KR101884793B1 - Method for production and purification of CAGE protein - Google Patents

Method for production and purification of CAGE protein Download PDF

Info

Publication number
KR101884793B1
KR101884793B1 KR1020170157593A KR20170157593A KR101884793B1 KR 101884793 B1 KR101884793 B1 KR 101884793B1 KR 1020170157593 A KR1020170157593 A KR 1020170157593A KR 20170157593 A KR20170157593 A KR 20170157593A KR 101884793 B1 KR101884793 B1 KR 101884793B1
Authority
KR
South Korea
Prior art keywords
cage
protein
cultured
purifying
cage protein
Prior art date
Application number
KR1020170157593A
Other languages
Korean (ko)
Inventor
정현석
이상민
정두일
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020170157593A priority Critical patent/KR101884793B1/en
Application granted granted Critical
Publication of KR101884793B1 publication Critical patent/KR101884793B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Provided is a production method for expressing a soluble CAGE protein under specific incubation condition. Moreover, provided is a method for purifying the CAGE protein through a combination of a plurality of isolation steps. The method for producing, isolating, and purifying the CAGE protein of the present invention enables high purity isolation and purification of the CAGE protein, contributes to research of cancer-related mechanisms associated with the CAGE protein by using the same, and can be useful in fields of cancer-related research associated with the CAGE protein.

Description

CAGE 단백질의 생산 및 정제 방법{Method for production and purification of CAGE protein}≪ Desc / Clms Page number 2 > Production and purification of CAGE protein {

본 발명은 단백질의 생산 및 정제 방법에 관한 것으로, 더욱 상세하게는 CAGE 단백질의 생산 및 정제 방법에 관한 것이다.The present invention relates to a method for producing and purifying proteins, and more particularly, to a method for producing and purifying CAGE proteins.

최근 암과 면역 시스템이 관련있다는 다수의 보고가 있으며, 암 관련 단백질인 CAGE(암 관련 항원, Cancer associated antigen, 암/정소 항원, DDX53) 단백질의 암 관련 메커니즘 연구를 위하여 CAGE 단백질의 생산, 분리, 정제가 관련 분야에서 요구되고 있다.Recently, there have been reports that cancer is related to the immune system. In order to study cancer-related mechanisms of CAGE (cancer-associated antigen, cancer / test antigen, DDX53) Purification is required in the related field.

CAGE 단백질(암/정소 항원 CAGE)은 암 관련 항원(Cancer associated antigen) 또는 DDX53 단백질로 지칭되며, 위암 세포 주들과 정소조직 등에서 제작된 cDNA expression library에 대해 SEREX(serologiacal analysis of recombiant cDNA library expression) 기법을 이용하여 위암 환자의 혈청에 특이적으로 존재하는 신규 C/T 항원으로 발견되었다(Cho B., 2002, Biochem . Biophys . Res. Commun ., 295, 715-726). CAGE 유전자 메틸화 여부 연구를 통해 CAGE 유전자 프로모터 CpG 섬(CpG island)의 DNA 탈메틸화(DNA demethylation) 정도와 CAGE 발현의 연관성이 밝혀졌는데(Cho B., 2003, Biochem . Biophys . Res. Commun ., 307, 52-63), 이는 CAGE 유전자의 메틸화 패턴 분석을 통해 암을 진단할 수 있는 새로운 방법에 대한 가능성을 시사한다.The CAGE protein (cancer / testis antigen CAGE) is referred to as cancer-associated antigen or DDX53 protein and serologic analysis of recombinant cDNA library expression (SEREX) technique for cDNA expression library prepared in gastric cancer cell lines and testis tissue (Cho B., 2002, Biochem . Biophys . Res. Commun . , 295, 715-726), which is specifically present in the serum of gastric cancer patients. In the present study, we investigated whether CAGE gene methylation is related to the degree of DNA demethylation of CpG island (CpG island) and CAGE expression (Cho B., 2003, Biochem . Biophys . Res. Commun . , 307 , 52-63), suggesting the possibility of a new method of diagnosing cancer through analysis of the methylation pattern of the CAGE gene.

또한, CAGE 유전자의 과잉 발현이 세포 이동성을 증가시키며 ERK, p38 MAPK, FAK 등의 인산화가 CAGE에 의한 세포 이동성을 증가시키는 것으로 나타났고(Shim H., 2006, Mol Cells, 21, 367-375), CAGE 및 CAGE 유래 펩타이드들이 세포독성 T 림프구의 활성을 증가시키는 것으로 보고되었다(Shim, E., 2006, Biotechnol . Lett. 28, 515522).In addition, overexpression of the CAGE gene increases cell mobility and phosphorylation of ERK, p38 MAPK, and FAK increases cell migration by CAGE (Shim H., 2006, Mol Cells , 21, 367-375) , CAGE and CAGE-derived peptides have been reported to increase the activity of cytotoxic T lymphocytes (Shim, E., 2006, Biotechnol . Lett. 28, 515522).

그러나, 현재까지 CAGE 단백질은 재조합 발현시에 불용성 상태로 얻어져서 그 분리 및 정제에 어려움이 있었다. 따라서, CAGE 단백질 관련 암 관련 메커니즘 연구를 위하여 CAGE 단백질의 분리 및 정제 기술에 대한 연구가 시급하다.However, until now, the CAGE protein has become insoluble at the time of recombinant expression, and it has been difficult to separate and purify it. Therefore, it is urgent to study the separation and purification technology of CAGE protein in order to study CAGE protein-related cancer-related mechanism.

한국공개특허 제10-2014-0037726호 (2014.03.27.)Korean Patent Publication No. 10-2014-0037726 (Mar. 한국공개특허 제10-2013-0010897호 (2013.01.29.)Korean Patent Publication No. 10-2013-0010897 (Feb.

Schlager et al. BMC Biotechnology 2012, 12:95Schlager et al. BMC Biotechnology 2012, 12:95 Palmer et al. Curr Protoc Protein Sci. 2004 November ; CHAPTER: Unit-6.3.Palmer et al. Curr Protoc Protein Sci. 2004 November; CHAPTER: Unit-6.3.

본 발명의 발명자들은 CAGE 단백질 관련 암 관련 메커니즘 연구를 위한 CAGE 단백질의 분리 및 정제를 위하여 CAGE 단백질을 가용성 단백질로 발현시키는 방법에 대하여 연구하던 중, 대장균을 일반적인 균주 배양 온도에서 1차 배양시킨 후, 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 특정 온도에서 2차 배양하는 경우에 CAGE 단백질을 가용성 상태로 발현시킬 수 있고, 이후 다수 분리 과정의 조합에 의해 CAGE 단백질을 분리정제할 수 있다는 것을 발견하였다.The inventors of the present invention have studied a method of expressing CAGE protein as a soluble protein for the isolation and purification of CAGE protein for cancer-related mechanism-related mechanism of CAGE protein. After Escherichia coli was first cultured at a general strain culture temperature, The CAGE protein can be expressed in a soluble state when isopropyl β-D-1-thiogalactopyranoside is added and cultured at a specific temperature, and then the CAGE protein is isolated and purified by a combination of multiple separation processes .

따라서, 본 발명은 CAGE 단백질을 가용성 상태로 발현시킬 수 있는 특정 배양 조건의 생산 방법 및 이후 다수 분리 과정의 조합에 의한 CAGE 단백질의 정제 방법을 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present invention to provide a production method of a specific culture condition capable of expressing a CAGE protein in a soluble state, and a method of purifying the CAGE protein by a combination of a plurality of separation processes.

본 발명의 일 측면에 따라, (a) CAGE(DDX53) 유전자가 삽입된 플라스미드를 포함하는 대장균을 35 ∼ 38 ℃에서 배양하는 1차 배양 단계; 및 (b) 상기 1차 배양된 배양액에 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 10 ∼ 20 ℃에서 배양하는 2차 배양 단계를 포함하는 CAGE 단백질의 생산 방법이 제공된다.According to an aspect of the present invention, there is provided a method for producing a recombinant plasmid comprising: (a) a primary culture step of culturing an Escherichia coli containing a CAGE (DDX53) gene-inserted plasmid at 35 to 38 ° C; And (b) a second culture step in which isopropyl β-D-1-thiogalactopyranoside is added to the primary cultured medium and cultured at 10 to 20 ° C.

일 구현예에서, 단계(a)에서 대장균을 37 ℃에서 배양할 수 있으며, 단계(b)에서 16 ℃에서 배양할 수 있다.In one embodiment, E. coli can be cultured at 37 DEG C in step (a), and cultured at 16 DEG C in step (b).

본 발명의 다른 측면에 따라, (c) 가용성으로 생성된 CAGE 단백질을 포함하는 대장균을 원심분리하여 얻은 펠렛에 나트륨 라우로일 사르코시네이트를 첨가하여 용해하는 단계; (d) 용해된 세포를 초음파 처리하여 파쇄하는 단계; (e) 파쇄된 세포 파쇄물을 원심분리하여 그 상등액을 Q-음이온 교환 컬럼으로 정제하는 단계; (f) Ni2 +-하전된 Ni-NTA 컬럼으로 정제하는 단계; 및 (g) 사이즈 배제 크로마토그래피로 정제하는 단계를 포함하는 CAGE 단백질의 정제 방법이 제공된다.According to another aspect of the present invention, there is provided a method for producing a cucurbitidase inhibitor, comprising the steps of: (c) adding sodium lauroyl sarcosinate to a pellet obtained by centrifuging Escherichia coli containing solubilized CAGE protein; (d) sonicating and lysing the lysed cells; (e) centrifuging the disrupted cell lysate and purifying the supernatant with a Q-anion exchange column; (f) purifying the Ni 2 + -charged Ni-NTA column; And (g) purifying by size exclusion chromatography.

일 구현예에서, 단계(c)에서 나트륨 라우로일 사르코시네이트를 0.1 내지 1 중량%로 첨가할 수 있으며, 바람직하게는, 0.5 중량%로 첨가할 수 있다.In one embodiment, sodium lauroyl sarcosinate in step (c) may be added in an amount of 0.1 to 1 wt%, preferably 0.5 wt%.

일 구현예에서, 단계(f)의 상기 Ni2 +-하전된 Ni-NTA 컬럼을 유속 5 ml/분으로 용출할 수 있으며, 단계(g)의 상기 사이즈 배제 크로마토그래피를 유속 1 ml/분으로 용출할 수 있다.In one embodiment, the Ni 2 + -charged Ni-NTA column of step (f) can be eluted at a flow rate of 5 ml / min and the size exclusion chromatography of step (g) is performed at a flow rate of 1 ml / min It can be eluted.

일 구현예에서, 상기 CAGE 단백질은 75 kDa일 수 있다.In one embodiment, the CAGE protein may be 75 kDa.

본 발명의 또 다른 측면에 따라, (a) CAGE(DDX53) 유전자가 삽입된 플라스미드를 포함하는 대장균을 35 ∼ 38 ℃에서 배양하는 1차 배양 단계; (b) 상기 1차 배양된 배양액에 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 10 ∼ 20 ℃에서 배양하는 2차 배양 단계; (c) 배양된 대장균을 원심분리하여 얻은 펠렛에 나트륨 라우로일 사르코시네이트를 첨가하여 용해하는 단계; (d) 용해된 세포를 초음파 처리하여 파쇄하는 단계; (e) 파쇄된 세포 파쇄물을 원심분리하여 그 상등액을 Q-음이온 교환 컬럼으로 정제하는 단계; (f) Ni2 +-하전된 Ni-NTA 컬럼으로 정제하는 단계; 및 (g) 사이즈 배제 크로마토그래피로 정제하는 단계를 포함하는 CAGE 단백질의 생산 및 정제 방법이 제공된다.According to another aspect of the present invention, there is provided a method for producing a recombinant E. coli strain comprising the steps of: (a) a primary culture step of culturing E. coli containing a plasmid into which a CAGE (DDX53) gene has been inserted at 35 to 38 占 폚; (b) a secondary culture step in which isopropyl β-D-1-thiogalactopyranoside is added to the primary cultured medium and cultured at 10 to 20 ° C; (c) adding sodium lauroyl sarcosinate to the pellet obtained by centrifuging the cultured Escherichia coli to dissolve the pellet; (d) sonicating and lysing the lysed cells; (e) centrifuging the disrupted cell lysate and purifying the supernatant with a Q-anion exchange column; (f) purifying the Ni 2 + -charged Ni-NTA column; And (g) purifying by size exclusion chromatography.

본 발명에 의해, 대장균을 일반 균주 배양 온도에서 1차 배양시킨 후, 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 특정 온도에서 2차 배양(저온 발현) 후 나트륨 라우로일 사르코시네이트를 첨가하여 용해하는 경우에 CAGE 단백질(75 kDa)이 상등액에서 관찰되어 가용성 단백질로 얻어지고, 이후 다수 분리 과정의 조합(Q-음이온 교환 컬럼 크로마토그래피, Ni2 +-하전된 Ni-NTA 컬럼의 친화성 크로마토그래피, 사이즈 배제 크로마토그래피)에 의해 CAGE 단백질을 분리정제할 수 있다는 것이 밝혀졌다.According to the present invention, Escherichia coli is first cultured at a culture temperature of a general strain, and isopropyl β-D-1-thiogalactopyranoside is then added, followed by secondary culture (low temperature expression) at a specific temperature, when being observed in the CAGE protein (75 kDa) in the case of the supernatant added to the carbonate obtained by dissolving a soluble protein, a combination of a number of separate process after the (Q- anion exchange column chromatography, Ni 2 + - charged Ni-NTA Column affinity chromatography, size exclusion chromatography) to separate and purify the CAGE protein.

따라서, CAGE 단백질의 생산, 분리, 정제 방법에 의해 CAGE 단백질을 고순도로 분리 및 정제하는 것이 가능하게 되었으므로, 이를 이용한 CAGE 단백질 관련 암 관련 메커니즘 연구에 기여할 수 있으며, CAGE 단백질 관련 암 관련 연구 분야에서 유용하게 사용될 수 있다.Therefore, it has become possible to separate and purify the CAGE protein with high purity by the production, separation and purification of the CAGE protein. Therefore, it can contribute to the study of the CAGE protein-related cancer-related mechanism and is useful in the CAGE protein- Lt; / RTI >

도 1은 DDX53 모티브(motif)의 개략도이다.
도 2E. coli 세포주에서 37 ℃ 및 16 ℃에서 단백질 발현 시, 단백질들이 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에 포함된 것을 SDS-PAGE로 확인한 사진이다.
도 3E. coli 세포주에서 단백질 발현 시, 37 ℃에서 모두 불용성 상태로 존재였으나(A), 0.5 % 사코실(Sarkosyl)을 첨가하고, 16 ℃에서 발현시킨 경우에는 상등액(supernatant, S)에서 관찰되어(B) 가용성 단백질로 발현된 것을 확인한 결과이다.
도 4는 5 ml 용량의 Q-음이온 교환 컬럼(Q-anion exchange column)을 이용하여 가용성으로 발현된 DDX53 단백질을 필터한 후, 5 ml 용량의 친화성 크로마토그래피[Ni2+-하전된 Ni-NTA 컬럼]를 직렬 형태로 연속적으로 연결하여 DDX53 단백질을 순차적으로 정제하는 과정을 나타낸 개략도이다.
도 5는 Ni2 +-하전된 Ni-NTA 컬럼(volume: 5 ml)를 이용하여 분리한 용출 시간(elution time, 유속 5 ml/분)에 따른 각 분획(fraction)을 흡광도(280 nm)(A)와 SDS-PAGE(B)로 확인한 결과로서, P3에 두개의 밴드(75 kDa 및 20 kDa)를 나타내는 겔(gel) 사진이다[M: Protein size marker, U: Unbounded fraction, W: Washing, P1: Peak 1, P2: Peak 2, P3: Peak 3, P4: Peak 4, P5: Peak 5].
도 6은 사이즈 배제 크로마토그래피(size exclusion chromatography)를 이용하여 분리한 용출 시간(유속 1 ml/분))에 따른 분획을 흡광도(280 nm)(A)와 SDS-PAGE(B)로 확인한 결과로서, 75 kDa의 이동 밴드(migration band)를 최종 확인한 사진이다.
도 7은 사이즈 배제 크로마토그래피를 통해 얻은 75 kDa의 밴드에 대하여 웨스턴 블럿(Western blot)으로 CAGE 단백질임을 확인한 결과이다.
1 is a schematic diagram of a DDX53 motif.
FIG. 2 is a photograph showing SDS-PAGE in which proteins are expressed as insoluble and contained in pellets (P) when proteins are expressed at 37 ° C and 16 ° C in an E. coli cell line.
FIG. 3 shows that the expression of the protein in the E. coli cell line was all insoluble at 37.degree. C. (A) when 0.5% Sarkosyl was added and when expressed at 16.degree. C., the supernatant (S) (B) a soluble protein.
FIG. 4 is a graph showing the results obtained by filtering soluble DDX53 protein using a Q-anion exchange column in a volume of 5 ml, and then performing affinity chromatography [Ni 2+ -charged Ni- NTA column] is serially connected in series to sequentially purify the DDX53 protein.
Figure 5 shows the absorbance (280 nm) of each fraction according to elution time (flow rate: 5 ml / min) separated by Ni 2 + -charged Ni-NTA column (volume: 5 ml) U: Unbounded fraction, W: Washing, Protein size marker), which shows two bands (75 kDa and 20 kDa) on P3 as a result of SDS-PAGE analysis. P1: Peak 1, P2: Peak 2, P3: Peak 3, P4: Peak 4, P5: Peak 5].
FIG. 6 shows the results obtained by measuring the absorbance (280 nm) (A) and the SDS-PAGE (B) of the fraction according to the elution time (flow rate 1 ml / min) separated by size exclusion chromatography , And a migration band of 75 kDa.
FIG. 7 shows the results of confirming that the 75 kDa band obtained through size exclusion chromatography was a CAGE protein by Western blotting.

본 발명은 (a) CAGE(DDX53) 유전자가 삽입된 플라스미드를 포함하는 대장균을 35 ∼ 38 ℃에서 배양하는 1차 배양 단계; 및 (b) 상기 1차 배양된 배양액에 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 10 ∼ 20 ℃에서 배양하는 2차 배양 단계를 포함하는 CAGE 단백질의 생산 방법을 제공한다.(A) a primary culture step of culturing Escherichia coli containing a plasmid into which CAGE (DDX53) gene is inserted at 35 to 38 占 폚; And (b) a secondary culture step in which isopropyl β-D-1-thiogalactopyranoside is added to the primary cultured medium and cultured at 10 to 20 ° C.

단계(a)는 CAGE(DDX53) 유전자가 삽입된 플라스미드를 포함하는 대장균(E. coli)을 일반적인 배양 온도인 35 ∼ 38 ℃에서 배양하는 1차 배양 단계이다. A600가 0.6이 될 때까지 배양한다. 상기 배양 온도는 바람직하게는 37 ℃이나, 이에 제한되지는 않는다.Step (a) is a primary culture step in which E. coli containing a plasmid into which the CAGE (DDX53) gene is inserted is cultured at a normal culture temperature of 35 to 38 ° C. Cultivate until A 600 reaches 0.6. The incubation temperature is preferably 37 占 폚, but is not limited thereto.

단계(b)는 1차 배양된 배양액을 추가로 저온 배양하는 단계이다. 이 때 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 배양하며, 1차 배양에 비하여 낮은 온도에서 배양함으로써 CAGE 단백질을 저온 발현시킨다. Step (b) is a step of further culturing the primary cultured medium at a low temperature. At this time, isopropyl β-D-1-thiogalactopyranoside is added and cultured, and the CAGE protein is expressed at low temperature by culturing at a lower temperature than the primary culture.

저온 발현에 적합한 배양 온도는 10 ∼ 20 ℃이며, 바람직하게는 14 ∼ 18 ℃이고, 더욱 바람직하게는 16 ℃이나, 이에 제한되지는 않는다. 추가 배양 시간은 10 ∼ 20 시간이며, 바람직하게는 12 ∼ 18 시간이고, 더욱 바람직하게는 15 시간이나, 이에 제한되지는 않는다.The incubation temperature suitable for low temperature expression is 10 to 20 째 C, preferably 14 to 18 째 C, more preferably 16 째 C, but is not limited thereto. The additional incubation time is 10 to 20 hours, preferably 12 to 18 hours, more preferably 15 hours, but is not limited thereto.

상기 이소프로필 β-D-1-티오갈락도피라노시드는 총량 대비 0.5 ~1 mM로 첨가될 수 있으며, 바람직하게는, 총량 대비 1 mM로 첨가될 수 있다.The isopropyl β-D-1-thiogalactopyranoside may be added in an amount of 0.5 to 1 mM based on the total amount, preferably 1 mM of the total amount.

본 발명의 다른 측면에 따라, (c) 가용성으로 생성된 CAGE 단백질을 포함하는 대장균을 원심분리하여 얻은 펠렛에 나트륨 라우로일 사르코시네이트를 첨가하여 용해하는 단계; (d) 용해된 세포를 초음파 처리하여 파쇄하는 단계; (e) 파쇄된 세포 파쇄물을 원심분리하여 그 상등액을 Q-음이온 교환 컬럼으로 정제하는 단계; (f) Ni2 +-하전된 Ni-NTA 컬럼으로 정제하는 단계; 및 (g) 사이즈 배제 크로마토그래피로 정제하는 단계를 포함하는 CAGE 단백질의 정제 방법이 제공된다.According to another aspect of the present invention, there is provided a method for producing a cucurbitidase inhibitor, comprising the steps of: (c) adding sodium lauroyl sarcosinate to a pellet obtained by centrifuging Escherichia coli containing solubilized CAGE protein; (d) sonicating and lysing the lysed cells; (e) centrifuging the disrupted cell lysate and purifying the supernatant with a Q-anion exchange column; (f) purifying the Ni 2 + -charged Ni-NTA column; And (g) purifying by size exclusion chromatography.

단계(c)는 저온발현 단계에 의하여 가용성으로 생성된 CAGE 단백질을 포함하는 대장균을 원심분리하여 얻은 펠렛에 나트륨 라우로일 사르코시네이트를 첨가하여 용해하는 단계이다.Step (c) is a step of adding sodium lauroyl sarcosinate to the pellet obtained by centrifuging Escherichia coli containing the CAGE protein, which has been solubilized by the low-temperature expression step, and dissolving it.

일 구현예에서, 상기 나트륨 라우로일 사르코시네이트를 0.1 내지 1 중량%로 첨가할 수 있으며, 바람직하게는, 0.5 중량%로 첨가할 수 있다.In one embodiment, the sodium lauroyl sarcosinate may be added in an amount of 0.1 to 1% by weight, preferably 0.5% by weight.

상기 나트륨 라우로일 사르코시네이트는 IUPAC 명칭은 나트륨[도데카노일(메틸)아미노]아세테이트(Sodium[dodecanoyl(methyl)amino]acetate)[CAS number 137-16-6, C15H28NNaO3, 분자량 293.38 g/mol)이며, 사코실(sarkosyl)로도 지칭된다.The sodium lauroyl sarcosinate has the IUPAC designation sodium [dodecanoyl (methyl) amino] acetate (CAS number 137-16-6, C 15 H 28 NNaO 3 , Molecular weight 293.38 g / mol), also referred to as sarkosyl.

단계(f)는 Ni2 +-하전된 Ni-NTA 컬럼을 이용하여 His-tag 결합된 단백질을 친화성 크로마토그래피로 분리하는 단계이며, 유속 5 ml/분으로 용출할 수 있다.Step (f) is a step of separating the His-tag-bound protein by affinity chromatography using a Ni 2 + -charged Ni-NTA column and eluting at a flow rate of 5 ml / min.

단계(g)는 사이즈 배제 크로마토그래피를 이용하여 특정 분자량의 단백질을 분리하는 단계이며, 유속 1 ml/분으로 용출할 수 있다.Step (g) is a step of separating a protein having a specific molecular weight using size exclusion chromatography, and can be eluted at a flow rate of 1 ml / min.

일 구현예에서, 상기 CAGE 단백질은 75 kDa일 수 있다.In one embodiment, the CAGE protein may be 75 kDa.

본 발명의 또 다른 측면에 따라, (a) CAGE(DDX53) 유전자가 삽입된 플라스미드를 포함하는 대장균을 35 ∼ 38 ℃에서 배양하는 1차 배양 단계; (b) 상기 1차 배양된 배양액에 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 10 ∼ 20 ℃에서 배양하는 2차 배양 단계; (c) 배양된 대장균을 원심분리하여 얻은 펠렛에 나트륨 라우로일 사르코시네이트를 첨가하여 용해하는 단계; (d) 용해된 세포를 초음파 처리하여 파쇄하는 단계; (e) 파쇄된 세포 파쇄물을 원심분리하여 그 상등액을 Q-음이온 교환 컬럼으로 정제하는 단계; (f) Ni2 +-하전된 Ni-NTA 컬럼으로 정제하는 단계; 및 (g) 사이즈 배제 크로마토그래피로 정제하는 단계를 포함하는 CAGE 단백질의 생산 및 정제 방법이 제공된다.According to another aspect of the present invention, there is provided a method for producing a recombinant E. coli strain comprising the steps of: (a) a primary culture step of culturing E. coli containing a plasmid into which a CAGE (DDX53) gene has been inserted at 35 to 38 占 폚; (b) a secondary culture step in which isopropyl β-D-1-thiogalactopyranoside is added to the primary cultured medium and cultured at 10 to 20 ° C; (c) adding sodium lauroyl sarcosinate to the pellet obtained by centrifuging the cultured Escherichia coli to dissolve the pellet; (d) sonicating and lysing the lysed cells; (e) centrifuging the disrupted cell lysate and purifying the supernatant with a Q-anion exchange column; (f) purifying the Ni 2 + -charged Ni-NTA column; And (g) purifying by size exclusion chromatography.

이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

실시예 1. Example 1. E. E. colicoli 에서in CAGE 단백질의 저온발현 Low Temperature Expression of CAGE Protein

(1) DDX53(CAGE) 유전자가 삽입된 플라스미드(plasmid)를 포함하는 E. coli 세포를 50 μg·ml-1 카나마이신(kanamycin)을 첨가한 LB 배지에서 배양하였다(37 ℃, A600=0.6).(One) E. coli cells containing a plasmid containing the DDX53 (CAGE) gene were cultured in LB medium supplemented with 50 μg · ml -1 kanamycin (37 ° C, A 600 = 0.6).

구체적으로, DDX53(CAGE) 유전자가 삽입된 플라스미드는 정방향 시발체 5'-ggg ccatgg gcatgcatcatcatcatcatcacatgtcccactgggccc-3'와 역방향 시발체 5'-ggg ggatcc tcaacttaaaaaataaaactccttgcg-3'(NcoI 과 BamHI 제한효소 자리를 각각 밑줄로 표시함)을 이용한 중합효소연쇄반응(PCR)을 통하여 인간 cDNA로부터 증폭하였다. 이후, 상기 증폭된 DDX53(CAGE) 유전자는 N-말단에 direct 6-히스티딘 표지를 갖는 DDX53(CAGE)를 발현하기 위한 pET-28a(Novagen, Madison, WI, 미국) 발현 플라스미드에 복제하였다. 발현하고자 하는 유전자의 뉴클레오티드 서열은 자동 순서화를 통하여 확인하였다.Specifically, the plasmid in which the DDX53 (CAGE) gene was inserted was designated as the forward primer 5'-ggg ccatgg gcatgcatcatcatcatcatacacatgtcccactgggccc-3 'and the reverse primer 5'-ggg ggatcc tcaacttaaaaaataaaactccttgcg-3' (NcoI and BamHI restriction sites are underlined respectively) Were amplified from human cDNA by polymerase chain reaction (PCR). The amplified DDX53 (CAGE) gene was then cloned into pET-28a (Novagen, Madison, Wis., USA) expression plasmid for expression of DDX53 (CAGE) having a direct 6-histidine label at its N-terminus. The nucleotide sequence of the gene to be expressed was confirmed by automatic sequencing.

Direct 6-히스티딘 표지가 태깅된 DDX53(CAGE) 단백질의 발현을 위해 대장균(E. coli) BL21 (DE3)RIPL을 형질전환(transform)시켰다. 50 mg/㎖ 카나마이신을 포함하며, 10 g/L 박토트립톤(Bacto Tryptone), 5 g/L 효모 추출물(yeast extract) 및 10 g/L NaCl이 녹아있는 신선한 LB(Luria-Bretani) 배지 1 L에 BL21 (DE3)RIPL세포를 10 ㎖씩 분주하여 넣고, OD600에서 약 0.6의 값을 가질 때까지 37 ℃에서 배양하였다. E. coli BL21 (DE3) RIPL was transformed for expression of DDX53 (CAGE) protein tagged with Direct 6-histidine tag. 1 L of fresh LB (Luria-Bretani) medium containing 50 mg / ml kanamycin and containing 10 g / L of Bacto Tryptone, 5 g / L of yeast extract and 10 g / , 10 ml of BL21 (DE3) RIPL cells were added to each well and cultured at 37 DEG C until OD600 reached about 0.6.

(2) 상기 배양된 대장균 배양액을 급냉하여 4 ℃에서 60분 동안 정치하였다. 정치된 대장균 배양액에서 DDX53(CAGE)의 발현을 유도하기 위하여 1mM IPTG(isopropyl β-D-1-thiogalactopyranoside)를 첨가한 후, 37 ℃에서 4시간 그리고 16 ℃(또는 37 ℃)에서 15시간 동안 대장균 세포들을 배양하였다.(2) The cultured E. coli culture solution was quenched and allowed to stand at 4 DEG C for 60 minutes. 1 mM IPTG (isopropyl beta-D-1-thiogalactopyranoside) was added to induce the expression of DDX53 (CAGE) in the culture medium of E. coli. After incubation at 37 ° C for 4 hours and at 16 ° C (or 37 ° C) Cells were cultured.

(3) 배양한 E. coli 세포를 원심분리하였다(5,000 rpm, 10분).(3) The cultured E. coli cells were centrifuged (5,000 rpm, 10 minutes).

(4) 상등액을 제거하고 세포 펠렛은 용해 완충액(20 mM HEPES, 300 mM NaCl, 10% glycerol, 및 0.5 mM β-mercaptoethanol, pH 8.0)으로 세척한 후, 동일한 rpm으로 다시 원심분리하여 깨끗한 펠렛을 수득하였다.(4) The supernatant was removed and the cell pellet was washed with lysis buffer (20 mM HEPES, 300 mM NaCl, 10% glycerol, and 0.5 mM β-mercaptoethanol, pH 8.0) and centrifuged again at the same rpm to obtain clean pellet .

(5) 0.5 % 사코실[Sarkosyl, 나트륨 라우로일 사르코시네이트(sodium lauroyl sarcosinate)]을 첨가하거나 첨가하지 않은 용해 완충액(20 mM HEPES, 300 mM NaCl, 10% glycerol, 및 0.5 mM β-mercaptoethanol, pH 8.0)을 세포 펠렛에 첨가하여 세포를 풀어주었다.(5) Lysis buffer (20 mM HEPES, 300 mM NaCl, 10% glycerol, and 0.5 mM [beta] -mercaptoethanol) supplemented with or without 0.5% sacosyl [sodium lauroyl sarcosinate] , pH 8.0) was added to the cell pellet to release the cells.

(6) 초음파 파쇄기를 이용하여 세포를 파쇄하였다(amplitude: 34%, reaction time: 10 min, pulse on: 2 sec, pulse off: 2 sec).(6) The cells were disrupted using an ultrasonic wave crusher (amplitude: 34%, reaction time: 10 min, pulse on: 2 sec, pulse off: 2 sec).

(7) 파쇄된 세포를 상등액과 펠렛으로 나누기 위해서 원심분리하였다(15,000 rpm, 20분). 상등액과 펠렛에서 CAGE 단백질이 발현되었는지 여부를 12.5% SDS-PAGE로 확인하였다.(7) The disrupted cells were centrifuged (15,000 rpm, 20 min) to separate supernatant and pellet. The presence of CAGE protein in the supernatant and pellet was confirmed by 12.5% SDS-PAGE.

그 결과, 도 2에 나타난 바와 같이, E. coli 세포주에서 사코실을 첨가하지 않고 37 ℃ 및 16 ℃에서 단백질 발현시킨 경우에는 단백질(75 kDa)이 2조건 모두에서 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에 포함된 것으로 나타났다.As a result, as shown in Fig. 2, when the protein was expressed at 37 DEG C and 16 DEG C without adding saccharose in the E. coli cell line, the protein (75 kDa) was expressed as insoluble in both conditions, (pellet, P).

그러나, 도 3에 나타난 바와 같이, 16 ℃ 배양 조건에 0.5 % 사코실을 첨가한 조건에서는 추출된 단백질의 용해도가 0.5 % 사코실이 첨가되지 않은 두 온도 조건(37 ℃ 및 16 ℃)에서 발현이 유도된 것보다 용해도가 향상된 것을 확인하였다 (도 3 참조). 즉, E. coli 세포주에서 단백질 발현 시, 37 ℃에서는 모두 불용성 상태로 존재였으나(A), 0.5 % 사코실을 첨가하고, 16 ℃에서 발현시킨 경우에는 CAGE 단백질(75 kDa)이 상등액(supernatant, S)에서 관찰되어(B) 가용성 단백질로 발현된 것을 확인하였다.However, as shown in Fig. 3, the solubility of the extracted protein in the condition of adding 0.5% sacocyl to the culture conditions of 16 ° C was lowered at two temperature conditions (37 ° C and 16 ° C) in which 0.5% It was confirmed that the solubility was improved than that induced (see Fig. 3). In the E. coli cell line, the protein was present in the insoluble state at 37 ° C, but when CAGE protein (75 kDa) was added at 0.5% sucrose and 16 ° C, the supernatant, S) and (B) it was confirmed to be expressed as a soluble protein.

실시예 2. Example 2. E. E. colicoli 에서in 발현된 CAGE 단백질의 정제 Purification of Expressed CAGE Protein

(1) 16 ℃ 저온발현 조건에 0.5 % 사코실이 첨가된 E. coli(상등액에서 CAGE 단백질이 발현된 세포)에서, 초음파를 이용한 세포 파쇄 및 원심분리 실험을 통해서 펠렛을 제거한 후, 상등액을 Q-음이온 교환 컬럼(volume: 5 ml)(HiTrapTM Q HP, GE Healthcare, Sweden)과 Ni2+-하전된 Ni-NTA 컬럼(volume: 5 ml)(HisTrapTM HP, GE Healthcare, Sweden)의 혼합된 정제 시스템(도 4 참조)에 로딩(loading)하였다.(1) Pellet was removed from E. coli ( cells expressing CAGE protein in supernatant) supplemented with 0.5% saccharose at a low temperature of 16 ° C by ultrasonic cell disruption and centrifugation, and the supernatant was purified by Q - Mixture of Ni 2+ -charged Ni-NTA column (volume: 5 ml) (HisTrap HP, GE Healthcare, Sweden) with anion exchange column (volume: 5 ml) (HiTrap Q HP, GE Healthcare, Sweden) (See Figure 4). ≪ / RTI >

(2) 샘플 로딩이 끝난 후 Ni-NTA 컬럼을 FPLC(Fast protein liquid chromatography) 장비에 부착하여 이미다졸 그래디언트(imidazole gradient)(step-wise) 방법으로 단백질을 분리/정제하였다. 용출 시간에 따른 용출액을 P1, P2, P3, P4, P5로 분리 수득하여 280 nm에서 흡광도를 측정하였고, 각 분획을 SDS-PAGE로 확인하였다(도 5 참조). 도 5에 나타난 바와 같이, P3에 두개의 밴드(75 kDa 및 20 kDa)를 나타내는 단백질이 확인되었다.(2) After the sample loading, the Ni-NTA column was attached to FPLC (Fast Protein Liquid Chromatography) equipment and the protein was separated / purified by imidazole gradient (step-wise) method. The eluate was separated into P1, P2, P3, P4 and P5 according to the elution time, and absorbance was measured at 280 nm. Each fraction was confirmed by SDS-PAGE (see FIG. 5). As shown in Fig. 5, a protein showing two bands (75 kDa and 20 kDa) in P3 was identified.

(3) 상기에서 분리 수득된 P2와 P3 분획을 센트리콘(centricon, MW:30,000)을 사용하여 500 ul로 농축하였다.(3) The P2 and P3 fractions obtained above were concentrated to 500 μl using Centricon (MW: 30,000).

(4) 농축된 단백질 샘플을 13,000 rpm에서 10분간 원심분리 후 시린지 필터(syringe filter, pore size : 0. 20 um)하여 응집화(aggregate) 또는 불순물을 제거하였다.(4) The concentrated protein samples were centrifuged at 13,000 rpm for 10 minutes, and syringe filters (pore size: 0.20 μm) were used to aggregate or remove impurities.

(5) 불순물이 제거된 단백질 샘플을 FPLC에 부착된 컬럼(superdex 200 10/300 GL column)으로 분리하여 280 nm에서 흡광도를 측정하였고, 각 분획을 SDS-PAGE로 확인하였다(도 6 참조). 도 6에 나타난 바와 같이, 두개의 밴드(75 kDa 및 20 kDa)가 분리된 것을 확인하였다.(5) The protein sample from which impurities were removed was separated into a column (Superdex 200 10/300 GL column) attached to the FPLC, and absorbance was measured at 280 nm. Each fraction was confirmed by SDS-PAGE (see FIG. 6). As shown in Fig. 6, it was confirmed that two bands (75 kDa and 20 kDa) were separated.

(6) 사이즈 배제 크로마토그래피를 통해 얻은 75 kDa의 밴드에 대하여 웨스턴 블럿(Western blot)으로 CAGE 단백질임을 확인하였다(도 7 참조).(6) The 75 kDa band obtained by size exclusion chromatography was confirmed to be a CAGE protein by Western blotting (see FIG. 7).

Claims (10)

CAGE(DDX53) 유전자가 삽입된 플라스미드를 포함하는 대장균을 35 ∼ 38 ℃에서 배양하는 1차 배양 단계;
(b) 상기 1차 배양된 배양액에 이소프로필 β-D-1-티오갈락도피라노시드를 첨가하여 16 ℃에서 배양하는 2차 배양 단계;
(c) 배양된 대장균을 원심분리하여 얻은 펠렛에 나트륨 라우로일 사르코시네이트를 0.5 중량%로 첨가하여 용해하는 단계;
(d) 용해된 세포를 초음파 처리하여 파쇄하는 단계;
(e) 파쇄된 세포 파쇄물을 원심분리하여 그 상등액을 Q-음이온 교환 컬럼으로 정제하는 단계;
(f) Ni2+-하전된 Ni-NTA 컬럼으로 정제하는 단계; 및
(g) 사이즈 배제 크로마토그래피로 정제하는 단계
를 포함하는 CAGE 단백질의 생산 및 정제 방법.
A first culture step of culturing E. coli containing a plasmid in which the CAGE (DDX53) gene is inserted at 35 to 38 DEG C;
(b) a secondary culture step in which isopropyl β-D-1-thiogalactopyranoside is added to the primary cultured medium and cultured at 16 ° C;
(c) adding 0.5% by weight of sodium lauroyl sarcosinate to the pellet obtained by centrifuging the cultured Escherichia coli and dissolving it;
(d) sonicating and lysing the lysed cells;
(e) centrifuging the disrupted cell lysate and purifying the supernatant with a Q-anion exchange column;
(f) purifying the Ni 2+ -charged Ni-NTA column; And
(g) Purification by size exclusion chromatography
≪ RTI ID = 0.0 > CAGE < / RTI >
제1항에 있어서, 단계(a)에서 대장균을 37 ℃에서 배양하는 것을 특징으로 하는 CAGE 단백질의 생산 및 정제 방법.The method according to claim 1, wherein Escherichia coli is cultured at 37 DEG C in step (a). 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 단계(f)의 상기 Ni2+-하전된 Ni-NTA 컬럼을 유속 5 ml/분으로 용출하는 것을 특징으로 하는 CAGE 단백질의 생산 및 정제 방법.The method of claim 1, wherein the Ni 2+ -charged Ni-NTA column of step (f) is eluted at a flow rate of 5 ml / min. 제1항에 있어서, 단계(g)의 상기 사이즈 배제 크로마토그래피를 유속 1 ml/분으로 용출하는 것을 특징으로 하는 CAGE 단백질의 생산 및 정제 방법.The method of claim 1, wherein said size exclusion chromatography of step (g) is eluted at a flow rate of 1 ml / min. 제1항에 있어서, 상기 CAGE 단백질이 75 kDa인 것을 특징으로 하는 CAGE 단백질의 생산 및 정제 방법.The method of claim 1, wherein the CAGE protein is 75 kDa. 삭제delete
KR1020170157593A 2017-11-23 2017-11-23 Method for production and purification of CAGE protein KR101884793B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170157593A KR101884793B1 (en) 2017-11-23 2017-11-23 Method for production and purification of CAGE protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170157593A KR101884793B1 (en) 2017-11-23 2017-11-23 Method for production and purification of CAGE protein

Publications (1)

Publication Number Publication Date
KR101884793B1 true KR101884793B1 (en) 2018-08-02

Family

ID=63251483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170157593A KR101884793B1 (en) 2017-11-23 2017-11-23 Method for production and purification of CAGE protein

Country Status (1)

Country Link
KR (1) KR101884793B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318738A1 (en) * 2008-12-23 2011-12-29 University Of Utah Research Foundation Identification and regulation of a novel dna demethylase system
KR20130010897A (en) 2010-03-30 2013-01-29 옥타파마 아게 Process for the purification of a growth factor protein
KR20140037726A (en) 2012-09-19 2014-03-27 한국표준과학연구원 Method for production, extraction and purification of soluble recombinant protein
WO2017176404A1 (en) * 2016-04-04 2017-10-12 Nat Diagnostics, Inc. Isothermal amplification components and processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318738A1 (en) * 2008-12-23 2011-12-29 University Of Utah Research Foundation Identification and regulation of a novel dna demethylase system
KR20130010897A (en) 2010-03-30 2013-01-29 옥타파마 아게 Process for the purification of a growth factor protein
KR20140037726A (en) 2012-09-19 2014-03-27 한국표준과학연구원 Method for production, extraction and purification of soluble recombinant protein
WO2017176404A1 (en) * 2016-04-04 2017-10-12 Nat Diagnostics, Inc. Isothermal amplification components and processes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NA H. et al, RNA 22(4):pp.1-20 (2016. 2. 4.) *
Palmer et al. Curr Protoc Protein Sci. 2004 November ; CHAPTER: Unit-6.3.
Schlager et al. BMC Biotechnology 2012, 12:95
Schütz P. et al, PLoS ONE 5(9):e12791 Table S1. (2010.10.) *

Similar Documents

Publication Publication Date Title
KR102522263B1 (en) Variants of DNA polymerases of the polX family
CN112424366B (en) Recombinant vector for producing antigen for diagnosing African swine fever and use thereof
AU2020102009A4 (en) In vitro expression of pear PbrRALF2 protein and preparation method of polyclonal antibody thereof
CN109384852B (en) Preparation, characterization and application of recombinant Martentoxin
Llompart et al. Protein production from recombinant protein bodies
KR101884793B1 (en) Method for production and purification of CAGE protein
EP4143331A2 (en) Fusion polypeptides for target peptide production
KR101527528B1 (en) Method for production, extraction and purification of soluble recombinant protein
CN112999341B (en) Edwardsiella tarda outer membrane protein vaccine and preparation and application thereof
KR20160093156A (en) Method for producing antimicrobial peptide using intein
CN113234747A (en) Expression and purification method of heat shock protein HSP60 and application thereof
KR101622373B1 (en) Method for producing antimicrobial peptide using insoluble green fluorescent protein as a scaffold
Jiang et al. Expression and purification of human WWP2 HECT domain in Escherichia coli
CN108178797B (en) Polyclonal antiserum for resisting bombyx mori BmSRC, preparation method and application
EP3409685B1 (en) Insoluble fusion protein comprising antimicrobial peptide and method for producing antimicrobial peptide using same
KR100351642B1 (en) Mass production method of beta amyloid using bacteria
KR20090018315A (en) Recombinant vector containing ptsl promoter and method for producing exogeneous proteins using the same
Schmidt et al. Purification of the M flax‐rust resistance protein expressed in Pichia pastoris
WO2016153150A1 (en) Recombinant expression system development of multi-disulfide bond peptide
CN116790616B (en) Gene for coding sCXCL16, expression vector, preparation method and application
Liu et al. Production and function of different regions from mytichitin-1 of Mytilus coruscus
CN113088505B (en) Application of polysaccharide lyase coding gene 04147 in preparation of recombinant peach gum polysaccharide hydrolase
KR102011291B1 (en) Novel fusion polypeptide and method of preparing human parathyroid hormone 1-34 using the same
KR20170013174A (en) Method for producing Polyclonal antibody against recombinant protein of mistletoe lectin B chain
CN113683707B (en) Antigen fusion protein, encoding gene and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant