KR101887073B1 - 웨어러블 생체소자 및 그 제조 방법 - Google Patents

웨어러블 생체소자 및 그 제조 방법 Download PDF

Info

Publication number
KR101887073B1
KR101887073B1 KR1020160044250A KR20160044250A KR101887073B1 KR 101887073 B1 KR101887073 B1 KR 101887073B1 KR 1020160044250 A KR1020160044250 A KR 1020160044250A KR 20160044250 A KR20160044250 A KR 20160044250A KR 101887073 B1 KR101887073 B1 KR 101887073B1
Authority
KR
South Korea
Prior art keywords
substrate
wiring layer
end portion
living tissue
insulating layer
Prior art date
Application number
KR1020160044250A
Other languages
English (en)
Other versions
KR20170116458A (ko
Inventor
권용준
최헌진
홍민호
나주관
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020160044250A priority Critical patent/KR101887073B1/ko
Priority to PCT/KR2016/006474 priority patent/WO2017179763A1/ko
Publication of KR20170116458A publication Critical patent/KR20170116458A/ko
Application granted granted Critical
Publication of KR101887073B1 publication Critical patent/KR101887073B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/04
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/685Microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 발명은, 생체조직의 외부에 위치하는 기판; 상기 기판 상에서 일 방향으로 연장되고, 바늘(needle) 형상의 단부를 구비하여 상기 생체조직의 내부로 삽입 가능하도록 형성되는 적어도 하나의 기둥부; 및 상기 생체조직의 외부에서 상기 생체조직 내부의 전기적 신호를 감지하도록, 전도성 재질로 이루어지고, 상기 기둥부에 구비되는 상기 단부 및 상기 기판 상에 형성되어 상기 단부와 상기 기판 사이를 전기적으로 연결하는 배선층을 포함하는 것을 특징으로 하는 웨어러블 생체소자를 개시한다.

Description

웨어러블 생체소자 및 그 제조 방법{WEARABLE BIODEVICE AND MANUFACTURING METHOD THEREOF}
본 발명은 생체조직 내부의 전기적 신호를 감지하는 웨어러블 생체소자 및 그 제조 방법에 관한 것이다.
최근 고령화되고 있는 사회에서 국민 건강복지 증진을 위해서는 지속적인 건강 모니터링 기술의 중요성이 그 어느 때보다 더 커지고 있으며, 치료뿐만 아니라 조기 진단을 통해 질병을 예방하는 방법을 강구하는 것은 사회적으로도 매우 중요한 과제이다.
이와 같은 과제를 해결하기 위한 방법 중 하나로, 생체소자(biodevice)를 이용하는 방법이 주목받고 있으며, 이러한 방법이 의학적으로 보다 더 활발하게 채택되고 있다.
상술한 생체소자를 이용한 조기 진단을 통한 예방이라 함은 일반적으로 절개술 이후 조직의 막(membrane) 부위에 부착하여, 그 부분 또는 세포외 기질(extracellular matrix)을 통해 세포 신호(cell signaling)를 감지하거나, 혈액을 추출하여 장시간 이루어지는 시험 결과에 따라 진단하는 것을 말한다.
지금까지 일반인들에게 널리 알려진 생체소자는 체외에 부착 및 밴드 형태로 둘러 온도나 압력 등의 물리적 변화만을 감지하는 기능을 보유하고 있으며, 실제 체내에서 발생하는 이온 및 생물학적 인자를 감지하는 생체소자는 널리 알려지지 않은 실정이다.
한편, 상기 제시한 세포 신호를 미세하게 감지하기 위한 생체소자들이 개발되고 있는데 그 중 대표적인 것은 하나의 미세침(microneedle)을 인체조직 또는 미세하게는 세포외 기질에 삽입하고 나머지 하나는 같은 부위의 인체조직에 삽입하여 그 속에 존재하는 이온 및 생물학적 인자에 의해 감지된 세포 신호를 통하여 진단을 하는 것이다.
하지만, 이러한 생체소자는 실시간 분석이 불가능하여, 검사 대상자의 조직을 떼어내어 생체외(ex vivo) 상태에서 분석해야하기 때문에, 조기 진단이 어렵다는 문제점을 안고 있다. 또한, 어느 부위의 인체조직이냐에 따라 절개술을 필요로 하는 경우가 있기 때문에, 치료의 단계가 늘어나 수술 담당자들의 노동시간 증가는 물론이고 절개술에 의한 환자의 고통 및 그로 인한 상처가 남아 육체적 고통뿐만 아니라 정신적 고통도 느껴야 하며, 경제적 손실도 큰 이유로 아직까지 대중화되지 못하고 있는 상황에 있다.
본 발명의 일 목적은, 절개술의 과정을 거치지 않고 체외에서 채내의 생체조직을 구성하는 이온 및 생물학적 인자를 효과적으로 감지할 수 있는 웨어러블 생체소자 및 그 제조 방법을 제공하는 데에 있다.
이와 같은 본 발명의 해결 과제를 달성하기 위하여, 본 발명의 웨어러블 생체소자는, 생체조직의 외부에 위치하는 기판; 상기 기판 상에서 일 방향으로 연장되고, 바늘(needle) 형상의 단부를 구비하여 상기 생체조직의 내부로 삽입 가능하도록 형성되는 적어도 하나의 기둥부; 및 상기 생체조직의 외부에서 상기 생체조직 내부의 전기적 신호를 감지하도록, 전도성 재질로 이루어지고, 상기 기둥부에 구비되는 상기 단부 및 상기 기판 상에 형성되어 상기 단부와 상기 기판 사이를 전기적으로 연결하는 배선층을 포함하는 것을 특징으로 하는 웨어러블 생체소자를 개시한다.
상기 웨어러블 생체소자는, 상기 단부를 제외한 나머지 영역과 접하는 상기 생체조직의 전기적 신호를 차단하도록, 절연물로 이루어지며, 상기 단부 및 상기 기판의 일부분을 제외한 상기 배선층의 나머지 영역을 감싸도록 형성되는 제1 절연층을 더 포함할 수 있다.
상기 웨어러블 생체소자는, 절연물로 이루어지며, 상기 기판 및 상기 기둥부를 감싸도록 형성되는 제2 절연층을 더 포함하고, 상기 배선층은 상기 제1 절연층과 상기 제2 절연층 사이에 배치될 수 있다.
상기 제1 절연층 및 상기 제2 절연층은 실리카(SiO2), 산화 알루미늄(Al2O3), 파릴렌(parylene)으로 이루어진 군으로부터 선택되는 어느 하나로 구성될 수 있다.
상기 기둥부의 단면은 원형 또는 사각형으로 형성되고, 상기 기둥부의 지름 또는 한 변의 길이는, 20 마이크로미터 이상 400 마이크로미터 이하로 형성될 수 있다.
상기 기둥부의 높이는, 50 마이크로미터 이상 1000 마이크로미터 이하로 형성될 수 있다.
상기 단부가 이루는 각도는, 10도 이상 20도 이하로 형성될 수 있다.
상기 기둥부는 제1 및 제2 기둥으로 구성되어 상기 기판 상에 배열되며, 상기 배선층은 상기 제1 및 제2 기둥에 각각 형성되는 제1 및 제2 배선을 구비하고, 상기 제1 및 제2 배선은 각각 상기 생체조직 내부로부터 서로 다른 종류의 전기적 신호를 감지하도록 구성될 수 있다.
상기 기둥부는 제1 및 제2 기둥으로 구성되어 상기 기판 상에 배열되며, 상기 배선층은 상기 제1 및 제2 기둥에 각각 형성되는 제1 및 제2 배선을 구비하고, 상기 제1 및 제2 배선을 통해 감지되는 상기 전기적 신호의 크로스 체크(cross-check)를 위하여, 상기 제1 및 제2 배선은 상기 생체조직 내부로부터 서로 같은 종류의 전기적 신호를 감지하도록 구성될 수 있다.
상기 기둥부는 각각 제1 및 제2 단부를 구비하는 제1 및 제2 기둥으로 구성되어 상기 기판 상에 배열되며, 상기 배선층은 상기 제1 및 제2 기둥에 각각 형성되는 제1 및 제2 배선을 구비하고, 상기 제1 및 제2 단부가 상기 생체조직 내부에서 서로 다른 부분에 위치하도록, 상기 제1 및 제2 기둥은 서로 다른 높이를 갖도록 형성될 수 있다.
아울러 본 발명은, 일 방향으로 연장되는 적어도 하나의 기둥부를 기판 상에 형성시키는 제1 단계; 상기 기둥부가 생체조직의 내부로 삽입 가능하도록, 상기 기둥부의 단부를 바늘(needle) 형상으로 가공하는 제2 단계; 상기 생체조직의 외부에서 상기 생체조직 내부의 전기적 신호의 감지가 가능하도록, 상기 단부와 상기 생체조직의 외부에 위치하는 상기 기판 사이를 전기적으로 연결하는 배선층을 상기 단부 및 상기 기판 사이에 형성시키는 제3 단계; 절연물로 이루어지는 제1 절연층을 상기 배선층 상에 증착시키는 제4 단계; 및 상기 단부를 제외한 나머지 영역과 접하는 상기 생체조직의 전기적 신호를 차단하도록, 상기 단부와 상기 기판의 일부분에 형성된 상기 제1 절연층을 제거하여 상기 배선층을 외부로 노출시키는 제5 단계를 포함하는 것을 특징으로 하는 웨어러블 생체소자 제조 방법을 개시한다.
상기 웨어러블 생체소자 제조 방법은, 상기 제2 단계 이후, 절연물로 이루어는 제2 절연층을 상기 기둥부 및 상기 기판 상에 증착시키는 단계를 더 포함하고, 상기 제3 단계는 상기 배선층을 상기 제2 절연층이 증착된 상기 단부 및 상기 기판 사이에 형성시킬 수 있다.
본 발명에 의하면, 생체조직의 외부에 위치하는 기판과, 기판 상에 형성되되 바늘(needle) 형상의 단부를 구비하는 기둥부와, 전도성 재질로 이루어지고 기둥부의 상기 단부와 기판 상에 형성되어 상기 단부와 기판 사이를 전기적으로 연결하는 배선층을 구비한다. 이에 따라, 절개술의 과정을 거치지 않고도 생체조직 외부에 위치하는 기판 상에 형성된 배선층을 통하여 체내의 생체조직을 구성하는 이온 및 생물학적 인자들을 효과적으로 감지할 수 있으며, 검사 대상자의 신체적, 경제적인 부담을 줄여 질병의 조기 검진을 보다 대중화시킬 수 있다는 장점이 있다.
아울러 본 발명은, 기둥부가 제1 및 제2 기둥으로 복수로 구비되어 기판 상에 배열되며, 배선층은 제1 및 제2 기둥에 각각 형성되는 제1 및 제2 배선을 구비한다. 이와 같은 구성에 의하면, 제1 및 제2 배선을 통해 동일하거나 서로 다른 생체조직으로부터 서로 같은 종류 또는 서로 다른 종류의 전기적 신호를 감지하여 제1 및 제2 배선을 통해 감지되는 전기적 신호의 크로스 체크(cross-check)가 가능하며, 동시에 여러 종류의 전기적 신호의 감지가 가능하므로 검사에 소요되는 시간을 보다 줄일 수 있다는 장점을 갖는다.
도 1은 본 발명의 일 실시예에 따른 웨어러블 생체소자를 나타낸 사시도.
도 2는 도 1에 도시된 웨어러블 생체소자의 단면을 개념적으로 나타낸 도면.
도 3은 본 발명의 다른 일 실시예에 따른 웨어러블 생체소자 제조 방법을 나타낸 흐름도.
도 4는 도 3에 도시된 웨어러블 생체소자 제조 방법에 따른 제조 과정을 단계별로 나타낸 도면.
이하, 본 발명에 관련된 웨어러블 생체소자 및 그 제조 방법에 대하여 도면을 참조하여 보다 상세하게 설명한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
서로 다른 실시예라고 하더라도, 앞선 실시예와 동일하거나 유사한 구성요소에는 동일·유사한 도면 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 웨어러블 생체소자(100)를 나타낸 사시도이고, 도 2는 도 1에 도시된 웨어러블 생체소자(100)의 단면을 개념적으로 나타낸 도면이다.
도 1 및 도 2를 참조하면, 웨어러블 생체소자(100)는 기판(110), 기둥부(120) 및 배선층(130)을 포함한다.
기판(110)은 평판 형상으로 이루어질 수 있으며, 후술할 적어도 하나의 기둥부(120)의 배열을 위한 공간을 제공한다. 기판(110)은 생체조직 외부에 위치하고, 상기 생체조직은 주로 인체의 피부 조직을 의미하지만, 체내에 위치하는 특정 기관을 의미할 수 있다. 또한, 기판(110)은 상기 생체조직과 마주하는 면이 밀착되도록 탄성 변형 가능하게 형성될 수 있다.
기둥부(120)는 기판(110) 상에서 일 방향으로 연장되며, 바늘(needle) 형상의 단부(121)를 구비하여, 상기 생체조직 내부로 삽입 가능하도록 형성될 수 있으며, 기판(110) 상에 적어도 하나 이상 형성될 수 있다. 또한, 기둥부(120)는 원기둥 또는 사각기둥 형태로 이루어져 원형 또는 사각형의 단면을 갖도록 형성될 수 있으며, 상기 기둥부(120)의 지름 또는 한 변의 길이는 20 마이크로미터 이상 400 마이크로미터 이하로 형성될 수 있고, 기둥부(120)의 높이는 50 마이크로미터 이상 1000 마이크로미터 이하로 형성될 수 있다. 참고로, 인체의 피부 조직은 각질층이 10 μm 내지 20 μm로 이루어지고, 표피층은 70 μm 내지 120 μm으로 이루어지며, 혈관이 위치하는 진피층이 500 μm ~ 3,000 μm의 두께로 이루어진다.
이에 따라, 본 발명의 기둥부(120)는 상기 진피층이 위치하는 깊이까지 침습이 가능하다. 또한, 상기 기둥부(120)의 높이는 최소 50 마이크로미터 이상으로 형성되어, 불가피한 질병 진단을 위하여 절개술에 의해 체내 기관이 공기 중에 노출되었을 경우, 정상적인 기능을 수행하지 못하는 상기 기관의 외벽 50μm 두께 이상의 깊이까지 침습이 가능하다.
또한, 상기 기둥부(120)의 단부(121)가 이루는 각도는, 10도 이상 20도 이하로 형성될 수 있다. 참고로, 마이크로 단위에서는 마크로 단위에서 현상을 지배하던 체적(중력 및 관성력)에 작용하는 힘은 상대적으로 작아지고, 마크로 단위에서 무시할 수 있었던 표면적에 작용하는 힘(마찰력 및 표면장력)이 크게 현상을 지배한다. 이에 따라, 본 발명의 기둥부(120)는 표면 장력이 큰 피부 조직 또는 체내 기관에 효과적으로 침습이 가능하다는 장점이 있다.
배선층(130)은 전도성 재질로 이루어지고, 기둥부(110)에 구비되는 상기 단부(121) 및 기판(110) 상에 형성되어 단부(121)와 기판(110) 사이를 전기적으로 연결하도록 구성될 수 있다. 상기 전도성 재질은 Au, Ag, Cu, Pt 중 어느 하나의 물질로 이루어질 수 있다.
이상에서 설명한 본 발명에 의하면, 절개술의 과정을 거치지 않고도 상기 생체조직 외부에 위치하는 기판(110) 상에 형성된 배선층(130)을 통하여 상기 생체조직의 외부에서 상기 생체조직 내부의 전기적 신호, 예를 들어, 체내 또는 체내 기관 내부에 존재하는 특정 이온이나 특정 생물학적 인자들을 효과적으로 감지할 수 있으며, 이러한 감지 방법을 통하여 콜레라, 당뇨와 같은 각종 질병들을 검진할 수 있다. 또한, 검사 대상자의 신체적, 경제적인 부담을 줄여 질병의 조기 검진을 보다 대중화시킬 수 있다는 장점이 있다.
한편, 웨어러블 생체소자(100)는 제1 절연층(140)을 더 포함할 수 있다.
제1 절연층(140)은 기둥부(120)에 구비되는 상기 단부(121)를 제외한 나머지 영역과 접하는 상기 신체조직의 전기적 신호를 차단하도록, 절연물로 이루어지며, 도 1 및 도 2에 도시된 바와 같이 상기 단부(121) 및 상기 기판(110)의 일부분을 제외한 배선층(130)의 나머지 영역을 감싸도록 형성될 수 있다. 이와 같은 구조에 의하면, 상기 생체조직의 내부 또는 외부에서 단부(121)를 제외한 기둥부(120)와 상기 기판(110)의 일부분을 제외한 기판(110)의 다른 부분은 제1 절연층(140)과 접하게 되어 배선층(130)을 통한 상기 신체조직의 전기적 신호 전달이 차단된다. 이에 따라, 검사의 대상이 아닌 상기 신체조직의 다른 영역에 대한 불필요한 전기적 신호가 차단되고, 기둥부(120)에 구비되는 상기 단부(121)를 통한 전기적 신호만 획득하여 검진 결과에 대한 신뢰성을 보다 높일 수 있다. 또한, 상기 제1 절연층(140)은 실리카(SiO2), 산화 알루미늄(Al2O3), 파릴렌(parylene)으로 이루어진 군으로부터 선택되는 어느 하나로 구성될 수 있다.
한편, 웨어러블 생체소자(100)는 제2 절연층(150)을 더 포함할 수 있다.
제2 절연층(150)은 절연물로 이루어지며, 기판(110) 및 기둥부(120)를 감싸도록 형성될 수 있다. 여기서, 상기 배선층(130)은 제1 절연층(140)과 제2 절연층(150) 사이에 배치될 수 있다. 이에 따라, 상기 배선층(130)은 제1 절연층(140)과 제2 절연층(150)에 의해 외면이 절연물에 의해 전체적으로 감싸진 형태로 구성되어, 기둥부(120)의 단부(121)를 통한 상기 생체조직의 전기적 신호만을 효과적으로 감지할 수 있다는 장점을 갖는다. 또한, 상기 제2 절연층(150)은 제1 절연층(140)과 같이 실리카(SiO2), 산화 알루미늄(Al2O3), 파릴렌(parylene)으로 이루어진 군으로부터 선택되는 어느 하나로 구성될 수 있다.
한편, 기둥부(120)는 도 1에 도시된 바와 같이 제1 기둥(120a) 및 제2 기둥(120b)으로 구성되어 기판(110) 상에 배열될 수 있다. 또한, 배선층(130)은, 상기 제1 기둥(120a) 및 제2 기둥(120b)에 각각 대응되게 형성되는 제1 배선(130a)과 제2 배선(130b)을 구비할 수 있다. 여기서, 상기 제1 및 제2 배선(130a,130b)은 각각 상기 생체조직 내부로부터 서로 다른 종류의 전기적 신호를 감지하도록 구성될 수 있다. 예를 들어, 제1 배선(130a)은 상기 생체조직 내부 또는 체내 기관으로부터 콜레라에 관한 전기적 신호를 획득하도록 이루어질 수 있으며, 제2 배선(130b)은 당뇨에 관한 전기적 신호를 획득하도록 이루어질 수 있다.
또한, 상기 제1 배선(130a) 및 제2 배선(130b)을 통해 감지되는 상기 전기적 신호의 크로스 체크(cross-check)를 위하여, 상기 제1 및 제2 배선(130a,130b)은 상기 생체조직 내부로부터 서로 같은 종류의 전기적 신호를 감지하도록 구성될 수 있다. 예를 들어, 제1 배선(130a) 및 제2 배선(130b)을 통하여 당뇨에 관한 전기적 신호를 획득하도록 구성될 수 있다.
또한, 본 도면에서는 도시되지 않았으나, 기판(110) 상에 노출되는 제1 배선(130a) 및 제2 배선(130b)은 하나의 지점에서 서로 만나 외부로 노출되도록 구성될 수 있다. 즉, 기판(110) 상에 노출된 배선층(130)의 하나의 지점을 통하여 제1 기둥(120a) 및 제2 기둥(120b)의 각각의 단부를 통한 전기적 신호의 획득이 이루어질 수 있다.
이와 같은 구조에 의하면, 동일한 생체조직 내부 또는 체내 기관에 대한 검진을 실시함에 있어, 동일한 생체조직 내부 또는 체내 기관에 대한 전기적 신호를 복수 영역으로 나누어 감지할 수 있으므로, 바늘 형상의 단부(121)를 보다 미세하게 형성하여 검진 대상자의 신체적 고통을 줄여주며, 전기적 신호의 감지를 위한 상기 단부(121)와 접하는 부위의 단면적을 충분히 확보할 수 있다는 장점이 있다.
이상에서 설명한 본 발명에 의하면, 기둥부(120)가 제1 및 제2 기둥(120a,120b)으로 복수로 구비되어 기판(110) 상에 배열되며, 배선층(130)은 제1 및 제2 기둥(120a,120b)에 각각 형성되는 제1 및 제2 배선(130a,130b)을 구비한다. 이에 따라, 제1 및 제2 배선(130a,130b)을 통해 동일하거나 서로 다른 상기 생체조직으로부터 서로 같은 종류 또는 서로 다른 종류의 전기적 신호를 감지하여 제1 및 제2 배선(130a,130b)을 통해 감지되는 전기적 신호의 크로스 체크(cross-check)가 가능하며, 동시에 여러 종류의 전기적 신호의 감지가 가능하므로 검사에 소요되는 시간을 보다 줄일 수 있다.
한편, 상기 기둥부는 각각 제1 및 제2 단부(미도시)를 구비하는 제1 및 제2 기둥(120a,120b)으로 구성되어 기판(110) 상에 배열되며, 상기 배선층(130)은 상기 제1 및 제2 기둥(120a,120b)에 각각 형성되는 제1 및 제2 배선(130a,130b)을 구비하고, 여기서, 상기 제1 및 제2 단부가 상기 생체조직 내부에서 서로 다른 부분에 위치하도록, 제1 및 제2 기둥(120a,120b)은 서로 다른 높이를 갖도록 형성될 수 있다.
이하, 본 발명의 다른 일 실시예에 따른 웨어러블 생체소자 제조 방법에 대하여 상세히 설명한다.
도 3은 본 발명의 다른 일 실시예에 따른 웨어러블 생체소자 제조 방법을 나타낸 흐름도이고, 도 4는 도 3에 도시된 웨어러블 생체소자 제조 방법에 따른 제조 과정을 단계별로 나타낸 도면이다.
도 3 및 도 4를 참조하면, 상기 웨어러블 생체소자 제조 방법은 먼저, 도 3의 (a)에 도시된 바와 같이 일 방향으로 연장되는 적어도 하나의 기둥부(120)를 기판(110) 상에 형성시키는 제1 단계(S110)와, 도 3의 (b)에 도시된 바와 같이 기둥부(120)가 상기 생체조직의 내부로 삽입 가능하도록, 기둥부(120)의 단부(121)를 바늘(needle) 형상으로 가공하는 제2 단계(S120)와, 상기 생체조직의 외부에서 상기 생체조직 내부의 전기적 신호의 감지가 가능하도록, 도 3의 (d)에 도시된 바와 같이 상기 기둥부(120)에 구비되는 상기 단부(121)와 상기 생체조직의 외부에 위치하는 기판(110) 사이를 전기적으로 연결하는 배선층(130)을 상기 단부(121) 및 기판(110) 사이에 형성시키는 제3 단계(S130)와, 도 3의 (e)에 도시된 바와 같이 절연물로 이루어지는 제1 절연층(140)을 상기 배선층(130) 상에 증착시키는 제4 단계(S140)와, 마지막으로, 상기 단부(121)를 제외한 나머지 영역과 접하는 상기 생체조직의 전기적 신호를 차단하도록, 도 3의 (f)에 도시된 바와 같이 상기 단부(121)와 상기 기판(110)의 일부분에 형성된 제1 절연층(140)을 제거하여 상기 배선층(130)을 외부로 노출시키는 제5 단계(S150)를 포함한다.
또한, 상기 제1 단계(S110)에서 상기 기둥부(120)의 가공은 고종횡비 반응성 이온 식각(DRIE: deep reactive ion etching) 공정으로 이루어질 수 있다. 또한, 상기 제2 단계(S120)에서 상기 단부(121)의 가공은 이온 빔을 이용한 연마 가공으로 이루어질 수 있다.
또한, 상기 제4 단계(S140)는 화학기상증착법(CVD: Chemical Vapor Deposition)으로 실리카(SiO2) 또는 파릴렌(parylene)과 같은 절연물로 상기 제1 절연층(140)을 증착시키도록 이루어질 수 있다. 또한, 상기 제5 단계(S150)는 제1 절연층(140)의 일부를 레이저 또는 플라즈마로 식각하여 제거하도록 이루어질 수 있다.
한편, 상기 웨어러블 생체 소자 제조 방법은, 도 3의 (c)에 도시된 바와 같이, 상기 제2 단계(S120) 이후, 절연물로 이루어는 제2 절연층(150)을 상기 기둥부(120) 및 상기 기판(110) 상에 증착시키는 단계(S160)를 더 포함하고, 상기 제3 단계(S130)는 상기 배선층(130)을 상기 제2 절연층(150)이 증착된 상기 단부(121) 및 상기 기판(110) 사이에 형성시키도록 이루어질 수 있다. 또한 상기 제2 절연층(150)은 실리카(SiO2) 또는 파릴렌(parylene)과 같은 절연물로 이루어질 수 있다.
100 : 웨어러블 생체소자 110 : 기판
120 : 기둥부 130 : 배선층
140 : 제1 절연층 150 : 제2 절연층

Claims (12)

  1. 생체조직의 외부에 위치하는 기판;
    상기 기판 상에서 일 방향으로 연장되고, 바늘(needle) 형상의 단부를 구비하여 상기 생체조직의 내부로 삽입 가능하도록 형성되는 적어도 하나의 기둥부;
    상기 생체조직의 외부에서 상기 생체조직 내부의 전기적 신호를 감지하도록, 전도성 재질로 이루어지고, 상기 기둥부에 구비되는 상기 단부 및 상기 기판 상에 형성되어 상기 단부와 상기 기판 사이를 전기적으로 연결하는 배선층;
    상기 단부를 제외한 나머지 영역과 접하는 상기 생체조직의 전기적 신호를 차단하도록, 절연물로 이루어지며, 상기 단부 및 상기 기판의 일부분을 제외한 상기 배선층의 나머지 영역을 감싸도록 형성되는 제1 절연층; 및
    절연물로 이루어지며, 상기 기판 및 상기 기둥부를 감싸도록 형성되는 제2 절연층을 더 포함하고,
    상기 단부는 기 설정된 각도를 갖도록 형성되며, 상기 배선층은 상기 제1 절연층과 상기 제2 절연층 사이에 배치되며, 상기 단부를 통하여 노출되는 것을 특징으로 하는 웨어러블 생체소자.
  2. 제1항에 있어서,
    상기 배선층은 상기 기판의 단부까지 연장되는 것을 특징으로 하는 웨어러블 생체소자.
  3. 삭제
  4. 제1항에 있어서,
    상기 제1 절연층 및 상기 제2 절연층은 실리카(SiO2), 산화 알루미늄(Al2O3), 파릴렌(parylene)으로 이루어진 군으로부터 선택되는 어느 하나로 구성되는 것을 특징으로 하는 웨어러블 생체소자.
  5. 제1항에 있어서,
    상기 기둥부의 단면은 원형 또는 사각형으로 형성되고, 상기 기둥부의 지름 또는 한 변의 길이는, 20 마이크로미터 이상 400 마이크로미터 이하로 형성되는 것을 특징으로 하는 웨어러블 생체소자.
  6. 제1항에 있어서,
    상기 기둥부의 높이는, 50 마이크로미터 이상 1000 마이크로미터 이하로 형성되는 것을 특징으로 하는 웨어러블 생체소자.
  7. 제1항에 있어서,
    상기 단부가 이루는 각도는, 10도 이상 20도 이하로 형성되는 것을 특징으로 하는 웨어러블 생체소자.
  8. 제1항에 있어서,
    상기 기둥부는 제1 및 제2 기둥으로 구성되어 상기 기판 상에 배열되며,
    상기 배선층은 상기 제1 및 제2 기둥에 각각 형성되는 제1 및 제2 배선을 구비하고,
    상기 제1 및 제2 배선은 각각 상기 생체조직 내부로부터 서로 다른 종류의 전기적 신호를 감지하도록 구성되는 것을 특징으로 하는 웨어러블 생체소자.
  9. 제1항에 있어서,
    상기 기둥부는 제1 및 제2 기둥으로 구성되어 상기 기판 상에 배열되며,
    상기 배선층은 상기 제1 및 제2 기둥에 각각 형성되는 제1 및 제2 배선을 구비하고,
    상기 제1 및 제2 배선을 통해 감지되는 상기 전기적 신호의 크로스 체크(cross-check)를 위하여, 상기 제1 및 제2 배선은 상기 생체조직 내부로부터 서로 같은 종류의 전기적 신호를 감지하도록 구성되는 것을 특징으로 하는 웨어러블 생체소자.
  10. 제1항에 있어서,
    상기 기둥부는 각각 제1 및 제2 단부를 구비하는 제1 및 제2 기둥으로 구성되어 상기 기판 상에 배열되며,
    상기 배선층은 상기 제1 및 제2 기둥에 각각 형성되는 제1 및 제2 배선을 구비하고,
    상기 제1 및 제2 단부가 상기 생체조직 내부에서 서로 다른 부분에 위치하도록, 상기 제1 및 제2 기둥은 서로 다른 높이를 갖도록 형성되는 것을 특징으로 하는 웨어러블 생체소자.
  11. 일 방향으로 연장되는 적어도 하나의 기둥부를 기판 상에 형성시키는 제1 단계;
    상기 기둥부가 생체조직의 내부로 삽입 가능하도록, 상기 기둥부의 단부를 기설정된 각도를 갖도록 바늘(needle) 형상으로 가공하는 제2 단계;
    상기 생체조직의 외부에서 상기 생체조직 내부의 전기적 신호의 감지가 가능하도록, 상기 단부와 상기 생체조직의 외부에 위치하는 상기 기판 사이를 전기적으로 연결하는 배선층을 상기 단부 및 상기 기판 사이에 형성시키는 제3 단계;
    절연물로 이루어지는 제1 절연층을 상기 배선층 상에 증착시키는 제4 단계; 및
    상기 단부를 제외한 나머지 영역과 접하는 상기 생체조직의 전기적 신호를 차단하도록, 상기 단부와 상기 기판의 일부분에 형성된 상기 제1 절연층을 제거하여 상기 배선층을 상기 단부 및 상기 기판의 일부분에서 외부로 노출시키는 제5 단계를 포함하며,
    상기 제2 단계 이후, 절연물로 이루어는 제2 절연층을 상기 기둥부 및 상기 기판 상에 증착시키는 단계를 더 포함하고,
    상기 제3 단계는 상기 배선층을 상기 제2 절연층이 증착된 상기 단부 및 상기 기판 사이에 형성시키는 것을 특징으로 하는 웨어러블 생체소자 제조 방법.
  12. 삭제
KR1020160044250A 2016-04-11 2016-04-11 웨어러블 생체소자 및 그 제조 방법 KR101887073B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160044250A KR101887073B1 (ko) 2016-04-11 2016-04-11 웨어러블 생체소자 및 그 제조 방법
PCT/KR2016/006474 WO2017179763A1 (ko) 2016-04-11 2016-06-17 웨어러블 생체소자 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160044250A KR101887073B1 (ko) 2016-04-11 2016-04-11 웨어러블 생체소자 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20170116458A KR20170116458A (ko) 2017-10-19
KR101887073B1 true KR101887073B1 (ko) 2018-08-09

Family

ID=60042616

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160044250A KR101887073B1 (ko) 2016-04-11 2016-04-11 웨어러블 생체소자 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR101887073B1 (ko)
WO (1) WO2017179763A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048348A1 (ko) * 2021-09-23 2023-03-30 주식회사 알비티 패시베이션 레이어를 포함하는 마이크로 니들 바이오 센서 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200418215Y1 (ko) * 2006-03-25 2006-06-09 양태유 사혈침 기구
US20060264716A1 (en) * 2005-04-25 2006-11-23 Dennis Zander Microneedle with glucose sensor and methods thereof
KR101616294B1 (ko) * 2012-02-09 2016-04-28 광주과학기술원 하이브리드형 미세전극 배열체 및 그것의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6918907B2 (en) * 2003-03-13 2005-07-19 Boston Scientific Scimed, Inc. Surface electrode multiple mode operation
JP6150193B2 (ja) * 2012-10-05 2017-06-21 オーウェル株式会社 生体用微小神経電極針体及び生体用微小神経電極針体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060264716A1 (en) * 2005-04-25 2006-11-23 Dennis Zander Microneedle with glucose sensor and methods thereof
KR200418215Y1 (ko) * 2006-03-25 2006-06-09 양태유 사혈침 기구
KR101616294B1 (ko) * 2012-02-09 2016-04-28 광주과학기술원 하이브리드형 미세전극 배열체 및 그것의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048348A1 (ko) * 2021-09-23 2023-03-30 주식회사 알비티 패시베이션 레이어를 포함하는 마이크로 니들 바이오 센서 제조 방법

Also Published As

Publication number Publication date
WO2017179763A1 (ko) 2017-10-19
KR20170116458A (ko) 2017-10-19

Similar Documents

Publication Publication Date Title
US8977335B2 (en) Intracranial sensing and monitoring device with macro and micro electrodes
KR101310767B1 (ko) 생체 신호 측정용 테트로드 및 그 제조 방법
CN102544052A (zh) 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
KR101679777B1 (ko) 패치형 전기화학적 바이오센서 및 그 제조방법
US20200261025A1 (en) System and method for making and implanting high-density electrode arrays
Fekete et al. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe
CN104605848A (zh) 一种颅内皮层电极
KR101887073B1 (ko) 웨어러블 생체소자 및 그 제조 방법
JP4844161B2 (ja) 細胞電気生理センサとそれを用いた測定方法およびその製造方法
US20210106259A1 (en) Electrically functional polymer microneedle array
KR101624755B1 (ko) 금속 가이드를 포함하는 체내 미세-침습성 조사 장치
Li et al. Development and application of a microfabricated multimodal neural catheter for neuroscience
US11478180B2 (en) Probe response signals
JP3979574B2 (ja) 生体試料用アレイ電極及びその作製方法
CN107003265B (zh) 电化学测量装置
WO2008131337A1 (en) Permittivity-based material sensor
WO2012048109A2 (en) Multi-terminal nanoelectrode array
CN113366653A (zh) 用于测量电生理信号的石墨烯晶体管系统
Ahmed et al. Flexible ultra-resolution subdermal EEG probes
Tian et al. Monitoring insertion force and electrode impedance during implantation of microwire electrodes
Bocchino et al. Development and characterization of passivation methods for microneedle-based biosensors
WO2019067748A1 (en) ANY DIAMOND IMPLANTABLE MICROELECTRODE AND MANUFACTURING METHOD
Meszéna et al. A silicon-based spiky probe providing improved cell accessibility during in vitro slice recordings
JP2004033374A (ja) 体内情報検出ユニット
Nguyen et al. Very Accurate Flexible pH Microsensor Based on Nanoporous Titanium Nitride Material for In-Vivo Application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right