KR101884455B1 - A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same - Google Patents

A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same Download PDF

Info

Publication number
KR101884455B1
KR101884455B1 KR1020170133659A KR20170133659A KR101884455B1 KR 101884455 B1 KR101884455 B1 KR 101884455B1 KR 1020170133659 A KR1020170133659 A KR 1020170133659A KR 20170133659 A KR20170133659 A KR 20170133659A KR 101884455 B1 KR101884455 B1 KR 101884455B1
Authority
KR
South Korea
Prior art keywords
mass
group
triazole compound
triazole derivative
formula
Prior art date
Application number
KR1020170133659A
Other languages
Korean (ko)
Inventor
임춘우
정소연
조현정
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020170133659A priority Critical patent/KR101884455B1/en
Application granted granted Critical
Publication of KR101884455B1 publication Critical patent/KR101884455B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/15Non-radioactive isotope labels, e.g. for detection by mass spectrometry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention relates to a triazole derivative as a hydrogen isotope substitutable mass tag molecule for quantitative mass spectrometry. The present invention relates to a triazole derivative as a mass tag molecule capable of hydrogen isotope substitution, a method for manufacturing the triazole derivative, and a method for using the derivative as a mass tag molecule. The method for manufacturing the triazole compound for mass tag comprises: reacting an azide compound with a compound containing a carbon triple bond under a copper catalyst to manufacture a triazole compound.

Description

정량적 질량 분석을 위한 수소 동위원소 치환 가능한 질량표지 분자로서의 트리아졸 유도체 및 그 제조방법{A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same}[0001] The present invention relates to a triazole derivative as a mass labeling molecule capable of substituting hydrogen isotopes for quantitative mass analysis and a method for producing the triazole derivative,

본 발명은 정량적 질량 분석을 위한 수소 동위원소 치환 가능한 질량표지(Mass tag) 분자로서의 트리아졸 유도체에 관한 것으로서, 수소 동위원소 치환 가능한 질량표지(Mass tag) 분자로서의 트리아졸 유도체, 이를 제조하는 방법 및 질량표지(Mass tag) 분자로 상기 유도체를 사용하는 방법에 관한 것이다.The present invention relates to a triazole derivative as a mass tag molecule capable of hydrogen isotope substitution for quantitative mass spectrometry, and more particularly, to a triazole derivative as a mass tag molecule capable of hydrogen isotope substitution, And a method of using the derivative as a mass tag molecule.

미량의 유기물을 질량 분석하는 경우, 분자량과 같은 정성분석은 가능하지만 정량적으로 분석하는 것은 어렵다. 특히 단백질이나 당체와 같은 생물학적으로 중요한 미량 물질의 분석에서 정상세포의 단백질과 비정상세포(예: 암세포)의 단백질 간의 정량적 비교가 단백질체 연구에서 매우 중요하다. Qualitative analysis such as molecular weight is possible, but quantitative analysis is difficult when mass spectrometry of trace organic matter. Quantitative comparison between proteins of normal cells and abnormal cells (eg cancer cells) in analysis of biologically important trace substances such as proteins and sugars is very important in the study of proteins.

비정상세포의 경우 정상세포에 비해 상대적으로 많거나 적은 단백질이 존재하는데, 이를 분석하기 위해서 질량분석을 이용할 수 있다. 이러한 경우, 단백질의 특정 아미노산에 선택적으로 결합할 수 있는 질량표지(mass tag) 물질을 이용한다. 이러한 질량표지 물질은 동위원소를 포함하는 경우, 동위원소(isotope) 간의 질량차이를 이용하여 NMR 또는 mass spectroscopy와 같은 질량분석을 통하여 정상세포와 비정상세포의 동일한 단백질의 상대적인 정량분석을 할 수 있다. In the case of abnormal cells, there are relatively more or fewer proteins compared to normal cells, and mass analysis can be used to analyze them. In this case, a mass tag substance capable of selectively binding to a specific amino acid of the protein is used. When such mass labeling substances include isotopes, the mass spectrometry such as NMR or mass spectroscopy can be used to perform relative quantitative analysis of the same proteins in normal and abnormal cells, using mass differences between isotopes.

이와 관련하여 미국공개특허 제2008-0124807호는 벤질아민 유도체를 사용하는 것을 특징으로 하는 단백질 질량표지를 개시하고 있다.In this connection, US Patent Publication No. 2008-0124807 discloses a protein mass label characterized by the use of a benzylamine derivative.

또한 한국공개특허 제2012-0018674호는 단백질과 펩티드의 정량분석을 위해서 동위원소를 포함하고 있는 화학표지물을 분석 대상 단백질 또는 펩티드에 표지한 후 질량 분석하는 방법을 개시하고 있다.Korean Patent Laid-Open Publication No. 2012-0018674 discloses a method for quantitatively analyzing proteins and peptides by labeling chemical labels containing isotopes on a protein or peptide to be analyzed and then mass-analyzing the proteins or peptides.

또한 한국공개특허 제2010-0009466호는 N-말단이 아실화되고 C-말단에 링커가 부착된 디펩티드의 구조를 지닌 라벨링제를 개시하고 있다. Korean Patent Publication No. 2010-0009466 discloses a labeling agent having a dipeptide structure in which an N-terminal is acylated and a linker is attached to a C-terminus.

그러나 상기 문헌에 개시된 기술은 표지물질로 사용되는 화합물이 상온에서 안정하지 않고, 표지물질로 사용되더라도 정확한 정량분석을 수행할 수 없는 문제점이 있다. However, the technique disclosed in the above document has a problem that a compound used as a labeling substance is not stable at room temperature and accurate quantitative analysis can not be performed even if it is used as a labeling substance.

미국공개특허 제2008-0124807호U.S. Published Patent Application No. 2008-0124807 한국공개특허 제2012-0018674호Korea Patent Publication No. 2012-0018674 한국공개특허 제2010-0009466호Korea Patent Publication No. 2010-0009466

본 발명은 동위원소를 쉽게 치환할 수 있고, 치환된 동위원소가 안정적으로 유지되어 정량적 질량 분석을 위한 질량표지 분자로 사용될 수 있는 트리아졸 유도체를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a triazole derivative which can easily replace an isotope and stably maintain a substituted isotope and can be used as a mass labeling molecule for quantitative mass analysis.

또한 본 발명은 상온에서 속도론적으로 안정하고, 고온에서 수소의 동위원소로 치환하여 표지물질로 사용함으로써 단백질 또는 당체의 정량분석을 정확하게 수행할 수 있는 트리아졸 유도체의 제조방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method for preparing triazole derivatives which can be quantitatively analyzed for proteins or sugar bodies by using a chelating agent stable at room temperature and substituting with isotopes of hydrogen at high temperatures as a labeling substance do.

상기와 같은 목적을 달성하기 위하여 본 발명은 아지드 화합물; 및 탄소 삼중결합을 포함하는 화합물을 구리 촉매 하에서 반응시켜 하기 화학식 1의 트리아졸 유도체를 제조하는 단계를 포함하는 질량표지용 트리아졸 유도체의 제조방법을 제공한다.To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, And a carbon triple bond under a copper catalyst to produce a triazole derivative represented by the following formula (1): < EMI ID = 1.0 >

[화학식 1][Chemical Formula 1]

Figure 112017101226677-pat00001
Figure 112017101226677-pat00001

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

본 발명의 일 실시예에 있어서, 상기 아지드 화합물은 3-아지도-1-프로판올이고, 상기 탄소 삼중결합을 포함하는 화합물은 탄소 삼중결합을 갖는 카르바졸 유도체인 것을 특징으로 한다.      In one embodiment of the present invention, the azide compound is 3-azido-1-propanol, and the compound containing the carbon triple bond is a carbazole derivative having a carbon triple bond.

본 발명의 일 실시예에 있어서, 상기 아지드 화합물은 아지드기를 갖는 덱스트린 유도체이고, 상기 탄소 삼중결합을 포함하는 화합물은 프로파길 알코올인 것을 특징으로 한다.       In one embodiment of the present invention, the azide compound is a dextrin derivative having an azide group, and the compound containing the carbon triple bond is a propargyl alcohol.

본 발명의 일 실시예에 있어서, 상기 제조방법은 상기 화학식 1의 트리아졸 유도체를 60~120℃에서 반응시켜 수소를 중수소로 치환함으로써 하기 화학식 2의 트리아졸 유도체를 제조하는 단계를 추가로 포함하는 것을 특징으로 한다.       In one embodiment of the present invention, the method further comprises the step of reacting the triazole derivative of Formula 1 at 60-120 ° C. to replace hydrogen with deuterium to produce a triazole derivative of Formula 2 .

[화학식 2](2)

Figure 112017101226677-pat00002
Figure 112017101226677-pat00002

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

또한 본 발명은 상기 제조방법에 의해 제조되는 하기 화학식 1의 질량표지용 트리아졸 유도체를 제공한다.      The present invention also provides a triazole derivative for mass labeling represented by the following formula (1), prepared by the above process.

[화학식 1][Chemical Formula 1]

Figure 112017101226677-pat00003
Figure 112017101226677-pat00003

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

아울러 본 발명은 상기 제조방법에 의해 제조되는 하기 화학식 2의 질량표지용 트리아졸 유도체를 제공한다.The present invention also provides a triazole derivative for mass labeling represented by the following formula (2), which is produced by the above process.

[화학식 2](2)

Figure 112017101226677-pat00004
Figure 112017101226677-pat00004

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

또한 본 발명은 상기 질량표지용 트리아졸 유도체를 포함하는 질량표지제를 제공한다. The present invention also provides a mass labeling agent comprising the triazole derivative for mass labeling.

아울러 본 발명은 상기 질량표지용 트리아졸 유도체를 단백질 또는 당체의 특정 결합기와 반응시키는 단계; 및 트리아졸 유도체가 결합된 단백질 또는 당체를 질량분석을 통하여 정량분석을 수행하는 단계를 포함하는 상기 질량표지용 트리아졸 유도체를 단백질 또는 당체의 정량분석에 사용하는 방법을 제공한다. In addition, the present invention provides a method for producing a mass spectrometric composition, comprising the steps of: reacting the mass-labeled triazole derivative with a specific binding group of a protein or a saccharide; And a step of carrying out a quantitative analysis of a protein or a saccharide conjugated with a triazole derivative through mass spectrometry, for use in quantitative analysis of a protein or a saccharide.

본 발명은 동위원소를 쉽게 치환할 수 있고, 치환된 동위원소가 안정적으로 유지되어 정량적 질량 분석을 위한 질량표지 분자로 사용될 수 있는 트리아졸 유도체를 제공할 수 있다. The present invention can provide a triazole derivative which can easily displace isotopes and stably maintain the substituted isotopes and can be used as mass labeling molecules for quantitative mass spectrometry.

또한 본 발명은 상온에서 속도론적으로 안정하고, 고온에서 수소의 동위원소로 치환하여 표지물질로 사용함으로써 단백질 또는 당체의 정량분석을 정확하게 수행할 수 있는 트리아졸 유도체의 제조방법을 제공할 수 있다.In addition, the present invention provides a method for preparing triazole derivatives which can be quantitatively analyzed for protein or sugar by using thionyl chloride as a labeling substance by substituting isotopes of hydrogen at a high temperature and kinetically stable at room temperature.

도 1은 구리 촉매 하에서 아지드 화합물(RN3)과 탄소 삼중결합을 포함하는 화합물의 클릭 반응(click reaction)을 나타낸 것이다.
도 2는 3-[4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-1-yl]propan-1-ol의 1H NMR 결과를 나타낸 것이다.
도 3은 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide의 1H NMR 결과를 나타낸 것이다.
도 4는 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide의 1H NMR 분석 결과를 나타낸 것이다.
도 5는 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide를 mass spectroscopy로 분석한 결과를 나타낸 것이다.
도 6은 덱스트린 유도체로부터 트리아졸 유도체의 합성 방법을 나타낸 것이다.
도 7은 Heptakis{6-(4-hydroxymethyl-1H-[1,2,3]triazol-1-yl)-6-deoxy}-β-cyclodextrin의 1H NMR 분석 결과를 나타낸 것이다.
도 8은 Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 1H NMR 분석 결과를 나타낸 것이다.
도 9는 Heptakis{6-(3-methyl-4-hydroxymethyl-1D-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 1H NMR 분석 결과를 나타낸 것이다.
도 10은 Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 1H NMR 분석 결과를 나타낸 것이다.
도 11은 D2O 용액 하에 상온에서 1주일 동안 방치한 Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 1H NMR 분석 결과를 나타낸 것이다.
도 12는 Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 mass spectroscopy 분석 결과를 나타낸 것이다. 도 13은 Heptakis{6-(3-methyl-4-hydroxymethyl-1D-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 mass spectroscopy 분석 결과를 나타낸 것이다.
도 14는 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide 및 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide (mass ratio = 2:7) 혼합물의 mass spectroscopy 을 나타낸다.
도 15는 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide 및 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide (mass ratio = 7:2) 혼합물의 mass spectroscopy 을 나타낸다.
Figure 1 shows the click reaction of a compound containing an azide compound (RN 3 ) and a carbon triple bond under a copper catalyst.
FIG. 2 shows the 1 H NMR results of 3- [4- (9-phenyl-9H-carbazol-3-yl) -1H-1,2,3-triazol-1-yl] propan-1-ol.
FIG. 3 shows the 1 H NMR results of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1H-1,2,3-triazol-3-ium iodide .
Figure 4 shows 1 H NMR analysis of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3- yl) -1D-1,2,3-triazol- The results are shown.
FIG. 5 shows mass spectroscopy analysis of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide .
6 shows a method for synthesizing a triazole derivative from a dextrin derivative.
FIG. 7 shows the 1 H NMR analysis results of Heptakis {6- (4-hydroxymethyl-1H- [1,2,3] triazol-1-yl) -6-deoxy} -β-cyclodextrin.
FIG. 8 shows the 1 H NMR analysis results of Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide.
9 shows the 1 H NMR analysis results of Heptakis {6- (3-methyl-4-hydroxymethyl-1D- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide.
FIG. 10 shows the 1 H NMR analysis results of Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide.
FIG. 11 is a graph showing the effect of heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide left to stand at room temperature for 1 week under D 2 O solution 1 H NMR analysis results.
FIG. 12 shows a mass spectroscopy analysis result of Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide. FIG. 13 shows mass spectroscopy results of Heptakis {6- (3-methyl-4-hydroxymethyl-1D- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide.
FIG. 14 is a graph showing the results of the reaction of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol- mass spectroscopy of a mixture of 3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide .
FIG. 15 is a graph showing the results of the reaction of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol- mass spectroscopy of a mixture of 3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide .

이하 실시예를 바탕으로 본 발명을 상세히 설명한다. 본 발명에 사용된 용어, 실시예 등은 본 발명을 보다 구체적으로 설명하고 통상의 기술자의 이해를 돕기 위하여 예시된 것에 불과할 뿐이며, 본 발명의 권리범위 등이 이에 한정되어 해석되어서는 안 된다.Hereinafter, the present invention will be described in detail based on examples. It is to be understood that the terminology, examples and the like used in the present invention are merely illustrative of the present invention in order to more clearly explain the present invention and to facilitate understanding of the ordinary artisan, and should not be construed as being limited thereto.

본 발명에 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 나타낸다.
본 발명에서 화학식 1의 트리아졸 유도체 및 화학식 2의 트리아졸 유도체는 트리아졸 유도체가 화학식 1 및 화학식 2의 구조를 가지는 것으로 이해될 수 있다. 즉, 화학식 1의 트리아졸 유도체는 화학식 1의 구조를 갖는 트리아졸 유도체를 의미하며, 따라서 화학식 1의 트리아졸 유도체는 화학식 1의 트리아졸 화합물을 의미한다.
Technical terms and scientific terms used in the present invention mean what the person skilled in the art would normally understand unless otherwise defined.
In the present invention, it is understood that the triazole derivative of the formula (1) and the triazole derivative of the formula (2) have the structure of the formula (1) and the formula (2). That is, the triazole derivative of the formula (1) means a triazole derivative having the structure of the formula (1), and therefore the triazole derivative of the formula (1) means the triazole compound of the formula (1).

본 발명은 아지드 화합물; 및 탄소 삼중결합을 포함하는 화합물을 구리 촉매 하에서 반응시켜 하기 화학식 1의 트리아졸 유도체를 제조하는 단계를 포함하는 질량표지용 트리아졸 유도체의 제조방법에 관한 것이다.The present invention relates to an azide compound; And a carbon triple bond in the presence of a copper catalyst to produce a triazole derivative represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112017101226677-pat00005
Figure 112017101226677-pat00005

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

상기 알킬기(alkyl), 알케닐기(alkenyl) 및 알키닐기(alkynyl)는 C1~C20인 것이 바람직하고, 상기 시클로알킬기(cycloalkyl) 및 시클로알케닐기(cycloalkenyl)는 C3~C30인 것이 바람직하며, 상기 아릴기(aryl)는 C6~C50인 것이 바람직하다. The alkyl, alkenyl and alkynyl groups are preferably C1 to C20, and the cycloalkyl group and the cycloalkenyl group are preferably C3 to C30, The aryl group is preferably C6 to C50.

상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 및 아릴기는 하이드록시, 아민, 아미드, 할로겐, 에스테르, 에테르, 우레탄, 아지드, 케톤, 알데히드, 카르복실산 등의 관능기를 포함할 수 있다. The alkyl group, the alkenyl group, the alkynyl group, the cycloalkyl group, the cycloalkenyl group and the aryl group may include a functional group such as a hydroxy, an amine, an amide, a halogen, an ester, an ether, a urethane, an azide, a ketone, an aldehyde, have.

상기 시클로알킬기, 시클로알케닐기 및 아릴기는 고리 내에 헤테로 원자를 가질 수 있으며, 시클로알킬기, 시클로알케닐기 또는 아릴기 만으로 구성될 필요는 없고, 시클로알킬기, 시클로알케닐기 또는 아릴기가 포함되기만 하면 된다. The cycloalkyl group, the cycloalkenyl group and the aryl group may have a hetero atom in the ring and need not be composed of only a cycloalkyl group, a cycloalkenyl group or an aryl group, but may include a cycloalkyl group, a cycloalkenyl group or an aryl group.

또한 상기 R1, R2 및 R3은 단백질 또는 당체의 특정 결합기와 반응할 수 있는 그룹이라면 제한 없이 사용될 수 있으며, 말레이미드기(maleimide), 알파-할로아세틸기(α-haloacetyl),

Figure 112017101226677-pat00006
,
Figure 112017101226677-pat00007
등의 관능기를 포함할 수 있다. R 1 , R 2 and R 3 can be used without limitation as long as they are capable of reacting with a specific binding group of a protein or a saccharide, and include maleimide, α-haloacetyl,
Figure 112017101226677-pat00006
,
Figure 112017101226677-pat00007
And the like.

본 발명은 동위원소를 쉽게 치환할 수 있고, 치환된 동위원소가 안정적으로 유지되는 트리아졸 유도체를 기술적 특징으로 한다. 상기 트리아졸 유도체의 수소는 중수소로 치환되어 단백질 또는 당체의 질량표지에 사용될 수 있다. The present invention is characterized by a triazole derivative which is capable of easily substituting an isotope and stably maintaining a substituted isotope. The hydrogen of the triazole derivative can be substituted for deuterium and used for mass labeling of protein or saccharide.

본 발명의 트리아졸 유도체는 질량표지 물질 또는 질량표지제로 사용되어 단백질 또는 당체의 정량분석을 정확하게 수행할 수 있다. The triazole derivative of the present invention can be used as a mass labeling substance or a mass labeling reagent to accurately perform quantitative analysis of a protein or a sugar.

상기 트리아졸 유도체는 고온(60~120℃)에서 수소를 수소의 동위원소인 중수소로 치환할 수 있고, 치환된 중수소는 상온에서 안정하게 유지되므로 단백질이나 당체의 분석 시 안정적으로 분석이 가능하다. The triazole derivative can replace hydrogen with deuterium, which is an isotope of hydrogen, at a high temperature (60 to 120 ° C), and the deuterium substituted is stably maintained at room temperature, so that it can be stably analyzed in the analysis of proteins or saccharides.

또한 역으로 다시 중수소를 고온에서 수소로 치환하여 정량분석에 이용하는 것도 가능하다. Conversely, it is also possible to use deuterium again for quantitative analysis by replacing deuterium with hydrogen at a high temperature.

Figure 112017101226677-pat00008
Figure 112017101226677-pat00008

상기 트리아졸 유도체는 상온에서 동위원소가 치환한 상태로 안정하게 유지되는 특성, 즉 상온에서 속도론적으로 안정하여 다른 동위원소로 치환되지 않고 치환된 상태를 그대로 유지한다. 다른 동위원소로 치환을 하기 위해서는 고온에서 다시 치환반응을 수행하면 된다. The triazole derivative is stable at a room temperature in a state of isotope substitution, that is, it is kinetically stable at room temperature, so that the triazole derivative remains unchanged and substituted with other isotopes. In order to substitute with another isotope, the substitution reaction may be carried out again at a high temperature.

상기 아지드 화합물은 아지드기를 포함하는 화합물이면 제한 없이 사용될 수 있으며, 3-아지도-1-프로판올 등이 바람직하다.      The azide compound can be used without limitation as long as it is a compound containing an azide group, and 3-azido-1-propanol and the like are preferable.

상기 탄소 삼중결합을 포함하는 화합물은 탄소 삼중결합을 포함하는 화합물이면 제한 없이 사용될 수 있으며, 탄소 삼중결합을 갖는 카르바졸 유도체 등이 바람직하다. The compound containing the carbon triple bond may be used without limitation as long as it is a compound containing a carbon triple bond, and a carbazole derivative having a carbon triple bond is preferable.

일예로서, 상기 트리아졸 유도체는 다음과 같은 과정을 통하여 구리 촉매 하에서 아지드 화합물(RN3)과 탄소 삼중결합을 갖는 화합물의 클릭 반응(click reaction)을 통하여 제조될 수 있다. 상기 클릭 반응 이후에 알킬레이션 반응을 수행하여 양이온을 도입할 수 있다(도 1). As an example, the triazole derivative can be prepared through a click reaction of a compound having an azide compound (RN 3 ) and a carbon triple bond under a copper catalyst through the following procedure. After the click reaction, an alkylation reaction can be performed to introduce cations (Fig. 1).

Figure 112017101226677-pat00009
Figure 112017101226677-pat00009

또한 상기 아지드 화합물은 아지드기를 갖는 덱스트린 유도체일 수 있고, 상기 탄소 삼중결합을 포함하는 화합물은 프로파길(propargyl) 알코올일 수 있다(도 6).       Also, the azide compound may be a dextrin derivative having an azide group, and the compound containing the carbon triple bond may be propargyl alcohol (FIG. 6).

Figure 112017101226677-pat00010
Figure 112017101226677-pat00010

상기 제조방법은 상기 화학식 1의 트리아졸 유도체를 마이크로웨이브(60~120℃, 10~60분, 10~60W)를 이용하여 반응시켜 수소를 중수소로 치환함으로써 하기 화학식 2의 트리아졸 유도체를 제조하는 단계를 추가로 포함할 수 있다.       The preparation method comprises reacting the triazole derivative of Formula 1 with microwave (60 to 120 ° C, 10 to 60 minutes, 10 to 60 W) to replace hydrogen with deuterium to prepare a triazole derivative of Formula 2 Step < / RTI >

[화학식 2](2)

Figure 112017101226677-pat00011
Figure 112017101226677-pat00011

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

상기 알킬기(alkyl), 알케닐기(alkenyl) 및 알키닐기(alkynyl)는 C1~C20인 것이 바람직하고, 상기 시클로알킬기(cycloalkyl) 및 시클로알케닐기(cycloalkenyl)는 C3~C30인 것이 바람직하며, 상기 아릴기(aryl)는 C6~C50인 것이 바람직하다. The alkyl, alkenyl and alkynyl groups are preferably C1 to C20, and the cycloalkyl group and the cycloalkenyl group are preferably C3 to C30, The aryl group is preferably C6 to C50.

상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 및 아릴기는 하이드록시, 아민, 아미드, 할로겐, 에스테르, 에테르, 우레탄, 아지드, 케톤, 알데히드, 카르복실산 등의 관능기를 포함할 수 있다. The alkyl group, the alkenyl group, the alkynyl group, the cycloalkyl group, the cycloalkenyl group and the aryl group may include a functional group such as a hydroxy, an amine, an amide, a halogen, an ester, an ether, a urethane, an azide, a ketone, an aldehyde, have.

상기 시클로알킬기, 시클로알케닐기 및 아릴기는 고리 내에 헤테로 원자를 가질 수 있으며, 시클로알킬기, 시클로알케닐기 또는 아릴기 만으로 구성될 필요는 없고, 시클로알킬기, 시클로알케닐기 또는 아릴기가 포함되기만 하면 된다. The cycloalkyl group, the cycloalkenyl group and the aryl group may have a hetero atom in the ring and need not be composed of only a cycloalkyl group, a cycloalkenyl group or an aryl group, but may include a cycloalkyl group, a cycloalkenyl group or an aryl group.

또한 상기 R1, R2 및 R3은 단백질 또는 당체의 특정 결합기와 반응할 수 있는 그룹이라면 제한 없이 사용될 수 있으며, 말레이미드기(maleimide), 알파-할로아세틸기(α-haloacetyl),

Figure 112017101226677-pat00012
,
Figure 112017101226677-pat00013
등의 관능기를 포함할 수 있다. R 1 , R 2 and R 3 can be used without limitation as long as they are capable of reacting with a specific binding group of a protein or a saccharide, and include maleimide, α-haloacetyl,
Figure 112017101226677-pat00012
,
Figure 112017101226677-pat00013
And the like.

상기 제조방법은 상기 제조된 트리아졸 유도체를 교반하고 필터링하는 단계; 및 정제하고 건조시키는 단계를 추가로 포함할 수 있다. The preparation method comprises stirring and filtering the triazole derivative prepared above; And purifying and drying.

또한 본 발명은 상기 제조방법에 의해 제조되는 하기 화학식 1의 질량표지용 트리아졸 유도체에 관한 것이다.       The present invention also relates to a triazole derivative for mass labeling represented by the following formula (1), which is produced by the above production method.

[화학식 1][Chemical Formula 1]

Figure 112017101226677-pat00014
Figure 112017101226677-pat00014

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

상기 알킬기(alkyl), 알케닐기(alkenyl) 및 알키닐기(alkynyl)는 C1~C20인 것이 바람직하고, 상기 시클로알킬기(cycloalkyl) 및 시클로알케닐기(cycloalkenyl)는 C3~C30인 것이 바람직하며, 상기 아릴기(aryl)는 C6~C50인 것이 바람직하다. The alkyl, alkenyl and alkynyl groups are preferably C1 to C20, and the cycloalkyl group and the cycloalkenyl group are preferably C3 to C30, The aryl group is preferably C6 to C50.

상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 및 아릴기는 하이드록시, 아민, 아미드, 할로겐, 에스테르, 에테르, 우레탄, 아지드, 케톤, 알데히드, 카르복실산 등의 관능기를 포함할 수 있다. The alkyl group, the alkenyl group, the alkynyl group, the cycloalkyl group, the cycloalkenyl group and the aryl group may include a functional group such as a hydroxy, an amine, an amide, a halogen, an ester, an ether, a urethane, an azide, a ketone, an aldehyde, have.

상기 시클로알킬기, 시클로알케닐기 및 아릴기는 고리 내에 헤테로 원자를 가질 수 있으며, 시클로알킬기, 시클로알케닐기 또는 아릴기 만으로 구성될 필요는 없고, 시클로알킬기, 시클로알케닐기 또는 아릴기가 포함되기만 하면 된다. The cycloalkyl group, the cycloalkenyl group and the aryl group may have a hetero atom in the ring and need not be composed of only a cycloalkyl group, a cycloalkenyl group or an aryl group, but may include a cycloalkyl group, a cycloalkenyl group or an aryl group.

또한 상기 R1, R2 및 R3은 단백질 또는 당체의 특정 결합기와 반응할 수 있는 그룹이라면 제한 없이 사용될 수 있으며, 말레이미드기(maleimide), 알파-할로아세틸기(α-haloacetyl),

Figure 112017101226677-pat00015
,
Figure 112017101226677-pat00016
등의 관능기를 포함할 수 있다. R 1 , R 2 and R 3 can be used without limitation as long as they are capable of reacting with a specific binding group of a protein or a saccharide, and include maleimide, α-haloacetyl,
Figure 112017101226677-pat00015
,
Figure 112017101226677-pat00016
And the like.

아울러 본 발명은 상기 제조방법에 의해 제조되는 하기 화학식 2의 질량표지용 트리아졸 유도체에 관한 것이다. The present invention also relates to a triazole derivative for mass labeling represented by the following formula (2), which is produced by the above production method.

[화학식 2](2)

Figure 112017101226677-pat00017
Figure 112017101226677-pat00017

(R1, R2 및 R3은 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 또는 아릴기임)(Wherein R 1 , R 2 and R 3 are independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group or an aryl group)

상기 알킬기(alkyl), 알케닐기(alkenyl) 및 알키닐기(alkynyl)는 C1~C20인 것이 바람직하고, 상기 시클로알킬기(cycloalkyl) 및 시클로알케닐기(cycloalkenyl)는 C3~C30인 것이 바람직하며, 상기 아릴기(aryl)는 C6~C50인 것이 바람직하다. The alkyl, alkenyl and alkynyl groups are preferably C1 to C20, and the cycloalkyl group and the cycloalkenyl group are preferably C3 to C30, The aryl group is preferably C6 to C50.

상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기 및 아릴기는 하이드록시, 아민, 아미드, 할로겐, 에스테르, 에테르, 우레탄, 아지드, 케톤, 알데히드, 카르복실산 등의 관능기를 포함할 수 있다. The alkyl group, the alkenyl group, the alkynyl group, the cycloalkyl group, the cycloalkenyl group and the aryl group may include a functional group such as a hydroxy, an amine, an amide, a halogen, an ester, an ether, a urethane, an azide, a ketone, an aldehyde, have.

상기 시클로알킬기, 시클로알케닐기 및 아릴기는 고리 내에 헤테로 원자를 가질 수 있으며, 시클로알킬기, 시클로알케닐기 또는 아릴기 만으로 구성될 필요는 없고, 시클로알킬기, 시클로알케닐기 또는 아릴기가 포함되기만 하면 된다. The cycloalkyl group, the cycloalkenyl group and the aryl group may have a hetero atom in the ring and need not be composed of only a cycloalkyl group, a cycloalkenyl group or an aryl group, but may include a cycloalkyl group, a cycloalkenyl group or an aryl group.

또한 상기 R1, R2 및 R3은 단백질 또는 당체의 특정 결합기와 반응할 수 있는 그룹이라면 제한 없이 사용될 수 있으며, 말레이미드기(maleimide), 알파-할로아세틸기(α-haloacetyl),

Figure 112017101226677-pat00018
,
Figure 112017101226677-pat00019
등의 관능기를 포함할 수 있다. R 1 , R 2 and R 3 can be used without limitation as long as they are capable of reacting with a specific binding group of a protein or a saccharide, and include maleimide, α-haloacetyl,
Figure 112017101226677-pat00018
,
Figure 112017101226677-pat00019
And the like.

최종적으로 수득된 트리아졸 유도체인 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide 및 Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide 로부터 NMR 분석을 통해 합성된 구조를 확인하였다.The final triazole derivative, 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1H-1,2,3-triazol-3-ium iodide And the structure synthesized by Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide through NMR analysis.

또한 고온에서 수소를 중수소로 치환하고, 중수소 치환된 트리아졸 유도체의 구조 및 안정성을 1H NMR 및 13C NMR을 통하여 확인하였으며, MicroQ-TOF III(ESI) mass spectrometer를 이용하여 중수소 치환을 동정하였다.The structure and stability of deuterium substituted triazole derivatives were confirmed by 1 H NMR and 13 C NMR, and deuterium substitution was identified using a MicroQ-TOF III (ESI) mass spectrometer .

본 발명의 트리아졸 유도체는 고온에서 중수소로 쉽게 치환이 되고, 중수소 치환 구조가 상온에서 안정적으로 유지되는 것을 확인하였다.The triazole derivative of the present invention was easily replaced with deuterium at a high temperature, and the deuterium substituted structure was stably maintained at room temperature.

본 발명의 상기 중수소 치환 트리아졸 유도체는 질량표지로 사용되어 단백질 및 당체와 결합함으로써 정량 분석이 가능하고, 단백질 및 당체의 상온에서의 구조 및 결합을 확인하는 용도로 사용될 수도 있다.       The deuterium-substituted triazole derivative of the present invention can be used as a mass marker to quantitatively analyze proteins and saccharides by binding thereto, and to confirm the structure and binding of proteins and saccharides at room temperature.

또한 본 발명은 상기 질량표지용 트리아졸 유도체를 포함하는 질량표지 분자, 질량표지 물질 또는 질량표지제에 관한 것이다. The present invention also relates to a mass labeling molecule, a mass labeling substance or a mass labeling agent comprising the triazole derivative for mass labeling.

상기 트리아졸 유도체는 단백질 및 당체의 특정 결합기와 반응함으로써 단백질 및 당체를 선택적으로 표지할 수 있다. The triazole derivative can selectively label proteins and saccharides by reacting with specific binding groups of proteins and saccharides.

아울러 본 발명은 상기 질량표지용 트리아졸 유도체를 단백질 또는 당체의 특정 결합기와 반응시키는 단계; 및 트리아졸 유도체가 결합된 단백질 또는 당체를 질량분석을 통하여 정량분석을 수행하는 단계를 포함하는 상기 질량표지용 트리아졸 유도체를 단백질 또는 당체의 정량분석에 사용하는 방법에 관한 것이다. In addition, the present invention provides a method for producing a mass spectrometric composition, comprising the steps of: reacting the mass-labeled triazole derivative with a specific binding group of a protein or a saccharide; And a step of performing quantitative analysis of a protein or a saccharide conjugated with a triazole derivative through mass spectrometry. The present invention relates to a method for quantitatively analyzing a triazole derivative for mass labeling.

이하 실시예를 통해 본 발명을 상세히 설명한다. 하기 실시예는 본 발명의 실시를 위하여 예시된 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. The following examples are intended to illustrate the practice of the present invention and are not intended to limit the scope of the present invention.

(실시예 1)(Example 1)

3-[4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-1-yl]propan-1-ol의 제조Preparation of 3- [4- (9-phenyl-9H-carbazol-3-yl) -1H-1,2,3-triazol-1-yl] propan-

3-ethynyl-9-phenyl-9H-carbazol(0.9g)을 DMF 8ml에 넣고 녹였다. 다 녹은 용액에 3-azido-1-propanol(0.37g, 3.72mmol, 2당량), DIPEA(0.24g, 1.86mmol, 1당량), CuI(30mg)을 첨가하고 Microwave를 이용하여 30분 동안 100℃에서 반응시키고, cuprisorb(2g)을 넣고 하루 동안 교반 시킨 후 필터링하였다. 3-ethynyl-9-phenyl-9H-carbazole (0.9 g) was dissolved in DMF (8 ml). (0.37 g, 3.72 mmol, 2 eq.), DIPEA (0.24 g, 1.86 mmol, 1 eq.) And CuI (30 mg) , And cuprisorb (2 g) was added thereto, stirred for one day, and filtered.

필터링 한 물질을 실리카 컬럼 크로마토그래피(전개 용매: n-hexane/ethyl acetate)를 이용하여 정제한 후 진공 상태 하에서 건조시켜 3-[4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-1-yl]propan-1-ol을 95%의 수득률로 얻었다. The filtered material was purified by silica column chromatography (eluent: n-hexane / ethyl acetate) and dried under vacuum to obtain 3- [4- (9-phenyl-9H-carbazol- -1,2,3-triazol-1-yl] propan-1-ol in 95% yield.

1H NMR (600 MHz, CDCl3): δ8.64 (d, 1H), 8.18-8.16 (d, 1H), 7.89 (s, 1H), 7.85-7.83 (q, 1H), 7.62-7.59 (q, 2H), 7.56-7.54 (q, 2H), 7.49-7.46 (m, 1H), 7.42-7.39 (q, 3H), 7.30-7.28 (m, 1H), 4.62-4.60 (t, 2H), 3.74-3.72 (t, 2H), 2.23-2.19 (m, 2H); One≪ 1 > H NMR (600 MHz, CDCl33): 隆 8.64 (d, 1H), 8.18-8.16 (d, 1H), 7.89 (s, 1H), 7.85-7.83 (q, 1H), 7.62-7.59 (q, 2H), 7.56-7.54 2H), 7.49-7.46 (m, 1H), 7.42-7.39 (q, 3H), 7.30-7.28 -2.19 (m, 2 H);

13C NMR (150MHz, CDCl3): δ141.3, 140.7, 137.4, 129.9, 129.8, 127.6, 127.0, 126.9, 126.2, 124.0, 123.7, 123.3, 122.5, 120.5, 120.2, 119.6, 117.7, 110.1, 109.9, 58.8, 47.0, 32.7 13≪ 1 > C NMR (150 MHz, CDCl33):? 141.3, 140.7, 137.4, 129.9, 129.8, 127.6, 127.0, 126.9, 126.2, 124.0, 123.7, 123.3, 122.5, 120.5, 120.2, 119.6, 117.7, 110.1, 109.9, 58.8, 47.0,

(실시예 2) (Example 2)

1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide의 제조Preparation of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3- yl) -1H-1,2,3-triazol-3-ium iodide

3-[4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-1-yl]propan-1-ol(0.1g, 0.27mmol)을 DMF 5ml에 넣고 녹였다. 다 녹은 용액에 CH3I(0.077g, 0.4mmol, 2 당량)을 첨가하고 46시간 동안 70℃에서 반응시키고, 용매를 제거하기 위해 필터링하였다. 3-yl) -1H-1,2,3-triazol-1-yl] propan-1-ol (0.1 g, 0.27 mmol) was added to 5 ml of DMF Melted. The melted solution was added CH 3 I (0.077g, 0.4mmol, 2 eq) and allowed to react at 70 ℃ for 46 hours, then filtered to remove the solvent.

필터링 한 물질을 실리카 컬럼 크로마토그래피(전개 용매: DCM/MeOH)를 이용하여 정제한 후 진공상태 하에서 건조시켜 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide을 60%의 수득률로 얻었다. The filtered material was purified by silica column chromatography (developing solvent: DCM / MeOH) and dried under vacuum to give 1- (3-hydroxypropyl) -3-methyl-4- (9- 3-yl) -1H-1,2,3-triazol-3-ium iodide in a yield of 60%.

1H NMR (600 MHz, DMSO): δ 9.22 (s, 1H), 8.67 (d, 1H), 8.35-8.34 (d, 1H), 7.76-7.71 (m, 3H), 7.66-7.65 (d, 2H), 7.61-7.57 (q, 2H), 7.53-7.51 (d, 1H), 7.42-7.39 (q, 2H), 4.79-4.77 (t, 1H), 4.74-4.72 (t, 2H), 4.37 (s, 3H), 3.56-3.53(q, 2H), 2.17-2.15 (t, 2H) One(M, 3H), 7.66-7.65 (d, 2H), 7.66-7.67 (d, IH) (T, 2H), 4.37 (s, 2H), 7.61-7.57 (q, 2H), 7.53-7.51 (d, 1H), 7.42-7.39 3H), 3.56-3.53 (q, 2H), 2.17-2.15 (t, 2H)

도 2는 합성한 3-[4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-1-yl]propan-1-ol의 1H NMR에 관한 것이고, FIG. 2 relates to 1 H NMR of the synthesized 3- [4- (9-phenyl-9H-carbazol-3-yl) -1H-1,2,3-triazol-1-yl] propan- ,

도 3은 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide의 1H NMR 분석 결과를 나타낸다. Figure 3 shows the 1 H NMR analysis of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3- yl) -1H-1,2,3-triazol-3-ium iodide Results are shown.

(실시예 3) (Example 3)

1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide의 제조 Preparation of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide

1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide(10 mg)을 CD3OD(1ml)에 넣고 microwave(65℃, 30분, 50W)를 이용하여 반응시켰다. 3-yl) -1,3-triazol-3-ium iodide (10 mg) was added to a CD 3 OD (1 ml) and reacted using microwave (65 ° C, 30 minutes, 50W).

1H NMR 분석 결과, 중수소의 치환으로 트리아졸의 수소에서 나오는 피크가 사라짐을 확인하였다(도 4). OneAs a result of 1 H NMR analysis, it was confirmed that the substitution of deuterium disappeared the peak of hydrogen from the triazole (Fig. 4).

1H NMR (600MHz, CD3OD): δ 8.57 (s, 1H), 8.30-8.28 (d, 1H), 7.72-7.69 (q, 3H), 7.60-7.56 (m, 4H), 7.52-7.49 (t, 1H), 7.41-7.39 (d, 1H), 7.37-7.36 (t, 2H), 4.57 (s, 1H), 4.39 (d, 3H), 3.75-3.73 (t, 2H), 2.33-3.31 (t, 2H); One≪ 1 > H NMR (600 MHz, CD3(M, 4H), 7.52-7.49 (t, 1 H), 7.41-7.39 (m, 4H), 7.60-7. (d, IH), 7.37-7.36 (t, 2H), 4.57 (s, IH), 4.39 (d, 3H), 3.75-3.73 (t, 2H), 2.33-3.31 (t, 2H);

GC-MS (FAB, positive): calculated 384.19 for C24DH22N4O+, observed 384 for [M]+GC-MS (FAB, positive): calculated 384.19 for C 24 DH 22 N 4 O + , observed 384 for [M] +

(실시예 4)(Example 4)

1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide의 상온에서의 안정성 시험Stability test at room temperature of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide

1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide의 상온에서의 안정성을 테스트하기 위해 생성된 분말을 25℃에서 1주일 동안 방치한 후에 mass spectroscopy를 통해 구조변화를 측정하였다(도 5). To test the stability of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide at room temperature The powder thus formed was allowed to stand at 25 ° C. for 1 week, and the structural change was measured by mass spectroscopy (FIG. 5).

생성된 분말의 mass spectroscopy는 시간에 따라 변화가 없으므로, 중수소 치환된 트리아졸 유도체는 상온에서 안정함을 확인할 수 있다. The mass spectroscopy of the resulting powder shows no change with time, so that it is confirmed that the deuterium substituted triazole derivative is stable at room temperature.

(실시예 5) (Example 5)

Heptakis{6-(4-hydroxymethyl-1H-[1,2,3]triazol-1-yl)-6-deoxy}-β-cyclodextrin의 제조Preparation of Heptakis {6- (4-hydroxymethyl-1H- [1,2,3] triazol-1-yl) -6-deoxy} -β-cyclodextrin

Heptakis-6-(deoxy-6-azido)-β-cyclodextrin(1g, 0.76mmol)을 DMF 4ml에 넣고 녹였다. 다 녹은 용액에 propargyl alcohol(0.46mL, 7.98mmol, 1.5당량), DIPEA(0.98mL, 5.32mmol, 1당량), CuI(0.03g, 0.16mmol)을 첨가하고 Microwave(100℃, 30분, 30W)를 이용하여 반응시키고, cuprisorb(1g)을 넣고 하루 동안 교반하여 구리를 제거한 후 필터링하였다. Heptakis-6- (deoxy-6-azido) -β-cyclodextrin (1 g, 0.76 mmol) was dissolved in 4 ml of DMF. (0.46 mL, 7.98 mmol, 1.5 eq.), DIPEA (0.98 mL, 5.32 mmol, 1 eq.) And CuI (0.03 g, 0.16 mmol) , Cuprisorb (1 g) was added, and the mixture was stirred for one day to remove copper and then filtered.

DMF와 propargyl alcohol을 제거하기 위해 rotary evaporator를 통해 증발시키고 DIPEA를 제거하기 위해 차가운 메탄올(35mL)을 가해 sonication 한다. sonication 한 후 침전물을 가압여과 후 진공 상태 하에서 건조시켜 Heptakis{6-(4-hydroxymethyl-1H-[1,2,3]triazol-1-yl)-6-deoxy}-β-cyclodextrin을 67.1%의 수득률로 얻었다. Evaporate through rotary evaporator to remove DMF and propargyl alcohol and sonicate with cold methanol (35 mL) to remove DIPEA. After sonication, the precipitate was filtered under pressure and dried under vacuum to give 67.1% of heptakis {6- (4-hydroxymethyl-1H- [1,2,3] triazol-1-yl) -6-deoxy} ≪ / RTI >

1H NMR (600MHz, DMSO-d6): δ 7.81 (s, 1H, H7), 5.97-5.96 (d, 1H, OH-2), 5.82 (s, 1H, OH-3), 5.07 (s, 1H, H1), 4.35-4.30 (q, 3H, H9, H6), 4.26-4.22 (q, 2H, H5, H6), 3.98 (s, 1H, H3), 3.66-3.64 (d, 1H, H2), 3.28-3.27 (d, 1H, H4) One≪ 1 > H NMR (600 MHz, DMSO-d6): [delta] 7.81 (s, 1H, H71H), 5.97-5.96 (d, 1H, OH-2), 5.82One), 4.35-4.30 (q, 3 H, H9, H6), 4.26-4.22 (q, 2H, H5, H6), 3.98 (s, 1H, H3), 3.66-3.64 (d, 1H, H2), 3.28-3.27 (d, 1H, H4)

(실시예 6) (Example 6)

Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 제조Preparation of Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide

Heptakis{6-(4-hydroxymethyl-1H-[1,2,3]triazol-1-yl)-6-deoxy}-β-cyclodextrin(1g, 0.587mmol, 1당량)을 DMF 4ml, CH3I(511.8μL, 8.22mmol, 14당량)에 순서대로 넣고 녹였다. 질소분위기에서 60℃에서 교반하고 TLC(2-propanol:ethyl acetate:water:28% 암모니아=6:1:3:1)로 반응을 확인하고 DMF를 제거하기 위해 rotary evaporator를 통해 증발시키고 메탄올(20mL)을 가해 고체 침전 후, 침전물을 가압여과 후 메탄올, ether 순으로 세정하고 진공 상태 하에서 건조시켜 Heptakis (1 g, 0.587 mmol, 1 eq.) Was dissolved in DMF (4 ml), CH 3 I ( 511.8 [mu] L, 8.22 mmol, 14 equivalents). The mixture was stirred at 60 ° C under a nitrogen atmosphere and the reaction was confirmed by TLC (2-propanol: ethyl acetate: water: 28% ammonia = 6: 1: 3: 1). The reaction mixture was evaporated on a rotary evaporator to remove DMF, ). After solid precipitation, the precipitate was filtered under pressure, washed with methanol and then ether, and dried under vacuum

Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide을 81.5%의 수득률로 얻었다. Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide in a yield of 81.5%.

1H NMR (600MHz, D2O): δ 8.45 (s, 1H, H7), 5.07-5.06 (d, 1H, H1), 5.00-4.98 (t, 1H, H6), 4.84-4.81 (q, 1H, H6), 4.72-4.70 (d, 2H, H9), 4.57-4.56 (m, 1H, H5), 4.24-4.15 (t, 3H, CH3), 3.94-3.91 (t, 1H, H3), 3.43-3.41 (q, 1H, H2), 3.31-3.28 (t, 1H, H4) One≪ 1 > H NMR (600 MHz, D2O): [delta] 8.45 (s, 1H, H7), 5.07-5.06 (d, 1H, HOne), 5.00-4.98 (t, 1H, H6), 4.84-4.81 (q, 1H, H6), 4.72-4.70 (d, 2H, H9), 4.57-4.56 (m, 1H, H5), 4.24-4.15 (t, 3H, CH3), 3.94-3.91 (t, 1H, H3), 3.43-3.41 (q, 1H, H2), 3.31-3.28 (t, 1H, H4)

13C NMR (214MHz, D2O): 38.54 (CH3), 52.33 (C9), 53.89 (C6), 68.57 (C5), 71.37 (C2), 72.01 (C3), 81.14 (C4), 101.75 (C1), 130.97 (C7), 143.33 (C8) 13C NMR (214 MHz, D2O): 38.54 (CH3), 52.33 (C 9), 53.89 (C 6), 68.57 (C 5), 71.37 (C 2), 72.01 (C 3), 81.14 (C 4), 101.75 (C 1), 130.97

ESI-MS: m/z 1221 [M-2I]2+, 772[M-3I]3+, 258[M-7I]7+ ESI-MS: m / z 1221 [M-2I] 2+, 772 [M-3I] 3+, 258 [M-7I] 7+

도 7은 Figure 7

Heptakis{6-(4-hydroxymethyl-1H-[1,2,3]triazol-1-yl)-6-deoxy}-β-cyclodextrin의 1H NMR 분석 결과에 관한 것이고, Heptakis {6- (4-hydroxymethyl- 1H- [1,2,3] triazol-1-yl) -6-deoxy} relates to 1 H NMR analysis of the -β-cyclodextrin,

도 8은Figure 8

Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 1H NMR 분석 결과에 관한 것이다. Heptakis {6- (3-methyl- 4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} relates to 1 H NMR analysis of the -β-cyclodextrin iodide.

(실시예 7)(Example 7)

Heptakis{6-(3-methyl-4-hydroxymethyl-1D-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 제조 Preparation of Heptakis {6- (3-methyl-4-hydroxymethyl-1D- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide

Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide(0.1g, 0.037mmol)을 D2O(1ml)에 넣고 microwave(100℃, 30분, 30W)를 이용하여 반응시켰다. Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide (0.1 g, 0.037 mmol) was added to D 2 O microwave (100 캜, 30 min, 30 W).

1H NMR 분석 결과, 중수소의 치환으로 트리아졸의 수소에서 나오는 피크(H7 피크)가 사라짐을 확인하였다(도 9). OneAs a result of 1 H NMR analysis, it was confirmed that the substitution of deuterium disappeared (H7 peak) from the hydrogen of the triazole (FIG. 9).

1H NMR (600MHz, D2O): δ 5.15 (s, 1H, H1), 5.08-5.05 (d, 1H, H6), 4.90-4.88 (d, 1H, H6), 4.81-4.80 (d, 2H, H9), 4.26-4.23 (t, 3H, CH3), 4.02-3.98 (m, 1H, H3), 3.53-3.52 (d, 1H, H2), 3.41-3.38 (t, 1H, H4) One≪ 1 > H NMR (600 MHz, D2O): [delta] 5.15 (s, 1H, HOne), 5.08-5.05 (d, 1H, H6), 4.90-4.88 (d, 1H, H6), 4.81-4.80 (d, 2H, H9), 4.26-4.23 (t, 3H, CH3), 4.02-3.98 (m, 1H, H3), 3.53-3.52 (d, 1H, H2), 3.41-3.38 (t, 1H, H4)

13C NMR (150MHz, D2O): 38.55 (CH3), 52.30 (C9), 53.82 (C6), 68.50 (C5), 71.36 (C2), 71.99 (C3), 81.12 (C4), 101.73 (C1), 130.67(C7), 143.19 (C8) 13≪ 1 > C NMR (150 MHz, D2O): 38.55 (CH3), 52.30 (C 9), 53.82 (C 6), 68.50 (C 5), 71.36 (C 2), 71.99 (C 3), 81.12 (C 4), 101.73 (C 1), 130.67

ESI-MS: m/z 1224 [M-2I]2+, 774[M-3I]3+, 259[M-7I]7 ESI-MS: m / z 1224 [M-2I] 2+, 774 [M-3I] 3+, 259 [M-7I] 7

(실시예 8) (Example 8)

Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 상온에서의 안정성 시험Stability test of Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide at room temperature

Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 상온에서의 안정성을 테스트하기 위해 25℃에서 1주일 동안 D2O 용액에 방치한 후에 1H NMR의 피크 변화를 관찰하였다(표 1, 도 10 및 11). To test the stability of Heptakis {6- (3-methyl-4-hydroxymethyl-1H- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide at room temperature, 2 O solution, and 1 H NMR peak change was observed (Table 1, Figs. 10 and 11).

이중수소로 치환 가능한 트리아졸의 H7 및 시클로덱스트린 내의 H3의 상대적인 적분비가 시간에 따라 거의 변화가 없으므로, 수소 치환된 트리아졸 유도체는 상온에서 안정함을 확인할 수 있다. It can be confirmed that the hydrogen-substituted triazole derivative is stable at room temperature since the relative integral ratio of H7 of triazole and H3 in cyclodextrin, which can be substituted with double hydrogen, hardly changes with time.

H7 적분 값H7 integral value H3 적분 값H3 integral value 적분비
(H7:H3)
Antagonistic
(H7: H3)
초기Early 42.9742.97 57.1357.13 0.75:10.75: 1 25℃에서 1주일 후After 1 week at 25 ° C 44.8044.80 55.2055.20 0.81:10.81: 1

도 12는 12 is a cross-

Heptakis{6-(3-methyl-4-hydroxymethyl-1H-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 mass spectroscopy 이고,Mass spectroscopy of Heptakis {6- (3-methyl-4-hydroxymethyl-IH- [1,2,3] triazolium) -6-deoxy} -? - cyclodextrin iodide,

도 13은 Figure 13

Heptakis{6-(3-methyl-4-hydroxymethyl-1D-[1,2,3]triazolium)-6-deoxy}-β-cyclodextrin iodide의 mass spectroscopy 을 나타낸다. Mass spectroscopy of Heptakis {6- (3-methyl-4-hydroxymethyl-1D- [1,2,3] triazolium) -6-deoxy} -β-cyclodextrin iodide.

수소 치환된 트리아졸 유도체와 중수소 치환된 트리아졸 유도체는 서로 상이한 피크를 나타내므로, 상기 트리아졸 유도체는 단백질 또는 당체의 정량분석에 효과적으로 사용될 수 있다. Since the hydrogen-substituted triazole derivative and the deuterium-substituted triazole derivative have different peaks from each other, the triazole derivative can be effectively used for quantitative analysis of protein or sugar.

도 14는 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide 및 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide (mass ratio = 2:7) 혼합물의 mass spectroscopy 을 나타낸다. FIG. 14 is a graph showing the results of the reaction of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol- mass spectroscopy of a mixture of 3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide .

도 15는 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1H-1,2,3-triazol-3-ium iodide 및 1-(3-hydroxypropyl)-3-methyl-4-(9-phenyl-9H-carbazol-3-yl)-1D-1,2,3-triazol-3-ium iodide (mass ratio = 7:2) 혼합물의 mass spectroscopy 을 나타낸다. FIG. 15 is a graph showing the results of the reaction of 1- (3-hydroxypropyl) -3-methyl-4- (9-phenyl-9H-carbazol- mass spectroscopy of a mixture of 3-methyl-4- (9-phenyl-9H-carbazol-3-yl) -1D-1,2,3-triazol-3-ium iodide .

2:7(H:D)2: 7 (H: D) 7:2(H:D)7: 2 (H: D) 383 m/z
peak intensity
383 m / z
peak intensity
109.26109.26 1,325.511,325.51
384 m/z
peak intensity
384 m / z
peak intensity
350.00350.00 390.73390.73
peak intensity ratiopeak intensity ratio 2:7(H:D)2: 7 (H: D) 7:2(H:D)7: 2 (H: D)

수소로 치환된 트리아졸 유도체와 이중수소로 치환된 트리아졸 유도체를 임의의 질량비로 혼합하여 GC-MS를 측정하였다. 383m/z와 384m/z의 peak intensity의 비는 혼합한 질량비와 동일하며, 이 결과로부터 정량적인 분석이 가능하다는 것을 확인하였다.The hydrogen-substituted triazole derivative and the double-hydrogen substituted triazole derivative were mixed at an arbitrary mass ratio and the GC-MS was measured. The ratio of the peak intensities of 383m / z and 384m / z is the same as the mass ratio of the mixed materials. From these results, it is confirmed that quantitative analysis is possible.

Claims (8)

아지드 화합물; 및 탄소 삼중결합을 포함하는 화합물을 구리 촉매 하에서 반응시켜 하기 화학식 3의 트리아졸 화합물 또는 하기 화학식 4의 트리아졸 화합물을 제조하는 단계를 포함하는 질량표지용 트리아졸 화합물의 제조방법.

[화학식 3]
Figure 112018028687813-pat00039


[화학식 4]
Figure 112018028687813-pat00040

Azide compounds; And a carbon triple bond under a copper catalyst to prepare a triazole compound represented by the following formula (3) or a triazole compound represented by the following formula (4).

(3)
Figure 112018028687813-pat00039


[Chemical Formula 4]
Figure 112018028687813-pat00040

제1항에 있어서,
상기 화학식 3의 트리아졸 화합물을 60~120℃에서 반응시켜 수소를 중수소로 치환함으로써 하기 화학식 5의 트리아졸 화합물을 제조하는 단계를 추가로 포함하는 질량표지용 트리아졸 화합물의 제조방법.

[화학식 5]
Figure 112018028687813-pat00041

The method according to claim 1,
Wherein the triazole compound of Formula 3 is reacted at 60 to 120 占 폚 to prepare a triazole compound of Formula 5 by replacing hydrogen with deuterium.

[Chemical Formula 5]
Figure 112018028687813-pat00041

제1항에 있어서,
상기 화학식 4의 트리아졸 화합물을 60~120℃에서 반응시켜 수소를 중수소로 치환함으로써 하기 화학식 6의 트리아졸 화합물을 제조하는 단계를 추가로 포함하는 질량표지용 트리아졸 화합물의 제조방법.

[화학식 6]
Figure 112018028687813-pat00042

The method according to claim 1,
Wherein the triazole compound of Formula 4 is reacted at 60 to 120 캜 to replace hydrogen with deuterium to produce a triazole compound of Formula 6 below.

[Chemical Formula 6]
Figure 112018028687813-pat00042

제1항의 제조방법에 의해 제조되는 질량표지용 트리아졸 화합물에 있어서,
상기 질량표지용 트리아졸 화합물은 하기 화학식 3의 트리아졸 화합물 또는 하기 화학식 4의 트리아졸 화합물인 것을 특징으로 하는 질량표지용 트리아졸 화합물.

[화학식 3]
Figure 112018028687813-pat00043


[화학식 4]
Figure 112018028687813-pat00044
The triazole compound for mass labeling according to claim 1,
Wherein the triazole compound for mass labeling is a triazole compound represented by the following formula (3) or a triazole compound represented by the following formula (4).

(3)
Figure 112018028687813-pat00043


[Chemical Formula 4]
Figure 112018028687813-pat00044
제2항의 제조방법에 의해 제조되는 하기 화학식 5의 질량표지용 트리아졸 화합물.

[화학식 5]
Figure 112018028687813-pat00045

A triazole compound for mass labeling represented by the following formula (5), which is produced by the production method of claim 2.

[Chemical Formula 5]
Figure 112018028687813-pat00045

제3항의 제조방법에 의해 제조되는 하기 화학식 6의 질량표지용 트리아졸 화합물.

[화학식 6]
Figure 112018028687813-pat00046

A triazole compound for mass labeling according to claim 6, which is produced by the process of claim 3.

[Chemical Formula 6]
Figure 112018028687813-pat00046

제4항 내지 제6항 중의 어느 한 항의 질량표지용 트리아졸 화합물을 포함하는 질량표지제.
A mass labeling agent comprising the triazole compound for mass labeling according to any one of claims 4 to 6.
제4항 내지 제6항 중의 어느 한 항의 질량표지용 트리아졸 화합물을 단백질 또는 당체의 특정 결합기와 반응시키는 단계; 및
상기 트리아졸 화합물이 결합된 단백질 또는 당체를 질량분석을 통하여 정량분석을 수행하는 단계를 포함하는 상기 질량표지용 트리아졸 화합물을 단백질 또는 당체의 정량분석에 사용하는 방법.
Reacting the mass labeling triazole compound of any one of claims 4 to 6 with a specific binding group of a protein or a sugar; And
Wherein the triazole compound for mass labeling is used for quantitative analysis of a protein or a saccharide, comprising the step of quantitatively analyzing the protein or saccharide conjugated with the triazole compound through mass spectrometry.
KR1020170133659A 2017-10-14 2017-10-14 A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same KR101884455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170133659A KR101884455B1 (en) 2017-10-14 2017-10-14 A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170133659A KR101884455B1 (en) 2017-10-14 2017-10-14 A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same

Publications (1)

Publication Number Publication Date
KR101884455B1 true KR101884455B1 (en) 2018-08-01

Family

ID=63227563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170133659A KR101884455B1 (en) 2017-10-14 2017-10-14 A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same

Country Status (1)

Country Link
KR (1) KR101884455B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120142935A1 (en) 2009-08-11 2012-06-07 Hein Jason E Copper catalyzed cycloaddition of organic azides and 1-haloalkynes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120142935A1 (en) 2009-08-11 2012-06-07 Hein Jason E Copper catalyzed cycloaddition of organic azides and 1-haloalkynes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chemistry - A European Journal (2014), 20(41), pp. 13181-13187 (2014. 08. 29.)
Scientific Reports (2015), 5, p. 13183- (2015. 08. 19.)

Similar Documents

Publication Publication Date Title
Bernatowicz et al. 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanylation of amines and its application to peptide synthesis
EP2922574B1 (en) Chemically cleavable group
EP3141537B1 (en) A labeling precursor compound and method for producing radioactive fluorine labeled compound using the same
EP2821791A1 (en) 3-aryl propiolonitrile compounds for thiol labeling
WO2003097650A1 (en) Methods for preparation of olanzapine polymorphic form i
EP4011867A1 (en) Crystal forms c and e of pyrazin-2(1h)-one compound and preparation method therefor
Ros et al. Synthesis of 3-alkyl-6-methyl-1, 2, 4, 5-tetrazines via a Sonogashira-type cross-coupling reaction
JP2008510020A6 (en) Impurities of anastrozole intermediate and use thereof
KR101884455B1 (en) A triazole derivative as mass tag molecule capable of hydrogen isotope substitution for quantitative mass analysis and a method manufacturing the same
Bakulev et al. Study of polyfunctional diazo compounds reactivity in heterocyclization by the method of intramolecular competitive reactions
CZ298659B6 (en) ((4-(2-Azido-3-methyl-5-oxotetrahydrofuran-2-yl)phenyl)hydrazono)propanedinitrile and method and reference composition for the determination of potentially genotoxic impurities in samples of levosimendan charges as well as use thereof
Soini et al. Preparation of monofunctional and phosphorescent palladium (II) and platinum (II) coproporphyrin labeling reagents
JP4186532B2 (en) Novel metal complex and method for determining amino acid sequence of protein using the same
WO2019168164A1 (en) Molecule for protein and/or peptide design
US20170266648A1 (en) Iron and cobalt catalyzed hydrogen isotope labeling of organic compounds
CN110603059B (en) Chemiluminescent androstenedione conjugates
EP3594200B1 (en) Radioactive fluorine-labeled precursor compound, and method for producing radioactive fluorine-labeled compound using same
EP3386974B1 (en) Water-soluble triazapyridinophane-based complexing agents and corresponding fluorescent lanthanide complexes
JPWO2006080210A1 (en) Reagent, method and kit for improving ionization efficiency, and use thereof
EP3966203B1 (en) A method for functionalization of an aromatic amino acid or a nucleobase
Vasil'chenko et al. New Ambidentate Ligands—Azomethin Derivatives of 1-Amino-3-methylbenzimidazoline-2-thion
Batog et al. Oxidative macrocyclocondensation of 3, 4-diaminofurazan and 4, 4′-diamino-3, 3′-azofurazan with dibromoisocyanurate. Crystal structures of hexa-and octadiazenofurazan macrocycles
Akyüz et al. Synthesis of New Coumarin-C3 Benzimidazole Hybrids and Their Urease Inhibition Studies
CN108727279B (en) Mmexiteman related substance D, preparation method and application thereof
JP2005049164A (en) Labelling reagent and method for sensitively measuring and quantifying peptide

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant