KR20170117541A - High energy density nickel-cobalt based lithium ion cathode material and its manufacturing method - Google Patents

High energy density nickel-cobalt based lithium ion cathode material and its manufacturing method Download PDF

Info

Publication number
KR20170117541A
KR20170117541A KR1020177025872A KR20177025872A KR20170117541A KR 20170117541 A KR20170117541 A KR 20170117541A KR 1020177025872 A KR1020177025872 A KR 1020177025872A KR 20177025872 A KR20177025872 A KR 20177025872A KR 20170117541 A KR20170117541 A KR 20170117541A
Authority
KR
South Korea
Prior art keywords
lithium
solution
sintering
precursor
lithium ion
Prior art date
Application number
KR1020177025872A
Other languages
Korean (ko)
Inventor
싱추이 리
카즈타카 이케다
원펑 송
궈간 쉬
페이페이 왕
러우청 저우
Original Assignee
난통 리샤인 뉴 머티리얼 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난통 리샤인 뉴 머티리얼 컴퍼니 리미티드 filed Critical 난통 리샤인 뉴 머티리얼 컴퍼니 리미티드
Publication of KR20170117541A publication Critical patent/KR20170117541A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/14Chromates; Bichromates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명의 고에너지밀도의 니켈-코발트계 리튬이온 양극재에 있어서, 기재의 화학 일반식은 LipNixCo1 - xMmO2이고, M은 도펀트이고, 코팅 재료는 활성 물질 N이고; 상기 리튬이온 2차전지의 양극재는 1차입자를 응집시켜 2차입자 또는 1차 입자로 만들거나, 또는 1차입자와 2차입자의 혼합입자로 구성된다. 그 제조 방법은 리튬이온 2차전지 양극재 전구체의 제조; 리튬이온 2차전지 양극재의 제조를 포함한다. 본 발명에 있어서, 니켈-코발트 이성분계 전구체는 연속 공침 반응을 진행하고 원소 혼합이 균일하며 반응이 충분하기 때문에 형상을 조절하는 데 유익하고, 이성분계 고니켈계 재료는 도핑이 적합한 원소를 통해 양이온 혼합 현상이 감소하기 때문에 구조가 안정적이며 배터리의 안전 성능과 고온 성능이 향상되고, 코팅 활성 물질은 재료의 최초 충전 및 방전 효율과 에너지밀도를 어느 정도 개선해 주었다. In the high energy density nickel-cobalt based lithium ion cathode material of the present invention, the chemical formula of the substrate is Li p Ni x Co 1 - x M m O 2 , M is a dopant, and the coating material is an active material N; The positive electrode material of the lithium ion secondary battery is made of secondary particles or primary particles by aggregating primary particles or mixed particles of primary particles and secondary particles. The production method includes the production of a lithium ion secondary battery cathode material precursor; And manufacturing a lithium-ion secondary battery cathode material. In the present invention, the nickel-cobalt binary precursor is advantageous for controlling the shape because the continuous coprecipitation reaction proceeds, the elemental mixing is uniform and the reaction is sufficient, and the binary high nickel- Due to the reduction of the mixing phenomenon, the structure is stable, battery safety performance and high temperature performance are improved, and the coating active material improves the initial charging and discharging efficiency and energy density of the material to some extent.

Description

고에너지밀도의 니켈-코발트계 리튬이온 양극재 및 그 제조 방법High energy density nickel-cobalt based lithium ion cathode material and its manufacturing method

본 발명은 리튬이온 전지 양극재 분야에 관한 것으로서, 더욱 상세하게는 고에너지밀도의 니켈-코발트계 리튬이온 전지 양극재 및 그 제조 방법에 관한 것이다.The present invention relates to a cathode material for a lithium ion battery, and more particularly, to a cathode material for a nickel-cobalt based lithium ion battery having a high energy density and a method of manufacturing the same.

리튬이온 전지는 무게가 가볍고 부피가 작으며 방전 플래토(discharge plateau)가 높고 용량이 크며 순환수명이 길고 메모리 효과가 없다는 장점 등을 가지고 있기 때문에, 휴대폰, 노트북 등 모바일 전자 제품에 광범위하게 사용될 뿐만 아니라 인공위성, 전기차, 항공우주 등 분야에도 응용되고 있다.Lithium-ion batteries are widely used in mobile electronic products such as mobile phones and laptops because they are light in weight, have a small volume, high discharge plateau, large capacity, long cycle life and no memory effect It is also applied to satellite, electric car, aerospace and so on.

LiNixCo1 - xO2(0.6<x<1) 양극재는 리튬코발트산화물과 리튬니켈산화물의 장점을 가지고 있으며, 비방전 용량이 높고 순환성능이 우수하며 비용이 낮고 환경오염이 적다는 장점 등이 있다. 그러나 고니켈계 물질은 Ni2 +이 Ni3 +로 완전히 산화되기 어렵기 때문에 고온 결정 과정에서 Ni2 +와 Ni3 + 사이에 양이온 혼합 현상이 나타나 열안정성이 떨어지고 최초 충전 및 방전 효율이 낮아지는 단점 등이 있다. LiNi x Co 1 - x O 2 (0.6 <x <1) The anode material has the advantages of lithium cobalt oxide and lithium nickel oxide. It has high non-discharge capacity, excellent circulation performance, low cost and low environmental pollution. have. However, high nickel-based material is Ni 2 + is because it is difficult to be completely oxidized to Ni 3 + at high temperatures making process shown cation Mixing between Ni 2 + and Ni 3 + poor heat stability initial charge and discharge efficiency is lowered Disadvantages.

종래에는 상기 문제를 해결하기 위해 도핑 코팅 변형 등을 진행해 양이온 혼합 현상을 어느 정도 개선함으로써 구조를 안정시켰으나, 도핑 또는 코팅의 물질이 비활성 물질이기 때문에 배터리의 비용량을 일정 부분 떨어졌다.Conventionally, in order to solve the above-mentioned problem, the structure has been stabilized by improving the cation mixing phenomenon by proceeding with the doping coating deformation, etc. However, since the doping or coating material is an inactive material,

상기 문제를 해결하기 위해 본 발명에서는 LiNixCo1 - xO2에 도핑을 진행해 안정적인 물질의 구조로 변형시키고, 다시 활성 물질을 코팅해 재료의 전기화학적 성능을 더욱 개선하였다. 이는 재료의 안정성과 고온 성능을 향상시켰을 뿐만 아니라 재료의 전기화학적 성능을 크게 개선하였으며, 특히 비용량과 최초 충전 및 방전 효율을 개선하였다.In order to solve the above problem, the present invention is doped with LiNi x Co 1 - x O 2 to transform into a stable material structure, and further coating the active material to further improve the electrochemical performance of the material. This not only improves material stability and high temperature performance, but also greatly improves the electrochemical performance of the material, especially its capacity and initial charge and discharge efficiency.

본 발명의 목적은, 고에너지밀도의 니켈-코발트계 리튬이온 전지 양극재 및 그 제조 방법을 제공함으로써 종래 기술의 단점을 극복하는 데에 있다.An object of the present invention is to overcome the disadvantages of the prior art by providing a cathode material of a nickel-cobalt based lithium ion battery having a high energy density and a manufacturing method thereof.

상기 목적을 달성하기 위해 제안하는 본 발명은 이하 기술방안을 통해 구현하였다. 즉, 고에너지밀도의 니켈-코발트계 리튬이온 양극재에 있어서, 기재의 화학 일반식은 LipNixCo1 - xMmO2이고, 여기에서 0.95≤p≤1.25, 0.6≤x<1, 0.01≤m<0.12, M은 도펀트이고, 코팅 재료는 활성 물질 N이고, N은 기재 총 질량의 0.01 내지 25wt%를 차지하고; 상기 리튬이온 2차전지의 양극재는 1차입자를 응집시켜 2차입자 또는 1차 입자로 만들거나, 또는 1차입자와 2차입자의 혼합입자로 구성된다.In order to achieve the above object, the present invention has been implemented through the following technical solutions. That is, in the nickel-cobalt based lithium ion cathode material having a high energy density, the chemical formula of the base material is Li p Ni x Co 1 - x M m O 2 where 0.95? P? 1.25, 0.6? 0.01 < = m < 0.12, M is a dopant, the coating material is an active material N, and N comprises 0.01 to 25 wt% of the total mass of the substrate; The positive electrode material of the lithium ion secondary battery is made of secondary particles or primary particles by aggregating primary particles or mixed particles of primary particles and secondary particles.

상기 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법은 이하 단계를 포함하는 것을 특징으로 한다.The method for manufacturing the high-energy density nickel-cobalt based lithium ion cathode material includes the following steps.

단계 1: 리튬이온 2차전지 양극재 전구체의 제조Step 1: Preparation of a cathode material precursor for a lithium ion secondary battery

a. 용액의 배합 제조: 몰비 Ni:Co=x:1-x로 혼합 염 용액 A1을 배합 제조하고, 상기 염 용액 중 금속 이온 농도를 0.5 내지 3mol/L로 만들고; 농도가 1.5 내지 12mol/L인 알칼리 용액을 배합 제조하고, 농도가 0.5 내지 5mol/L인 착화제 용액을 배합 제조하고, 여기에서 0.6≤x≤1이고;a. Preparation of solution: Mixed salt solution A1 was prepared by mixing Ni: Co = x: 1-x at a molar ratio of 0.5 to 3 mol / L in the salt solution; An alkali solution having a concentration of 1.5 to 12 mol / L is formulated to prepare a complexing agent solution having a concentration of 0.5 to 5 mol / L, wherein 0.6? X? 1;

b. 초기 용액의 배합 제조: 반응용기에 순수(pure water)를 주입하고, 알칼리 용액을 이용해 용액의 pH값을 조절하고, 반응용기의 온도를 40 내지 80℃로 유지하고, 동시에 불활성 기체를 쏟아 붓고, 전체 반응 과정을 일관되게 진행하고;b. Preparation of the initial solution: Pure water is injected into the reaction vessel, the pH value of the solution is adjusted by using an alkali solution, the temperature of the reaction vessel is maintained at 40 to 80 ° C, the inert gas is simultaneously poured, Consistently progress the entire reaction process;

c. 전구체의 반응: 반응용기 내에 A1 용액을 첨가하고 유속은 3 내지 20L/min으로 유지하고, 동시에 적정량의 착화제와 알칼리 용액을 천천히 첨가하고, 반응용기 내 온도는 40 내지 80℃로 유지하고, 교반 속도는 200 내지 950r/min으로 조절하고;c. Reaction of the precursor: Al solution is added to the reaction vessel and the flow rate is maintained at 3 to 20 L / min. At the same time, an appropriate amount of complexing agent and alkali solution are slowly added, the temperature in the reaction vessel is maintained at 40 to 80 캜, The speed is adjusted to 200 to 950 r / min;

d. 고액 분리: 단계 c의 재료에 대해 표면 처리를 진행하고, 합성한 이성분계 양극재 전구체를 숙성기로 옮겨 고액 분리를 진행하고, 탈이온수를 이용해 고액 분리 후 수득한 이성분계 양극재 전구체를 세척하며, 건조 후 수득한 필요한 이성분계 전구체 A2, A2의 화학식은 NixCo1-x(OH)2이고;d. Solid-liquid separation: the surface treatment of the material of Step c is carried out, the synthesized binary precursor of the cathode material is transferred to an aging machine to carry out solid-liquid separation, the solid precursor obtained by solid-liquid separation using deionized water is washed, The required formulations of the binary precursors A2, A2 obtained after drying are Ni x Co 1-x (OH) 2 ;

단계 2: 리튬이온 2차전지 양극재의 제조Step 2: Production of cathode material for lithium ion secondary battery

e. 1차 소결: 리튬 전구체 물질, A2 및 도펀트 M 물질을 분자식 LipNixCo1 -xMmO2 중의 비율에 따라 혼합하고, 여기에서 0.95≤p≤1.25, 0.6≤x<1, 0.01≤m<0.12, M은 도펀트이고, 소결 온도는 400 내지 1050℃로, 소결 시간은 4 내지 40시간으로 제어하고, 소결 과정에서 공기 또는 산소 기체를 쏟아 붓고, 소결 후의 물질은 파쇄, 분급, 제철 등 공정으로 처리해 재료 A를 수득하고;e. Primary sintering: The lithium precursor material, A2 and the dopant M material are mixed according to the proportions in the molecular formula Li p Ni x Co 1 -x M m O 2 where 0.95? P? 1.25, 0.6? X <1, m < 0.12, M is a dopant, the sintering temperature is controlled to 400 to 1050 DEG C and the sintering time is controlled to 4 to 40 hours, and air or oxygen gas is poured in the sintering process, and the material after sintering is crushed, RTI ID = 0.0 &gt; A &lt; / RTI &gt;

f. 표면 처리: 재료 A는 물로 세척하여 알칼리 함량을 떨어뜨리고, 물질 A와 물의 비율 범위는 1:1 내지 1:6으로 하고, 물 세척 후 물질을 건조 및 스크리닝하고;f. Surface treatment: The material A is washed with water to lower the alkali content, the ratio of the material A to the water is 1: 1 to 1: 6, the water is washed and the material is dried and screened;

g. 코팅: f 처리를 거친 물질 또는 물질 A를 기질로 삼고, 기질 상에 N 물질을 코팅하고, 코팅 방법은 건식 코팅, 습식 코팅 또는 공침 코팅법을 사용하고, 여기에서 N은 기재 총 질량의 0.01 내지 25wt%를 차지하고;g. Coating: The substance A or substance A treated as the substrate is coated with the N material on the substrate, and the coating method is a dry coating, a wet coating or a coprecipitation coating method, wherein N is 0.01 to 25 wt%;

h. 2회 또는 다수회 소결: g 처리를 거친 물질은 소결을 진행하고, 소결 온도는 400 내지 1050℃로 제어하고, 주요 온도 구역의 소결 시간은 3 내지 35시간으로 조절하고, 소결 과정에 공기 또는 산소 기체를 쏟아 붓고, 제품 성능에 대한 요구 기준에 따라 3회 이상 소결을 진행할 수 있고, 여기에서 소결 조건은 2회 소결과 같다. 소결한 물질은 필요에 따라 파쇄, 분급, 스크리닝, 제철 등 공정으로 처리한다.h. The sintering is carried out at a temperature of 400 to 1050 ° C, the sintering time of the main temperature zone is controlled to 3 to 35 hours, and the air or oxygen The sintering can be carried out three times or more according to the requirements for product performance, and the sintering conditions are the same as the sintering twice. The sintered material is processed by crushing, classifying, screening, iron-making processes as necessary.

바람직하게는, 상기 단계 a 중 알칼리 용액은 수산화나트륨, 수산화칼륨, 수산화리튬으로 구성된 군에서 선택되는 하나 이상의 혼합 용액이고; 착화제는 암모니아수, 암모니아 바이카보네이트(ammonia bicarbonate), 황산암모늄, 탄산암모늄, 시트르산, 디소디움 에틸렌 디아민테트라아세테이트(Disodium ethylene diamine tetraacetate, EDTA)로 구성된 군에서 선택되는 하나 이상의 혼합 용액이다.Preferably, the alkali solution in step a is at least one mixed solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide; The complexing agent is at least one mixed solution selected from the group consisting of ammonia water, ammonia bicarbonate, ammonium sulfate, ammonium carbonate, citric acid, and disodium ethylene diamine tetraacetate (EDTA).

바람직하게는, 상기 단계 a 중 니켈염, 코발트염 용액은 황산염, 질산염, 염소산염으로 구성된 군에서 선택되는 하나 이상의 혼합 용액이다.Preferably, the nickel salt or cobalt salt solution in step a) is at least one mixed solution selected from the group consisting of sulfate, nitrate, and chlorate.

바람직하게는, 상기 단계 b 중 pH값은 8.5 내지 13.5로 조절한다. Preferably, the pH value in step b is adjusted to 8.5 to 13.5.

바람직하게는, 상기 단계 c 중 pH값은 9.5 내지 13.5로 조절한다. Preferably, the pH value in step c is adjusted to 9.5 to 13.5.

바람직하게는, 전구체 A2의 D50 범위는 5 내지 22㎛이다.Preferably, the D50 range of the precursor A2 is 5 to 22 mu m.

바람직하게는, 상기 리튬 전구체 물질은 수산화리튬, 탄산리튬, 옥살산리튬으로 구성된 군에서 선택되는 하나 이상의 혼합물이다.Preferably, the lithium precursor material is a mixture of one or more selected from the group consisting of lithium hydroxide, lithium carbonate, and lithium oxalate.

바람직하게는, 상기 도펀트 M은 Cr, La, Ce, Zr, Ni, Mg, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho, Tm의 산화물, 할로겐화물, 수산화물, 금속유기물, 질산염, 황산염, 탄산염, 인산염, 옥살산염 또는 기타 금속원소의 복합산화물 또는 금속불화물로 구성된 군에서 선택되는 하나 이상의 혼합물이다.Preferably, the dopant M is selected from the group consisting of oxides, halides, hydroxides, hydroxides and hydroxides of Cr, La, Ce, Zr, Ni, Mg, Ti, Al, Ca, V, B, Be, Y, Mo, A mixture of at least one element selected from the group consisting of organic compounds, nitrates, sulphates, carbonates, phosphates, oxalates or other metal oxides or metal fluorides.

바람직하게는, 상기 코팅 활성 물질 N은 Li과 Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho, Tm의 복합산화물, 또는 수산화리튬, 탄산리튬, 옥살산리튬 중 하나 이상의 혼합물인 Li 전구체 물질과 Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho, Tm의 산화물, 할로겐화물, 수산화물, 금속유기물, 질산염, 황산염, 탄산염, 인산염, 옥살산염의 혼합물로 이루어진 군에서 선택되는 하나 이상의 혼합물이다.Preferably, the coating active material N is a complex oxide of Li and Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho and Tm, A Li precursor material which is a mixture of at least one of lithium and lithium oxalate and an oxide, a halide, a hydroxide, a hydroxide and a transition metal of Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Metal organics, nitrates, sulphates, carbonates, phosphates, oxalates, and mixtures thereof.

본 발명의 유익한 효과는 이하와 같다. 본 발명에 있어서 니켈-코발트 이성분계 전구체는 연속 공침 반응을 진행하고 원소 혼합이 균일하며 반응이 충분하기 때문에 형상을 조절하는 데 유익하다. 이성분계 고니켈계 재료는 도핑이 적합한 원소를 통해 양이온 혼합 현상이 감소하기 때문에 구조가 안정적이며 배터리의 안전 성능과 고온 성능이 향상되고, 코팅 활성 물질은 재료의 최초 충전 및 방전 효율과 에너지밀도를 어느 정도 개선해 주었다. Advantageous effects of the present invention are as follows. In the present invention, the nickel-cobalt binary precursor is advantageous for controlling the shape because the continuous coprecipitation reaction proceeds and the elemental mixing is uniform and the reaction is sufficient. The two-component high-nickel-based materials have a stable structure due to a decrease in the cation mixing phenomenon through the elements suitable for doping, and the safety performance and the high temperature performance of the battery are improved. The coating active material has the initial charging and discharging efficiency and energy density It improved to some extent.

이하에서는, 본 발명의 예시적인 실시형태들을 통해 보다 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in more detail.

실시예 1Example 1

전구체의 제조: Ni:Co=0.6:0.4를 0.5mol/L의 혼합 용액 A1로 배합 제조하고, 1.5mol/L의 수산화나트륨 용액과 0.5mol/L 황산암모늄 용액을 배합 제조하고; 반응용기에 순수를 주입하고, 1.5mol/L의 수산화나트륨 용액을 이용해 초기 용액의 pH값을 8.5로 조절하고, 반응용기 내의 온도는 40℃로, 회전속도는 200r/min으로 조절하고 질소 기체를 쏟아 붓고; A1 용액의 유속은 20L/min으로 조절하고, 동시에 수산화나트륨과 황산암모늄을 천천히 점적하고, 입자가 요구 기준에 도달하면 고액 분리 및 건조를 진행해 필요한 전구체 A2를 수득한다.Preparation of Precursor Ni: Co = 0.6: 0.4 was mixed with 0.5 mol / L of a mixed solution A1, and a 1.5 mol / L sodium hydroxide solution and a 0.5 mol / L ammonium sulfate solution were compounded; The pH of the initial solution was adjusted to 8.5 using 1.5 mol / L sodium hydroxide solution, the temperature in the reaction vessel was adjusted to 40 ° C, the rotation speed was set to 200 r / min, nitrogen gas Pouring; The flow rate of the A1 solution is adjusted to 20 L / min. At the same time, sodium hydroxide and ammonium sulfate are slowly added dropwise. When the particles reach the required standard, solid-liquid separation and drying are carried out to obtain necessary precursor A2.

양극재의 제조: 수산화리튬, A2, 및 수산화알루미늄은 분자식 LipNixCo1 - xM2O2 중의 비율에 따라 혼합하고, 여기에서 p=1.25, x=0.6, m=0.12이고, 소결 온도는 1050℃로 소결 시간은 40시간으로 조절하고, 소결 과정에 공기를 쏟아 붓고, 소결한 물질은 파쇄, 분급, 제철 등 공정으로 처리해 재료 A를 수득하고;Preparation of the cathode material: Lithium hydroxide, A2 and aluminum hydroxide were mixed according to the proportions in the molecular formula Li p Ni x Co 1 - x M 2 O 2 where p = 1.25, x = 0.6, m = 0.12, The sintering time is set to 40 hours, the air is poured into the sintering process, and the sintered material is subjected to a process such as crushing, classification, and iron making to obtain the material A;

표면 처리: A:물=1:1의 비율로 물 세척하고, 건조 및 스크리닝을 진행하고;Surface treatment: water washing at a ratio of A: water = 1: 1, drying and screening proceed;

코팅: 상기 처리를 마친 샘플을 기질로 삼아 그 위에 LiCrO2을 코팅하며, 코팅 방법은 건식 코팅을 사용하고, N은 기재 총 중량의 0.01%를 차지한다.Coating: The treated sample is used as a substrate and LiCrO 2 is coated thereon. As a coating method, a dry coating is used, and N accounts for 0.01% of the total weight of the substrate.

2회 소결: 상기 처리를 마친 물질에 대해 2회 소결을 진행하며, 소결 주요 온도는 400℃로 제어하고, 주요 온도 구역의 소결 시간은 35시간으로 하고, 소결 과정에서 공기를 쏟아 붓는다.Two sintering: The sintered material is sintered twice, the main sintering temperature is controlled to 400 ° C, and the sintering time of the main temperature zone is 35 hours, pouring air in the sintering process.

실시예 2.Example 2.

전구체의 제조: Ni:Co=0.85:0.15를 3mol/L의 혼합 용액 A1로 배합 제조하고, 12mol/L의 수산화나트륨 용액과 5mol/L 황산암모늄 용액을 배합 제조하고; 반응용기에 순수를 주입하고, 8mol/L의 수산화나트륨 용액을 이용해 초기 용액의 pH값을 13.5로 조절하고, 반응용기 내의 온도는 80℃로, 회전속도는 200r/min으로 조절하고 질소 기체를 쏟아 붓고; A1 용액의 유속은 3L/min으로 조절하고, 동시에 수산화나트륨과 황산암모늄을 천천히 점적하고, 입자가 요구 기준에 도달하면 고액 분리 및 건조를 진행해 필요한 전구체 A2를 수득한다.Preparation of Precursor: Ni: Co = 0.85: 0.15 was mixed with 3 mol / L of a mixed solution A1, and 12 mol / L sodium hydroxide solution and 5 mol / L ammonium sulfate solution were blended; The pH of the initial solution was adjusted to 13.5 using 8 mol / L sodium hydroxide solution, the temperature in the reaction vessel was adjusted to 80 DEG C, the rotation speed was set to 200 r / min, and nitrogen gas was poured Pour; The flow rate of the A1 solution is adjusted to 3 L / min. At the same time, sodium hydroxide and ammonium sulfate are slowly added to the solution. When the particles reach the required standard, solid-liquid separation and drying are carried out to obtain necessary precursor A2.

양극재의 제조: 수산화리튬, A2, 및 수산화알루미늄은 분자식 LipNixCo1-xM2O2 중의 비율에 따라 혼합하고, 여기에서 p=0.95, x=0.85, m=0.01이고, 소결 온도는 400℃로 소결 시간은 4시간으로 조절하고, 소결 과정에 공기를 쏟아 붓고, 소결한 물질은 파쇄, 분급, 제철 등 공정으로 처리해 재료 A를 수득하고;Preparation of cathode material: Lithium hydroxide, A2, and aluminum hydroxide were mixed according to the ratio in the molecular formula Li p Ni x Co 1 -x M 2 O 2 where p = 0.95, x = 0.85, m = 0.01, The sintering time is adjusted to 400 hours, the air is poured into the sintering process, and the sintered material is subjected to a process such as crushing, classification, and iron making to obtain the material A;

표면 처리: A:물=1:6의 비율로 물 세척하고, 건조 및 스크리닝을 진행한다.Surface treatment: Water washing at a ratio of A: water = 1: 6, drying and screening.

코팅: 상기 처리를 마친 샘플을 기질로 삼아 그 위에 산화알루미늄과 Li2CO3의 혼합물을 코팅하며, 코팅 방법은 건식 코팅을 사용하고, N은 기재 총 중량의 0.01%를 차지한다.Coating: The treated sample is used as a substrate and a mixture of aluminum oxide and Li 2 CO 3 is coated thereon. A dry coating is used as a coating method, and N accounts for 0.01% of the total weight of the substrate.

2회 소결: 상기 처리를 마친 물질에 대해 2회 소결을 진행하며, 소결 주요 온도는 1050℃로 제어하고, 주요 온도 구역의 소결 시간은 3시간으로 하고, 소결 과정에서 공기를 쏟아 붓는다.Two sintering: The sintered material is sintered twice, the main sintering temperature is controlled to 1050 ° C, and the sintering time in the main temperature zone is 3 hours, pouring air in the sintering process.

실시예 3Example 3

전구체의 제조: Ni:Co=0.80:0.20를 2mol/L의 혼합 용액 A1로 배합 제조하고, 2.5mol/L의 수산화나트륨 용액과 1.8mol/L 황산암모늄 용액을 배합 제조하고; 반응용기에 순수를 주입하고, 2.5mol/L의 수산화나트륨 용액을 이용해 초기 용액의 pH값을 12로 조절하고, 반응용기 내의 온도는 60℃로, 회전속도는 500r/min으로 조절하고 질소 기체를 쏟아 붓고; A1 용액의 유속은 10L/min으로 조절하고, 동시에 수산화나트륨과 황산암모늄을 천천히 점적하고, 입자가 요구 기준에 도달하면 고액 분리 및 건조를 진행해 필요한 전구체 A2를 수득한다.Preparation of Precursor: Ni: Co = 0.80: 0.20 was mixed with 2 mol / L of a mixed solution A1 and mixed with 2.5 mol / L sodium hydroxide solution and 1.8 mol / L ammonium sulfate solution; The pH of the initial solution was adjusted to 12 using a 2.5 mol / L sodium hydroxide solution, the temperature in the reaction vessel was adjusted to 60 ° C, the rotation speed was set to 500 r / min, and nitrogen gas Pouring; The flow rate of the A1 solution is adjusted to 10 L / min, while simultaneously sodium hydroxide and ammonium sulfate are slowly added. When the particles reach the required standard, solid-liquid separation and drying are carried out to obtain necessary precursor A2.

양극재의 제조: 수산화리튬, A2, 및 수산화알루미늄은 분자식 LipNixCo1-xM2O2 중의 비율에 따라 혼합하고, 여기에서 p=0.11, x=0.80, m=0.04이고, 소결 온도는 400℃로 소결 시간은 4시간으로 조절하고, 소결 과정에 공기를 쏟아 붓고, 소결한 물질은 파쇄, 분급, 제철 등 공정으로 처리해 재료 A를 수득하고;Preparation of the cathode material: Lithium hydroxide, A2 and aluminum hydroxide were mixed according to the proportions in the molecular formula Li p Ni x Co 1 -x M 2 O 2 where p = 0.11, x = 0.80, m = 0.04, The sintering time is adjusted to 400 hours, the air is poured into the sintering process, and the sintered material is subjected to a process such as crushing, classification, and iron making to obtain the material A;

코팅: A를 기질로 삼아 그 위에 LiAlO2을 코팅하며, 코팅 방법은 건식 코팅을 사용하고, N은 기재 총 중량의 0.08%를 차지한다.Coating: A is used as a substrate and LiAlO 2 is coated thereon. The coating method is dry coating, and N accounts for 0.08% of the total weight of the substrate.

2회 소결: 상기 처리를 마친 물질에 대해 2회 소결을 진행하며, 소결 주요 온도는 750℃로 제어하고, 주요 온도 구역의 소결 시간은 6시간으로 하고, 소결 과정에서 공기를 쏟아 붓는다.Two sintering: The sintered material is sintered twice, the main sintering temperature is controlled to 750 ° C, and the sintering time in the main temperature zone is 6 hours, pouring air in the sintering process.

Claims (10)

기재의 화학 일반식은 LipNixCo1 - xMmO2이고, 여기에서 0.95≤p≤1.25, 0.6≤x<1, 0.01≤m<0.12, M은 도펀트이고, 코팅 재료는 활성 물질 N이고, N은 기재 총 질량의 0.01 내지 25wt%를 차지하고; 상기 리튬이온 2차전지의 양극재는 1차입자를 응집시켜 2차입자 또는 1차 입자로 만들거나, 또는 1차입자와 2차입자의 혼합입자로 구성되는 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재.Wherein the chemical formula of the substrate is Li p Ni x Co 1 - x M m O 2 wherein 0.95? P? 1.25, 0.6? X <1, 0.01? M <0.12, M is a dopant, , And N occupies 0.01 to 25 wt% of the total mass of the substrate; Wherein the positive electrode material of the lithium ion secondary battery comprises a primary particle and a secondary particle or a mixed particle of a primary particle and a secondary particle. Anode material. 제 1항에 있어서,
고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법은 이하 단계를 포함하는데,
단계 1: 리튬이온 2차전지 양극재 전구체의 제조
a. 용액의 배합 제조: 몰비 Ni:Co=x:1-x로 혼합 염 용액 A1을 배합 제조하고, 상기 염 용액 중 금속 이온 농도를 0.5 내지 3mol/L로 만들고; 농도가 1.5 내지 12mol/L인 알칼리 용액을 배합 제조하고, 농도가 0.5 내지 5mol/L인 착화제 용액을 배합 제조하고, 여기에서 0.6≤x≤1이고;
b. 초기 용액의 배합 제조: 반응용기에 순수(pure water)를 주입하고, 알칼리 용액을 이용해 용액의 pH값을 조절하고, 반응용기의 온도를 40 내지 80℃로 유지하고, 동시에 불활성 기체를 쏟아 붓고, 전체 반응 과정을 일관되게 진행하고;
c. 전구체의 반응: 반응용기 내에 A1 용액을 첨가하고 유속은 3 내지 20L/min으로 유지하고, 동시에 적정량의 착화제와 알칼리 용액을 천천히 첨가하고, 반응용기 내 온도는 40 내지 80℃로 유지하고, 교반 속도는 200 내지 950r/min으로 조절하고;
d. 고액 분리: 단계 c의 재료에 대해 표면 처리를 진행하고, 합성한 이성분계 양극재 전구체를 숙성기로 옮겨 고액 분리를 진행하고, 탈이온수를 이용해 고액 분리 후 수득한 이성분계 양극재 전구체를 세척하며, 건조 후 수득한 필요한 이성분계 전구체 A2, A2의 화학식은 NixCo1-x(OH)2이고;
단계 2: 리튬이온 2차전지 양극재의 제조
e. 1차 소결: 리튬 전구체 물질, A2 및 도펀트 M 물질을 분자식 LipNixCo1 -xMmO2 중의 비율에 따라 혼합하고, 여기에서 0.95≤p≤1.25, 0.6≤x<1, 0.01≤m<0.12, M은 도펀트이고, 소결 온도는 400 내지 1050℃로, 소결 시간은 4 내지 40시간으로 제어하고, 소결 과정에서 공기 또는 산소 기체를 쏟아 붓고, 소결 후의 물질은 파쇄, 분급, 제철 등 공정으로 처리해 재료 A를 수득하고;
f. 표면 처리: 재료 A는 물로 세척하여 알칼리 함량을 떨어뜨리고, 물질 A와 물의 비율 범위는 1:1 내지 1:6으로 하고, 물 세척 후 물질을 건조 및 스크리닝하고;
g. 코팅: f 처리를 거친 물질 또는 물질 A를 기질로 삼고, 기질 상에 N 물질을 코팅하고, 코팅 방법은 건식 코팅, 습식 코팅 또는 공침 코팅법을 사용하고, 여기에서 N은 기재 총 질량의 0.01 내지 25wt%를 차지하고;
h. 2회 또는 다수회 소결: g 처리를 거친 물질은 소결을 진행하고, 소결 온도는 400 내지 1050℃로 제어하고, 주요 온도 구역의 소결 시간은 3 내지 35시간으로 조절하고, 소결 과정에 공기 또는 산소 기체를 쏟아 붓고, 제품 성능에 대한 요구 기준에 따라 3회 이상 소결을 진행할 수 있고, 여기에서 소결 조건은 2회 소결과 같고; 소결한 물질은 필요에 따라 파쇄, 분급, 스크리닝, 제철 등 공정으로 처리하는 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
A method of manufacturing a nickel-cobalt based lithium ion cathode material having a high energy density includes the following steps,
Step 1: Preparation of a cathode material precursor for a lithium ion secondary battery
a. Preparation of solution: Mixed salt solution A1 was prepared by mixing Ni: Co = x: 1-x at a molar ratio of 0.5 to 3 mol / L in the salt solution; An alkali solution having a concentration of 1.5 to 12 mol / L is formulated to prepare a complexing agent solution having a concentration of 0.5 to 5 mol / L, wherein 0.6? X? 1;
b. Preparation of the initial solution: Pure water is injected into the reaction vessel, the pH value of the solution is adjusted by using an alkali solution, the temperature of the reaction vessel is maintained at 40 to 80 ° C, the inert gas is simultaneously poured, Consistently progress the entire reaction process;
c. Reaction of the precursor: Al solution is added to the reaction vessel and the flow rate is maintained at 3 to 20 L / min. At the same time, an appropriate amount of complexing agent and alkali solution are slowly added, the temperature in the reaction vessel is maintained at 40 to 80 캜, The speed is adjusted to 200 to 950 r / min;
d. Solid-liquid separation: the surface treatment of the material of Step c is carried out, the synthesized binary precursor of the cathode material is transferred to an aging machine to carry out solid-liquid separation, the solid precursor obtained by solid-liquid separation using deionized water is washed, The required formulations of the binary precursors A2, A2 obtained after drying are Ni x Co 1-x (OH) 2 ;
Step 2: Production of cathode material for lithium ion secondary battery
e. Primary sintering: The lithium precursor material, A2 and the dopant M material are mixed according to the proportions in the molecular formula Li p Ni x Co 1 -x M m O 2 where 0.95? P? 1.25, 0.6? X <1, m < 0.12, M is a dopant, the sintering temperature is controlled to 400 to 1050 DEG C and the sintering time is controlled to 4 to 40 hours, and air or oxygen gas is poured in the sintering process, and the material after sintering is crushed, RTI ID = 0.0 &gt; A &lt; / RTI &gt;
f. Surface treatment: The material A is washed with water to lower the alkali content, the ratio of the material A to the water is 1: 1 to 1: 6, the water is washed and the material is dried and screened;
g. Coating: The substance A or substance A treated as the substrate is coated with the N material on the substrate, and the coating method is a dry coating, a wet coating or a coprecipitation coating method, wherein N is 0.01 to 25 wt%;
h. The sintering is carried out at a temperature of 400 to 1050 ° C, the sintering time of the main temperature zone is controlled to 3 to 35 hours, and the air or oxygen The gas can be poured out and sintered at least three times according to the requirements for product performance, wherein the sintering conditions are the same as twice sintering; Wherein the sintered material is subjected to a crushing, classification, screening, iron-making process or the like according to the necessity, as required, to produce a nickel-cobalt-based lithium-ion cathode material having a high energy density.
제 1항에 있어서,
상기 단계 a 중 알칼리 용액은 수산화나트륨, 수산화칼륨, 수산화리튬으로 구성된 군에서 선택되는 하나 이상의 혼합 용액이고; 착화제는 암모니아수, 암모니아 바이카보네이트(ammonia bicarbonate), 황산암모늄, 탄산암모늄, 시트르산, 디소디움 에틸렌 디아민테트라아세테이트(Disodium ethylene diamine tetraacetate, EDTA)로 구성된 군에서 선택되는 하나 이상의 혼합 용액인 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
Wherein the alkali solution in step a is at least one mixed solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide; The complexing agent is at least one mixed solution selected from the group consisting of ammonia water, ammonia bicarbonate, ammonium sulfate, ammonium carbonate, citric acid, disodium ethylene diamine tetraacetate (EDTA) A method for manufacturing a high energy density nickel-cobalt based lithium ion cathode material.
제 1항에 있어서,
상기 단계 a 중 니켈염, 코발트염 용액은 황산염, 질산염, 염소산염으로 구성된 군에서 선택되는 하나 이상의 혼합 용액인 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
Wherein the nickel salt or cobalt salt solution in step a is at least one mixed solution selected from the group consisting of sulfate, nitrate, and chlorate.
제 1항에 있어서,
상기 단계 b 중 pH값은 8.5 내지 13.5로 조절하는 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
Wherein the pH value in step b is adjusted to 8.5 to 13.5. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 1항에 있어서,
상기 단계 c 중 pH값은 9.5 내지 13.5로 조절하는 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
Wherein the pH value in step c is adjusted to 9.5 to 13.5. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 1항에 있어서,
전구체 A2의 D50 범위는 5 내지 22㎛인 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
Wherein the D50 range of the precursor A2 is 5 to 22 占 퐉.
제 1항에 있어서,
상기 리튬 전구체 물질은 수산화리튬, 탄산리튬, 옥살산리튬으로 구성된 군에서 선택되는 하나 이상의 혼합물인 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
Wherein the lithium precursor material is at least one selected from the group consisting of lithium hydroxide, lithium carbonate, and lithium oxalate.
제 1항에 있어서,
상기 도펀트 M은 Cr, La, Ce, Zr, Ni, Mg, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho, Tm의 산화물, 할로겐화물, 수산화물, 금속유기물, 질산염, 황산염, 탄산염, 인산염, 옥살산염 또는 기타 금속원소의 복합산화물 또는 금속불화물로 구성된 군에서 선택되는 하나 이상의 혼합물인 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
The dopant M may be at least one selected from the group consisting of oxides, halides, hydroxides, metal organic substances, nitrates, and oxides of Cr, La, Ce, Zr, Ni, Mg, Ti, Al, Ca, V, B, Wherein the lithium-transition metal complex is at least one compound selected from the group consisting of complex oxides of sulfates, carbonates, phosphates, oxalates or other metal elements or metal fluorides.
제 1항에 있어서,
상기 코팅 활성 물질 N은 Li과 Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho, Tm의 복합산화물, 또는 수산화리튬, 탄산리튬, 옥살산리튬 중 하나 이상의 혼합물인 Li 전구체 물질과 Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho, Tm의 산화물, 할로겐화물, 수산화물, 금속유기물, 질산염, 황산염, 탄산염, 인산염, 옥살산염의 혼합물로 이루어진 군에서 선택되는 하나 이상의 혼합물인 것을 특징으로 하는 고에너지밀도의 니켈-코발트계 리튬이온 양극재의 제조 방법.
The method according to claim 1,
The coating active material N may be a composite oxide of Li and Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Be, Y, Mo, Tb, Ho and Tm, or lithium hydroxide, lithium carbonate, lithium oxalate And a mixture of one or more of the oxides, halides, hydroxides, metal organic substances, nitrates of the Li precursor material and Cr, La, Ce, Zr, Ti, Al, Ca, V, B, Be, Y, Mo, And a mixture of at least one selected from the group consisting of sodium carbonate, sodium carbonate, sodium carbonate, potassium carbonate, sodium carbonate, sodium carbonate, potassium carbonate, sodium carbonate,
KR1020177025872A 2015-03-31 2015-12-15 High energy density nickel-cobalt based lithium ion cathode material and its manufacturing method KR20170117541A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510144367.5A CN104701534A (en) 2015-03-31 2015-03-31 High-energy-density Ni-Co-based lithium ion positive electrode material and preparation method thereof
CN201510144367.5 2015-03-31
PCT/CN2015/093825 WO2016155314A1 (en) 2015-03-31 2015-12-15 Aqueous coating method for high-voltage lithium cobaltate positive electrode material

Publications (1)

Publication Number Publication Date
KR20170117541A true KR20170117541A (en) 2017-10-23

Family

ID=53348437

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177025872A KR20170117541A (en) 2015-03-31 2015-12-15 High energy density nickel-cobalt based lithium ion cathode material and its manufacturing method

Country Status (3)

Country Link
KR (1) KR20170117541A (en)
CN (1) CN104701534A (en)
WO (1) WO2016155314A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132200A1 (en) * 2017-12-27 2019-07-04 (주)이엠티 Method for preparing precursor for lithium secondary battery positive electrode active material by using polyamine as chelating agent
WO2021107363A1 (en) * 2019-11-27 2021-06-03 주식회사 엘지에너지솔루션 Positive electrode active material comprising lithium nickel-based oxide doped with doping element, and secondary battery comprising same

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733724A (en) * 2015-03-31 2015-06-24 南通瑞翔新材料有限公司 Positive electrode material for high-nickel lithium ionic secondary battery and preparation method thereof
CN104701534A (en) * 2015-03-31 2015-06-10 南通瑞翔新材料有限公司 High-energy-density Ni-Co-based lithium ion positive electrode material and preparation method thereof
KR20220051021A (en) 2016-07-05 2022-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR102398195B1 (en) 2016-10-12 2022-05-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN106505193B (en) * 2017-01-12 2020-07-14 宁波容百新能源科技股份有限公司 Single crystal nickel cobalt lithium manganate positive electrode material, preparation method thereof and lithium ion battery
JP7177769B2 (en) 2017-05-12 2022-11-24 株式会社半導体エネルギー研究所 Positive electrode active material particles and lithium ion secondary battery
DE202018006835U1 (en) 2017-05-19 2023-07-18 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material and secondary battery
KR102529620B1 (en) 2017-06-26 2023-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing positive electrode active material, and secondary battery
CN107369826B (en) * 2017-08-04 2019-08-02 长沙理工大学 Doping and the lithium/sodium layered metal oxide positive electrode and its one-step method for synthesizing for coating dual modification
CN107799764A (en) * 2017-10-23 2018-03-13 金川集团股份有限公司 A kind of preparation method of the type tertiary cathode material of high compacted density 523
CN107768666B (en) * 2017-11-14 2023-12-22 北京圣比和科技有限公司 Method for preparing lithium nickel manganese cobalt oxide by using thermal cyclone type mechanochemical cladding method
CN108134069A (en) * 2017-12-26 2018-06-08 深圳市贝特瑞纳米科技有限公司 A kind of composite modifying method of anode material for lithium-ion batteries
CN108075133A (en) * 2017-12-29 2018-05-25 南通瑞翔新材料有限公司 A kind of lithium ion polynary positive pole material of coating modification and preparation method thereof
CN108807969A (en) * 2018-04-24 2018-11-13 合肥国轩高科动力能源有限公司 A method of reducing layered cathode material of lithium ion battery surface residual alkali
CN111029536A (en) * 2018-10-09 2020-04-17 北大先行科技产业有限公司 Lithium ion battery anode material and preparation method thereof
CN109301243B (en) * 2018-12-10 2022-02-08 北京理工大学 Layered nickel-cobalt-titanium ternary cathode material and preparation method thereof
CN109841813A (en) * 2019-02-18 2019-06-04 山东星火科学技术研究院 A kind of preparation method of the modified rich nickel-ion battery positive electrode of safety and environmental protection graphene
CN110034297A (en) * 2019-03-28 2019-07-19 欣旺达电动汽车电池有限公司 A kind of nickelic lithium ion anode material and preparation method thereof
CN110571411A (en) * 2019-04-30 2019-12-13 湖北锂诺新能源科技有限公司 ti doped and La4NiLiO8Preparation method of coated nickel-rich cathode material
CN112490409B (en) * 2019-09-12 2022-02-22 宁德时代新能源科技股份有限公司 Positive electrode active material, method for preparing same, and lithium ion secondary battery
CN110668510A (en) * 2019-10-09 2020-01-10 湘乡绿锂新材料科技有限公司 Preparation method for synthesizing ternary precursor by nickel, cobalt and manganese step by step
CN110767899B (en) * 2019-10-24 2021-06-29 厦门厦钨新能源材料股份有限公司 Preparation method of composite anode material of lithium ion battery
CN111689525B (en) * 2020-05-27 2022-08-19 厦门厦钨新能源材料股份有限公司 Preparation method of orthosilicate anode material coated ternary material
CN112194197A (en) * 2020-08-27 2021-01-08 浙江美都海创锂电科技有限公司 High-nickel ternary positive electrode material with low internal resistance and low flatulence rate as well as preparation method and application thereof
CN112490444A (en) * 2020-10-27 2021-03-12 北京泰丰先行新能源科技有限公司 Lithium ion secondary battery positive electrode material and preparation method thereof
CN112736240B (en) * 2020-12-31 2022-06-17 江苏天鹏电源有限公司 High-residual-alkali lithium ion multi-element positive electrode material and preparation method thereof
CN113258073B (en) * 2021-07-06 2021-09-28 湖南长远锂科股份有限公司 Coating modified lithium ion battery anode material and preparation method thereof
CN113651373A (en) * 2021-10-19 2021-11-16 河南科隆新能源股份有限公司 Anode material with uniform porous structure and preparation method thereof
CN114005972A (en) * 2021-10-22 2022-02-01 陕西红马科技有限公司 LLTO/nano flaky lithium cobaltate composite cathode material and preparation method thereof
CN114426313A (en) * 2022-01-07 2022-05-03 云南大学 High-energy-density ternary cathode material and preparation method and application thereof
CN114573040A (en) * 2022-03-21 2022-06-03 厦门厦钨新能源材料股份有限公司 Effectively doped lithium cobaltate material and preparation method thereof
CN114975907A (en) * 2022-03-24 2022-08-30 江苏理工学院 Vanadium boride coated nickel cobalt lithium manganate positive electrode material and preparation method thereof
CN114744188B (en) * 2022-06-13 2022-09-09 河南科隆新能源股份有限公司 Lithium ion battery anode material with non-hollow porous structure and preparation method and application thereof
CN115954479A (en) * 2023-03-10 2023-04-11 四川新能源汽车创新中心有限公司 Positive electrode material, preparation method thereof and solid-state battery
CN116444261A (en) * 2023-03-23 2023-07-18 宜春国轩电池有限公司 Lithium metaaluminate material and preparation method and application thereof
CN117410481B (en) * 2023-12-14 2024-03-29 河南众新储能科技有限公司 High-performance nano single crystal positive electrode material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151518B (en) * 2013-01-23 2015-07-01 宁波维科电池股份有限公司 Coating technology of lithium cobalt oxide
CN103474647B (en) * 2013-09-12 2015-09-02 南通瑞翔新材料有限公司 The preparation method of modified spinelle type manganate cathode material for lithium
CN103872328B (en) * 2014-03-12 2017-01-25 南通瑞翔新材料有限公司 Positive electrode active material for lithium ion secondary battery and preparation method for positive electrode active material
CN103943822B (en) * 2014-05-13 2017-03-29 南通瑞翔新材料有限公司 A kind of lithium rechargeable battery nickel-base anode active material and preparation method thereof
CN104022280B (en) * 2014-06-27 2017-04-12 南通瑞翔新材料有限公司 High-voltage cathode material for lithium ion battery and preparation method thereof
CN104701534A (en) * 2015-03-31 2015-06-10 南通瑞翔新材料有限公司 High-energy-density Ni-Co-based lithium ion positive electrode material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132200A1 (en) * 2017-12-27 2019-07-04 (주)이엠티 Method for preparing precursor for lithium secondary battery positive electrode active material by using polyamine as chelating agent
WO2021107363A1 (en) * 2019-11-27 2021-06-03 주식회사 엘지에너지솔루션 Positive electrode active material comprising lithium nickel-based oxide doped with doping element, and secondary battery comprising same

Also Published As

Publication number Publication date
CN104701534A (en) 2015-06-10
WO2016155314A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
KR20170117541A (en) High energy density nickel-cobalt based lithium ion cathode material and its manufacturing method
KR20170119691A (en) High capacity nickel-cobalt based lithium ion cathode material and its manufacturing method
KR20170117540A (en) High Nickel Based Lithium Ion Secondary Battery Cathode Material and Manufacturing Method Thereof
EP3297072B1 (en) Methods for preparing nickel-cobalt-aluminum precursor material and cathode material with gradient distribution of aluminum element
EP3024070B1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
CN105070907A (en) High nickel anode material, preparation method thereof and lithium ion battery
CN108767216B (en) Lithium ion battery anode material with variable slope and full concentration gradient and synthesis method thereof
CN106505193A (en) Monocrystalline nickel-cobalt lithium manganate cathode material and preparation method thereof and lithium ion battery
CN109461891B (en) High-voltage lithium cobalt oxide cathode material and preparation method thereof
CN106505195A (en) A kind of nickelic positive electrode and preparation method thereof and lithium ion battery
CN103972499B (en) A kind of nickel cobalt lithium aluminate cathode material of modification and preparation method thereof
CN102306751B (en) The preparation method of wet-processed aluminium-coated lithium ion battery cathode material
CN102315429A (en) Preparation method of aluminum-doped material of cathode of lithium ion battery with solid phase process
CN113087025B (en) Precursor of composite positive electrode material of lithium battery and preparation method of composite positive electrode material
CN113991079A (en) Composite cathode material and preparation method thereof
CN106784790A (en) A kind of preparation method of nickle cobalt lithium manganate tertiary cathode material
CN105024065A (en) Lithium ion battery cathode material and preparation method thereof
CN105304864A (en) Preparation and treatment method for low-sulfur manganese cobalt nickel hydroxide
CN107546385A (en) One kind prepares LiNixMn1‑xO2The method of binary positive material
CN114804235B (en) High-voltage nickel cobalt lithium manganate positive electrode material and preparation method and application thereof
CN112694137A (en) Small-particle-size cobalt-free lithium-rich manganese-based solid solution and lithium vanadate composite material and preparation method thereof
CN114436344B (en) Preparation method and application of positive electrode material precursor with large channel
EP2744023A1 (en) Lithium-rich anode material, lithium battery anode, and lithium battery
CN103413928B (en) High-capacity high-compaction metal oxide anode material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application