH solution as the cleaning liquid.

특히, 상기 이종원소 산화물은 Ti, Zr, Si, Ce, La, Y, W, Sn, Gd 및 Nb 중에서 선택되는 어느 하나 이상의 금속 또는 그 산화물일 수 있다.In particular, the heteroelement oxide may be any one or more of metals selected from Ti, Zr, Si, Ce, La, Y, W, Sn, Gd and Nb or oxides thereof.

특히, 상기 단계(Ⅱ)는: 내부 하측에 필터가 설치된 가압식 여과기의 상기 필터 위에 상기 복합전구체를 일정 두께로 적층하는 단계(Ⅱ-1); 상기 필터 위에 이종원소를 포함하는 세정액을 채우는 단계(Ⅱ-2); 및 가압을 통해 상기 세정액이 상기 필터를 통과하는 단계(Ⅱ-3)를 포함하는 것이 바람직하다.Particularly, the step (II) comprises the steps of (II-1) laminating the composite precursor to a predetermined thickness on the filter of the pressurized filter provided with a filter on the inner lower side; (II-2) filling the filter with a cleaning liquid containing a different element; And a step (II-3) of passing the cleaning liquid through the filter through pressurization.

특히, 상기 단계(Ⅱ) 이후 상기 복합전구체의 건조 단계(Ⅲ)를 더 거치는 것이 바람직하다.In particular, it is preferable to further carry out the step (III) of drying the composite precursor after the step (II).

특히, 상기 필터는 마이크로 사이즈 필터인 것이 바람직하다.In particular, the filter is preferably a microsize filter.

본 발명은 니켈-코발트-망간 복합전구체의 세정 과정에서 이종원소를 동시에 코팅하기 때문에 종래 기술에서 세정 과정 이후 별도로 이종원소의 코팅을 진행하는 것에 비해 공정이 줄어들어 코팅 비용 및 시간을 절약할 수 있다. Since nickel and cobalt-manganese complex precursors are coated simultaneously with the different elements during the cleaning process, the present invention can reduce the coating cost and time because the process is separately performed after the cleaning process in the prior art.

또한, 본 발명에서는 액상인 세정액을 통해 이종원소의 코팅이 이루어지므로 복합전구체에 균일하게 이종원소의 코팅이 이루어질 수 있는 장점이 있다.Further, in the present invention, since the coating of the heterogeneous material is performed through the cleaning liquid in the liquid state, the coating of the heterogeneous material can be uniformly performed on the composite precursor.

도 1은 본 발명의 단계(Ⅱ)를 구현하기 위한 가압식 여과기(10)의 개략도이다.
도 2는 실험예에서 제조한 이종원소로서 산화 지르코늄이 표면 코팅된 니켈-코발트-망간 복합전구체의 SEM 측정사진이다.
도 3은 비교예에서 제조한 니켈-코발트-망간 복합전구체의 SEM 측정사진이다.
도 4는 실험예에서 제조한 산화 지르코늄이 표면 코팅된 니켈-코발트-망간 복합전구체의 금속 성분의 분포도를 나타내는 EDS 측정사진이다.
1 is a schematic diagram of a pressurized filter 10 for implementing step (II) of the present invention.
2 is a SEM photograph of a nickel-cobalt-manganese composite precursor on which zirconium oxide is surface-coated as a hetero-element produced in Experimental Example.
3 is a SEM photograph of the nickel-cobalt-manganese composite precursor prepared in Comparative Example.
4 is a photograph of the EDS measurement showing the distribution of metal components of the nickel-cobalt-manganese composite precursor surface-coated with zirconium oxide prepared in Experimental Example.

본 발명은 니켈-코발트-망간 복합전구체인 NixCoyMn1-x-y(OH)2 (여기서, 0<x<1, 0<y<1, 0<x+y<1)의 세정과 동시에, 상기 전구체의 표면에 이종원소가 코팅되도록 하는 방법을 제공한다. The present invention relates to a nickel-cobalt-manganese composite precursor (Ni x Co y Mn 1-xy (OH) 2 , wherein 0 <x <1, 0 <y <1, 0 <x + y < , And a method for coating the surface of the precursor with a heteroelement.

이하 설명에서 "복합전구체" 또는 "전구체"는 "NixCoyMn1-x-y(OH)2(여기서, 0<x<1, 0<y<1, 0<x+y<1)"를 의미하며, 이종원소는 상기 복합전구체를 이루는 Ni, Co, Mn과, 상기 복합전구체와 소성되어 리튬이차전지 양극 활물질을 이루는 Li을 제외한 금속을 의미하는 용어로 사용한다. 예를 들어, Ti, Zr, Si, Ce, La, Y, W, Sn, Gd, Nb 등 다양한 금속 또는 그 산화물을 의미한다.In the following description, the term "composite precursor" or "precursor" refers to "Ni x Co y Mn 1-xy (OH) 2 where 0 <x <1, 0 <y <1, 0 <x + y <1" , And the heterogeneous element is used as a term for Ni, Co, Mn constituting the composite precursor and a metal other than Li constituting the cathode active material of the lithium secondary battery, which is calcined with the complex precursor. Means various metals or oxides thereof such as Ti, Zr, Si, Ce, La, Y, W, Sn, Gd and Nb.

본 발명은 황산니켈, 황산코발트 및 황산망간의 전이금속 수용액을 공침법에 의하여 복합전구체[NixCoyMn1-x-y(OH)2, 여기서, 0<x<1, 0<y<1, 0<x+y<1]로 제조하는 단계(I); 및 필터가 설치된 가압식 여과기에서 이종원소가 용해된 세정액으로 상기에서 제조된 복합전구체를 세정함과 동시에 이종원소의 코팅이 이루어지는 단계(Ⅱ)를 포함하는 니켈―코발트―망간 복합전구체의 이종원소 코팅 방법을 제공한다.In the present invention, a transition metal aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate is prepared by coprecipitation using a complex precursor (Ni x Co y Mn 1-xy (OH) 2 , where 0 <x <1, 0 <y < 0 &lt; x + y &lt;1]; And a step (II) of washing the complex precursor prepared above with a cleaning liquid in which a hetero-element is dissolved in a pressurized filter equipped with a filter and coating a heterogeneous element, and a step (II) of coating a heterogeneous element with a nickel- to provide.

종래 기술과 마찬가지로 본 발명에서도 단계(I)에서는 황산니켈, 황산코발트, 황산망간을 각각 니켈, 코발트 및 망간의 원료 공급 물질로 하여 공침법을 통해 NixCoyMn1-x-y(OH)2를 제조할 수 있다. 상기 단계(I)는 공지의 공침법을 사용할 수 있으므로, 단계(I)에 대한 구체적인 설명은 생략하기로 한다. In the present invention as well as the prior art, Ni x Co y Mn 1-xy (OH) 2 is prepared by coprecipitation using nickel sulfate, cobalt sulfate and manganese sulfate as raw materials for nickel, cobalt and manganese, Can be manufactured. Since the known co-precipitation method can be used for the step (I), a detailed description of the step (I) will be omitted.

상기 단계(I)에서 사용된 황 성분 등의 이물질을 제거하기 위하여 통상 가성소다(NaOH) 수용액을 세정액으로 사용하여 단계(I)에서 제조된 복합전구체를 세정한다. 본 발명에서는 세정액을 통한 세정 과정에서 동시에 이종원소의 코팅이 이루어지도록 세정액 성분에 이종원소를 포함하도록 하는 것을 특징으로 한다.The composite precursor prepared in the step (I) is washed using a caustic soda (NaOH) aqueous solution as a cleaning liquid in order to remove impurities such as the sulfur component used in the step (I). The present invention is characterized in that the cleaning liquid component includes a hetero-element so that the coating of the heterogeneous material is simultaneously performed in the cleaning process through the cleaning liquid.

이종원소는 높은 pH 환경에서 니켈-코발트-망간 복합전구체에 잘 코팅되기 때문에, 세정액에 사용된 가성소다로 인하여 높은 pH, 즉 고염기 조건이 형성되기 때문에 이점에 착안하여 본 발명은 세정액에 이종원소를 포함함으로써 세정과 이종원소의 코팅이 동시에 이루어지도록 하였다.Since the heterogeneous element is coated well on the nickel-cobalt-manganese composite precursor in a high pH environment, high pH, that is, high base condition is formed due to caustic soda used in the cleaning liquid. Therefore, So that cleaning and coating of the heterogeneous material can be performed simultaneously.

본 발명의 단계(Ⅱ)는 다시 세부 단계로 나눌 수 있다. 상기 단계(Ⅱ)는: 내부 하측에 필터가 설치된 가압식 여과기의 상기 필터 위에 복합전구체를 적층하는 단계(Ⅱ-1); 상기 필터 위에 상기 이종원소를 포함하는 세정액을 채우는 단계(Ⅱ-2); 및 가압을 통해 상기 세정액이 상기 필터를 통과하여 세정 및 이종원소의 코팅이 동시에 이루어지는 단계(Ⅱ-3)로 나눌 수 있다.Step (II) of the present invention can be further divided into detailed steps. The step (II) comprises the steps of: (II-1) laminating a composite precursor on the filter of a pressurized filter provided with a filter on the inner lower side; (II-2) filling the filter with a cleaning liquid containing the heteroelement; And a step (II-3) in which the cleaning liquid passes through the filter through the pressurization to simultaneously perform cleaning and coating of the dissimilar material.

상기 세부단계들은 도면을 참고하면서 설명하기로 한다. 도 1은 본 발명의 단계(Ⅱ)를 구현하기 위한 가압식 여과기(10)의 개략도이다.The detailed steps will be described with reference to the drawings. 1 is a schematic diagram of a pressurized filter 10 for implementing step (II) of the present invention.

본 발명의 바람직한 일 실시예에 의한 가압식 여과기(10)는 전체적으로 용기 형상의 본체(11)를 기준으로 상부에는 이종원소를 포함하는 세정액이 주입되는 유입구(12)를 가지며, 바닥면에는 세정액이 배출되는 유출구(13)를 가지며, 각 유입구(12) 및 유출구(13)는 통상의 밸브를 더 구비할 수 있다. The pressurized strainer 10 according to the preferred embodiment of the present invention has an inlet 12 through which a cleaning liquid containing a different element is injected as an upper part of the body 11 as a whole, And each of the inlet 12 and the outlet 13 may further include a conventional valve.

상기 본체(11)의 내부 바닥 부근에는 필터(14)가 구비되는데 필터(14)는 마이크로 기공 크기가 바람직하다. 필터(14)는 부직포, 세라믹필터, 고분자필터 등의 마이크로 크기의 기공을 갖는 다양한 필터(14)가 가능하다. A filter 14 is provided near the inner bottom of the main body 11, and the filter 14 is preferably a micro pore size. The filter 14 may be various filters 14 having micro-sized pores such as a nonwoven fabric, a ceramic filter, and a polymer filter.

상기 필터(14) 위에 전 단계에서 제조된 복합전구체 입자(20)를 적층한다. The composite precursor particles 20 prepared in the previous step are laminated on the filter 14.

상기 적층된 복합전구체 입자(20)가 충분히 잠기도록 이종원소를 포함하는 세정액, 예를 들어 이종원소가 포함된 NaOH 수용액을 채운다.For example, a NaOH aqueous solution containing a hetero-element is filled in the composite precursor particles 20 so that the composite precursor particles 20 are sufficiently immersed.

본 발명의 가압식 여과기(10)에는 가압 수단이 구비되는데, 예를 들어, 공압을 이용한 가압 장치(15)가 구비될 수 있다. 예를 들어, 외부로부터 불활성 가스인 N2를 고압으로 본 발명의 가압식 여과기(10)에 주입함으로써 가압식 여과기(10) 내에 고압을 유지함으로써, 세정액(30)이 필터(14)를 통과하여 유출구(13)를 통해 외부로 배출될 수 있다.The pressurized filter 10 of the present invention is provided with a pressurizing means. For example, a pressurizing device 15 using a pneumatic pressure may be provided. For example, by injecting N 2 , which is an inert gas from the outside, into the pressurized filter 10 of the present invention at a high pressure to maintain the high pressure in the pressurized filter 10, the cleaning liquid 30 passes through the filter 14, 13 to the outside.

또한, 상기 단계(Ⅱ) 이후 복합전구체의 건조 단계(Ⅲ)를 더 거칠 수 있다.Further, the step (III) of drying the complex precursor after the step (II) may be further carried out.

이하에서는 실시예 및 실험예를 통하여 본 발명에 대하여 설명하기로 한다.Hereinafter, the present invention will be described with reference to Examples and Experimental Examples.

실시예Example

황산니켈, 황산코발트, 황산망간을 0.8 : 0.1 : 0.1의 비율(몰비)로 혼합하여 2.5 M 농도의 전이금속 수용액을 준비하였고, 50% 농도의 수산화나트륨 수용액을 준비하였다. 상기 전이금속 수용액을 50 ~ 60℃로 유지되는 이온제거수가 포함된 이중수조구조인 100 L 공침반응기에 6.5 ~ 7.0 L/hr의 속도로 공급하였고, 공침 반응기 내부의 pH가 10.5 ~ 11.0이 유지되도록 상기 수산화나트륨 수용액을 가하였다. 첨가제로서 28% 농도의 암모니아 수용액은 전이금속 수용액을 투입하기 전 3 L를 공급하였다. 공침반응은 3시간 기준으로 니켈-코발트-망간 복합수산화물을 가라앉히고, 상등액을 제거하는 방법의 배치식 타입의 공침법으로 12시간 반응을 진행하였다.Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed at a ratio (molar ratio) of 0.8: 0.1: 0.1 to prepare a 2.5 M transition metal aqueous solution, and a 50% aqueous solution of sodium hydroxide was prepared. The transition metal aqueous solution was supplied to a 100 L coprecipitated reactor having a dual tank structure containing ion-removing water maintained at 50 to 60 ° C at a rate of 6.5 to 7.0 L / hr, and the pH of the coprecipitated reactor was maintained at 10.5 to 11.0 The aqueous sodium hydroxide solution was added. As the additive, ammonia aqueous solution of 28% concentration was supplied with 3 L before introducing the transition metal aqueous solution. The coprecipitation reaction was carried out for 12 hours by the batch type coprecipitation method in which the nickel-cobalt-manganese complex hydroxide was allowed to stand for 3 hours and the supernatant liquid was removed.

반응이 완료된 후, 12시간 동안 반응한 공침액은 가압식 여과기에서 니켈-코발트-망간 수산화물을 제외한 반응액을 제거하였다. After the reaction was completed, the coprecipitates reacted for 12 hours to remove the reaction solution except the nickel-cobalt-manganese hydroxide in the pressure filter.

반응액이 제거된 니켈-코발트-망간 수산화물에 황산화 이온(SO4 2-)을 제거하기 위한 5 ~ 10%의 가성소다 수용액 200 ~ 300 L와 코팅하고자 하는 원료인 수 나노 크기(~ 20nm)의 산화 지르코늄이 10 ~ 20% 분산되어 있는 수용액 5 ~ 10 kg과 함께 공급하였다. 가성소다 수용액과 산화지르코늄 수용액은 가압식 여과기에 압력을 가하여 제거하였으며, 이후 이온제거수로 여러 번 세척하고, 120℃ 항온 건조기에서 24시간 건조해, 산화 지르코늄이 표면 코팅된 니켈-코발트-망간 복합수산화물을 얻었다.To 200 ~ 300 L of 5 ~ 10% caustic soda aqueous solution to remove sulfuric acid ion (SO 4 2- ) in the nickel-cobalt-manganese hydroxide from which the reaction solution was removed, Of zirconium oxide were dispersed in an amount of 10 to 20%. The caustic soda aqueous solution and the aqueous zirconium oxide solution were removed by applying pressure to the pressurized filter, then washed several times with deionized water and dried in a constant temperature drier at 120 ° C. for 24 hours to obtain a nickel-cobalt-manganese composite hydroxide &Lt; / RTI &gt;

비교예Comparative Example

황산니켈, 황산코발트, 황산망간을 0.8 : 0.1 : 0.1의 비율(몰비)로 혼합하여 2.5 M 농도의 전이금속 수용액을 준비하였고, 50% 농도의 수산화나트륨 수용액을 준비하였다. 상기 전이금속 수용액을 50 ~ 60℃로 유지되는 이온제거수가 포함된 이중수조구조인 100 L 공침반응기에 6.5 ~ 7.0 L/hr의 속도로 공급하였고, 공침 반응기 내부의 pH가 10.5 ~ 11.0이 유지되도록 상기 수산화나트륨 수용액을 가하였다. 첨가제로서 28% 농도의 암모니아 수용액은 전이금속 수용액을 투입하기 전 3 L를 공급하였다. 공침반응은 3시간 기준으로 니켈-코발트-망간 복합수산화물을 가라앉히고, 상등액을 제거하는 방법의 배치식 타입의 공침법으로 12시간 반응을 진행하였다.Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed at a ratio (molar ratio) of 0.8: 0.1: 0.1 to prepare a 2.5 M transition metal aqueous solution, and a 50% aqueous solution of sodium hydroxide was prepared. The transition metal aqueous solution was supplied to a 100 L coprecipitated reactor having a dual tank structure containing ion-removing water maintained at 50 to 60 ° C at a rate of 6.5 to 7.0 L / hr, and the pH of the coprecipitated reactor was maintained at 10.5 to 11.0 The aqueous sodium hydroxide solution was added. As the additive, ammonia aqueous solution of 28% concentration was supplied with 3 L before introducing the transition metal aqueous solution. The coprecipitation reaction was carried out for 12 hours by the batch type coprecipitation method in which the nickel-cobalt-manganese complex hydroxide was allowed to stand for 3 hours and the supernatant liquid was removed.

반응이 완료된 후, 12시간 동안 반응하여 제조된 니켈-코발트-망간 복합수산화물을 이온제거수로 여러 번 세척하고, 120℃ 항온 건조기에서 24시간 건조해, 니켈-코발트-망간 복합수산화물을 얻었다.After completion of the reaction, the nickel-cobalt-manganese complex hydroxide prepared by the reaction for 12 hours was washed several times with deionized water and dried in a constant temperature drier at 120 ° C for 24 hours to obtain nickel-cobalt-manganese complex hydroxide.

실험예 1Experimental Example 1

도 2는 실험예에서 제조한 산화 지르코늄이 표면 코팅된 니켈-코발트-망간 복합전구체 수산화물의 SEM 측정사진이다. 니켈-코발트-망간 수산화물의 크기는 8.3 ㎛였다. 2 is a SEM photograph of a nickel-cobalt-manganese composite precursor hydroxide surface-coated with zirconium oxide prepared in Experimental Example. The size of nickel - cobalt - manganese hydroxide was 8.3 ㎛.

실험예 2Experimental Example 2

도 3은 비교예에서 제조한 니켈-코발트-망간 수산화물의 SEM 측정사진이다. 니켈-코발트-망간 수산화물의 크기는 8.2 ㎛였다. 3 is a SEM photograph of the nickel-cobalt-manganese hydroxide prepared in Comparative Example. The size of nickel-cobalt-manganese hydroxide was 8.2 ㎛.

실험예 3Experimental Example 3

도 4는 실험예에서 제조한 산화 지르코늄이 표면 코팅된 니켈-코발트-망간 수산화물의 금속 성분의 분포도를 나타내는 EDS 측정사진이다. 도 4를 참조하면 니켈-코발트-망간 수산화물의 표면에 산화 지르코늄이 균일하게 코팅되어 있음을 확인할 수 있었다.4 is an EDS measurement photograph showing the distribution of metal components of the nickel-cobalt-manganese hydroxide surface-coated with zirconium oxide prepared in Experimental Example. Referring to FIG. 4, it was confirmed that zirconium oxide was uniformly coated on the surface of the nickel-cobalt-manganese hydroxide.

실험예 4Experimental Example 4

표 1은 실험예 및 비교예에서 제조한 니켈-코발트-망간 수산화물에 대한 ICP 성분분석을 한 결과를 나타내었다. 전체 금속 대비 1.0 몰비로 혼합하여 투입한 Zr의 함량비가 이론치에 근접하게 나타나 상기 산화지르코늄을 표면 코팅한 니켈-코발트-망간 수산화물의 제조방법이 첨가성분을 코팅하는데 효과적인 방법임을 판단할 수 있었다.Table 1 shows the results of ICP component analysis of the nickel-cobalt-manganese hydroxide prepared in Experimental Examples and Comparative Examples. The content ratio of Zr added in the molar ratio of 1.0 with respect to the total metal was close to the theoretical value and it was judged that the method of preparing nickel-cobalt-manganese hydroxide having the zirconium oxide surface-coated was an effective method for coating the additive component.

Figure 112017019580544-pat00001
Figure 112017019580544-pat00001

Claims (6)

황산니켈, 황산코발트 및 황산망간의 전이금속 수용액을 공침법에 의하여 복합전구체[NixCoyMn1-x-y(OH)2, 여기서, 0<x<1, 0<y<1, 0<x+y<1]로 제조하는 단계(I); 및
필터가 설치된 가압식 여과기에서 이종원소로서 산화지르코늄이 용해된 세정액으로 상기에서 제조된 복합전구체를 세정함과 동시에 상기 산화지르코늄의 코팅이 이루어지는 단계(Ⅱ)를 포함하는 니켈-코발트-망간 복합전구체의 이종원소 코팅 방법.
The transition metal aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate is prepared by coprecipitation with a complex precursor [Ni x Co y Mn 1-xy (OH) 2 , where 0 <x <1, 0 <y < + y &lt;1]; And
And a step (II) of washing the composite precursor prepared above with a cleaning liquid in which zirconium oxide is dissolved as a heteroelement in a pressurized filter equipped with a filter, and coating the zirconium oxide with the cleaning solution, wherein the zirconium oxide is a heterogeneous mixture of nickel-cobalt-manganese complex precursor Element coating method.
제1항에서, 상기 세정액은 NaOH 수용액을 포함하는 것을 특징으로 하는 니켈-코발트-망간 복합전구체의 이종원소 코팅 방법.
The method of claim 1, wherein the cleaning liquid comprises an aqueous solution of NaOH.
삭제delete 제1항에서, 상기 단계(Ⅱ)는:
내부 하측에 필터가 설치된 가압식 여과기의 상기 필터 위에 상기 복합전구체를 적층하는 단계(Ⅱ-1);
상기 가압식 여과기 내에 이종원소로서 산화지르코늄을 포함하는 세정액을 채우는 단계(Ⅱ-2); 및
가압을 통해 상기 세정액이 상기 필터를 통과하는 단계(Ⅱ-3)를 포함하는 것을 특징으로 하는 니켈-코발트-망간 복합전구체의 이종원소 코팅 방법.
The method of claim 1, wherein step (II) comprises:
(II-1) laminating the composite precursor on the filter of a pressure-type filter provided with a filter on the inner lower side;
(II-2) filling a cleaning liquid containing zirconium oxide as a different element into the pressurized filter; And
And (II-3) passing the cleaning liquid through the filter through a pressurizing process. The method for coating a hetero-element of a nickel-cobalt-manganese composite precursor according to claim 1,
제1항에서, 상기 단계(Ⅱ) 이후 복합전구체의 건조 단계(Ⅲ)를 더 갖는 것을 특징으로 하는 니켈-코발트-망간 복합전구체의 이종원소 코팅 방법.
The method of claim 1, further comprising a step (III) of drying the composite precursor after the step (II).
제1항에서, 상기 필터는 마이크로 기공 크기를 갖는 필터인 것을 특징으로 하는 니켈-코발트-망간 복합전구체의 이종원소 코팅 방법.The method of claim 1, wherein the filter is a filter having a micro pore size.
KR1020170025204A 2017-02-27 2017-02-27 Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal KR101908082B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2017/002118 WO2018155745A1 (en) 2017-02-27 2017-02-27 Method for applying heteroatom coat to nickel-cobalt-manganese composite precursor
KR1020170025204A KR101908082B1 (en) 2017-02-27 2017-02-27 Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170025204A KR101908082B1 (en) 2017-02-27 2017-02-27 Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal

Publications (2)

Publication Number Publication Date
KR20180098734A KR20180098734A (en) 2018-09-05
KR101908082B1 true KR101908082B1 (en) 2018-10-15

Family

ID=63254290

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170025204A KR101908082B1 (en) 2017-02-27 2017-02-27 Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal

Country Status (2)

Country Link
KR (1) KR101908082B1 (en)
WO (1) WO2018155745A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102516400B1 (en) * 2020-11-24 2023-04-03 주식회사 에코앤드림 Encreasing density of Ni-Co-Mn composite precursor using washing process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206742A (en) 2012-03-28 2013-10-07 National Institute Of Advanced Industrial & Technology Lithium ion secondary battery positive electrode having excellent high temperature characteristics, lithium ion secondary battery including the same, and electrical apparatus using secondary battery
JP2015003838A (en) 2013-06-19 2015-01-08 住友金属鉱山株式会社 Nickel-cobalt-manganese composite hydroxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275845B1 (en) 2011-09-21 2013-06-17 에스케이씨 주식회사 Apparatus using couette-taylor vortice reaction equipment for preparing precursor of cathode material for lithium secondary battery
KR101493932B1 (en) * 2012-12-27 2015-02-16 전자부품연구원 Positive active material coated with silicon oxide for rechargeable lithium battery and process for preparing the same
KR101547972B1 (en) * 2014-01-09 2015-08-27 주식회사 이엔드디 Manufacturing method for Ni-Co-Mn composite precursor
KR102212195B1 (en) * 2014-06-02 2021-02-04 재단법인 포항산업과학연구원 Reactor, device and method for manufacturing precursor using the same and precursor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206742A (en) 2012-03-28 2013-10-07 National Institute Of Advanced Industrial & Technology Lithium ion secondary battery positive electrode having excellent high temperature characteristics, lithium ion secondary battery including the same, and electrical apparatus using secondary battery
JP2015003838A (en) 2013-06-19 2015-01-08 住友金属鉱山株式会社 Nickel-cobalt-manganese composite hydroxide

Also Published As

Publication number Publication date
KR20180098734A (en) 2018-09-05
WO2018155745A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
KR20170117541A (en) High energy density nickel-cobalt based lithium ion cathode material and its manufacturing method
KR20170119691A (en) High capacity nickel-cobalt based lithium ion cathode material and its manufacturing method
CN107123792B (en) Ternary cathode material with double-layer composite structure and preparation method thereof
TWI577640B (en) Nickel-lithium metal composite oxide powder and method for producing same,positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
CN111868975B (en) Positive electrode compound
CN113851652A (en) Modified cobalt-free positive electrode material of sodium ion battery, preparation method of modified cobalt-free positive electrode material and sodium ion battery
CN112103496A (en) High-nickel ternary cathode material and preparation method thereof
US9695519B2 (en) Positive electrode catalyst and device
CN109962234A (en) Monocrystalline positive electrode of concentration gradient and preparation method thereof
CN114583141B (en) Precursor material with three-layer structure, preparation method thereof and anode material
KR101908082B1 (en) Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal
JP2020113424A (en) Composite oxide powder
CN112331865B (en) Composite cathode electrode of solid oxide battery, preparation method of composite cathode electrode and solid oxide battery
KR102039336B1 (en) Eco-friendly method for manufacturing Ni-Co-Mn composite precursor using organic chelating agent
KR19980033322A (en) Hydrogen Scavenging Alloy Containing Composition and Electrode Using the Same
KR20190021070A (en) Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal using sol-gel synthesizing process of the heterogeneous metal
CN101944606A (en) Super-alkaline secondary battery anode and preparation method thereof
US20170062802A1 (en) Polynary composite oxide, preparation method and use thereof
KR101159139B1 (en) Method of forming a ni-ysz complex and method of manufacturing a fuel cell
KR101706487B1 (en) Lithium-ion battery positive electrode active material, lithium-ion battery positive electrode, and lithium-ion battery
CN110255631A (en) A kind of preparation method of rice husk base porous metal oxide
KR102516400B1 (en) Encreasing density of Ni-Co-Mn composite precursor using washing process
Shang et al. Metal nanoparticles at grain boundaries of titanate toward efficient carbon dioxide electrolysis
CN111448690A (en) Cathode material
JPH11130440A (en) Production of nickel-containing hydroxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant