KR101892358B1 - Prolidase mutant, and preparation method and use thereof - Google Patents

Prolidase mutant, and preparation method and use thereof Download PDF

Info

Publication number
KR101892358B1
KR101892358B1 KR1020160137589A KR20160137589A KR101892358B1 KR 101892358 B1 KR101892358 B1 KR 101892358B1 KR 1020160137589 A KR1020160137589 A KR 1020160137589A KR 20160137589 A KR20160137589 A KR 20160137589A KR 101892358 B1 KR101892358 B1 KR 101892358B1
Authority
KR
South Korea
Prior art keywords
mutant
gly
follidase
leu
val
Prior art date
Application number
KR1020160137589A
Other languages
Korean (ko)
Other versions
KR20180044029A (en
Inventor
유치호
노재랑
윤형석
이성래
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020160137589A priority Critical patent/KR101892358B1/en
Publication of KR20180044029A publication Critical patent/KR20180044029A/en
Application granted granted Critical
Publication of KR101892358B1 publication Critical patent/KR101892358B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4813Exopeptidases (3.4.11. to 3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/13Dipeptidases (3.4.13)
    • C12Y304/13009Xaa-Pro dipeptidase (3.4.13.9) i.e. prolidase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 유기인산 화합물 가수분해효소인 프롤리다아제(Prolidase)를 아미노산 치환을 통한 프롤리다아제 돌연변이체 및 이의 제조 방법, 상기 제조된 프롤리다아제 돌연변이체의 용도에 관한 것으로, 더욱 상세하기는 더욱 상세하게는 데이터베이스 기반 인실리코(in silico) 분석을 통해 프롤리다아제의 N-말단으로부터 252번째 잔기의 아미노산 또는 365번째 잔기의 아미노산을 아르기닌(arginine)으로 치환시킨 프롤리다아제 돌연변이체, 그리고 이 해당 프롤리다아제 돌연변이체 유전자를 포함하는 재조합 발현벡터, 상기 재조합 발현벡터로부터 형질전환된 원핵세포 및 이를 이용한 프롤리다아제 돌연변이체 얻는 제조방법과, 이와 같은 방법으로 제조된 야생형의 프롤리다아제보다 향상된 효소활성을 갖는 프롤리다아제 돌연변이체를 이용하여, 신경작용제 활성 저해용 조성물로서 신경작용제에 대한 중독 증상을 억제하는데 신경작용제에 대한 예방 및 치료에 적용할 수 있는 효과가 있다.The present invention relates to a pyrrolidase mutant through the amino acid substitution of an organic phosphoric acid hydrolase, Prolidase, a method for preparing the same, and the use of the pyrrolidase mutant prepared as described above, More particularly, the present invention relates to a method for the detection of a follidase mutation in which the amino acid of the 252 th residue or the amino acid of the 365 th residue is substituted with arginine from the N-terminus of the follidylase through a database-based in silico analysis And a recombinant expression vector containing the corresponding prolylderase mutant gene, a prokaryotic cell transformed from the recombinant expression vector, and a method for producing a prolylase mutant using the same, and a method for producing a wild- Lt; RTI ID = 0.0 > of frolidase < / RTI > As a solvent for the active inhibitory composition to inhibit the poisoning symptoms of nerve agents there is an effect that can be applied to prevention and treatment of nerve agents.

Description

프롤리다아제 돌연변이체 및 이의 제조방법 및 이에 따라 제조된 프롤리다아제 돌연변이체의 용도{PROLIDASE MUTANT, AND PREPARATION METHOD AND USE THEREOF}PROLIDASE MUTANT AND AND PREPARATION METHOD AND USE THEREOF FIELD OF THE INVENTION The present invention relates to novel fulleridase mutants,

본 발명은 유기인산 화합물 가수분해효소인 인간유래 프롤리다아제(Prolidase)를 아미노산 치환을 통한 프롤리다아제 돌연변이체 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는 데이터베이스 기반 인실리코(in silico) 분석을 통한 프롤리다아제는 다양한 아미노산 변이를 시도함으로써 야생형의 프롤리다아제보다 향상된 효소활성을 갖는 프롤리다아제의 돌연변이체 및 이의 제조 방법, 상기 제조된 프롤리다아제 돌연변이체의 용도에 관한 것이다.The present invention relates to a pyrrolidase mutant through the amino acid substitution of a human-derived pyrrolidase (Prolidase), an organophosphate hydrolase, and a method for preparing the same, and more particularly to a database-based in silico- The follolidase through the analysis has been found to be useful as a mutant of frolidase having an improved enzyme activity over wild-type frolidase by attempting various amino acid mutations, a method for producing the same and a method for producing the frolidase mutant .

신경작용제(Nerve agent)는 유기인에 에스터(ester)기를 함유하는 유기인산 화합물(Organophosphate compound) 형태로서 주로 사린(sarin), 소만(soman), 사이클로사린(cyclosarin), VX(O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate), VR(N,N-diethyl-2-(methyl-(2-methylpropoxy)phosphoryl) sulfanylethanamine) 등이 잘 알려졌으며, 인산기에 결합된 R기의 종류에 따라 G-type과 V-type으로 구분된다. 이러한 신경작용제는 신경조직에서 아세틸콜리에스테라아제(acetylcholinesterase)와 결합하여 신경전달물질인 아세틸콜린의 분해를 저해하여 근경련과 경직, 근수축 및 심폐기능 저하 등을 유발함으로써 치명적인 살상작용을 일으킨다.Nerve agents are organophosphate compounds containing organic phosphorus ester groups and are mainly sarin, soman, cyclosarin, VX (O-Ethyl S- (2-methylpropoxy) phosphoryl) sulfanylethanamine (VR) are well known. Depending on the type of R group bonded to the phosphate group, G-type and V -type. These nerve agents bind to acetylcholinesterase in the nervous tissue to inhibit the degradation of acetylcholine, a neurotransmitter, resulting in lethal killing by inducing muscle spasm, rigidity, muscle contraction and cardiopulmonary dysfunction.

신경작용제에 노출되었을 경우 현재의 치료법은 아트로핀과 옥심계열의 해독제를 병용 처리하고 있으나, 여러 가지 부작용과 노출 후 빠른 시간에 투여하여야 효과가 있다는 단점을 가지고 있다. 따라서 최근의 연구는 신경작용제의 해독뿐만 아니라 예방이 가능한 단백질 효소를 이용한 생촉매 발굴을 통한 효소활성 개량에 초점이 맞추어 지고 있다.When exposed to neuroleptics, current therapies are combined with atropine and oxime-based antidotes, but they have the disadvantage that they should be administered in a short time after exposure to various side effects and exposure. Therefore, recent studies have focused not only on the detoxification of nerve agents, but also on the improvement of enzymatic activity through the discovery of biocatalysts using preventable protein enzymes.

프롤리다아제(Prolidase)는 프롤리다아제는 신장 유래형과 피부 유래형과 같은 두 가지 isotype이 알려져 있고, 단백질 내 proline의 C-말단을 인지함으로써 펩티드결합을 가수분해하는 효소로 피부 유래 프롤리다아제가 가수분해 효소활성이 높은 것으로 알려졌다. Prolidase is an enzyme that hydrolyzes peptide bonds by recognizing two isotypes such as kidney-derived type and skin-derived type, and recognizing the C-terminal of proline in protein. Roldridae has been known to have high hydrolytic activity.

프롤리다아제는 신경작용제 분해능이 뛰어난 세균 유래 효소 중 하나인 Organophosphorus acid anhydrolase(OPAA)와 28%의 유사도가 있다.Frolidase has 28% similarity to Organophosphorus acid anhydrolase (OPAA), one of the bacterial enzymes that have excellent neuroleptic resolution.

프롤리다아제를 과발현 시킨 형질전환생쥐는 신경작용제 유사물질인 다이아이소프로필플루오로인산(diisopropylfluorophosphate, DFP)에 노출시켰을 경우 다이아이소프로필플루오로인산(DFP)에 대한 저항성이 증가됨이 보고되었으나, 정제된 단백질의 효소활성은 OPAA보다 낮은 것으로 규명되었다. 따라서 프롤리다아제를 신경작용제 해독에 사용하기 위해서는 신경작용제에 대한 효소활성이 개량된 형태의 프롤리다아제를 제작하여야 생촉매(biocatalizer)로서 활용할 수 있다.Transgenic mice overexpressing frolidase have been reported to show increased resistance to diisopropylfluorophosphate (DFP) when exposed to a neurokinetic agent, diisopropylfluorophosphate (DFP) Enzyme activity of the protein was found to be lower than that of OPAA. Therefore, in order to use frolidase for detoxifying neuroleptics, it is necessary to prepare an improved form of frolidase for the activity of a nerve agent, so that it can be utilized as a biocatalyst.

Billecke et al., 1999Billecke et al., 1999

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 인간 피부 유래 프롤리다아제를 인신리코(in silico) 분석을 통해 효소활성 부위에 해당하는 아미노산 변이를 통해 효소활성이 증가되는 새로운 형태의 프롤리다아제 돌연변이체 및 이의 제조방법을 제공함을 목적으로 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a novel type of follicle-producing follidase which is capable of increasing the enzyme activity through amino acid mutation corresponding to the enzyme active site through in silico analysis, And a method for producing the same.

또한 제조된 프롤리다아제 돌연변이체로 프롤리다아제 A252R과 프롤리다아제 P365R 돌연변이 효소를 대장균으로부터 정제하여 신경작용제 유사물질인 다이아이소프로필플루오로인산(diisopropylfluorophosphate, DFP)에 대한 효소활성을 측정을 통해 신경작용제 해독제 또는 신규 생촉매 제제로서 프롤리다아제 돌연변이체를 제공할 수 있음을 확인하는 바, 프롤리다아제 돌연변이체의 용도를 제시한다.In addition, the prepared follidase mutant was purified from Escherichia coli as a fulleridase A252R and a fulleridase P365R mutant enzyme, and the enzyme activity against diisopropylfluorophosphate (DFP), a neural agent similar substance, was measured It is found that the fulleridase mutant can be provided as a neuroleptic antidote or as a novel biocatalyst agent through the use of fulleridase mutants.

상기와 같은 목적을 달성하기 위한 본 발명의 프롤리다아제 돌연변이체는 야생형의 프롤리다아제의 N-말단으로부터 252번째 아미노산 또는 365번째 아미노산을 아르기닌(arginine)으로 치환시킨 단백질로 이루어진 것을 특징으로 한다.In order to achieve the above object, the present invention provides a follidase mutant comprising a protein wherein the 252nd amino acid or the 365th amino acid is substituted with arginine from the N-terminus of the wild type follidase do.

구체적으로 서열번호 6의 아미노산 서열로 표시되는 인간 유래 프롤리다아제 아미노산 서열에서 N-말단으로부터 252번째 잔기의 아미노산인 알라닌(alanine)이 아르기닌(arginine)으로 치환된 서열번호 7의 아미노산 서열로 이루어지거나, 또는 서열번호 6의 아미노산 서열로 표시되는 인간 유래 프롤리다아제의 아미노산 서열에서 N-말단으로부터 365번째 잔기의 아미노산인 프롤린(proline)이 아르기닌(arginine)으로 치환된 서열번호 8의 아미노산 서열로 이루어진다.Specifically, in the human-derived pyrrolidase amino acid sequence represented by the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 7 in which alanine, which is the amino acid of the 252nd residue from the N-terminus, is substituted with arginine Or an amino acid sequence of SEQ ID NO: 8 substituted with arginine, which is an amino acid of the 365th residue from the N-terminus in the amino acid sequence of human-derived pyrrolidase represented by the amino acid sequence of SEQ ID NO: 6 .

그리고 상기 서열번호 7의 아미노산 서열로 이루어진 프롤리다아제 돌연변이체를 코딩하는 유전자는 서열번호 4의 염기서열로 이루어지거나, 또는 상기 서열번호 8의 아미노산 서열로 이루어진 프롤리다아제 돌연변이체를 코딩하는 유전자는 서열번호 5의 염기서열로 이루어진다.And the gene encoding the pyrrolidase mutant consisting of the amino acid sequence of SEQ ID NO: 7 comprises the nucleotide sequence of SEQ ID NO: 4, or the gene encoding the pyrrolidase mutant of the amino acid sequence of SEQ ID NO: 8 The gene consists of the nucleotide sequence of SEQ ID NO: 5.

이와 같은 프롤리다아제 돌연변이체를 제조하기 위한 프롤리다아제 돌연변이체를 코딩하는 유전자는 서열번호 4 또는 서열번호 5로 기재된 염기서열을 가지며, 이 프롤리다아제 돌연변이체 유전자를 포함하는 유전자를 발현벡터에 재조합하여 준비한다.The gene coding for the pyrrolidase mutant for producing such a follidase mutant has the nucleotide sequence shown in SEQ ID NO: 4 or SEQ ID NO: 5, and a gene comprising the follidase mutant gene And recombined in an expression vector.

본 발명에 관한 재조합 발현벡터는 발현 벡터 스스로가 숙주세포 속에서 자율복제 가능한 동시에 프로모터, 프롤리다아제 유전자, 전자종결서열 등을 포함한 염기서열로 발현에 필요한 구성을 가진 것이 바람직하다.It is preferable that the recombinant expression vector of the present invention has a structure necessary for expression in a base sequence including a promoter, a pyrrolidase gene, an electron-terminating sequence and the like, and the expression vector itself can be autonomously replicated in a host cell.

본 발명에서 사용된 발현벡터로 pET21b를 사용하였으나, 이에 한정하지 않고 상기 설명한 요건을 만족하는 다른 발현벡터가 사용가능하다.Although pET21b was used as an expression vector used in the present invention, it is not limited thereto and other expression vectors which satisfy the above-described requirements can be used.

본 발명의 프롤리다아제 돌연변이체 제조방법은 상기 서열번호 4 또는 서열번호 5의 염기서열을 갖는 프롤리다아제 돌여변이체 유전자를 포함하는 재조합 발현벡터로 원핵세포를 형질전환하는 단계, 상기 형질전환된 원핵세포의 형질전환체를 배양하는 단계, 및 상기 형질전환체로부터 발현된 목적 단백질인 프롤리다아제 돌연변이체를 분리 및 정제하는 단계를 포함한다. 이때, 상기 돌연변이체를 제조하기 위해 사용하는 원핵세포는 예를 들어 대장균인 것이 바람직하다.The method for producing a follidase mutant of the present invention comprises the steps of transforming prokaryotic cells with a recombinant expression vector comprising a follidase off-variant gene having the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5, Culturing the transformed prokaryotic cell, and isolating and purifying the target protein expressed from the transformant, the pluridase mutant. At this time, the prokaryotic cell used for producing the mutant is preferably, for example, E. coli.

본 발명의 프롤리다아제 돌연변이체 제조는, 프롤리다아제 돌연변이체를 코딩하는 유전자가 포함된 재조합 발현벡터에 의해 적합한 숙주세포를 형질전환하여 얻은 형질전환체를 배양하고 배양물로 배양균체 또는 배양상등액 속에 유전자 산물인 프롤리다아제 돌연변이체를 생성함으로써, 배양물로부터 프롤리다아제 돌연변이체를 얻게 되는 것이다.The production of the follidase mutant of the present invention can be carried out by culturing a transformant obtained by transforming a suitable host cell with a recombinant expression vector containing a gene encoding a follidase mutant, By producing a gene product, a follolidase mutant, in a culture supernatant, a follidase mutant is obtained from the culture.

분리 및 정제하는 단계는 목적 단백질인 프롤리다아제 돌연변이체를 최종 수득하는 단계로, 형질전환체에서 발현된 목적 단백질인 프롤리다아제 돌연변이체를 회수하는 방법은 컬럼 크로마토그래피를 통해 분리 및 정제하는 것이 바람직하다. 여기서 컬럼 크로마토그래피는 이온교환 크로마토그래피, 겔-여과 크로마토그래피, HPLC, 역상-HPLC, 흡착 크로마토그래피 및 친화성(affinity) 컬럼 크로마토그래피 등을 단독 또는 병용하여 분리 및 정제를 수행할 수 있다.The step of separating and purifying is a step of finally obtaining a target protein, a pyrrolidase mutant. The method of recovering the target protein expressed as a follolidase mutant in the transformant is separated and purified through column chromatography . Here, the column chromatography can be carried out by separation or purification using ion exchange chromatography, gel-filtration chromatography, HPLC, reverse phase-HPLC, adsorption chromatography and affinity column chromatography, alone or in combination.

본 발명의 단백질의 회수 방법은 이에 한정하지 않고 당해 분야에서 공지된 다양한 분리 및 정제방법을 통해 수행할 수 있으며, 통상적으로 세포 조각(cell debris), 배양 불순물 등을 제거하기 위하여 세포 용해물을 원심분리한 후, 침전, 예를 들어, 염석(황산암모늄 침전 및 인산나트륨 침전), 용매 침전(아세톤, 에탄올, 이소프로필 알콜 등을 이용한 단백질 분획 침전) 등을 수행할 수 있고, 투석, 전기영동 및 각종 컬럼 크로마토그래피 등을 수행할 수 있다.The method for recovering the protein of the present invention is not limited thereto, but can be carried out through various separation and purification methods known in the art. In order to remove cell debris and culture impurities, the cell lysate is centrifuged After the separation, precipitation, for example, salting out (ammonium sulfate precipitation and sodium phosphate precipitation), solvent precipitation (protein fraction precipitation using acetone, ethanol, isopropyl alcohol, etc.) Various column chromatography and the like can be carried out.

또한, 상기와 같은 목적을 달성하기 위해 본 발명은 상기와 같은 제조방법을 통해 생산된 프롤리다아제 돌연변이체를 유효성분으로 포함하는 신경작용제 활성 저해용 조성물을 제공한다.In addition, to achieve the above object, the present invention provides a composition for inhibiting neuronal agonist activity comprising a pyrrolidase mutant produced through the above-described method as an active ingredient.

즉, 프롤리다아제 돌연변이체의 용도는 이를 유효성분으로 포함하여 신경작용제에 의해 유발되는 질환 예방 및 치료용 조성물로 이용될 수 있다.That is, the use of a follidase mutant can be used as a composition for preventing and treating diseases caused by a nerve agent including an active ingredient thereof.

여기에서 사용된 '치료'라는 용어는 신경작용제로 특히 다이아이소프로필플루오로인산(diisopropylfluorophosphate, DFP)의 중독에 의해 유발되는 질환의 억제 및 이로 인해 유발되는 질환의 병적 상태를 경감하는 모든 행위를 의미한다.As used herein, the term " treatment " refers to any action that reduces neuroprotective agents, particularly the diseases caused by the poisoning of diisopropylfluorophosphate (DFP) and the pathological conditions of the diseases caused thereby do.

이러한 본 발명의 신경작용제에 의해 유발되는 질환 예방 및 치료용 조성물은 콜레라톡신, 알루미늄 하이드록사이드, 카보폴(carbopol), 광물성 오일 및 생분해성(biodegradable) 오일 중에서 선택되는 어느 1종 이상의 면역증강제를 추가로 포함할 수 있다.The composition for the prevention and treatment of diseases caused by the nerve agent of the present invention may comprise at least one immunopotentiator selected from cholerotoxin, aluminum hydroxide, carbopol, mineral oil and biodegradable oil May be further included.

본 발명의 조성물은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라 약학적으로 허용되는 담체 및 또는 부형제를 이용하여 제제화됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수도 있다.The composition of the present invention may be prepared in the form of a unit dose by being formulated using a pharmaceutically acceptable carrier and / or an excipient according to a method which can be easily carried out by those skilled in the art, It may be manufactured by inserting it into a container.

상기 조성물이 포함되는 약학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토소, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럼, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것이 아니다.The pharmaceutically acceptable carrier to which the composition is incorporated is a carrier usually used at the time of formulation and may be selected from lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, But are not limited to, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil .

여기서, 상기 '약학적으로 허용되는 담체'란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 의미한다.Herein, the term "pharmaceutically acceptable carrier" means a carrier or diluent which does not irritate the organism and does not inhibit the biological activity and properties of the administered compound.

본 발명은 데이터베이스 기반 인실리코(in silico) 분석을 통한 프롤리다아제의 효소활성 부위에 존재하는 아미노산 중 N-말단으로부터 252번째 아미노산 또는 365번째 아미노산을 아르기닌(arginine)으로 치환하여, 프롤리다아제의 효소활성을 향상시키고 또한 단백질의 구저안정성을 높인 새로운 프롤리다아제 돌연변이체에 관한 것이다.The present invention relates to a method for producing a fibrillary enzyme by substituting arginine at the 252nd amino acid or the 365th amino acid from the N-terminus among the amino acids present in the enzyme active site of the follidase through in- silico analysis based on a database, The present invention relates to novel follidase mutants which improve the enzymatic activity of the enzyme and increase the protein stability of the protein.

본 발명은 대장균으로부터 프롤리다아제 돌연변이체를 고수율로 얻을 수 있으며, 이렇게 제조된 프롤리다아제 돌연변이체는 신경작용제에 대한 중독 증상을 억제하는데 신경작용제에 대한 예방 및 치료에 적용되어 해독제 및 생촉매제 등에 사용될 수 있다.The present invention can obtain a follidase mutant from Escherichia coli in a high yield. The follidase mutant thus prepared is used for preventing and treating neuroprotective agents to suppress the addiction to nerve agents, A biocatalyst, and the like.

도 1은 야생형(WT) 프롤리다아제 단백질 구조를 기초로 효소활성 부위에 해당하는 아미노산을 나타낸 것이다.
도 2와 도 3은 프롤리다아제 단백질 구조를 기초로 효소활성 부위에 있는 윤저자 및 아미노산 서열에서 아르기닌 치환 돌연변이를 통해 프롤리다아제 돌연변이체 형성 예측 부위를 나타낸 것이다.
도 4는 내지 도 6은 본 발명의 일 실시예에 따른 프롤리다아제 돌연변이체 제작을 위한 발현벡터를 나타낸 것이다.
도 7과 도 8은 site-directed mutagenesis 방법을 이용하여 염기서열의 치환을 확인한 결과이다.
도 9는 야생형(WT) 프롤리다아제 단백질 발현을 확인한 결과이다.
도 10과 도 11은 각각 프롤리다아제 돌열변이체들의 프롤리다아제 단백질 발현을 확인한 결과이다.
도 12는 본 발명의 일 실시예에 따라 분리 및 정제된 단백질을 10% SDS-PAGE 전기영동 후 Coomassie blue로 염색으로 확인한 결과이다.
도 13은 본 발명의 일 실시예에 따라 분리 및 정제된 단백질을 anti-his항체를 이용하여 Western blot를 통해 확인한 결과이다.
도 14 및 도 15는 다이아이소프로필플루오로인산(DFP)에 대한 프롤리다아제 돌연변이체의 효소 활성결과를 나타낸 것이다.
Figure 1 shows the amino acid corresponding to the enzyme active site based on the wild-type (WT) pyrrolidase protein structure.
Figures 2 and 3 show the predicted site of follidase mutation formation through an arginine substitution mutation in the linus and amino acid sequence on the enzyme active site based on the protein structure of the follidase.
FIG. 4 through FIG. 6 show expression vectors for the production of a follidase mutant according to an embodiment of the present invention.
FIGS. 7 and 8 are the result of confirming the substitution of the base sequence by the site-directed mutagenesis method.
FIG. 9 shows the result of confirming expression of wild-type (WT) follolidase protein.
FIGS. 10 and 11 are the results of confirming the expression of the follidase protein of the follidase mutations, respectively.
FIG. 12 shows the results of 10% SDS-PAGE electrophoresis of the separated and purified proteins according to one embodiment of the present invention and staining with Coomassie blue.
FIG. 13 shows the results of Western blot analysis of proteins separated and purified according to an embodiment of the present invention using an anti-his antibody.
FIGS. 14 and 15 show the enzyme activity results of the plastidase mutant on diisopropylfluorophosphate (DFP).

본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 한다.The technical terms used in the present invention are to be interpreted in a sense generally understood by a person having ordinary skill in the art to which the present invention belongs, And shall not be construed as an oversimplified meaning. In addition, the general terms used in the present invention should be construed in accordance with the predefined or prior context.

또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, '구성된다', '이루어진다' 또는 '포함한다' 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계 들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Furthermore, the singular expressions used in the present invention include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "consisting of", "consisting of" or "including" shall not be construed as necessarily including the various components or steps described in the specification, Or some steps may not be included, or may be interpreted to include additional components or steps.

본 발명은 야생형의 프롤리다아제의 N-말단으로부터 252번째 아미노산 또는 365번째 아미노산을 아르기닌(arginine)으로 치환시킨 돌연변이체를 제조하여 야생형의 프롤리다아제의 효소활성을 개선하는 방법에 관한 것이다.The present invention relates to a method for improving the enzyme activity of a wild-type follidase by preparing a mutant in which the 252nd amino acid or the 365th amino acid is substituted with arginine from the N-terminus of the wild type follidase .

이하, 실시예를 통해 본 발명을 보다 자세히 설명하지만, 이들 실시예는 본 발명의 예시일 뿐이며 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are merely examples of the present invention, and the scope of the present invention is not limited to these Examples.

실시예 1은 프롤리다아제 돌연변이체를 설계하기 위해 인간 유래 프롤리다아제(Prolidase)에 대한 윤전자 및 아미노산 서열을 분석하고, 이를 이용하여 데이터베이스 기반 인실리코(in silico) 분석을 통한 효소활성 부위를 예측하고 이로부터 프롤리다아제 돌연변이체를 제조에 관한 것이다.Example 1 analyzes the sequence and amino acid sequence of a human-derived prolidase to design a pyrrolidase mutant and uses it to perform enzyme activity through database-based in silico analysis Lt; RTI ID = 0.0 > of follidase < / RTI > mutants.

실시예 1에서는 먼저 프롤리다아제 돌연변이체를 제조하기 위해 대장균 단백질 발현 백터 pET21b에 야생형 프롤리다아제 유전자가 클로닝 된 pET21b-prolidase를 제작하며, 구체적으로 인간 피부 세포주로부터 얻은 프롤리다아제(Prolidase)의 cDNA를 주형으로 하여 중합효소 연쇄 반응(PCR)을 통하여 증폭한다. 이러한 증폭과정에는 공지의 프롤리다아제(Prolidase) 서열번호 3으로 기재되는염기서열을 기초로 하여 전방향 프라이머 5'-AAGCTTACCATGGCGGCGGCCACCGGACC-3'(서열번호 13)와 역방향 프라이머 5'-CTCGAGCTTGGGGCCAGAGAAGGGGG-3'(서열번호 14)로 구성된 프라이머 쌍을 사용하여 프롤리다아제를 증폭한 후, 대장균 발현 벡터인 pET21b(Novagen, Madison, WI, USA)의 제한효소 인식부위인 Hind III와 Xho I에 삽입하여 재조합 벡터 pET21b-prolidase를 제조한다.In Example 1, pET21b-prolidase in which a wild-type pluridase gene was cloned into an E. coli protein expression vector pET21b was first prepared to produce a prodrillase mutant, and specifically, a prolidase obtained from a human skin cell line ) Is amplified by polymerase chain reaction (PCR) using the cDNA as a template. In this amplification process, an omnidirectional primer 5'-AAGCTTACCATGGCGGCGGCCACCGGACC-3 '(SEQ ID NO: 13) and a reverse primer 5'-CTCGAGCTTGGGGCCAGAGAAGGGGG-3' based on the nucleotide sequence of known prolidase SEQ ID NO: (SEQ ID NO: 14), and inserted into restriction enzyme recognition sites HindIII and XhoI of E. coli expression vector pET21b (Novagen, Madison, WI, USA) Vector pET21b-prolidase is prepared.

본 발명의 프롤리다아제 돌연변이체는 데이터베이스 기반 인실리코(in silico) 분석방법으로 공지의 데이터베이스로부터 제공받은 프롤리다아제의 유전자의 염기서열 및 아미노산을 설정하고, 프롤리다아제 단백질 내에 효소 활성이 증가될 것으로 예상되는 효소활성 부위에 해당하는 염기서열 및 아미노산을 정의하였다.The follidase mutant of the present invention is a database-based in silico analysis method which sets the nucleotide sequence and amino acid of the gene of follidase provided from a known database and determines the enzyme activity in the follidase protein The base sequences and amino acids corresponding to the enzyme active sites which are expected to increase are defined.

본 발명의 프롤리다아제 돌연변이체는 서열번호 6으로 표시되는 프롤리다아제의 N-말단으로부터 252번째 아미노산인 알라닌(alanine, Ala)을 아르기닌(arginine, Arg)로 치환한 서열번호 7의 아미노산 서열로 이루어지는 프롤리다아제 A252R 돌연변이체(이하, 'prolidase-A252R'라고도 함) 또는 N-말단으로부터365번째 프롤린(proline, Pro)를 아르기닌(arginine, Arg)로 치환한 서열번호 8의 아미노산 서열로 이루어지는 프롤리다아제 P365R 돌연변이체(이하, 'prolidase-P365R'라고도 함)이다.The pyrrolidase mutant of the present invention comprises an amino acid sequence of SEQ ID NO: 7 substituted with arginine (arginine, Arg) alanine (alanine, Ala) which is the 252nd amino acid from the N-terminal of the pyrrolidase represented by SEQ ID NO: (Amino acid sequence of SEQ ID NO: 8) substituted with arginine (Arg) at position 365 from Prolinease A252R mutant (hereinafter also referred to as 'prolidase-A252R') or N-terminal proline (Hereinafter also referred to as " prolidase-P365R ").

프롤리다아제 A252R 돌연변이체의 경우는 앞서 설명된 바와 같이 제조된 pET21b-prolidase를 주형으로 해서 부위 특이적 돌연변이(site-directed mutagenesis)방법(Stratagene Corp.)을 이용하여 제조한 것으로, 이 프롤리다아제 A252R 돌연변이체를 제작하기 위해 전방향 프라이머 5'-CAGTGGTGAGAACTCACGCGTGCTACACTACGGAC-3'(서열번호 15), 역방향 프라이머 5'-GTCCGTAGTGTAGCACGCGTGAGTTCTCACCACTG-3'(서열번호 16)로 구성된 프라이머 쌍을 사용하여 프롤리다아제 A252R 돌연변이체를 중합효소 연쇄 반응(PCR)으로 증폭하고, PCR 증폭된 돌연변이체에 제한효소로 Dpn I을 1시간 정도 처리한 후 대장균 XL1-Blue 균주에 형질전환을 시켜, 서열번호 1의 염기서열로 이루어지는 재조합 발현벡터인 돌연변이체 플라스미드 DNA를 제조한 후 이를 pET21b-prolidase-A252R로 명명하였다.In the case of the follidase A252R mutant, the pET21b-prolidase prepared as described above was used as a template and was prepared using a site-directed mutagenesis method (Stratagene Corp.) A primer set consisting of an omnidirectional primer 5'-CAGTGGTGAGAACTCACGCGTGCTACACTACGGCGTGCTACACTACGGAC-3 '(SEQ ID NO: 15) and a reverse primer 5'-GTCCGTAGTGTAGCACGCGTGAGTTCTCACCACTG-3' (SEQ ID NO: 16) was used to prepare the daazae A252R mutant. The A252R mutant was amplified by polymerase chain reaction (PCR), and the PCR amplified mutant was treated with Dpn I as a restriction enzyme for about 1 hour and transformed into Escherichia coli XL1-Blue strain to obtain the nucleotide sequence of SEQ ID NO: 1 Was prepared and named as pET21b-prolidase-A252R.

또 다른 프롤리다아제 돌연변이체로 프롤리다아제 P365R 돌연변이체를 제작하기 위해 전방향 프라이머 5'-GGGGGCCGTGTTTATGCGTCACGGGCTTGGCCACT-3'(서열번호 17), 역방향 프라이머 5'-AGTGGCCAAGCCCGTGACGCATAAACACGGCCCCC-3'(서열번호 18)로 구성되는 프라이머 쌍을 사용하여 프롤리다아제P365R 돌연변이체를 중합효소 연쇄 반응(PCR)으로 증폭하였다. PCR 증폭된 산물은 상기 프롤리다아제 A252R 돌연변이체 제작과 같은 과정을 통해 서열번호 2의 염기서열로 이루어지는 재조합 발현벡터인 플라스미드 DNA를 제조했으며, 이를 pET21b-prolidase-P365R로 명명하였다.(SEQ ID NO: 17) and reverse primer 5'-AGTGGCCAAGCCCGTGACGCATAAACACGGCCCCC-3 '(SEQ ID NO: 18) in order to prepare a follidase P365R mutant as another follidase mutant Pyridase P365R mutants were amplified by polymerase chain reaction (PCR) using primer pairs constructed. The plasmid DNA, which is a recombinant expression vector comprising the nucleotide sequence of SEQ ID NO: 2, was prepared by the same procedure as that for producing the above-mentioned follidase A252R mutant, and this product was named pET21b-prolidase-P365R.

한편 본 발명의 재조합 발현벡터는 본 발명에서 최종 생산되는 목적 단백질의 생산 및 정제를 용이하게 하기 위해서 필요에 따라 추가적으로 다른 서열을 포함할 수 있으며, 분비 신호 서열 및 단백질 정제용 태그 서열 등이 포함할 수 있다.In addition, the recombinant expression vector of the present invention may further include other sequences as needed in order to facilitate the production and purification of the target protein finally produced in the present invention, including secretory signal sequences and tag sequences for protein purification .

따라서 본 발명의 프롤리다아제 돌연변이체 재조합 발현벡터의 유전자 구성은 도 4 내지 도 6에 도시된 바와 같이 T7 프로모터, T7 태그 서열(T7 tag coding sequence), 목적 단백질 유전자, His 태그 서열(His tag coding sequence)의 순서로 포함하여 이루어질 수 있다. 즉 본 발명은 재조합 발현벡터는 pET21b벡터에 목적 단백질의 N-말단에 T7-tag과 C-말단에 His-tag이 융합되어있다. 여기서 상기 추가적으로 포함될 수 있는 서열은 목적 단백질의 정제를 위하여 필요한 서열의 종류가 제한되는 것은 아니며, 이에 목적 단백질의 정제를 위하여 필요한 서열의 종류가 제한되는 것은 아니다.Therefore, as shown in FIG. 4 to FIG. 6, the gene structure of the recombinant expression vector of the follidase mutant of the present invention is a T7 promoter, a T7 tag coding sequence, a target protein gene, a His tag sequence (His tag coding sequence in order. That is, in the present invention, the recombinant expression vector has a pET21b vector fused with a T7-tag at the N-terminus of the target protein and a His-tag at the C-terminus. Herein, the sequence which can be additionally contained is not limited to the kind of the sequence necessary for purifying the target protein, and the kind of the sequence necessary for purifying the target protein is not limited.

이와 같은 프롤리다아제 돌연변이체 재조합 발현 벡터의 유전자는 서열번호 9 내지 12로 표시되는 염기서열을 포함하며, 이 구성을 구체적으로 살펴보면 서열번호 1 또는 서열번호 2의 염기 서열 중 599번째 내지 1459번째 염기는 항생제 저항성 유전자로 서열번호 9로 표시되는 엠피실린 저항성 유전자(ampicillin resistance gene)를 포함하고, 5117번째 내지 5135번째 염기로 서열번호 10의 T7 프로모터를 포함하고, 5208번째 내지 5237번째 염기로 서열번호 11의 T7 태그 서열을 포함하고, 6759번째 내지 6776번째 뉴클레오티드로 서열번호 12로 표시되는 His 태그 서열을 포함하여 이루어진다.The gene of the recombinant expression vector of the pyrrolidase mutant includes the nucleotide sequence shown in SEQ ID NOS: 9 to 12, and specifically the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2, The base includes an ampicillin resistance gene represented by SEQ ID NO: 9 as the antibiotic resistance gene, a T11 promoter of SEQ ID NO: 10 as the 5117th to 5135th bases, a nucleotide sequence of the 5208th to 5237th bases Comprising a T7 tag sequence of SEQ ID NO: 11 and a His tag sequence of SEQ ID NO: 12 with nucleotides 6759 to 6776, respectively.

실시예 2는 상기 실시예 1에 따라 제조된 재조합 발현벡터로pET21b-prolidase, pET21b-prolidase-A252R 및 pET21b-prolidase-P365R를 숙주세포에 형질전환시킨 형질전환체에서 프롤리다아제 발현에 관한 것이다.Example 2 relates to expression of follidase in a transformant obtained by transforming pET21b-prolidase, pET21b-prolidase-A252R and pET21b-prolidase-P365R into a host cell with the recombinant expression vector prepared according to Example 1 above .

구체적을 실시예 2은 Prolidase 발현을 유도하기 위해 pET21b-prolidase, pET21b-prolidase-A252R과 pET21b-prolidase-P365R을 이용하여 형질전환 시킨 대장균 BL21(DE3)를 Luria-Bertani(LB) 배지에 항생제로 50 mg/ml ampicillin을 첨가한 후 37℃에서 12시간 동안 배양한다. 배양한 대장균으로부터 용해성 프롤리다아제(Soluble prolidase) 발현 최적온도를 확립하기 위하여, 4가지 온도 조건 37℃, 30℃, 25℃, 20℃를 선별하고, 온도배양에 따른 대장균 성장의 차이를 보완하기 위하여 대장균 접종량을 OD6000.4(37℃), OD6000.6(30℃), OD6000.8(25℃), OD6001.0(20℃)으로 설정하였다. Specifically, in Example 2, Escherichia coli BL21 (DE3) transformed with pET21b-prolidase, pET21b-prolidase-A252R and pET21b-prolidase-P365R to induce prolidase expression was added to Luria-Bertani (LB) mg / ml ampicillin and incubate at 37 ° C for 12 hours. In order to establish optimal temperature for expression of Soluble prolidase from cultured Escherichia coli, four temperature conditions of 37 ℃, 30 ℃, 25 ℃ and 20 ℃ were selected and the difference of growth of Escherichia coli The inoculum amount of E. coli was set to OD6000.4 (37 DEG C), OD6000.6 (30 DEG C), OD6000.8 (25 DEG C), and OD6001.0 (20 DEG C).

그리고 대장균에서 프롤리다아제 단백질 발현 유도는 각각의 배양온도에서 20분간의 예비배양을 진행한 후 배양된 대장균에 IPTG 0.3 mM을 첨가하여 37℃ 배양조건 1시간, 30℃ 배양조건 2시간, 25℃ 배양조건 3시간, 20℃ 배양조건 6시간 동안 단백질 발현을 유도한다. 발현이 유도된 대장균을 수확하기 위하여 12000 rpm, 4℃, 5분 동안 원심분리를 통하여 대장균 세포체를 얻었다. 대장균에서 용해성 프롤리다아제 단백질의 생성량을 비교하기 위하여, 수확된 대장균 세포체에 lysis buffer(20 mM Tris-HCl (pH 8.0), 300 mM NaCl, 10 mM imidazole, 1 mg/ml lysozyme)를 첨가한 후 초음파 파쇄기를 통해 세포를 파쇄하고, 파쇄된 대장균에서 용해성 단백질(soluble protein)과 불용해성 단백질(insoluble protein)을 선별하기 위하여 12000 rpm, 4℃, 15분 동안 원심분리 하여 상등액과 침전물을 분리한다.After incubation for 20 min at each incubation temperature, E. coli was incubated at 37 ° C for 1 h, 30 ° C for 2 h, Lt; 0 > C for 3 hours and 20 [deg.] C for 6 hours. Escherichia coli cells were obtained by centrifugation at 12,000 rpm, 4 ° C for 5 minutes in order to harvest the expression-induced E. coli. To compare the amount of soluble follidase protein produced in Escherichia coli, lysis buffer (20 mM Tris-HCl (pH 8.0), 300 mM NaCl, 10 mM imidazole, 1 mg / ml lysozyme) was added to the harvested E. coli cell body The supernatant was separated from the supernatant by centrifugation at 12000 rpm at 4 ° C for 15 minutes to separate the soluble protein and insoluble protein from the disrupted E. coli. .

이렇게 초음파 파쇄된 단백질 각각으로 전체 세포 분해물(whole cell lysate), 용해성 단백질(soluble protein), 불용해성 단백질(insoluble protein)을 10% SDS-PAGE 전기영동(Sodium dodecyl sulfate polyacrylamide gel electrophoresis)에서 전기영동을 수행하여 분리한 후 쿠마시 브릴리언트 블루(Coomassie brilliant blue, CBB) 염색법을 통하여 확인하였다.Whole cell lysate, soluble protein, and insoluble protein were electrophoresed on 10% SDS-PAGE electrophoresis (Sodium dodecyl sulfate polyacrylamide gel electrophoresis) And then identified by Coomassie brilliant blue (CBB) staining method.

실시예 3은 상기 형질전환체인 프롤리다아제가 발현되는 대장균부터 발현되는 프롤리다아제를 분리 및 정제에 관한 것으로, 단백질 분리 정제를 위하여 야생형 야생형 프롤리다아제, 프롤리다아제 A252R 돌연변이체, 프롤리다아제 P365R 돌연변이체를 각각 발현하는 대장균을 20℃ 배양조건에서 배양하고 IPTG 발현을 유도하고, 배양된 대장균은 초음파 파쇄기를 이용하여 세포를 파쇄했으며, 원심분리 후 발현된 프롤리다아제 단백질이 포함된 상등액을 Ni-NTA column에 통과시켜 줌으로써 프롤리다아제 단백질을 정제한다.Example 3 relates to the isolation and purification of a follidase expressed from Escherichia coli expressing the transformed follolidase. In order to separate and purify the protein, wild-type wild type follidase, follidase A252R mutant, Escherichia coli expressing each of the P385R mutants was cultured at 20 DEG C culture conditions to induce IPTG expression. The cultured Escherichia coli cells were disrupted using an ultrasonic disrupter, and the expression of the follidase protein expressed after centrifugation And the supernatant is passed through a Ni-NTA column to purify the follidase protein.

구체적으로 실시예 3은 야생형 프롤리다아제 발현되는 대장균 단백질의 분리 및 정제를 위하여 프롤리다아제가 발현되는 대장균을 OD6001.0으로 접종한 후 20℃ 배양조건 6시간 동안 IPTG(Isopropyl β-D-1-thiogalactopyranoside) 0.3 mM을 첨가하여 발현을 유도한다. 발현이 유도된 세포체는 원심분리를 통하여 수확하였으며, 초음파 파쇄과정을 통하여 용해성 단백질들을 분리하였다. 용해성 단백질들에서 프롤리다아제를 정제하기 위하여 프롤리다아제의 C-말단에 첨가된 His-tag을 이용한 Ni-NTA column(Quiagen corp.) 정제 방법을 사용하였다. 용해성 단백질을 Ni-NTA column 1 ml에 통과시킨 후 세척 완충액(20 mM TRIS-Cl pH 8.0, 300 mM NaCl, 50mM Imidazole) 5 ml로 His-tag 에 결합하지 않는 단백질들을 제거하였다. Ni-NTA column에 결합된 야생형 프롤리다아제 단백질은 용출 완충액(20 mM TRIS-Cl (pH 8.0), 300 mM NaCl, 250 mM Imidazole) 10 ml을 첨가하여 각각의 분획으로 분리하였다.Specifically, in Example 3, Escherichia coli expressing follolidase was inoculated with OD6001.0 for isolation and purification of the E. coli protein expressing wild-type pradiolase, and then cultured in IPTG (Isopropyl β-D- 1-thiogalactopyranoside) to induce the expression. Expression - induced cell bodies were harvested by centrifugation and soluble proteins were isolated by ultrasonic disruption. A Ni-NTA column (Quiagen corp.) Purification method using a His-tag added at the C-terminus of the follidase was used to purify the follolidase in the soluble proteins. The soluble proteins were passed through 1 ml of Ni-NTA column and then 5 ml of wash buffer (20 mM TRIS-Cl pH 8.0, 300 mM NaCl, 50 mM Imidazole) to remove proteins that did not bind His-tag. The wild-type pyrrolidase protein bound to the Ni-NTA column was separated into fractions by adding 10 ml of elution buffer (20 mM TRIS-Cl (pH 8.0), 300 mM NaCl, 250 mM Imidazole).

이렇게 분리된 야생형 프롤리다아제 단백질은 투석 완충용액(20 mM Tris-HCl (pH 8.0), 300 mM NaCl)에서 12시간 동안 투석했다. 정제한 야생형 프롤리다아제는 10% SDS-PAGE 전기영동(Sodium dodecyl sulfate polyacrylamide gel electrophoresis)을 수행한 후 쿠마시 브릴리언트 블루(Coomassie brilliant blue, CBB)로 염색하여 분석하였다. The thus isolated wild-type pyrrolidase protein was dialyzed in dialysis buffer solution (20 mM Tris-HCl (pH 8.0), 300 mM NaCl) for 12 hours. Purified wild-type pravolidase was analyzed by staining with Coomassie brilliant blue (CBB) after performing 10% SDS-PAGE electrophoresis (sodium dodecyl sulfate polyacrylamide gel electrophoresis).

한편, 웨스턴 블롯(western blot)을 통해 실시예들에 따라 분리 및 정제된 단백질을 검증하기 위해 Prolidase의 C-말단에 첨가된 His-tag을 확인하였으며, 분리 및 정제된 프롤리다아제 단백질을 10% SDS-PAGE 전기영동(Sodium dodecyl sulfate polyacrylamide gel electrophoresis)을 이용하여 분리한 뒤, 분리된 단백질은 PVDF 막에 전기영동하여 옮긴 뒤, 1차 항체로서 anti-His 항체(Santa Cruz, CA, USA)를 이용하고, 2차 항체로서 anti-mouse IgG-HRP(Santa Cruz, CA, USA)를 차례로 처리하고, X-ray 필름에 감광되는 밴드를 관찰하는 웨스턴 블롯(western blot)을 수행하였다. 프롤리다아제 야생형과 프롤리다아제 돌연변이체로 프롤리다아제 A252R 돌연변이체와 프롤리다아제 P365R 돌연변이체의 경우도 동일한 방법으로 단백질을 분리 및 정제하였다.On the other hand, the His-tag added to the C-terminus of Prolidase was confirmed by Western blot to verify the proteins isolated and purified according to the examples, and the separated and purified follidase protein was labeled with 10 SDS-PAGE gel electrophoresis. The separated proteins were electrophoresed on a PVDF membrane and transferred to an anti-His antibody (Santa Cruz, CA, USA) as a primary antibody. And Western blotting was performed in order to observe the band to be photographed on the X-ray film by sequentially treating anti-mouse IgG-HRP (Santa Cruz, CA, USA) as a secondary antibody. Proteins were isolated and purified in the same manner for the follidase wild type and the follidase mutant, the follidase A252R mutant and the follidase P365R mutant.

실시예 4는 신경작용제 유사물질로 유기인산 화합물 중 하나인 다이아이소프로필플루오로인산(diisopropylfluorophosphate, DFP)의 분해 능력을 통해 프롤리다아제 돌연변이체의 효소활성을 측정하는 방법에 관한 것이다.Example 4 relates to a method for measuring the enzyme activity of a follidase mutant through the ability to decompose diisopropylfluorophosphate (DFP), which is one of the organic phosphoric acid compounds, as a nerve agent-like substance.

유기인산 화합물의 하나인 DFP(Sigma, St. Louis, MO, USA)를 분해하는 프롤리다아제의 효소활성 측정을 위하여 96-well plate에서 최종부피가 200 ul 부피가 되도록 1 mM DFP, 0.004% 페놀레드(phenol red), 2.0 mM HEPES(pH 8.0), 2 mM CaCl2 완충용액을 넣고, 422nm 파장에서 흡광도를 측정하여 25℃ 온도에서 5분 동안 효소 활성을 측정하였다(Billecke et al., 1999).To determine the enzymatic activity of fibrillase digesting DFP (Sigma, St. Louis, MO, USA), one of the organic phosphate compounds, 1 mM DFP, 0.004% Phenol red, 2.0 mM HEPES (pH 8.0) and 2 mM CaCl 2 buffer solution were added and the absorbance at 422 nm was measured and the enzyme activity was measured at 25 ° C for 5 minutes (Billecke et al., 1999 ).

다이아이소프로필플루오로인산(DFP)에 대한 효소활성도는 422 nm에서의 흡광도를 측정하여 흡광도에 따른 산 생산량은 1.9×103×(Δ흡광도/Δ시간)/반응 부피(ul)로 계산하며, 이때 효소활성 단위는 μmol/min/ml로 계산하며, 아울러 효소의 Kcat값과 Km값을 계산하기 위하여 0.1 mM 내지 1.6 mM에서의 효소활성도를 측정한 후 미하엘리스-멘텐 방정식(Michaelis-Menten equation)을 이용하여 Kcat/Km값을 계산한다.The enzyme activity of diisopropylfluorophosphate (DFP) was measured by measuring the absorbance at 422 nm, and the acid production according to the absorbance was calculated as 1.9 × 10 3 × (Δ absorbance / Δ time) / reaction volume (ul) The enzymatic activity was calculated as μmol / min / ml. To calculate the Kcat and Km values of the enzyme, enzyme activity was measured at 0.1 mM to 1.6 mM, and the Michaelis-Menten equation was used. To calculate the Kcat / Km value.

도 1 내지 도 3은 프롤리다아제 단백질 구조를 기초로 하여 효소활성 부위에 해당하는 아미노산들을 변형시키는 인실리코(in silico) 분석결과를 나타낸 것으로, 도 1의 야생형 프롤리다아제 단백질 구조를 기초로 하여 효소활성이 증가될 것으로 예상되는 돌연변이를 탐색하였다.FIGS. 1 to 3 show in silico analysis results of transforming amino acids corresponding to enzyme active sites on the basis of the structure of the protein of follidase . The wild-type pyrrolidase protein structure of FIG. To identify mutations expected to increase enzyme activity.

그 결과 도 2에 도시된 바와 같이 프롤리다아제의 252번째 아미노산인 알라닌알라닌(alanine, Ala)을 아르기닌(arginine, Arg)으로 변경하였을 때 249번째 글루탐산(glutamate)과 염다리(salt bridge)를 형성함으로써 효소활성이 증대될 것으로 예측되며, 이러한 프롤리다아제 A252R 돌연변이는 야생형 프롤리다아제와 비교하여 ΔG stability는 -12.80 kcal/mol, ΔG affinity는 -0.02 kcal/mol 값으로 효소의 안정성이 증대될 것으로 예상되었다.As shown in FIG. 2, when alanine alanine (alanine, Ala), the 252th amino acid of frolidase, was changed to arginine (Arg), glutamate and a salt bridge were formed at 249th glutamate The enzyme activity is expected to be increased by increasing the enzyme activity. The ΔG stability is -12.80 kcal / mol, and the ΔG affinity is -0.02 kcal / mol, as compared with the wild-type pyrrolidase in the follidase A252R mutation. .

또한, 도 3에 도시된 바와 같이 프롤리다아제의 365번째 프롤린(proline, Pro)를 아르기닌(arginine, Arg)으로 치환하였을 때, 424번째 글루탐산(glutamate)과 염다리(salt bridge)를 형성함으로써 효소활성이 증대될 것으로 예측되었으며, 인실리코(in silico) 분석결과 이러한 프롤리다아제 P365R 돌연변이는 야생형 프롤리다아제와 비교하여 ΔG stability는 -1.44 kcal/mol, ΔG affinity는 -2.98 kcal/mol 값으로 다이아이소프로필플루오로인산(DFP)과 같은 유사 신경작용제와 같은 기질과의 결합력이 증가될 것으로 예상되었다.As shown in FIG. 3, when the 365th proline (Pro) of frolidase is replaced with arginine (Arg), glutamate and salt bridge are formed with 424th glutamate, was predicted to be active is increased, double Rico (in silico) the results of these programs are Raleigh azepin P365R mutation is wild-type loop Raleigh is compared with the stability azepin ΔG is -1.44 kcal / mol, ΔG affinity is -2.98 kcal / mol value Is expected to increase its binding capacity to substrates such as similar neuroactive agents such as diisopropylfluorophosphate (DFP).

도 7과 도 8은 본 발명에 일 실시예에 따라 최종적으로 제작된 프롤리다아제 A252R 돌연변이체와 프롤리다아제 P365R 돌연변이체에 대한 염기서열 분석을 통하여 돌연변이 부위의 아미노산 서열을 확인한 결과를 나타낸 것이다. FIG. 7 and FIG. 8 show the result of confirming the amino acid sequence of the mutant site by analyzing the nucleotide sequence of the follidase A252R mutant and the pyrrolidase P365R mutant finally prepared according to an embodiment of the present invention will be.

그 결과 도 7에 도시된 바와 같이 프롤리다아제 A252R 돌연변이체는 염기서열 분석을 통해 252번째 아미노산인 알라닌(alanine, Ala)에 해당되는 염기서열 GCC가 아르기닌(arginine, Arg)의 염기서열에 해당하는 CGC로 치환된 것을 확인하였다.As a result, as shown in FIG. 7, the fibrillase A252R mutant was analyzed by sequencing to find that the nucleotide sequence GCC corresponding to alanine (alanine, Ala) which is the 252th amino acid corresponds to the nucleotide sequence of arginine CGC was replaced with CGC.

또한, 도 8에 도시된 바와 같이, 프롤리다아제 P365R 돌연변이체는 염기서열 분석을 했을 때 365번째 아미노산인 프롤린(proline, Pro)에 해당되는 염기서열 CGT가 아르기닌(arginine, Arg)의 염기서열에 해당하는 CCT로 치환된 것을 확인하였다Also, as shown in FIG. 8, the follidase P365R mutant has a base sequence CGT corresponding to proline (Pro), which is the 365th amino acid when nucleotide sequence analysis is carried out, with a base sequence of arginine (Arg) Was substituted with CCT corresponding to < RTI ID = 0.0 >

도 9 내지 도 11은 본 발명의 일 실시예에 따라 발현되는 프롤리다아제 돌연변이체를 각각 전체 세포 분해물(whole cell lysate), 용해성 단백질(soluble protein) 및 불용해성 단백질(insoluble protein)을 10% SDS-PAGE 전기영동을 수행하여 분리한 후 쿠마시 브릴리언트 블루(Coomassie brilliant blue, CBB) 염색법을 통하여 염색된 겔(gel)을 관찰한 이미지이다. 이때, 본 발명의 프롤리다아제 돌연변이체에 예상되는 단백질 크기는 약 58 kDa이다.9-11 are graphs depicting the effect of the follidase mutant expressed according to one embodiment of the present invention on the whole cell lysate, soluble protein and insoluble protein in 10% SDS-PAGE electrophoresis, followed by staining of the gel through coomassie brilliant blue (CBB) staining. At this time, the expected protein size of the follidase mutant of the present invention is about 58 kDa.

대장균에서 야생형의 프롤리다아제와 프롤리다아제 A252R 돌연변이체 및 프롤리다아제 P365R 돌연변이체에서 프롤리다아제 발현을 유도한 결과 단백질 마커(M)의 45 kD와 60 kDa 사이에서 단백질 발현 밴드가 관찰되었으며, 이는 예상된 단백질 크기인 약 58 kDa과 동일한 프롤리다아제 단백질 크기임을 확인하였다.Expression of follidase in E. coli wild-type pradolase and follidase A252R mutants and follidase P365R mutants resulted in a protein expression band between 45 kD and 60 kDa of the protein marker (M) Was observed, confirming that the protein size was the same as the expected protein size of about 58 kDa.

그리고 단백질 분리 정제에 대한 용해성 프롤리다아제 단백질 발현 최적화 온도를 선별하기 위하여 대장균 배양온도를 37℃에서 20℃로 변화시키면서 용해성 단백질 발현양상을 관찰하였다. In order to select the optimal temperature for soluble protein expression in purified protein separation, soluble protein expression patterns were observed while the culture temperature of E. coli was changed from 37 ° C to 20 ° C.

도 9와 도 10에 나타난 바와 같이 야생형 프롤리다아제와 프롤리다아제 A252R 돌연변이체 발현 대장균에서 배양온도가 37℃에서 20℃로 점차적으로 감소했을 때, IPTG 발현 유도를 통해 발현되는 프롤리다아제 단백질의 총량은 크게 변화 없었으나 상등액(supernatant)을 살펴본 결과 용해성 단백질 양은 증가되고 펠렛(pellet)을 살펴본 결과 불용성 단백질 양은 감소되었다. As shown in FIG. 9 and FIG. 10, when the culture temperature gradually decreased from 37 ° C. to 20 ° C. in the wild-type follidase and follidase A252R mutant-expressing E. coli, the follicle expressed by induction of IPTG expression The total amount of the aze protein did not change much, but the supernatant showed that the amount of soluble protein was increased and the amount of insoluble protein was decreased by looking at the pellet.

그리고 도 11에 도시된 바와 같이, 프롤리다아제 P365R 돌연변이 단백질의 발현 시 배양온도가 37℃에서 20℃로 점차적으로 감소했을 때 용해성 단백질 양은 증가되었으나 불용성 단백질 양은 비슷한 수준이었다. As shown in FIG. 11, when the culture temperature was gradually decreased from 37 ° C to 20 ° C during the expression of the follidase P365R mutant protein, the amount of soluble protein was increased but the amount of insoluble protein was similar.

이러한 결과는 야생형 프롤리다아제, 프롤리다아제 A252R 돌연변이체, 프롤리다아제 P365R 돌연변이체 모두 20℃ 발현 유도온도에서 용해성(solubility)이 가장 높음을 의미한다.These results indicate that the solubility of the wild-type follidase, the follidase A252R mutant, and the follidase P365R mutant at 20 ° C induction temperature is the highest.

도 12는 본 발명의 일실시예에 따라 목적 단백질 정제를 완료한 후 단백질 정량을 수행한 결과를 10% SDS-PAGE 전기영동을 수행하여 분리한 후 쿠마시 브릴리언트 블루(Coomassie brilliant blue, CBB) 염색법으로 염섹한 겔(gel) 이미지이다.FIG. 12 is a graph showing the results of protein quantification after completing purification of a target protein according to an embodiment of the present invention. The result was separated by performing 10% SDS-PAGE electrophoresis, followed by staining with Coomassie brilliant blue (CBB) Is a gel image.

그 결과 야생형 프롤리다아제와 돌연변이체들에 대한 대장균의 단백질 생산 수율은 14 mg/L로 확인되었다. 정제된 단백질의 크기는 발현벡터의 제조 시 예상하였던 58 kDa과 일치 하였으며, 이 쿠마시 브릴리언트 블루(CBB) 염색을 근거로 했을 때 99% 이상의 순도를 보였다.As a result, the yield of protein production of E. coli against wild type pravolidase and mutants was confirmed to be 14 mg / L. The size of the purified protein was in agreement with the expected 58 kDa of the expression vector, and the purity was 99% or more based on the Coomassie Brilliant Blue (CBB) staining.

아울러 도 13은 본 발명의 일 실시예에 따라 정제한 단백질을 웨스턴 블롯(Western blot)으로 확인하기 위하여 anti-His 항체를 이용하여 분석을 수행한 결과를 나타낸 것으로, 그 결과 상기 도 12의 쿠마시 브릴리언트 블루(CBB) 염색에서 관찰된 동일한 58 kDa 위치에서 웨스턴 블롯 밴드가 관찰됨으로 예상되는 단백질 정제가 정확히 수행되었음을 확인하였다.13 shows the result of analysis using an anti-His antibody in order to confirm the purified protein by Western blot according to an embodiment of the present invention. As a result, The western blot band was observed at the same 58 kDa position observed in Brilliant Blue (CBB) staining, confirming that the expected protein purification was performed correctly.

하기 표 1, 도 14와 도 15는 본 발명이 일 실시예에 따라 정제한 프롤리다아제 A252R 돌연변이 단백질과 프롤리다아제 P365R 돌연변이 단백질을 이용하여 신경작용제 유사물질인 DFP에 대한 효소활성을 측정한 결과를 나타낸 것이다.The following Table 1, FIG. 14 and FIG. 15 show the enzymatic activity of the neurokinetic agent-like substance DFP using the fulleridase A252R mutant protein and the fulleridase P365R mutant protein purified according to one embodiment of the present invention .

Vmax
(U/mg)
V max
(U / mg)
Km(mM)Km (mM) Kcat/Km
(×106M- 1min-1)
Kcat / Km
(× 10 6 M - 1 min -1)
Fold increaseFold increase
WTWT 60.160.1 0.900.90 3.933.93 A252RA252R 34.834.8 0.400.40 4.934.93 1.251.25 P365RP365R 92.292.2 1.051.05 5.285.28 1.341.34

그 결과 프롤리다아제 A252R 돌연변이를 이용하여 DFP에 대한 효소활성을 측정했을 때 Vmax값은 34.8 U/mg, Km값은 0.40 mM로 관찰되었으며, 프롤리다아제 P365R 돌연변이를 이용하여 DFP에 대한 효소활성을 측정했을 때 Vmax값은 92.2 U/mg, Km값은 1.05 mM로 관찰되었다.As a result, when the enzymatic activity against DFP was measured using the fulleridase A252R mutation, the Vmax value was 34.8 U / mg and the Km value was 0.40 mM, and the enzyme for DFP was detected using the Pyridase P365R mutation When the activity was measured, the Vmax value was 92.2 U / mg and the Km value was 1.05 mM.

이러한 Vmax값과 Km값의 수치를 이용하여 프롤리다아제 A252R 돌연변이 단백질의 효소활성도를 표시하는 Kcat/Km값을 구하였을 때, 4.93×106M- 1min- 1값을 나타내었으며, 프롤리다아제 P365R 돌연변이 단백질의 Kcat/Km값은 5.28×106M- 1min-1로 나타났다.Using the values of Vmax and Km values, the Kcat / Km value indicating the enzyme activity of the A252R mutant protein of follidase was found to be 4.93 × 10 6 M - 1 min - 1 , The Kcat / Km value of the mutant protein of the dAze P365R was 5.28 × 10 6 M - 1 min -1 .

본 발명에서 분리 및 정제된 야생형 프롤리다아제 효소활성은 60.1 U/mg, Km값은 0.90 mM로 나타낸 바, 이는 기존 연구에서 대장균으로부터 His-태그된 프롤리다아제를 분리했을 때 효소활성은 51.2 U/mg, Km값은 2.7 mM로 나타났다. 이처럼 종래의 연구에서 야생형 프롤리다아제의 효소활성이 본 실시예에 따른 야생형 프롤리다아제의 효소활성과 다르게 나타낸 이유는 종래 연구에서 사용한 프롤리다아제는 간에서 발현되는 아이소타입(isotype)이고, 본 발명에서 사용된 프롤리다아제는 피부로부터 분리한 것으로, 두 아이소타입(isotype) 간에 10개의 아미노산 잔기의 차이가 있기 때문이다. In the present invention, the activity of the wild-type pyrrolidase enzyme isolated and purified is 60.1 U / mg and the Km value is 0.90 mM, indicating that when the His-tagged follidase was isolated from E. coli, 51.2 U / mg, and the Km value was 2.7 mM. The reason why the enzymatic activity of the wild type pradolase is different from that of the wild type pradolase according to this embodiment is that the pradolase used in the conventional studies is isotype- And the frolidase used in the present invention is a skin isolated from the skin because there are 10 amino acid residues difference between two isotypes.

그리고 이와 같은 결과는 프롤리다아제 A252R 돌연변이의 효소활성도를 나타내는 Kcat/Km는 야생형 프롤리다아제 대비 1.25배 효소활성이 증가된 수치이고, 프롤리다아제 P365R 돌연변이의 Kcat/Km는 야생형 프롤리다아제 대비 1.34배 증가된 수치이다.These results indicate that Kcat / Km, which indicates the enzyme activity of the fibrillase A252R mutation, is an increased value of 1.25-fold enzyme activity relative to the wild-type follidase, and Kcat / Km of the follidase P365R mutation is the wild- This is an increase of 1.34 times compared to daika.

전술된 바와 같이, 본 실시예에 따른 프롤리다아제 돌연변이체는 프롤리다아제의 인실리코(in silico) 분석을 통한 구조 분석에서 효소활성 부위의 아미노산 치환을 통해 효소활성이 증가될 것으로 예측되는 돌연변이를 선별하여 효소활성을 측정하였다.As described above, the follidase mutant according to the present embodiment is expected to have increased enzyme activity through amino acid substitution of the enzyme active site in structural analysis through in silico analysis of follidase The enzyme activity was measured by selecting mutants.

그 결과 프로리다아제의 252번째 아미노산인 알라닌(alanine, Ala)을 아르기닌(arginine, Arg)으로 치환했을 경우에는 효소의 안정성이 증가될 것으로 예측되었으며, 이에 예측된 프롤리다아제 A252R 돌연변이체를 제작하여 효소활성을 측정 했을 때 Kcat/Km값이 야생형 프롤리다아제 대비 1.25배 증가했다.As a result, it was predicted that the substitution of arginine (arginine, Arg) for alanine (alanine, Ala), which is the 252th amino acid of the enzyme, increased the stability of the enzyme and the predicted follidase A252R mutant was prepared When the enzyme activity was measured, the Kcat / Km value was 1.25 times higher than that of the wild type flaredase.

또 다른 돌연변이체로 프롤리다아제의 365번째 프롤린(proline, Pro)를 아르기닌(arginine, Arg)으로 치환했을 경우에는 기질에 대한 친화도가 증가될 것으로 예측되었으며, 실제로 프롤리다아제 P365R 돌연변이체를 제작하여 효소활성을 측정했을 때 Kcat/Km값이 야생형 프롤리다아제 대비 1.34배 증가했다. 그리고 프롤리다아제 P365R 돌연변이에서 단백질의 용해성(solubility)이 감소하는 양상을 관찰했는데, 이러한 결과는 프롤리다아제의 365번째 아미노산인 프롤린(proline, Pro)이 단백질의 구조 형성에 중요함을 의미한다.The substitution of arginine (Arg) for 365th proline (Pro) with another mutant was predicted to increase the affinity for the substrate. In fact, the Pyridase P365R mutant The Kcat / Km value was 1.34 times higher than that of the wild type follidase when the enzyme activity was measured. We also observed a decrease in the solubility of proteins in the P365R mutation, which suggests that proline (Pro), the 365th amino acid of follidase, is important for protein structure formation do.

결론적으로 본 발명에서는 인간 유래 프롤리다아제의 데이터베이스 기반 인실리코(in silico) 분석을 통해 효소활성이 증가되는 프롤리다아제 A252R 돌연변이체와 프롤리다아제 P365R 돌연변이체를 설계하여 제조하였으며, 이렇게 제조된 프롤리다아제 A252R 돌연변이체와 프롤리다아제 P365R 돌연변이체의 효소활성이 야생형 프롤리다아제보다 증가되었음을 확인할 수 있었다. 이와 같은 결과는 신경작용제에 해독제로서 프롤리다아제 A252R 돌연변이체와 프롤리다아제 P365R 돌연변이체가 활용될 수 있으며, 대장균을 이용하여 대량 생산이 가능 한 신규 생촉매 제제로서 응용할 수 있다.In conclusion, in the present invention, a follidase A252R mutant and a follidase P365R mutant were prepared by in silico analysis of a human-derived pravolidase database in which the enzyme activity was increased. It was confirmed that the enzyme activity of the prepared follidase A252R mutant and the follidase P365R mutant was increased compared to the wild type follidase. As a result, the pesticide A252R mutant and the follidase P365R mutant can be used as an antidote to the neural agonist, and can be applied as a novel biocatalyst preparation capable of mass production using E. coli.

앞서 살펴본 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자 당업자가 본 발명을 용이하게 실시할 수 있도록 하는 바람직한 실시예일 뿐, 전술한 실시예 및 첨부한 도면에 한정되는 것은 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. The scope of the present invention is not limited thereto. It will be apparent to those skilled in the art that various substitutions, modifications and variations are possible within the scope of the present invention, and it is obvious that those parts easily changeable by those skilled in the art are included in the scope of the present invention .

한편, 본 발명에서 사용되는 기술적 용어는 단지 본 발명의 이해를 돕기 위한 설명을 하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야한다. 또한 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 한다.It is to be noted, however, that the technical terms used in the present invention are used only for explaining the present invention, and are not intended to limit the present invention. Also, the technical terms used in the present invention should be construed in a sense generally understood by a person having ordinary skill in the art to which the present invention belongs, unless otherwise defined in the present invention, and an overly comprehensive It should not be construed as a meaning or an overly reduced meaning. In addition, the general terms used in the present invention should be construed in accordance with the predefined or prior context.

<110> AGENCY FOR DEFENSE DEVELOPMENT <120> PROLIDASE MUTANT, AND PREPARATION METHOD AND USE THEREOF <130> AD160069 <160> 18 <170> KopatentIn 2.0 <210> 1 <211> 6915 <212> DNA <213> Artificial Sequence <220> <223> pET21b-prolidase-A252R <400> 1 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940 ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000 aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120 tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180 acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240 cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300 cccgtggggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg 3360 gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc 3420 cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg 3480 gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca 3540 tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgag 3600 atcccggtgc ctaatgagtg agctaactta cattaattgc gttgcgctca ctgcccgctt 3660 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 3720 gcggtttgcg tattgggcgc cagggtggtt tttcttttca ccagtgagac gggcaacagc 3780 tgattgccct tcaccgcctg gccctgagag agttgcagca agcggtccac gctggtttgc 3840 cccagcaggc gaaaatcctg tttgatggtg gttaacggcg ggatataaca tgagctgtct 3900 tcggtatcgt cgtatcccac taccgagata tccgcaccaa cgcgcagccc ggactcggta 3960 atggcgcgca ttgcgcccag cgccatctga tcgttggcaa ccagcatcgc agtgggaacg 4020 atgccctcat tcagcatttg catggtttgt tgaaaaccgg acatggcact ccagtcgcct 4080 tcccgttccg ctatcggctg aatttgattg cgagtgagat atttatgcca gccagccaga 4140 cgcagacgcg ccgagacaga acttaatggg cccgctaaca gcgcgatttg ctggtgaccc 4200 aatgcgacca gatgctccac gcccagtcgc gtaccgtctt catgggagaa aataatactg 4260 ttgatgggtg tctggtcaga gacatcaaga aataacgccg gaacattagt gcaggcagct 4320 tccacagcaa tggcatcctg gtcatccagc ggatagttaa tgatcagccc actgacgcgt 4380 tgcgcgagaa gattgtgcac cgccgcttta caggcttcga cgccgcttcg ttctaccatc 4440 gacaccacca cgctggcacc cagttgatcg gcgcgagatt taatcgccgc gacaatttgc 4500 gacggcgcgt gcagggccag actggaggtg gcaacgccaa tcagcaacga ctgtttgccc 4560 gccagttgtt gtgccacgcg gttgggaatg taattcagct ccgccatcgc cgcttccact 4620 ttttcccgcg ttttcgcaga aacgtggctg gcctggttca ccacgcggga aacggtctga 4680 taagagacac cggcatactc tgcgacatcg tataacgtta ctggtttcac attcaccacc 4740 ctgaattgac tctcttccgg gcgctatcat gccataccgc gaaaggtttt gcgccattcg 4800 atggtgtccg ggatctcgac gctctccctt atgcgactcc tgcattagga agcagcccag 4860 tagtaggttg aggccgttga gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc 4920 gcccaacagt cccccggcca cggggcctgc caccataccc acgccgaaac aagcgctcat 4980 gagcccgaag tggcgagccc gatcttcccc atcggtgatg tcggcgatat aggcgccagc 5040 aaccgcacct gtggcgccgg tgatgccggc cacgatgcgt ccggcgtaga ggatcgagat 5100 ctcgatcccg cgaaattaat acgactcact ataggggaat tgtgagcgga taacaattcc 5160 cctctagaaa taattttgtt taactttaag aaggagatat acatatggct agcatgactg 5220 gtggacagca aatgggtcgg gatccgaatt cgagctccgt cgacaagctt accatggcgg 5280 cggccaccgg accctcgttt tggctgggga atgaaaccct gaaggtgccg ctggcgctct 5340 ttgccttgaa ccggcagcgc ctgtgtgagc ggctgcggaa gaaccctgct gtgcaggccg 5400 gctccatcgt ggtcctgcag ggcggggagg agactcagcg ctactgcacc gacaccgggg 5460 tcctcttccg ccaggagtcc ttctttcact gggcgttcgg tgtcactgag ccaggctgct 5520 atggtgtcat cgatgttgac actgggaagt cgaccctgtt tgtgcccagg cttcctgcca 5580 gccatgccac ctggatggga aagatccatt ccaaggagca cttcaaggag aagtatgccg 5640 tggacgacgt ccagtacgta gatgagattg ccagcgtcct gacgtcacag aagccctctg 5700 tcctcctcac tttgcgtggc gtcaacacgg acagcggcag tgtctgcagg gaggcctcct 5760 ttgacggcat cagcaagttc gaagtcaaca ataccattct tcacccagag atcgttgagt 5820 gccgagtgtt taagacggat atggagctgg aggttctgcg ctataccaat aaaatctcca 5880 gcgaggccca ccgtgaggta atgaaggctg taaaagtggg aatgaaagaa tatgagttgg 5940 aaagcctctt cgagcactac tgctactccc ggggcggcat gcgccacagc tcctacacct 6000 gcatctgcgg cagtggtgag aactcacgcg tgctacacta cggacacgcc ggagctccca 6060 acgaccgaac gatccagaat ggggatatgt gcctgttcga catgggcggt gagtattact 6120 gcttcgcttc cgacatcacc tgctcctttc ccgccaacgg caagttcact gcagaccaga 6180 aggccgtcta tgaggcagtg ctgcggagct cccgtgccgt catgggtgcc atgaagccag 6240 gtgtctggtg gcctgacatg caccgcctgg ctgaccgcat ccacctggag gagctggccc 6300 acatgggcat cctgagcggc agcgtggacg ccatggtcca ggctcacctg ggggccgtgt 6360 ttatgcctca cgggcttggc cacttcctgg gcattgacgt gcacgacgtg ggaggctacc 6420 cagagggcgt ggagcgcatc gacgagcccg gcctgcggag cctgcgcact gcacggcacc 6480 tgcagccagg catggtgctc accgtggagc cgggcatcta cttcatcgac cacctcctgg 6540 atgaggccct ggcggacccg gcccgcgcct ccttccttaa ccgcgaggtc ctgcagcgct 6600 ttcgcggttt tggcggggtc cgcatcgagg aggacgtcgt ggtgactgac agcggcatag 6660 agctgctgac ctgcgtgccc cgcactgtgg aagagattga agcatgcatg gcaggctgtg 6720 acaaggcctt tacccccttc tctggcccca agctcgagca ccaccaccac caccactgag 6780 atccggctgc taacaaagcc cgaaaggaag ctgagttggc tgctgccacc gctgagcaat 6840 aactagcata accccttggg gcctctaaac gggtcttgag gggttttttg ctgaaaggag 6900 gaactatatc cggat 6915 <210> 2 <211> 6915 <212> DNA <213> Artificial Sequence <220> <223> pET21b-prolidase-P365R <400> 2 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940 ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000 aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120 tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180 acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240 cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300 cccgtggggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg 3360 gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc 3420 cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg 3480 gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca 3540 tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgag 3600 atcccggtgc ctaatgagtg agctaactta cattaattgc gttgcgctca ctgcccgctt 3660 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 3720 gcggtttgcg tattgggcgc cagggtggtt tttcttttca ccagtgagac gggcaacagc 3780 tgattgccct tcaccgcctg gccctgagag agttgcagca agcggtccac gctggtttgc 3840 cccagcaggc gaaaatcctg tttgatggtg gttaacggcg ggatataaca tgagctgtct 3900 tcggtatcgt cgtatcccac taccgagata tccgcaccaa cgcgcagccc ggactcggta 3960 atggcgcgca ttgcgcccag cgccatctga tcgttggcaa ccagcatcgc agtgggaacg 4020 atgccctcat tcagcatttg catggtttgt tgaaaaccgg acatggcact ccagtcgcct 4080 tcccgttccg ctatcggctg aatttgattg cgagtgagat atttatgcca gccagccaga 4140 cgcagacgcg ccgagacaga acttaatggg cccgctaaca gcgcgatttg ctggtgaccc 4200 aatgcgacca gatgctccac gcccagtcgc gtaccgtctt catgggagaa aataatactg 4260 ttgatgggtg tctggtcaga gacatcaaga aataacgccg gaacattagt gcaggcagct 4320 tccacagcaa tggcatcctg gtcatccagc ggatagttaa tgatcagccc actgacgcgt 4380 tgcgcgagaa gattgtgcac cgccgcttta caggcttcga cgccgcttcg ttctaccatc 4440 gacaccacca cgctggcacc cagttgatcg gcgcgagatt taatcgccgc gacaatttgc 4500 gacggcgcgt gcagggccag actggaggtg gcaacgccaa tcagcaacga ctgtttgccc 4560 gccagttgtt gtgccacgcg gttgggaatg taattcagct ccgccatcgc cgcttccact 4620 ttttcccgcg ttttcgcaga aacgtggctg gcctggttca ccacgcggga aacggtctga 4680 taagagacac cggcatactc tgcgacatcg tataacgtta ctggtttcac attcaccacc 4740 ctgaattgac tctcttccgg gcgctatcat gccataccgc gaaaggtttt gcgccattcg 4800 atggtgtccg ggatctcgac gctctccctt atgcgactcc tgcattagga agcagcccag 4860 tagtaggttg aggccgttga gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc 4920 gcccaacagt cccccggcca cggggcctgc caccataccc acgccgaaac aagcgctcat 4980 gagcccgaag tggcgagccc gatcttcccc atcggtgatg tcggcgatat aggcgccagc 5040 aaccgcacct gtggcgccgg tgatgccggc cacgatgcgt ccggcgtaga ggatcgagat 5100 ctcgatcccg cgaaattaat acgactcact ataggggaat tgtgagcgga taacaattcc 5160 cctctagaaa taattttgtt taactttaag aaggagatat acatatggct agcatgactg 5220 gtggacagca aatgggtcgg gatccgaatt cgagctccgt cgacaagctt accatggcgg 5280 cggccaccgg accctcgttt tggctgggga atgaaaccct gaaggtgccg ctggcgctct 5340 ttgccttgaa ccggcagcgc ctgtgtgagc ggctgcggaa gaaccctgct gtgcaggccg 5400 gctccatcgt ggtcctgcag ggcggggagg agactcagcg ctactgcacc gacaccgggg 5460 tcctcttccg ccaggagtcc ttctttcact gggcgttcgg tgtcactgag ccaggctgct 5520 atggtgtcat cgatgttgac actgggaagt cgaccctgtt tgtgcccagg cttcctgcca 5580 gccatgccac ctggatggga aagatccatt ccaaggagca cttcaaggag aagtatgccg 5640 tggacgacgt ccagtacgta gatgagattg ccagcgtcct gacgtcacag aagccctctg 5700 tcctcctcac tttgcgtggc gtcaacacgg acagcggcag tgtctgcagg gaggcctcct 5760 ttgacggcat cagcaagttc gaagtcaaca ataccattct tcacccagag atcgttgagt 5820 gccgagtgtt taagacggat atggagctgg aggttctgcg ctataccaat aaaatctcca 5880 gcgaggccca ccgtgaggta atgaaggctg taaaagtggg aatgaaagaa tatgagttgg 5940 aaagcctctt cgagcactac tgctactccc ggggcggcat gcgccacagc tcctacacct 6000 gcatctgcgg cagtggtgag aactcacgcg tgctacacta cggacacgcc ggagctccca 6060 acgaccgaac gatccagaat ggggatatgt gcctgttcga catgggcggt gagtattact 6120 gcttcgcttc cgacatcacc tgctcctttc ccgccaacgg caagttcact gcagaccaga 6180 aggccgtcta tgaggcagtg ctgcggagct cccgtgccgt catgggtgcc atgaagccag 6240 gtgtctggtg gcctgacatg caccgcctgg ctgaccgcat ccacctggag gagctggccc 6300 acatgggcat cctgagcggc agcgtggacg ccatggtcca ggctcacctg ggggccgtgt 6360 ttatgcgtca cgggcttggc cacttcctgg gcattgacgt gcacgacgtg ggaggctacc 6420 cagagggcgt ggagcgcatc gacgagcccg gcctgcggag cctgcgcact gcacggcacc 6480 tgcagccagg catggtgctc accgtggagc cgggcatcta cttcatcgac cacctcctgg 6540 atgaggccct ggcggacccg gcccgcgcct ccttccttaa ccgcgaggtc ctgcagcgct 6600 ttcgcggttt tggcggggtc cgcatcgagg aggacgtcgt ggtgactgac agcggcatag 6660 agctgctgac ctgcgtgccc cgcactgtgg aagagattga agcatgcatg gcaggctgtg 6720 acaaggcctt tacccccttc tctggcccca agctcgagca ccaccaccac caccactgag 6780 atccggctgc taacaaagcc cgaaaggaag ctgagttggc tgctgccacc gctgagcaat 6840 aactagcata accccttggg gcctctaaac gggtcttgag gggttttttg ctgaaaggag 6900 gaactatatc cggat 6915 <210> 3 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> prolidase <400> 3 atggcggcgg ccaccggacc ctcgttttgg ctggggaatg aaaccctgaa ggtgccgctg 60 gcgctctttg ccttgaaccg gcagcgcctg tgtgagcggc tgcggaagaa ccctgctgtg 120 caggccggct ccatcgtggt cctgcagggc ggggaggaga ctcagcgcta ctgcaccgac 180 accggggtcc tcttccgcca ggagtccttc tttcactggg cgttcggtgt cactgagcca 240 ggctgctatg gtgtcatcga tgttgacact gggaagtcga ccctgtttgt gcccaggctt 300 cctgccagcc atgccacctg gatgggaaag atccattcca aggagcactt caaggagaag 360 tatgccgtgg acgacgtcca gtacgtagat gagattgcca gcgtcctgac gtcacagaag 420 ccctctgtcc tcctcacttt gcgtggcgtc aacacggaca gcggcagtgt ctgcagggag 480 gcctcctttg acggcatcag caagttcgaa gtcaacaata ccattcttca cccagagatc 540 gttgagtgcc gagtgtttaa gacggatatg gagctggagg ttctgcgcta taccaataaa 600 atctccagcg aggcccaccg tgaggtaatg aaggctgtaa aagtgggaat gaaagaatat 660 gagttggaaa gcctcttcga gcactactgc tactcccggg gcggcatgcg ccacagctcc 720 tacacctgca tctgcggcag tggtgagaac tcacgcgtgc tacactacgg acacgccgga 780 gctcccaacg accgaacgat ccagaatggg gatatgtgcc tgttcgacat gggcggtgag 840 tattactgct tcgcttccga catcacctgc tcctttcccg ccaacggcaa gttcactgca 900 gaccagaagg ccgtctatga ggcagtgctg cggagctccc gtgccgtcat gggtgccatg 960 aagccaggtg tctggtggcc tgacatgcac cgcctggctg accgcatcca cctggaggag 1020 ctggcccaca tgggcatcct gagcggcagc gtggacgcca tggtccaggc tcacctgggg 1080 gccgtgttta tgcctcacgg gcttggccac ttcctgggca ttgacgtgca cgacgtggga 1140 ggctacccag agggcgtgga gcgcatcgac gagcccggcc tgcggagcct gcgcactgca 1200 cggcacctgc agccaggcat ggtgctcacc gtggagccgg gcatctactt catcgaccac 1260 ctcctggatg aggccctggc ggacccggcc cgcgcctcct tccttaaccg cgaggtcctg 1320 cagcgctttc gcggttttgg cggggtccgc atcgaggagg acgtcgtggt gactgacagc 1380 ggcatagagc tgctgacctg cgtgccccgc actgtggaag agattgaagc atgcatggca 1440 ggctgtgaca aggcctttac ccccttctct ggccccaag 1479 <210> 4 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> prolidase-A252R <400> 4 atggcggcgg ccaccggacc ctcgttttgg ctggggaatg aaaccctgaa ggtgccgctg 60 gcgctctttg ccttgaaccg gcagcgcctg tgtgagcggc tgcggaagaa ccctgctgtg 120 caggccggct ccatcgtggt cctgcagggc ggggaggaga ctcagcgcta ctgcaccgac 180 accggggtcc tcttccgcca ggagtccttc tttcactggg cgttcggtgt cactgagcca 240 ggctgctatg gtgtcatcga tgttgacact gggaagtcga ccctgtttgt gcccaggctt 300 cctgccagcc atgccacctg gatgggaaag atccattcca aggagcactt caaggagaag 360 tatgccgtgg acgacgtcca gtacgtagat gagattgcca gcgtcctgac gtcacagaag 420 ccctctgtcc tcctcacttt gcgtggcgtc aacacggaca gcggcagtgt ctgcagggag 480 gcctcctttg acggcatcag caagttcgaa gtcaacaata ccattcttca cccagagatc 540 gttgagtgcc gagtgtttaa gacggatatg gagctggagg ttctgcgcta taccaataaa 600 atctccagcg aggcccaccg tgaggtaatg aaggctgtaa aagtgggaat gaaagaatat 660 gagttggaaa gcctcttcga gcactactgc tactcccggg gcggcatgcg ccacagctcc 720 tacacctgca tctgcggcag tggtgagaac tcacgcgtgc tacactacgg acacgccgga 780 gctcccaacg accgaacgat ccagaatggg gatatgtgcc tgttcgacat gggcggtgag 840 tattactgct tcgcttccga catcacctgc tcctttcccg ccaacggcaa gttcactgca 900 gaccagaagg ccgtctatga ggcagtgctg cggagctccc gtgccgtcat gggtgccatg 960 aagccaggtg tctggtggcc tgacatgcac cgcctggctg accgcatcca cctggaggag 1020 ctggcccaca tgggcatcct gagcggcagc gtggacgcca tggtccaggc tcacctgggg 1080 gccgtgttta tgcctcacgg gcttggccac ttcctgggca ttgacgtgca cgacgtggga 1140 ggctacccag agggcgtgga gcgcatcgac gagcccggcc tgcggagcct gcgcactgca 1200 cggcacctgc agccaggcat ggtgctcacc gtggagccgg gcatctactt catcgaccac 1260 ctcctggatg aggccctggc ggacccggcc cgcgcctcct tccttaaccg cgaggtcctg 1320 cagcgctttc gcggttttgg cggggtccgc atcgaggagg acgtcgtggt gactgacagc 1380 ggcatagagc tgctgacctg cgtgccccgc actgtggaag agattgaagc atgcatggca 1440 ggctgtgaca aggcctttac ccccttctct ggccccaag 1479 <210> 5 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> prolidase-P365R <400> 5 atggcggcgg ccaccggacc ctcgttttgg ctggggaatg aaaccctgaa ggtgccgctg 60 gcgctctttg ccttgaaccg gcagcgcctg tgtgagcggc tgcggaagaa ccctgctgtg 120 caggccggct ccatcgtggt cctgcagggc ggggaggaga ctcagcgcta ctgcaccgac 180 accggggtcc tcttccgcca ggagtccttc tttcactggg cgttcggtgt cactgagcca 240 ggctgctatg gtgtcatcga tgttgacact gggaagtcga ccctgtttgt gcccaggctt 300 cctgccagcc atgccacctg gatgggaaag atccattcca aggagcactt caaggagaag 360 tatgccgtgg acgacgtcca gtacgtagat gagattgcca gcgtcctgac gtcacagaag 420 ccctctgtcc tcctcacttt gcgtggcgtc aacacggaca gcggcagtgt ctgcagggag 480 gcctcctttg acggcatcag caagttcgaa gtcaacaata ccattcttca cccagagatc 540 gttgagtgcc gagtgtttaa gacggatatg gagctggagg ttctgcgcta taccaataaa 600 atctccagcg aggcccaccg tgaggtaatg aaggctgtaa aagtgggaat gaaagaatat 660 gagttggaaa gcctcttcga gcactactgc tactcccggg gcggcatgcg ccacagctcc 720 tacacctgca tctgcggcag tggtgagaac tcacgcgtgc tacactacgg acacgccgga 780 gctcccaacg accgaacgat ccagaatggg gatatgtgcc tgttcgacat gggcggtgag 840 tattactgct tcgcttccga catcacctgc tcctttcccg ccaacggcaa gttcactgca 900 gaccagaagg ccgtctatga ggcagtgctg cggagctccc gtgccgtcat gggtgccatg 960 aagccaggtg tctggtggcc tgacatgcac cgcctggctg accgcatcca cctggaggag 1020 ctggcccaca tgggcatcct gagcggcagc gtggacgcca tggtccaggc tcacctgggg 1080 gccgtgttta tgcgtcacgg gcttggccac ttcctgggca ttgacgtgca cgacgtggga 1140 ggctacccag agggcgtgga gcgcatcgac gagcccggcc tgcggagcct gcgcactgca 1200 cggcacctgc agccaggcat ggtgctcacc gtggagccgg gcatctactt catcgaccac 1260 ctcctggatg aggccctggc ggacccggcc cgcgcctcct tccttaaccg cgaggtcctg 1320 cagcgctttc gcggttttgg cggggtccgc atcgaggagg acgtcgtggt gactgacagc 1380 ggcatagagc tgctgacctg cgtgccccgc actgtggaag agattgaagc atgcatggca 1440 ggctgtgaca aggcctttac ccccttctct ggccccaag 1479 <210> 6 <211> 493 <212> PRT <213> Artificial Sequence <220> <223> Prolidase <400> 6 Met Ala Ala Ala Thr Gly Pro Ser Phe Trp Leu Gly Asn Glu Thr Leu 1 5 10 15 Lys Val Pro Leu Ala Leu Phe Ala Leu Asn Arg Gln Arg Leu Cys Glu 20 25 30 Arg Leu Arg Lys Asn Pro Ala Val Gln Ala Gly Ser Ile Val Val Leu 35 40 45 Gln Gly Gly Glu Glu Thr Gln Arg Tyr Cys Thr Asp Thr Gly Val Leu 50 55 60 Phe Leu Gln Glu Ser Phe Phe His Trp Ala Phe Gly Val Thr Glu Pro 65 70 75 80 Gly Cys Tyr Gly Val Ile Asp Val Asp Thr Gly Lys Ser Thr Leu Phe 85 90 95 Val Pro Arg Leu Pro Ala Ser His Ala Thr Trp Met Gly Lys Ile His 100 105 110 Ser Lys Glu His Phe Lys Glu Lys Tyr Ala Val Asp Asp Val Gln Tyr 115 120 125 Val Asp Glu Ile Ala Ser Val Leu Thr Ser Gln Lys Pro Ser Val Leu 130 135 140 Leu Thr Leu Arg Gly Val Asn Thr Asp Ser Gly Ser Val Cys Arg Glu 145 150 155 160 Ala Ser Phe Asp Gly Ile Ser Lys Phe Glu Val Asn Asn Thr Ile Leu 165 170 175 His Pro Glu Ile Val Glu Ser Arg Val Phe Lys Thr Asp Met Glu Leu 180 185 190 Glu Val Leu Arg Tyr Thr Asn Lys Ile Ser Ser Glu Ala His Arg Glu 195 200 205 Val Met Lys Ala Val Lys Val Gly Met Lys Glu Tyr Gly Leu Glu Ser 210 215 220 Leu Phe Glu His Tyr Cys Tyr Ser Arg Gly Gly Met Arg His Ser Ser 225 230 235 240 Tyr Thr Cys Ile Cys Gly Ser Gly Glu Asn Ser Ala Val Leu His Tyr 245 250 255 Gly His Ala Gly Ala Pro Asn Asp Arg Thr Ile Gln Asn Gly Asp Met 260 265 270 Cys Leu Phe Asp Met Gly Gly Glu Tyr Tyr Ser Val Ala Ser Asp Ile 275 280 285 Thr Cys Ser Phe Pro Arg Asn Gly Lys Phe Thr Ala Asp Gln Lys Ala 290 295 300 Val Tyr Glu Ala Val Leu Leu Ser Ser Arg Ala Val Met Gly Ala Met 305 310 315 320 Lys Pro Gly Asp Trp Trp Pro Asp Ile Asp Arg Leu Ala Asp Arg Ile 325 330 335 His Leu Glu Glu Leu Ala His Met Gly Ile Leu Ser Gly Ser Val Asp 340 345 350 Ala Met Val Gln Ala His Leu Gly Ala Val Phe Met Pro His Gly Leu 355 360 365 Gly His Phe Leu Gly Ile Asp Val His Asp Val Gly Gly Tyr Pro Glu 370 375 380 Gly Val Glu Arg Ile Asp Glu Pro Gly Leu Arg Ser Leu Arg Thr Ala 385 390 395 400 Arg His Leu Gln Pro Gly Met Val Leu Thr Val Glu Pro Gly Ile Tyr 405 410 415 Phe Ile Asp His Leu Leu Asp Glu Ala Leu Ala Asp Pro Ala Arg Ala 420 425 430 Ser Phe Leu Asn Arg Glu Val Leu Gln Arg Phe Arg Gly Phe Gly Gly 435 440 445 Val Arg Ile Glu Glu Asp Val Val Val Ile Asp Ser Gly Ile Glu Leu 450 455 460 Leu Thr Cys Val Pro Arg Thr Val Glu Glu Ile Glu Ala Cys Met Ala 465 470 475 480 Gly Cys Asp Lys Ala Phe Thr Pro Phe Ser Gly Pro Lys 485 490 <210> 7 <211> 493 <212> PRT <213> Artificial Sequence <220> <223> Prolidase-A252R <400> 7 Met Ala Ala Ala Thr Gly Pro Ser Phe Trp Leu Gly Asn Glu Thr Leu 1 5 10 15 Lys Val Pro Leu Ala Leu Phe Ala Leu Asn Arg Gln Arg Leu Cys Glu 20 25 30 Arg Leu Arg Lys Asn Pro Ala Val Gln Ala Gly Ser Ile Val Val Leu 35 40 45 Gln Gly Gly Glu Glu Thr Gln Arg Tyr Cys Thr Asp Thr Gly Val Leu 50 55 60 Phe Leu Gln Glu Ser Phe Phe His Trp Ala Phe Gly Val Thr Glu Pro 65 70 75 80 Gly Cys Tyr Gly Val Ile Asp Val Asp Thr Gly Lys Ser Thr Leu Phe 85 90 95 Val Pro Arg Leu Pro Ala Ser His Ala Thr Trp Met Gly Lys Ile His 100 105 110 Ser Lys Glu His Phe Lys Glu Lys Tyr Ala Val Asp Asp Val Gln Tyr 115 120 125 Val Asp Glu Ile Ala Ser Val Leu Thr Ser Gln Lys Pro Ser Val Leu 130 135 140 Leu Thr Leu Arg Gly Val Asn Thr Asp Ser Gly Ser Val Cys Arg Glu 145 150 155 160 Ala Ser Phe Asp Gly Ile Ser Lys Phe Glu Val Asn Asn Thr Ile Leu 165 170 175 His Pro Glu Ile Val Glu Ser Arg Val Phe Lys Thr Asp Met Glu Leu 180 185 190 Glu Val Leu Arg Tyr Thr Asn Lys Ile Ser Ser Glu Ala His Arg Glu 195 200 205 Val Met Lys Ala Val Lys Val Gly Met Lys Glu Tyr Gly Leu Glu Ser 210 215 220 Leu Phe Glu His Tyr Cys Tyr Ser Arg Gly Gly Met Arg His Ser Ser 225 230 235 240 Tyr Thr Cys Ile Cys Gly Ser Gly Glu Asn Ser Arg Val Leu His Tyr 245 250 255 Gly His Ala Gly Ala Pro Asn Asp Arg Thr Ile Gln Asn Gly Asp Met 260 265 270 Cys Leu Phe Asp Met Gly Gly Glu Tyr Tyr Ser Val Ala Ser Asp Ile 275 280 285 Thr Cys Ser Phe Pro Arg Asn Gly Lys Phe Thr Ala Asp Gln Lys Ala 290 295 300 Val Tyr Glu Ala Val Leu Leu Ser Ser Arg Ala Val Met Gly Ala Met 305 310 315 320 Lys Pro Gly Asp Trp Trp Pro Asp Ile Asp Arg Leu Ala Asp Arg Ile 325 330 335 His Leu Glu Glu Leu Ala His Met Gly Ile Leu Ser Gly Ser Val Asp 340 345 350 Ala Met Val Gln Ala His Leu Gly Ala Val Phe Met Pro His Gly Leu 355 360 365 Gly His Phe Leu Gly Ile Asp Val His Asp Val Gly Gly Tyr Pro Glu 370 375 380 Gly Val Glu Arg Ile Asp Glu Pro Gly Leu Arg Ser Leu Arg Thr Ala 385 390 395 400 Arg His Leu Gln Pro Gly Met Val Leu Thr Val Glu Pro Gly Ile Tyr 405 410 415 Phe Ile Asp His Leu Leu Asp Glu Ala Leu Ala Asp Pro Ala Arg Ala 420 425 430 Ser Phe Leu Asn Arg Glu Val Leu Gln Arg Phe Arg Gly Phe Gly Gly 435 440 445 Val Arg Ile Glu Glu Asp Val Val Val Ile Asp Ser Gly Ile Glu Leu 450 455 460 Leu Thr Cys Val Pro Arg Thr Val Glu Glu Ile Glu Ala Cys Met Ala 465 470 475 480 Gly Cys Asp Lys Ala Phe Thr Pro Phe Ser Gly Pro Lys 485 490 <210> 8 <211> 493 <212> PRT <213> Artificial Sequence <220> <223> Prolidase-P365R <400> 8 Met Ala Ala Ala Thr Gly Pro Ser Phe Trp Leu Gly Asn Glu Thr Leu 1 5 10 15 Lys Val Pro Leu Ala Leu Phe Ala Leu Asn Arg Gln Arg Leu Cys Glu 20 25 30 Arg Leu Arg Lys Asn Pro Ala Val Gln Ala Gly Ser Ile Val Val Leu 35 40 45 Gln Gly Gly Glu Glu Thr Gln Arg Tyr Cys Thr Asp Thr Gly Val Leu 50 55 60 Phe Leu Gln Glu Ser Phe Phe His Trp Ala Phe Gly Val Thr Glu Pro 65 70 75 80 Gly Cys Tyr Gly Val Ile Asp Val Asp Thr Gly Lys Ser Thr Leu Phe 85 90 95 Val Pro Arg Leu Pro Ala Ser His Ala Thr Trp Met Gly Lys Ile His 100 105 110 Ser Lys Glu His Phe Lys Glu Lys Tyr Ala Val Asp Asp Val Gln Tyr 115 120 125 Val Asp Glu Ile Ala Ser Val Leu Thr Ser Gln Lys Pro Ser Val Leu 130 135 140 Leu Thr Leu Arg Gly Val Asn Thr Asp Ser Gly Ser Val Cys Arg Glu 145 150 155 160 Ala Ser Phe Asp Gly Ile Ser Lys Phe Glu Val Asn Asn Thr Ile Leu 165 170 175 His Pro Glu Ile Val Glu Ser Arg Val Phe Lys Thr Asp Met Glu Leu 180 185 190 Glu Val Leu Arg Tyr Thr Asn Lys Ile Ser Ser Glu Ala His Arg Glu 195 200 205 Val Met Lys Ala Val Lys Val Gly Met Lys Glu Tyr Gly Leu Glu Ser 210 215 220 Leu Phe Glu His Tyr Cys Tyr Ser Arg Gly Gly Met Arg His Ser Ser 225 230 235 240 Tyr Thr Cys Ile Cys Gly Ser Gly Glu Asn Ser Ala Val Leu His Tyr 245 250 255 Gly His Ala Gly Ala Pro Asn Asp Arg Thr Ile Gln Asn Gly Asp Met 260 265 270 Cys Leu Phe Asp Met Gly Gly Glu Tyr Tyr Ser Val Ala Ser Asp Ile 275 280 285 Thr Cys Ser Phe Pro Arg Asn Gly Lys Phe Thr Ala Asp Gln Lys Ala 290 295 300 Val Tyr Glu Ala Val Leu Leu Ser Ser Arg Ala Val Met Gly Ala Met 305 310 315 320 Lys Pro Gly Asp Trp Trp Pro Asp Ile Asp Arg Leu Ala Asp Arg Ile 325 330 335 His Leu Glu Glu Leu Ala His Met Gly Ile Leu Ser Gly Ser Val Asp 340 345 350 Ala Met Val Gln Ala His Leu Gly Ala Val Phe Met Arg His Gly Leu 355 360 365 Gly His Phe Leu Gly Ile Asp Val His Asp Val Gly Gly Tyr Pro Glu 370 375 380 Gly Val Glu Arg Ile Asp Glu Pro Gly Leu Arg Ser Leu Arg Thr Ala 385 390 395 400 Arg His Leu Gln Pro Gly Met Val Leu Thr Val Glu Pro Gly Ile Tyr 405 410 415 Phe Ile Asp His Leu Leu Asp Glu Ala Leu Ala Asp Pro Ala Arg Ala 420 425 430 Ser Phe Leu Asn Arg Glu Val Leu Gln Arg Phe Arg Gly Phe Gly Gly 435 440 445 Val Arg Ile Glu Glu Asp Val Val Val Ile Asp Ser Gly Ile Glu Leu 450 455 460 Leu Thr Cys Val Pro Arg Thr Val Glu Glu Ile Glu Ala Cys Met Ala 465 470 475 480 Gly Cys Asp Lys Ala Phe Thr Pro Phe Ser Gly Pro Lys 485 490 <210> 9 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> ampicillin resistance gene <400> 9 atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct 60 gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 120 cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc 180 gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc 240 cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg 300 gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta 360 tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc 420 ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt 480 gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg 540 cctgcagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct 600 tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc 660 tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct 720 cgcggtatca ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac 780 acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 840 tcactgatta agcattggta a 861 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> T7 promoter <400> 10 taatacgact cactatagg 19 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> T7 tag coding sequence <400> 11 gctagcatga ctggtggaca gcaaatgggt 30 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> His tag coding sequence <400> 12 caccaccacc accaccac 18 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer 1 <400> 13 aagcttacca tggcggcggc caccggacc 29 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> reverse primer 1 <400> 14 ctcgagcttg gggccagaga aggggg 26 <210> 15 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer 2 <400> 15 cagtggtgag aactcacgcg tgctacacta cggac 35 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> reverse primer 2 <400> 16 gtccgtagtg tagcacgcgt gagttctcac cactg 35 <210> 17 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer 3 <400> 17 gggggccgtg tttatgcgtc acgggcttgg ccact 35 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> reverse primer 3 <400> 18 agtggccaag cccgtgacgc ataaacacgg ccccc 35 <110> AGENCY FOR DEFENSE DEVELOPMENT <120> PROLIDASE MUTANT, AND PREPARATION METHOD AND USE THEREOF <130> AD160069 <160> 18 <170> Kopatentin 2.0 <210> 1 <211> 6915 <212> DNA <213> Artificial Sequence <220> <223> pET21b-prolidase-A252R <400> 1 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940 ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000 aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120 tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180 acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240 cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300 cccgtggggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg 3360 gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc 3420 cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg 3480 gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca 3540 tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgag 3600 atcccggtgc ctaatgagtg agctaactta cattaattgc gttgcgctca ctgcccgctt 3660 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 3720 gcggtttgcg tattgggcgc cagggtggtt tttcttttca ccagtgagac gggcaacagc 3780 tgattgccct tcaccgcctg gccctgagag agttgcagca agcggtccac gctggtttgc 3840 cccagcaggc gaaaatcctg tttgatggtg gttaacggcg ggatataaca tgagctgtct 3900 tcggtatcgt cgtatcccac taccgagata tccgcaccaa cgcgcagccc ggactcggta 3960 atggcgcgca ttgcgcccag cgccatctga tcgttggcaa ccagcatcgc agtgggaacg 4020 atgccctcat tcagcatttg catggtttgt tgaaaaccgg acatggcact ccagtcgcct 4080 tcccgttccg ctatcggctg aatttgattg cgagtgagat atttatgcca gccagccaga 4140 cgcagacgcg ccgagacaga acttaatggg cccgctaaca gcgcgatttg ctggtgaccc 4200 aatgcgacca gatgctccac gcccagtcgc gtaccgtctt catgggagaa aataatactg 4260 ttgatgggtg tctggtcaga gacatcaaga aataacgccg gaacattagt gcaggcagct 4320 tccacagcaa tggcatcctg gtcatccagc ggatagttaa tgatcagccc actgacgcgt 4380 tgcgcgagaa gattgtgcac cgccgcttta caggcttcga cgccgcttcg ttctaccatc 4440 gacaccacca cgctggcacc cagttgatcg gcgcgagatt taatcgccgc gacaatttgc 4500 gcggcgcgt gcagggccag actggaggtg gcaacgccaa tcagcaacga ctgtttgccc 4560 gccagttgtt gtgccacgcg gttgggaatg taattcagct ccgccatcgc cgcttccact 4620 ttttcccgcg ttttcgcaga aacgtggctg gcctggttca ccacgcggga aacggtctga 4680 taagagacac cggcatactc tgcgacatcg tataacgtta ctggtttcac attcaccacc 4740 ctgaattgac tctcttccgg gcgctatcat gccataccgc gaaaggtttt gcgccattcg 4800 atggtgtccg ggatctcgac gctctccctt atgcgactcc tgcattagga agcagcccag 4860 tagtaggttg aggccgttga gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc 4920 gcccaacagt cccccggcca cggggcctgc caccataccc acgccgaaac aagcgctcat 4980 gagcccgaag tggcgagccc gatcttcccc atcggtgatg tcggcgatat aggcgccagc 5040 aaccgcacct gtggcgccgg tgatgccggc cacgatgcgt ccggcgtaga ggatcgagat 5100 ctcgatcccg cgaaattaat acgactcact ataggggaat tgtgagcgga taacaattcc 5160 cctctagaaa taattttgtt taactttaag aaggagatat acatatggct agcatgactg 5220 gtggacagca aatgggtcgg gatccgaatt cgagctccgt cgacaagctt accatggcgg 5280 cggccaccgg accctcgttt tggctgggga atgaaaccct gaaggtgccg ctggcgctct 5340 ttgccttgaa ccggcagcgc ctgtgtgagc ggctgcggaa gaaccctgct gtgcaggccg 5400 gctccatcgt ggtcctgcag ggcggggagg agactcagcg ctactgcacc gacaccgggg 5460 tcctcttccg ccaggagtcc ttctttcact gggcgttcgg tgtcactgag ccaggctgct 5520 atggtgtcat cgatgttgac actgggaagt cgaccctgtt tgtgcccagg cttcctgcca 5580 gccatgccac ctggatggga aagatccatt ccaaggagca cttcaaggag aagtatgccg 5640 tggacgacgt ccagtacgta gatgagattg ccagcgtcct gacgtcacag aagccctctg 5700 tcctcctcac tttgcgtggc gtcaacacgg acagcggcag tgtctgcagg gaggcctcct 5760 ttgacggcat cagcaagttc gaagtcaaca ataccattct tcacccagag atcgttgagt 5820 gccgagtgtt taagacggat atggagctgg aggttctgcg ctataccaat aaaatctcca 5880 gcgaggccca ccgtgaggta atgaaggctg taaaagtggg aatgaaagaa tatgagttgg 5940 aaagcctctt cgagcactac tgctactccc ggggcggcat gcgccacagc tcctacacct 6000 gcatctgcgg cagtggtgag aactcacgcg tgctacacta cggacacgcc ggagctccca 6060 acgaccgaac gatccagaat ggggatatgt gcctgttcga catgggcggt gagtattact 6120 gcttcgcttc cgacatcacc tgctcctttc ccgccaacgg caagttcact gcagaccaga 6180 aggccgtcta tgaggcagtg ctgcggagct cccgtgccgt catgggtgcc atgaagccag 6240 gtgtctggtg gcctgacatg caccgcctgg ctgaccgcat ccacctggag gagctggccc 6300 acatgggcat cctgagcggc agcgtggacg ccatggtcca ggctcacctg ggggccgtgt 6360 ttatgcctca cgggcttggc cacttcctgg gcattgacgt gcacgacgtg ggaggctacc 6420 cagagggcgt ggagcgcatc gacgagcccg gcctgcggag cctgcgcact gcacggcacc 6480 tgcagccagg catggtgctc accgtggagc cgggcatcta cttcatcgac cacctcctgg 6540 atgaggccct ggcggacccg gcccgcgcct ccttccttaa ccgcgaggtc ctgcagcgct 6600 ttcgcggttt tggcggggtc cgcatcgagg aggacgtcgt ggtgactgac agcggcatag 6660 agctgctgac ctgcgtgccc cgcactgtgg aagagattga agcatgcatg gcaggctgtg 6720 acaaggcctt tacccccttc tctggcccca agctcgagca ccaccaccac caccactgag 6780 atccggctgc taacaaagcc cgaaaggaag ctgagttggc tgctgccacc gctgagcaat 6840 aactagcata accccttggg gcctctaaac gggtcttgag gggttttttg ctgaaaggag 6900 gaactatatc cggat 6915 <210> 2 <211> 6915 <212> DNA <213> Artificial Sequence <220> <223> pET21b-prolidase-P365R <400> 2 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940 ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000 aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120 tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180 acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240 cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300 cccgtggggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg 3360 gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc 3420 cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg 3480 gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca 3540 tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgag 3600 atcccggtgc ctaatgagtg agctaactta cattaattgc gttgcgctca ctgcccgctt 3660 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 3720 gcggtttgcg tattgggcgc cagggtggtt tttcttttca ccagtgagac gggcaacagc 3780 tgattgccct tcaccgcctg gccctgagag agttgcagca agcggtccac gctggtttgc 3840 cccagcaggc gaaaatcctg tttgatggtg gttaacggcg ggatataaca tgagctgtct 3900 tcggtatcgt cgtatcccac taccgagata tccgcaccaa cgcgcagccc ggactcggta 3960 atggcgcgca ttgcgcccag cgccatctga tcgttggcaa ccagcatcgc agtgggaacg 4020 atgccctcat tcagcatttg catggtttgt tgaaaaccgg acatggcact ccagtcgcct 4080 tcccgttccg ctatcggctg aatttgattg cgagtgagat atttatgcca gccagccaga 4140 cgcagacgcg ccgagacaga acttaatggg cccgctaaca gcgcgatttg ctggtgaccc 4200 aatgcgacca gatgctccac gcccagtcgc gtaccgtctt catgggagaa aataatactg 4260 ttgatgggtg tctggtcaga gacatcaaga aataacgccg gaacattagt gcaggcagct 4320 tccacagcaa tggcatcctg gtcatccagc ggatagttaa tgatcagccc actgacgcgt 4380 tgcgcgagaa gattgtgcac cgccgcttta caggcttcga cgccgcttcg ttctaccatc 4440 gacaccacca cgctggcacc cagttgatcg gcgcgagatt taatcgccgc gacaatttgc 4500 gcggcgcgt gcagggccag actggaggtg gcaacgccaa tcagcaacga ctgtttgccc 4560 gccagttgtt gtgccacgcg gttgggaatg taattcagct ccgccatcgc cgcttccact 4620 ttttcccgcg ttttcgcaga aacgtggctg gcctggttca ccacgcggga aacggtctga 4680 taagagacac cggcatactc tgcgacatcg tataacgtta ctggtttcac attcaccacc 4740 ctgaattgac tctcttccgg gcgctatcat gccataccgc gaaaggtttt gcgccattcg 4800 atggtgtccg ggatctcgac gctctccctt atgcgactcc tgcattagga agcagcccag 4860 tagtaggttg aggccgttga gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc 4920 gcccaacagt cccccggcca cggggcctgc caccataccc acgccgaaac aagcgctcat 4980 gagcccgaag tggcgagccc gatcttcccc atcggtgatg tcggcgatat aggcgccagc 5040 aaccgcacct gtggcgccgg tgatgccggc cacgatgcgt ccggcgtaga ggatcgagat 5100 ctcgatcccg cgaaattaat acgactcact ataggggaat tgtgagcgga taacaattcc 5160 cctctagaaa taattttgtt taactttaag aaggagatat acatatggct agcatgactg 5220 gtggacagca aatgggtcgg gatccgaatt cgagctccgt cgacaagctt accatggcgg 5280 cggccaccgg accctcgttt tggctgggga atgaaaccct gaaggtgccg ctggcgctct 5340 ttgccttgaa ccggcagcgc ctgtgtgagc ggctgcggaa gaaccctgct gtgcaggccg 5400 gctccatcgt ggtcctgcag ggcggggagg agactcagcg ctactgcacc gacaccgggg 5460 tcctcttccg ccaggagtcc ttctttcact gggcgttcgg tgtcactgag ccaggctgct 5520 atggtgtcat cgatgttgac actgggaagt cgaccctgtt tgtgcccagg cttcctgcca 5580 gccatgccac ctggatggga aagatccatt ccaaggagca cttcaaggag aagtatgccg 5640 tggacgacgt ccagtacgta gatgagattg ccagcgtcct gacgtcacag aagccctctg 5700 tcctcctcac tttgcgtggc gtcaacacgg acagcggcag tgtctgcagg gaggcctcct 5760 ttgacggcat cagcaagttc gaagtcaaca ataccattct tcacccagag atcgttgagt 5820 gccgagtgtt taagacggat atggagctgg aggttctgcg ctataccaat aaaatctcca 5880 gcgaggccca ccgtgaggta atgaaggctg taaaagtggg aatgaaagaa tatgagttgg 5940 aaagcctctt cgagcactac tgctactccc ggggcggcat gcgccacagc tcctacacct 6000 gcatctgcgg cagtggtgag aactcacgcg tgctacacta cggacacgcc ggagctccca 6060 acgaccgaac gatccagaat ggggatatgt gcctgttcga catgggcggt gagtattact 6120 gcttcgcttc cgacatcacc tgctcctttc ccgccaacgg caagttcact gcagaccaga 6180 aggccgtcta tgaggcagtg ctgcggagct cccgtgccgt catgggtgcc atgaagccag 6240 gtgtctggtg gcctgacatg caccgcctgg ctgaccgcat ccacctggag gagctggccc 6300 acatgggcat cctgagcggc agcgtggacg ccatggtcca ggctcacctg ggggccgtgt 6360 ttatgcgtca cgggcttggc cacttcctgg gcattgacgt gcacgacgtg ggaggctacc 6420 cagagggcgt ggagcgcatc gacgagcccg gcctgcggag cctgcgcact gcacggcacc 6480 tgcagccagg catggtgctc accgtggagc cgggcatcta cttcatcgac cacctcctgg 6540 atgaggccct ggcggacccg gcccgcgcct ccttccttaa ccgcgaggtc ctgcagcgct 6600 ttcgcggttt tggcggggtc cgcatcgagg aggacgtcgt ggtgactgac agcggcatag 6660 agctgctgac ctgcgtgccc cgcactgtgg aagagattga agcatgcatg gcaggctgtg 6720 acaaggcctt tacccccttc tctggcccca agctcgagca ccaccaccac caccactgag 6780 atccggctgc taacaaagcc cgaaaggaag ctgagttggc tgctgccacc gctgagcaat 6840 aactagcata accccttggg gcctctaaac gggtcttgag gggttttttg ctgaaaggag 6900 gaactatatc cggat 6915 <210> 3 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> prolidase <400> 3 atggcggcgg ccaccggacc ctcgttttgg ctggggaatg aaaccctgaa ggtgccgctg 60 gcgctctttg ccttgaaccg gcagcgcctg tgtgagcggc tgcggaagaa ccctgctgtg 120 caggccggct ccatcgtggt cctgcagggc ggggaggaga ctcagcgcta ctgcaccgac 180 accggggtcc tcttccgcca ggagtccttc tttcactggg cgttcggtgt cactgagcca 240 ggctgctatg gtgtcatcga tgttgacact gggaagtcga ccctgtttgt gcccaggctt 300 cctgccagcc atgccacctg gatgggaaag atccattcca aggagcactt caaggagaag 360 tatgccgtgg acgacgtcca gtacgtagat gagattgcca gcgtcctgac gtcacagaag 420 ccctctgtcc tcctcacttt gcgtggcgtc aacacggaca gcggcagtgt ctgcagggag 480 gcctcctttg acggcatcag caagttcgaa gtcaacaata ccattcttca cccagagatc 540 gttgagtgcc gagtgtttaa gacggatatg gagctggagg ttctgcgcta taccaataaa 600 atctccagcg aggcccaccg tgaggtaatg aaggctgtaa aagtgggaat gaaagaatat 660 gagttggaaa gcctcttcga gcactactgc tactcccggg gcggcatgcg ccacagctcc 720 tacacctgca tctgcggcag tggtgagaac tcacgcgtgc tacactacgg acacgccgga 780 gctcccaacg accgaacgat ccagaatggg gatatgtgcc tgttcgacat gggcggtgag 840 tattactgct tcgcttccga catcacctgc tcctttcccg ccaacggcaa gttcactgca 900 gccgaagg ccgtctatga ggcagtgctg cggagctccc gtgccgtcat gggtgccatg 960 aagccaggtg tctggtggcc tgacatgcac cgcctggctg accgcatcca cctggaggag 1020 ctggcccaca tgggcatcct gagcggcagc gtggacgcca tggtccaggc tcacctgggg 1080 gccgtgttta tgcctcacgg gcttggccac ttcctgggca ttgacgtgca cgacgtggga 1140 ggctacccag agggcgtgga gcgcatcgac gagcccggcc tgcggagcct gcgcactgca 1200 cggcacctgc agccaggcat ggtgctcacc gtggagccgg gcatctactt catcgaccac 1260 ctcctggatg aggccctggc ggacccggcc cgcgcctcct tccttaaccg cgaggtcctg 1320 cagcgctttc gcggttttgg cggggtccgc atcgaggagg acgtcgtggt gactgacagc 1380 ggcatagagc tgctgacctg cgtgccccgc actgtggaag agattgaagc atgcatggca 1440 ggctgtgaca aggcctttac ccccttctct ggccccaag 1479 <210> 4 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> Prolidase-A252R <400> 4 atggcggcgg ccaccggacc ctcgttttgg ctggggaatg aaaccctgaa ggtgccgctg 60 gcgctctttg ccttgaaccg gcagcgcctg tgtgagcggc tgcggaagaa ccctgctgtg 120 caggccggct ccatcgtggt cctgcagggc ggggaggaga ctcagcgcta ctgcaccgac 180 accggggtcc tcttccgcca ggagtccttc tttcactggg cgttcggtgt cactgagcca 240 ggctgctatg gtgtcatcga tgttgacact gggaagtcga ccctgtttgt gcccaggctt 300 cctgccagcc atgccacctg gatgggaaag atccattcca aggagcactt caaggagaag 360 tatgccgtgg acgacgtcca gtacgtagat gagattgcca gcgtcctgac gtcacagaag 420 ccctctgtcc tcctcacttt gcgtggcgtc aacacggaca gcggcagtgt ctgcagggag 480 gcctcctttg acggcatcag caagttcgaa gtcaacaata ccattcttca cccagagatc 540 gttgagtgcc gagtgtttaa gacggatatg gagctggagg ttctgcgcta taccaataaa 600 atctccagcg aggcccaccg tgaggtaatg aaggctgtaa aagtgggaat gaaagaatat 660 gagttggaaa gcctcttcga gcactactgc tactcccggg gcggcatgcg ccacagctcc 720 tacacctgca tctgcggcag tggtgagaac tcacgcgtgc tacactacgg acacgccgga 780 gctcccaacg accgaacgat ccagaatggg gatatgtgcc tgttcgacat gggcggtgag 840 tattactgct tcgcttccga catcacctgc tcctttcccg ccaacggcaa gttcactgca 900 gccgaagg ccgtctatga ggcagtgctg cggagctccc gtgccgtcat gggtgccatg 960 aagccaggtg tctggtggcc tgacatgcac cgcctggctg accgcatcca cctggaggag 1020 ctggcccaca tgggcatcct gagcggcagc gtggacgcca tggtccaggc tcacctgggg 1080 gccgtgttta tgcctcacgg gcttggccac ttcctgggca ttgacgtgca cgacgtggga 1140 ggctacccag agggcgtgga gcgcatcgac gagcccggcc tgcggagcct gcgcactgca 1200 cggcacctgc agccaggcat ggtgctcacc gtggagccgg gcatctactt catcgaccac 1260 ctcctggatg aggccctggc ggacccggcc cgcgcctcct tccttaaccg cgaggtcctg 1320 cagcgctttc gcggttttgg cggggtccgc atcgaggagg acgtcgtggt gactgacagc 1380 ggcatagagc tgctgacctg cgtgccccgc actgtggaag agattgaagc atgcatggca 1440 ggctgtgaca aggcctttac ccccttctct ggccccaag 1479 <210> 5 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> Prolidase-P365R <400> 5 atggcggcgg ccaccggacc ctcgttttgg ctggggaatg aaaccctgaa ggtgccgctg 60 gcgctctttg ccttgaaccg gcagcgcctg tgtgagcggc tgcggaagaa ccctgctgtg 120 caggccggct ccatcgtggt cctgcagggc ggggaggaga ctcagcgcta ctgcaccgac 180 accggggtcc tcttccgcca ggagtccttc tttcactggg cgttcggtgt cactgagcca 240 ggctgctatg gtgtcatcga tgttgacact gggaagtcga ccctgtttgt gcccaggctt 300 cctgccagcc atgccacctg gatgggaaag atccattcca aggagcactt caaggagaag 360 tatgccgtgg acgacgtcca gtacgtagat gagattgcca gcgtcctgac gtcacagaag 420 ccctctgtcc tcctcacttt gcgtggcgtc aacacggaca gcggcagtgt ctgcagggag 480 gcctcctttg acggcatcag caagttcgaa gtcaacaata ccattcttca cccagagatc 540 gttgagtgcc gagtgtttaa gacggatatg gagctggagg ttctgcgcta taccaataaa 600 atctccagcg aggcccaccg tgaggtaatg aaggctgtaa aagtgggaat gaaagaatat 660 gagttggaaa gcctcttcga gcactactgc tactcccggg gcggcatgcg ccacagctcc 720 tacacctgca tctgcggcag tggtgagaac tcacgcgtgc tacactacgg acacgccgga 780 gctcccaacg accgaacgat ccagaatggg gatatgtgcc tgttcgacat gggcggtgag 840 tattactgct tcgcttccga catcacctgc tcctttcccg ccaacggcaa gttcactgca 900 gccgaagg ccgtctatga ggcagtgctg cggagctccc gtgccgtcat gggtgccatg 960 aagccaggtg tctggtggcc tgacatgcac cgcctggctg accgcatcca cctggaggag 1020 ctggcccaca tgggcatcct gagcggcagc gtggacgcca tggtccaggc tcacctgggg 1080 gccgtgttta tgcgtcacgg gcttggccac ttcctgggca ttgacgtgca cgacgtggga 1140 ggctacccag agggcgtgga gcgcatcgac gagcccggcc tgcggagcct gcgcactgca 1200 cggcacctgc agccaggcat ggtgctcacc gtggagccgg gcatctactt catcgaccac 1260 ctcctggatg aggccctggc ggacccggcc cgcgcctcct tccttaaccg cgaggtcctg 1320 cagcgctttc gcggttttgg cggggtccgc atcgaggagg acgtcgtggt gactgacagc 1380 ggcatagagc tgctgacctg cgtgccccgc actgtggaag agattgaagc atgcatggca 1440 ggctgtgaca aggcctttac ccccttctct ggccccaag 1479 <210> 6 <211> 493 <212> PRT <213> Artificial Sequence <220> <223> Prolidase <400> 6 Met Ala Ala Ala Thr Gly Pro Ser Phe Trp Leu Gly Asn Glu Thr Leu   1 5 10 15 Lys Val Pro Leu Ala Leu Phe Ala Leu Asn Arg Gln Arg Leu Cys Glu              20 25 30 Arg Leu Arg Lys Asn Pro Ala Val Gln Ala Gly Ser Ile Val Val Leu          35 40 45 Gln Gly Gly Glu Glu Thr Gln Arg Tyr Cys Thr Asp Thr Gly Val Leu      50 55 60 Phe Leu Gln Glu Ser Phe Phe His Trp Ala Phe Gly Val Thr Glu Pro  65 70 75 80 Gly Cys Tyr Gly Val Ile Asp Val Asp Thr Gly Lys Ser Thr Leu Phe                  85 90 95 Val Pro Arg Leu Pro Ala Ser His Ala Thr Trp Met Gly Lys Ile His             100 105 110 Ser Lys Glu His Phe Lys Glu Lys Tyr Ala Val Asp Asp Val Gln Tyr         115 120 125 Val Asp Glu Ile Ala Ser Val Leu Thr Ser Gln Lys Pro Ser Val Leu     130 135 140 Leu Thr Leu Arg Gly Val Asn Thr Asp Ser Gly Ser Val Cys Arg Glu 145 150 155 160 Ala Ser Phe Asp Gly Ile Ser Lys Phe Glu Val Asn Asn Thr Ile Leu                 165 170 175 His Pro Glu Ile Val Glu Ser Arg Val Phe Lys Thr Asp Met Glu Leu             180 185 190 Glu Val Leu Arg Tyr Thr Asn Lys Ile Ser Ser Glu Ala His Arg Glu         195 200 205 Val Met Lys Ala Val Lys Val Gly Met Lys Glu Tyr Gly Leu Glu Ser     210 215 220 Leu Phe Glu His Tyr Cys Tyr Ser Arg Gly Gly Met Arg His Ser Ser 225 230 235 240 Tyr Thr Cys Ile Cys Gly Ser Gly Glu Asn Ser Ala Val Leu His Tyr                 245 250 255 Gly His Ala Gly Ala Pro Asn Asp Arg Thr Ile Gln Asn Gly Asp Met             260 265 270 Cys Leu Phe Asp Met Gly Gly Glu Tyr Tyr Ser Val Ala Ser Asp Ile         275 280 285 Thr Cys Ser Phe Pro Arg Asn Gly Lys Phe Thr Ala Asp Gln Lys Ala     290 295 300 Val Tyr Glu Ala Val Leu Leu Ser Ser Arg Ala Val Met Gly Ala Met 305 310 315 320 Lys Pro Gly Asp Trp Trp Pro Asp Ile Asp Arg Leu Ala Asp Arg Ile                 325 330 335 His Leu Glu Glu Leu Ala His Met Gly Ile Leu Ser Gly Ser Val Asp             340 345 350 Ala Met Val Gln Ala His Leu Gly Ala Val Phe Met Pro His Gly Leu         355 360 365 Gly His Phe Leu Gly Ile Asp Val His Asp Val Gly Gly Tyr Pro Glu     370 375 380 Gly Val Glu Arg Ile Asp Glu Pro Gly Leu Arg Ser Leu Arg Thr Ala 385 390 395 400 Arg His Leu Gln Pro Gly Met Val Leu Thr Val Glu Pro Gly Ile Tyr                 405 410 415 Phe Ile Asp His Leu Leu Asp Glu Ala Leu Ala Asp Pro Ala Arg Ala             420 425 430 Ser Phe Leu Asn Arg Glu Val Leu Gln Arg Phe Arg Gly Phe Gly Gly         435 440 445 Val Arg Ile Glu Glu Asp Val Val Valle Asp Ser Gly Ile Glu Leu     450 455 460 Leu Thr Cys Val Pro Arg Thr Val Glu Glu Ile Glu Ala Cys Met Ala 465 470 475 480 Gly Cys Asp Lys Ala Phe Thr Pro Phe Ser Gly Pro Lys                 485 490 <210> 7 <211> 493 <212> PRT <213> Artificial Sequence <220> <223> Prolidase-A252R <400> 7 Met Ala Ala Ala Thr Gly Pro Ser Phe Trp Leu Gly Asn Glu Thr Leu   1 5 10 15 Lys Val Pro Leu Ala Leu Phe Ala Leu Asn Arg Gln Arg Leu Cys Glu              20 25 30 Arg Leu Arg Lys Asn Pro Ala Val Gln Ala Gly Ser Ile Val Val Leu          35 40 45 Gln Gly Gly Glu Glu Thr Gln Arg Tyr Cys Thr Asp Thr Gly Val Leu      50 55 60 Phe Leu Gln Glu Ser Phe Phe His Trp Ala Phe Gly Val Thr Glu Pro  65 70 75 80 Gly Cys Tyr Gly Val Ile Asp Val Asp Thr Gly Lys Ser Thr Leu Phe                  85 90 95 Val Pro Arg Leu Pro Ala Ser His Ala Thr Trp Met Gly Lys Ile His             100 105 110 Ser Lys Glu His Phe Lys Glu Lys Tyr Ala Val Asp Asp Val Gln Tyr         115 120 125 Val Asp Glu Ile Ala Ser Val Leu Thr Ser Gln Lys Pro Ser Val Leu     130 135 140 Leu Thr Leu Arg Gly Val Asn Thr Asp Ser Gly Ser Val Cys Arg Glu 145 150 155 160 Ala Ser Phe Asp Gly Ile Ser Lys Phe Glu Val Asn Asn Thr Ile Leu                 165 170 175 His Pro Glu Ile Val Glu Ser Arg Val Phe Lys Thr Asp Met Glu Leu             180 185 190 Glu Val Leu Arg Tyr Thr Asn Lys Ile Ser Ser Glu Ala His Arg Glu         195 200 205 Val Met Lys Ala Val Lys Val Gly Met Lys Glu Tyr Gly Leu Glu Ser     210 215 220 Leu Phe Glu His Tyr Cys Tyr Ser Arg Gly Gly Met Arg His Ser Ser 225 230 235 240 Tyr Thr Cys Ile Cys Gly Ser Gly Glu Asn Ser Arg Val Leu His Tyr                 245 250 255 Gly His Ala Gly Ala Pro Asn Asp Arg Thr Ile Gln Asn Gly Asp Met             260 265 270 Cys Leu Phe Asp Met Gly Gly Glu Tyr Tyr Ser Val Ala Ser Asp Ile         275 280 285 Thr Cys Ser Phe Pro Arg Asn Gly Lys Phe Thr Ala Asp Gln Lys Ala     290 295 300 Val Tyr Glu Ala Val Leu Leu Ser Ser Arg Ala Val Met Gly Ala Met 305 310 315 320 Lys Pro Gly Asp Trp Trp Pro Asp Ile Asp Arg Leu Ala Asp Arg Ile                 325 330 335 His Leu Glu Glu Leu Ala His Met Gly Ile Leu Ser Gly Ser Val Asp             340 345 350 Ala Met Val Gln Ala His Leu Gly Ala Val Phe Met Pro His Gly Leu         355 360 365 Gly His Phe Leu Gly Ile Asp Val His Asp Val Gly Gly Tyr Pro Glu     370 375 380 Gly Val Glu Arg Ile Asp Glu Pro Gly Leu Arg Ser Leu Arg Thr Ala 385 390 395 400 Arg His Leu Gln Pro Gly Met Val Leu Thr Val Glu Pro Gly Ile Tyr                 405 410 415 Phe Ile Asp His Leu Leu Asp Glu Ala Leu Ala Asp Pro Ala Arg Ala             420 425 430 Ser Phe Leu Asn Arg Glu Val Leu Gln Arg Phe Arg Gly Phe Gly Gly         435 440 445 Val Arg Ile Glu Glu Asp Val Val Valle Asp Ser Gly Ile Glu Leu     450 455 460 Leu Thr Cys Val Pro Arg Thr Val Glu Glu Ile Glu Ala Cys Met Ala 465 470 475 480 Gly Cys Asp Lys Ala Phe Thr Pro Phe Ser Gly Pro Lys                 485 490 <210> 8 <211> 493 <212> PRT <213> Artificial Sequence <220> <223> Prolidase-P365R <400> 8 Met Ala Ala Ala Thr Gly Pro Ser Phe Trp Leu Gly Asn Glu Thr Leu   1 5 10 15 Lys Val Pro Leu Ala Leu Phe Ala Leu Asn Arg Gln Arg Leu Cys Glu              20 25 30 Arg Leu Arg Lys Asn Pro Ala Val Gln Ala Gly Ser Ile Val Val Leu          35 40 45 Gln Gly Gly Glu Glu Thr Gln Arg Tyr Cys Thr Asp Thr Gly Val Leu      50 55 60 Phe Leu Gln Glu Ser Phe Phe His Trp Ala Phe Gly Val Thr Glu Pro  65 70 75 80 Gly Cys Tyr Gly Val Ile Asp Val Asp Thr Gly Lys Ser Thr Leu Phe                  85 90 95 Val Pro Arg Leu Pro Ala Ser His Ala Thr Trp Met Gly Lys Ile His             100 105 110 Ser Lys Glu His Phe Lys Glu Lys Tyr Ala Val Asp Asp Val Gln Tyr         115 120 125 Val Asp Glu Ile Ala Ser Val Leu Thr Ser Gln Lys Pro Ser Val Leu     130 135 140 Leu Thr Leu Arg Gly Val Asn Thr Asp Ser Gly Ser Val Cys Arg Glu 145 150 155 160 Ala Ser Phe Asp Gly Ile Ser Lys Phe Glu Val Asn Asn Thr Ile Leu                 165 170 175 His Pro Glu Ile Val Glu Ser Arg Val Phe Lys Thr Asp Met Glu Leu             180 185 190 Glu Val Leu Arg Tyr Thr Asn Lys Ile Ser Ser Glu Ala His Arg Glu         195 200 205 Val Met Lys Ala Val Lys Val Gly Met Lys Glu Tyr Gly Leu Glu Ser     210 215 220 Leu Phe Glu His Tyr Cys Tyr Ser Arg Gly Gly Met Arg His Ser Ser 225 230 235 240 Tyr Thr Cys Ile Cys Gly Ser Gly Glu Asn Ser Ala Val Leu His Tyr                 245 250 255 Gly His Ala Gly Ala Pro Asn Asp Arg Thr Ile Gln Asn Gly Asp Met             260 265 270 Cys Leu Phe Asp Met Gly Gly Glu Tyr Tyr Ser Val Ala Ser Asp Ile         275 280 285 Thr Cys Ser Phe Pro Arg Asn Gly Lys Phe Thr Ala Asp Gln Lys Ala     290 295 300 Val Tyr Glu Ala Val Leu Leu Ser Ser Arg Ala Val Met Gly Ala Met 305 310 315 320 Lys Pro Gly Asp Trp Trp Pro Asp Ile Asp Arg Leu Ala Asp Arg Ile                 325 330 335 His Leu Glu Glu Leu Ala His Met Gly Ile Leu Ser Gly Ser Val Asp             340 345 350 Ala Met Val Gln Ala His Leu Gly Ala Val Phe Met Arg His Gly Leu         355 360 365 Gly His Phe Leu Gly Ile Asp Val His Asp Val Gly Gly Tyr Pro Glu     370 375 380 Gly Val Glu Arg Ile Asp Glu Pro Gly Leu Arg Ser Leu Arg Thr Ala 385 390 395 400 Arg His Leu Gln Pro Gly Met Val Leu Thr Val Glu Pro Gly Ile Tyr                 405 410 415 Phe Ile Asp His Leu Leu Asp Glu Ala Leu Ala Asp Pro Ala Arg Ala             420 425 430 Ser Phe Leu Asn Arg Glu Val Leu Gln Arg Phe Arg Gly Phe Gly Gly         435 440 445 Val Arg Ile Glu Glu Asp Val Val Valle Asp Ser Gly Ile Glu Leu     450 455 460 Leu Thr Cys Val Pro Arg Thr Val Glu Glu Ile Glu Ala Cys Met Ala 465 470 475 480 Gly Cys Asp Lys Ala Phe Thr Pro Phe Ser Gly Pro Lys                 485 490 <210> 9 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> ampicillin resistance gene <400> 9 atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct 60 gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 120 cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc 180 gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc 240 cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg 300 gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta 360 tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc 420 ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt 480 gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg 540 cctgcagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct 600 tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc 660 tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct 720 cgcggtatca ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac 780 acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 840 tcactgatta agcattggta a 861 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> T7 promoter <400> 10 taatacgact cactatagg 19 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> T7 tag coding sequence <400> 11 gctagcatga ctggtggaca gcaaatgggt 30 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> His tag coding sequence <400> 12 caccaccacc accaccac 18 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer 1 <400> 13 aagcttacca tggcggcggc caccggacc 29 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> reverse primer 1 <400> 14 ctcgagcttg gggccagaga aggggg 26 <210> 15 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer 2 <400> 15 cagtggtgag aactcacgcg tgctacacta cggac 35 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> reverse primer 2 <400> 16 gtccgtagtg tagcacgcgt gagttctcac cactg 35 <210> 17 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer 3 <400> 17 gggggccgtg tttatgcgtc acgggcttgg ccact 35 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> reverse primer 3 <400> 18 agtggccaag cccgtgacgc ataaacacgg ccccc 35

Claims (9)

서열번호 6의 아미노산 서열로 표시되는 인간 유래 프롤리다아제의 아미노산 서열에서 N-말단으로부터 252번째 아미노산 또는 365번째 아미노산이 아르기닌(arginine)으로 치환된 아미노산 서열로 이루어진 것을 특징으로 하는 프롤리다아제 돌연변이체.A follidase having an amino acid sequence in which the 252nd amino acid or the 365th amino acid from the N-terminal is substituted with arginine in the amino acid sequence of human-derived pyrrolidase represented by the amino acid sequence of SEQ ID NO: 6 Mutant. 제1항에 있어서,
상기 프롤리다아제 돌연변이체는 서열번호 7 또는 서열번호 8의 아미노산 서열로 이루어진 것을 특징으로 하는 프롤리다아제 돌연변이체.
The method according to claim 1,
Wherein said follidase mutant comprises the amino acid sequence of SEQ ID NO: 7 or SEQ ID NO: 8.
제1항 또는 제2항의 프롤리다아제 돌연변이체를 코딩하는 프롤리다아제 돌연변이체 유전자.A follidase mutant gene encoding the follidase mutant of claim 1 or 2. 제3항에 있어서,
상기 프롤리다아제 돌연변이체 유전자는 서열번호 4 또는 서열번호 5의 염기서열을 이루어진 것을 특징으로 하는 프롤리다아제 돌연변이체 유전자.
The method of claim 3,
Wherein the follidase mutant gene comprises the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5.
제3항의 프롤리다아제 돌연변이체 유전자를 포함하는 것을 특징으로 하는 재조합 발현벡터.A recombinant expression vector, characterized by comprising the polyhydrolase mutant gene of claim 3. 제5항의 재조합 발현벡터를 원핵세포에 형질전환하는 단계;
상기 형질전환된 원핵세포 형질전환체를 배양하는 단계; 및
상기 형질전환체로부터 발현된 목적 단백질인 프롤리다아제를 분리 및 정제하는 단계;를 포함하는 것을 특징으로 하는 프롤리다아제 돌연변이체 제조방법.
Transforming the recombinant expression vector of claim 5 into prokaryotic cells;
Culturing the transformed prokaryotic cell transformant; And
And isolating and purifying a target protein expressed from the transformant, which is a follidase, and purifying the protein.
제6항에 있어서,
상기 원핵세포가 대장균인 것을 특징으로 하는 프롤리다아제 돌연변이체 제조방법.
The method according to claim 6,
Wherein the prokaryotic cell is E. coli.
제1항 또는 제2항의 프롤리다아제 돌연변이체를 유효성분으로 포함하는 신경작용제 활성 저해용 조성물.A composition for inhibiting nerve agent activity inhibition comprising the pyrrolidase mutant of claim 1 or 2 as an active ingredient. 제1항 또는 제2항의 프롤리다아제 돌연변이체를 유효성분으로 포함하는 신경작용제 노출에 의한 질환의 예방 또는 치료용 약학적 조성물.
A pharmaceutical composition for preventing or treating a disease caused by exposure to a nerve agent comprising the pyrrolidase mutant of claim 1 or 2 as an active ingredient.
KR1020160137589A 2016-10-21 2016-10-21 Prolidase mutant, and preparation method and use thereof KR101892358B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160137589A KR101892358B1 (en) 2016-10-21 2016-10-21 Prolidase mutant, and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160137589A KR101892358B1 (en) 2016-10-21 2016-10-21 Prolidase mutant, and preparation method and use thereof

Publications (2)

Publication Number Publication Date
KR20180044029A KR20180044029A (en) 2018-05-02
KR101892358B1 true KR101892358B1 (en) 2018-08-27

Family

ID=62183807

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160137589A KR101892358B1 (en) 2016-10-21 2016-10-21 Prolidase mutant, and preparation method and use thereof

Country Status (1)

Country Link
KR (1) KR101892358B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036061A2 (en) 2005-04-06 2008-03-27 Verenium Corporation Enzymes and formulations for broad-specificity decontamination of chemical and biological warfare agents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036061A2 (en) 2005-04-06 2008-03-27 Verenium Corporation Enzymes and formulations for broad-specificity decontamination of chemical and biological warfare agents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CASEY M. THERIOT ET AL. ARCHAEA VOLUME 2011, ARTICLE ID 565127, 9 PAGES
HYEONGSEOK YUN ET AL. PROTEIN AND PEPTIDE LETTERS, VOL.24, NO.7, PP.617_625
ROBERTA BESIO ET AL. PLOS ONE 8(3): E58792.

Also Published As

Publication number Publication date
KR20180044029A (en) 2018-05-02

Similar Documents

Publication Publication Date Title
AU636537B2 (en) Improvement of the yield when disulfide-bonded proteins are secreted
CN111893104B (en) Structure-based CRISPR protein optimization design method
CN110923183A (en) Construction method of lanosterol-producing escherichia coli strain
CN112553176B (en) Glutamine transaminase with improved thermal stability
US6387664B1 (en) Sparc fusion protein and method for producing the same
CN106755031B (en) Rhamnolipid production plasmid, construction method thereof, escherichia coli engineering bacteria and application
KR101892358B1 (en) Prolidase mutant, and preparation method and use thereof
CN115247173A (en) Gene editing system for constructing TMPRSS6 gene mutant iron deficiency anemia pig nuclear transplantation donor cells and application thereof
CN109402109B (en) Improved overlap extension PCR method
CN114317473B (en) Glutamine transaminase variants with improved catalytic activity and thermostability
RU2774333C1 (en) RECOMBINANT PLASMID pET-GST-3CL-GPG PROVIDING SYNTHESIS OF SARS-CoV-2 3CL PROTEASE IN E. COLI CELLS IN SOLUBLE FORM
CN112553177B (en) Glutamine transaminase variant with improved heat stability
RU2792132C1 (en) Soluble recombinant plasmid pet-gst-3cl ensuring synthesis of 3cl sars-cov-2 protease in e. coli cells
CN106715689B (en) Lyase and method for asymmetric synthesis of (S) -phenylacetylcarbinol
CN107075495B (en) Lyase, DNA encoding the lyase, vector comprising the DNA, and method for asymmetric synthesis of (S) -phenylacetylcarbinol
CN111748034A (en) Preparation method of mycoplasma synoviae monoclonal antibody
JP3012931B1 (en) SPARC fusion protein and method for producing the same
KR101137021B1 (en) Novel glycosyltransferase from Fusobacterium nucleatum and use thereof
CN113755512B (en) Method for preparing tandem repeat protein and application thereof
KR100902634B1 (en) Nucleic acid delivery complex comprising recombinant hmgb-1 peptide
CN115247191A (en) Gene editing system and application thereof in construction of double-gene-mutation nevus basal cell carcinoma syndrome pig nuclear transplantation donor cell
CN112813087A (en) Preparation method of SalI restriction endonuclease
CN115247175A (en) Gene editing system for constructing epigenetic dysregulation model pig nuclear transplantation donor cell of SETDB1 gene mutation and application thereof
CN115247164A (en) Gene editing system for constructing adenomatous polyposis model pig and colorectal cancer model pig and application thereof
JP3012930B1 (en) Pharmaceutical composition containing SPARC fusion protein

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant