KR101877730B1 - Melt-blown fiber web improved electrical conductivity and manufacturing method thereof - Google Patents

Melt-blown fiber web improved electrical conductivity and manufacturing method thereof Download PDF

Info

Publication number
KR101877730B1
KR101877730B1 KR1020170020932A KR20170020932A KR101877730B1 KR 101877730 B1 KR101877730 B1 KR 101877730B1 KR 1020170020932 A KR1020170020932 A KR 1020170020932A KR 20170020932 A KR20170020932 A KR 20170020932A KR 101877730 B1 KR101877730 B1 KR 101877730B1
Authority
KR
South Korea
Prior art keywords
fiber web
melt
plating
electrical conductivity
nickel
Prior art date
Application number
KR1020170020932A
Other languages
Korean (ko)
Inventor
박수진
양혜미
한예지
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020170020932A priority Critical patent/KR101877730B1/en
Application granted granted Critical
Publication of KR101877730B1 publication Critical patent/KR101877730B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The present invention relates to a melt-blown fiber web. More specifically, the present invention relates to a technology for improving electrical conductivity of a melt-blown fiber web. According to the present invention, provided is a melt-blown fiber web with improved electrical conductivity. In addition, by providing the melt-blown fiber web with improved electrical conductivity, the fiber web is utilized as a filtering material, a moisture absorbing material, a sound absorbing material, an insulating material, a heat storing material, and an electromagnetic shielding material. A method for manufacturing the melt-down fiber web with improved electrical conductivity includes: a pellet manufacturing step; a radiating step; an activating step; and a plating step.

Description

전기전도성이 향상된 멜트블로운 섬유웹 및 이의 제조방법{MELT-BLOWN FIBER WEB IMPROVED ELECTRICAL CONDUCTIVITY AND MANUFACTURING METHOD THEREOF}[0001] MELT-BLOW FIBER WEB IMPROVED ELECTRICAL CONDUCTIVITY AND MANUFACTURING METHOD THEREOF [0002]

본 발명은 멜트블로운 섬유웹에 관한 것으로서, 더욱 상세하게는 멜트블로운 섬유웹의 전기전도성을 향상시키는 기술에 관한 것이다.The present invention relates to a meltblown fiber web, and more particularly to a technique for improving the electrical conductivity of a meltblown fiber web.

고분자를 이용한 섬유웹은 산업용 섬유소재로 널리 사용되고 있다. 현재에는 이들 섬유에 방오성, 항균성, 흡음성, 자외선 차단성, 전자파 차폐성등 여러 특수 기능을 부여한 고부가 기능성 섬유에 대한 연구개발이 활발하게 수행되고 있다. 하지만 고분자 기반 섬유는 전기부도체이기 때문에 발생한 정전기를 방전하지 못할 뿐만 아니라 전자파를 투과시키는 단점이 있어, 정전기 및 전자파 방지를 위한 소재로 활용이 어려운 실정이다.Fiber webs using polymers are widely used as industrial textile materials. At present, research and development on high value-added functional fibers imparting various special functions such as antifouling property, antibacterial property, sound absorption property, ultraviolet light shielding property and electromagnetic wave shielding property to these fibers are actively carried out. However, since polymer-based fibers are electrically insulated, they can not discharge generated static electricity and transmit electromagnetic waves. Therefore, it is difficult to use them as a material for preventing static electricity and electromagnetic waves.

최근 전자·통신기기의 사용의 급격한 증가로 전자파의 폐해에 관한 우려와 관심이 높아지고, 전자파가 인체에 부정적인 영향을 미치는 연구결과가 발표되면서 전자파 차폐 기술개발에 관심이 높아지고 있다. 차폐소재로서 섬유는 고분자 수지를 사용하여 저가로 양산화가 가능하며, 정량화를 동시에 충족시킬 수 있다. 하지만 고분자 섬유의 전기전도성이 현저히 떨어져 이를 보완하는 기술개발이 시급한 실정이다.Recently, as the use of electronic and communication devices has been rapidly increasing, there has been a growing concern and concern about the harmful effects of electromagnetic waves, and as a result of research on electromagnetic waves having a negative effect on the human body, interest in the development of electromagnetic wave shielding technology is increasing. As a shielding material, fibers can be mass-produced at a low cost by using a polymer resin, and can be quantified at the same time. However, it is urgent to develop a technology that compensates for the electrical conductivity of the polymer fibers.

본 발명의 목적은 전기전도성이 향상된 멜트블로운 섬유웹을 제공함에 있다.It is an object of the present invention to provide a meltblown fibrous web having improved electrical conductivity.

또한 본 발명의 다른 목적은 전기전도도가 향상 된 멜트블로운 섬유웹을 제공함으로써, 상기 섬유웹을 여과재, 흡수재, 흡음재, 절연재, 축열재 및 전자파 차폐제로 활용하는 방안을 제공함에 있다.Another object of the present invention is to provide a method for utilizing the fiber web as a filter medium, an absorbing material, a sound absorbing material, an insulating material, a heat storage material and an electromagnetic wave shielding material by providing a meltblown fiber web having improved electrical conductivity.

상기 목적을 달성하기 위하여, 본 발명은 전기전도성이 향상된 멜트블로운 섬유웹의 제조방법을 제공한다. 상기 멜트블로운 섬유웹의 제조방법은 폴리프로필렌(Polypropylene, PP) 수지를 용융압출하여 펠릿을 제조하는 펠릿제조단계, 펠릿을 열풍기류에 분사하여 섬유웹을 제조하는 방사단계, 금속염화물로 섬유웹 표면을 활성화 시키는 활성화 단계 및 표면이 활성화된 섬유웹을 니켈 도금하는 도금단계를 포함하는 것을 일 측면으로 한다.In order to achieve the above object, the present invention provides a method for producing a meltblown fibrous web having improved electrical conductivity. The method for producing the meltblown fibrous web includes a pellet manufacturing step for producing pellets by melt extruding a polypropylene (PP) resin, a spinning step for producing a fiber web by spraying the pellets into a hot air stream, An activation step of activating the surface, and a plating step of nickel plating the surface-activated fibrous web.

바람직하게는, 펠릿제조단계는 폴리프로필렌 수지를 온도 130 내지 200℃에서 용융압출한다. 또한 열풍기류는 공기 공급속도 80 내지 400m/s. 공기 공급온도 200 내지 350℃인 고속 열풍기류이다.Preferably, the pelletizing step melt-extrudes the polypropylene resin at a temperature of 130 to 200 캜. Also, the hot air current is supplied at an air supply speed of 80 to 400 m / s. And an air supply temperature of 200 to 350 ° C.

바람직하게는, 방사단계의 분사된 펠릿은 회전속도 60 내지 150mm/s인 수집체로 수집한다.Preferably, the injected pellets of the spinning stage are collected with an aggregate having a rotational speed of 60 to 150 mm / s.

바람직하게는, 금속염화물은 염화주석(SnCl2) 및 염화팔라듐(PdCl2) 중에서 선택되는 1이상이다. 또한 도금단계는 황산니켈 수화물(NiSO4·6H2O) 200 내지 350g/L, 염화니켈 수화물(NiCl2·6H2O) 30 내지 60g/L를 포함하는 도금액을 사용한다.Preferably, the metal chloride is at least one selected from tin chloride (SnCl 2 ) and palladium chloride (PdCl 2 ). Further, the plating step uses a plating solution containing 200 to 350 g / L of nickel sulfate hydrate (NiSO 4 · 6H 2 O) and 30 to 60 g / L of nickel chloride hydrate (NiCl 2 · 6H 2 O).

상기와 같은 본 발명에 따르면, 전기전도성이 향상 된 멜트블로운 섬유웹을 제공하는 효과가 있다.According to the present invention, it is possible to provide a meltblown fibrous web having improved electrical conductivity.

또한 전기전도도가 향상 된 멜트블로운 섬유웹을 제공함으로써, 상기 섬유웹을 여과재, 흡수재, 흡음재, 절연재, 축열재 및 전자파 차폐제로 활용하는 방안을 제공하는 효과가 있다.Further, by providing a meltblown fibrous web having improved electrical conductivity, it is possible to provide a method of utilizing the fibrous web as a filter medium, an absorbing material, a sound absorbing material, an insulating material, a heat storage material, and an electromagnetic wave shielding material.

또한 섬유웹 제조 시 멜트블로운 공정을 적용함으로서, 전기전도도가 향산된 섬유웹을 대량생산이 가능하다.In addition, by applying the meltblown process in the production of fiber web, it is possible to mass-produce a fibrous web having improved electrical conductivity.

도 1은 본 발명의 일 실시예에 따른 멜트블로운 섬유웹 제조과정의 도식화한 것이다.FIG. 1 is a schematic view of a process for producing a meltblown fiber web according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 형태에 따른 전기전도성이 향산된 멜트블로운 섬유웹의 제조방법은 폴리프로필렌(Polypropylene, PP) 수지를 용융압출하여 펠릿을 제조하는 펠릿제조단계, 펠릿을 열풍기류에 분사하여 섬유웹을 제조하는 방사단계, 금속염화물로 섬유웹 표면을 활성화시키는 활성화 단계 및 표면이 활성화된 섬유웹을 니켈 도금하는 도금단계를 포함한다.A method for producing a meltblown fibrous web enriched with electrical conductivity according to an embodiment of the present invention includes the steps of producing a pellet by melt extruding a polypropylene (PP) resin, pelletizing the pellet into a hot air stream, An activation step of activating the fiber web surface with metal chloride, and a plating step of nickel plating the surface-activated fiber web.

펠릿제조단계는 폴리프로필렌 수지를 130 내지 200℃에서 용융압출하는 것을 특징으로 한다. 구체적으로, 펠릿제조단계는 압출구는 3구이며, 직경은 5mm인 단축 압출성형기를 사용하고, 최종적으로 직경 2mm, 길이 10mm인 나노 복합형 펠릿을 제조한다. The pellet production step is characterized in that the polypropylene resin is melt-extruded at 130 to 200 ° C. Specifically, in the pellet production step, a nanocomposite pellet having a diameter of 2 mm and a length of 10 mm is finally manufactured using a single extrusion extruder having three extruded sections and a diameter of 5 mm.

방사단계의 열풍기류는 공기 공급 속도 80 내지 400m/s, 공기 공급 온도 200 내지 350℃인 고속 열풍기류인 것을 특징으로 한다. 상기 공기 공급 온도는 200 내지 350℃인 것이 바람직하다. 방사온도가 200℃미만일 경우 혼합물이 완전히 용융되지 않아 섬유가 끊어지거나 뭉치는 현상이 발생하고, 350℃를 초과할 경우 공기 공급 온도를 유지하는 비용이 증가하므로 바람직하지 않다.The hot air stream in the spinning stage is a high-speed hot air stream having an air supply rate of 80 to 400 m / s and an air supply temperature of 200 to 350 ° C. The air supply temperature is preferably 200 to 350 ° C. When the spinning temperature is lower than 200 ° C, the mixture is not completely melted and the fibers are broken or aggregated. When the temperature exceeds 350 ° C, the cost of maintaining the air supply temperature is increased.

또한 방사단계는 분사된 펠릿을 회전속도 600 내지 150mm/s인 수집체로 수집하는 것을 특징으로 한다. 수집체의 속도가 600mm/s 이상인 경우 나노섬유가 용융방사 후 수집체에서 연속적으로 수집되지 못해 끊어지는 현상이 발생해 바람직하지 못하며, 수집체의 속도가 150mm/s 이하인 경우는 용융방사 후 나노섬유가 적절한 속도로 수집되지 못해 섬유가 뭉치므로 바람직하지 않다.The spinning step is also characterized by collecting the injected pellets with an aggregate having a rotational speed of 600 to 150 mm / s. If the velocity of the collecting body is 600 mm / s or more, the nanofibers can not be continuously collected from the collecting body after the melt-spinning process, which is undesirable. If the speed of the collecting body is 150 mm / s or less, Can not be collected at an appropriate speed and the fibers are bundled, which is not desirable.

활성화단계의 금속염화물은 염화주석(SnCl2) 및 염화팔라듐(PdCl2) 중에서 선택되는 1이상인 것을 특징으로 한다. 염화주성 또는 염화팔라듐으로 활성화 시킬 경우 섬유 표면에 주석 이온과 팔라듐 이온이 형성된다. 상기 섬유표면에 형성된 주석이온과 팔라듐이온은 환원제로서 성능이 우수하여 니켈도금 효율을 향상시킨다.The metal chloride in the activation step is characterized by being at least one selected from tin chloride (SnCl 2 ) and palladium chloride (PdCl 2 ). When activated by chlorination or palladium chloride, tin and palladium ions are formed on the fiber surface. The tin ions and palladium ions formed on the surface of the fiber have excellent performance as a reducing agent, thereby improving the nickel plating efficiency.

도금단계는 황산니켈 수화물(NiSO4·6H2O) 200 내지 350g/L, 염화니켈 수화물(NiCl2·6H2O) 30 내지 60g/L를 포함하는 도금액을 사용하는 것을 특징으로 한다. 황산니켈 수화물이 200g/L 이하의 농도인 경우 니켈의 환원이 일어나기에 충분하지 못한 농도이며, 350g/L의 농도의 경우 니켈 이온이 과량 함유 되어 뭉침 현상이 발생할 수 있기 때문에 바람직하지 않다. 또한, 염화니켈 수화물의 경우 또한 30g/L의 농도는 환원이 일어나기에 충분하지 못한 농도이며, 60g/L의 농도의 경우 과량의 니켈 이온으로 뭉침 현상이 발생하기 때문에 바람직하지 않다.The plating step is characterized by using a plating solution containing 200 to 350 g / L of nickel sulfate hydrate (NiSO 4 · 6H 2 O) and 30 to 60 g / L of nickel chloride hydrate (NiCl 2 · 6H 2 O). When the concentration of nickel sulfate hydrate is less than 200 g / L, the concentration is not enough to cause reduction of nickel. When the concentration of 350 g / L is excessive, nickel ions are excessively contained and aggregation may occur. Also, in the case of nickel chloride hydrate, the concentration of 30 g / L is not enough to cause reduction, and the concentration of 60 g / L is not preferable because excessive nickel ions may cause aggregation.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1. One.

폴리프로필렌(PP) 수지를 압출성형기를 이용하여 130℃의 온도로 용융압출하여 펠릿을 제조한다. 제조된 펠릿은 멜트블로운(melt-blown)기기를 이용하여 공기공급속도 80m/s, 공기공급온도 200℃인 고속 열풍기류에 분사시켜 방사한다. 이때의 수집체의 회전속도는 60mm/s로 하고, 방사구금과 수집체간의 거리(die-to-collector-distance, DCD)를 100mm로 방사하여 고분자 섬유웹을 제조한다.The polypropylene (PP) resin is melt-extruded at a temperature of 130 캜 using an extruder to produce pellets. The prepared pellets are sprayed into a high-speed hot air stream having an air supply rate of 80 m / s and an air supply temperature of 200 ° C by means of a melt-blown apparatus. The spinning speed of the collector at this time is 60 mm / s, and the distance between the spinneret and the collector (DCD) is 100 mm to produce a polymer fiber web.

제조된 섬유웹을 5M 질산수용액으로 30분 동안 전처리하고, 세척 및 건조한다. 또한 질산수용액으로 전처리 된 섬유웹을 염화주석(SnCl2)용액에서 5분 동안 활성화 시킨 후 세척한다. 그리고 염화팔라듐(PdCl2) 용액에서 5분 동안 활성화시킨다. 활성화 된 섬유웹을 니켈 무전해 도금액에 넣어, 온도 50℃에서 1분간 담지하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다. 상기 니켈 무전해 도금액의 조성은 NiSO46H2O 280g/L, NiCl26H2O 40g/L, Na3C6H5O71.5H2O 15g/L, NaH2PO22H2O 100g/L, NH4Cl 100g/L 및 PbNO3 30g/L이다.The prepared fibrous web is pretreated with 5M nitric acid aqueous solution for 30 minutes, washed and dried. Also, the fibrous web pretreated with aqueous nitric acid solution is activated for 5 minutes in tin chloride (SnCl 2 ) solution and then washed. And activated in a solution of palladium chloride (PdCl 2 ) for 5 minutes. The activated fiber web is placed in a nickel electroless plating solution and is held at a temperature of 50 ° C for 1 minute to prepare a nickel-coated meltblown fiber web. The composition of the nickel electroless plating solution NiSO 4 6H 2 O 280g / L , NiCl 2 6H 2 O 40g / L, Na 3 C 6 H 5 O 7 1.5H 2 O 15g / L, NaH 2 PO 2 2H 2 O 100g / L, NH 4 Cl 100 g / L and PbNO 3 30 g / L.

실시예Example 2. 2.

상기 실시예 1과 동일하게 실시하되, 공기공급속도를 100m/s, 수집체의 회전속도 80mm/s로 한다. 또한 염화주석(SnCl2)용액과 염화팔라듐(PdCl2)을 이용한 활성화를 각각 10분간 수행한다. 또한 도금을 온도 60℃에서 3분간 수행하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The same procedure as in Example 1 was carried out except that the air supply rate was 100 m / s and the rotation speed of the collector was 80 mm / s. Activation with tin chloride (SnCl 2 ) solution and palladium chloride (PdCl 2 ) is also carried out for 10 minutes each. The plating was also carried out at a temperature of 60 캜 for 3 minutes to prepare a nickel-coated meltblown fiber web.

실시예Example 3. 3.

상기 실시예 2와 동일하게 실시하되, 용융압출 온도를 150℃, 공기공급속도 150m/s, 공기 공급온도를 250℃로 한다. 또한 수집체의 회전속도는 100mm/s로 하고, DCD를 120mm로 하여 방사한다. 그 후 염화주석(SnCl2)용액을 이용한 활성화 20분, 염화팔라듐(PdCl2)을 이용한 활성화를 10분간 수행한다. 또한 도금을 온도 70℃에서 5분간 수행하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The same procedure as in Example 2 was carried out except that the melt extrusion temperature was 150 캜, the air supply rate was 150 m / s, and the air supply temperature was 250 캜. Also, the rotation speed of the collector is 100 mm / s, and the DCD is 120 mm. Thereafter, activation with tin chloride (SnCl 2 ) solution for 20 minutes and activation with palladium chloride (PdCl 2 ) is carried out for 10 minutes. The plating was also carried out at a temperature of 70 캜 for 5 minutes to prepare a nickel-coated meltblown fiber web.

실시예Example 4. 4.

상기 실시예 3과 동일하게 실시하되, 공기공급속도 200m/s, DCD를 150mm로 하며, 그 후 염화주석(SnCl2)용액과 염화팔라듐(PdCl2)을 이용한 활성화를 각각 20분동안 수행한다. 또한 도금온도 80℃, 도금시간 10분으로 하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The same procedure as in Example 3 was carried out except that the air supply rate was 200 m / s and the DCD was 150 mm. After that, activation using tin chloride (SnCl 2 ) solution and palladium chloride (PdCl 2 ) was carried out for 20 minutes each. Further, a nickel-coated meltblown fiber web was prepared at a plating temperature of 80 캜 and a plating time of 10 minutes.

실시예Example 5. 5.

상기 실시예 4와 동일하게 실시하되, 용융압출 온도를 150℃, 공기공급온도를 300℃로 한다. 또한 수집체의 회전속도는 120mm/s로 하고, DCD를 200mm로 하여 방사한다. 그 후 염화주석(SnCl2)용액와 염화팔라듐(PdCl2)을 이용한 활성화를 각각 20분간 수행한다. 또한 도금온도 85℃, 도금시간 10분으로 하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The same procedure as in Example 4 was carried out except that the melt extrusion temperature was 150 ° C and the air supply temperature was 300 ° C. Also, the rotating speed of the collector is set to 120 mm / s and the DCD is set to 200 mm. Thereafter, activation with a solution of tin chloride (SnCl 2 ) and palladium chloride (PdCl 2 ) is carried out for 20 minutes each. Also, the nickel-coated meltblown fiber web was prepared at a plating temperature of 85 ° C and a plating time of 10 minutes.

실시예Example 6. 6.

상기 실시예 4와 동일하게 실시하되, 공기 공급속도를 300m/s로, DCD를250mm로 하여 방사한다. 그 후 염화주석(SnCl2)용액을 이용한 활성화 30분, 염화팔라듐(PdCl2)을 이용한 활성화를 45분간 수행한다. 또한 도금온도 90℃, 도금시간 20분으로 하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The same procedure as in Example 4 was carried out except that the air feeding rate was 300 m / s and the DCD was 250 mm. The activation is then carried out for 30 minutes with tin chloride (SnCl 2 ) solution and with palladium chloride (PdCl 2 ) for 45 minutes. Further, a nickel-coated meltblown fiber web was prepared at a plating temperature of 90 ° C and a plating time of 20 minutes.

실시예Example 7. 7.

상기 실시예 6과 동일하게 실시하되, 용융압출온도를 200℃, 공기공급온도를 350℃로 한다. 이 때 수집체의 회전속도는 150mm/s로하고 DCD를 300mm로 하여 방사한다. 그 후 염화주석(SnCl2)용액와 염화팔라듐(PdCl2)을 이용한 활성화를 각각 45분간 수행한다. 또한 도금온도 100℃하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The same procedure as in Example 6 was carried out except that the melt extrusion temperature was 200 占 폚 and the air supply temperature was 350 占 폚. At this time, the rotation speed of the collecting body is 150 mm / s and the DCD is 300 mm. Subsequently, the activation with a solution of tin chloride (SnCl 2 ) and palladium chloride (PdCl 2 ) is carried out for 45 minutes each. Further, a plating temperature of 100 占 폚 is used to produce a nickel-coated meltblown fibrous web.

실시예Example 8. 8.

상기 실시예 7과 동일하게 실시하되, 공기공급 송도를 400m/s로 하고, DCD를 400mm로 하여 방사한다. 그 후 염화주석(SnCl2)용액과 염화팔라듐(PdCl2)을 이용한 활성화를 각각 60분간 수행한다. 또한 도금시간 30분으로 하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The same procedure as in Example 7 was carried out except that the air feeding rate was 400 m / s and the DCD was 400 mm. Subsequently, activation with a solution of tin chloride (SnCl 2 ) and palladium chloride (PdCl 2 ) is carried out for 60 minutes each. Also, a nickel-coated meltblown fiber web was prepared at a plating time of 30 minutes.

비교예Comparative Example 1. One.

상기 실시예 5와 동일하게 과정을 실시하되, 펠릿을 제조하지 않고 방사하여 니켈이 코팅된 멜트블로운 섬유웹을 제조한다.The procedure of Example 5 was followed except that the meltblown fibrous web coated with nickel was prepared by spinning without preparing the pellets.

비교예Comparative Example 2.  2.

상기 실시예 5와 동일하게 실시하되, 무전해 니켈도금을 하지 않고 멜트블로운 섬유웹을 측정하였다. A meltblown fiber web was measured in the same manner as in Example 5 except that electroless nickel plating was not performed.

실시예에 따른 니켈이 코팅된 멜트블로운 섬유웹의 제조조건Preparation conditions of the nickel-coated meltblown fiber web according to the examples 샘플명Sample name 용융압출 부분의 온도
(oC)
The temperature of the melt extruded part
( o C)
공기 공급속도
(m/s)
Air supply speed
(m / s)
공기 공급온도
(oC)
Air supply temperature
( o C)
수집체
회전속도
(mm/s)
Collector
Rotation speed
(mm / s)
DCD
(mm)
DCD
(mm)
SnCl2
활성화 시간(min)
SnCl 2
Activation time (min)
PdCl2
활성화
시간(min)
PdCl 2
Activation
Time (min)
도금온도 (oC)Plating temperature ( o C) 도금시간 (min)Plating time (min)
실시예 1Example 1 130130 8080 200200 6060 100100 55 55 5050 1One 실시예 2Example 2 130130 100100 200200 8080 100100 1010 1010 6060 33 실시예 3Example 3 150150 150150 250250 100100 120120 2020 1010 7070 55 실시예 4Example 4 150150 200200 250250 100100 150150 2020 2020 8080 1010 실시예 5Example 5 180180 200200 300300 120120 200200 3030 3030 8585 1010 실시예 6Example 6 180180 300300 300300 120120 250250 3030 4545 9090 2020 실시예 7Example 7 200200 300300 350350 150150 300300 4545 4545 100100 2020 실시예 8Example 8 200200 400400 350350 150150 400400 6060 6060 100100 3030 비교예 1Comparative Example 1 -- 200200 300300 120120 200200 -- -- -- -- 비교예 2Comparative Example 2 180180 200200 300300 120120 200200 -- -- -- --

측정예Measurement example 1. 전기전도도 측정 1. Electrical Conductivity Measurement

Four-probe point method with resistivity tester(MCP-T610,Misubishi Chemical Analytech Co., Ltd.)을 통해 각 실시예에 따라 제조된 멜트블로운 섬유웹의 비저항를 측정하였다. 측정한 비저항 값을 이용하여 전기전도도를 계산하였다.The resistivity of the meltblown fiber web prepared according to each example was measured through a four-probe point method with a resistivity tester (MCP-T610, Misubishi Chemical Analytech Co., Ltd.). The electrical conductivity was calculated using the measured resistivity values.

실시예에 따른 니켈이 코팅된 멜트블로운 섬유웹의 전기전도도 측정 결과The electrical conductivity measurement results of the nickel-coated meltblown fiber web according to the examples 비저항 (Ω*cm)Resistivity (Ω * cm) 실시예 1Example 1 5.34 x 101 5.34 x 10 1 실시예 2Example 2 8.21 x 100 8.21 x 10 0 실시예 3Example 3 1.02 x 10-1 1.02 x 10 -1 실시예 4Example 4 7.46 x 10-2 7.46 x 10 -2 실시예 5Example 5 3.07 x 10-4 3.07 x 10 -4 실시예 6Example 6 9.75 x 10-3 9.75 x 10 -3 실시예 7Example 7 6.44 x 10-2 6.44 x 10 -2 실시예 8Example 8 9.17 x 100 9.17 x 10 0 비교예 1Comparative Example 1 9.83 x 103 9.83 x 10 3 비교예 2Comparative Example 2 3.07 x 103 3.07 x 10 3

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

폴리프로필렌(Polypropylene, PP) 수지를 용융압출하여 펠릿을 제조하는 펠릿제조단계;
펠릿을 열풍기류에 분사하여 섬유웹을 제조하는 방사단계;
금속염화물로 섬유웹 표면을 활성화시키는 활성화단계; 및
표면이 활성화된 섬유웹을 니켈 도금하는 도금단계를 포함하고,
상기 펠릿제조단계는 폴리프로필렌 수지를 온도 150 내지 200 ℃에서 용융압출하고,
상기 열풍기류는 공기 공급속도 200 내지 300 m/s, 공기 공급온도 250 내지 350 ℃인 고속 열풍기류이고,
상기 방사단계는 분사된 펠릿을 회전속도 100 내지 150 mm/s인 수집체로 수집하고,
상기 금속염화물은 염화주석(SnCl2) 및 염화팔라듐(PdCl2)을 중에서 선택되는 1 이상 이고,상기 도금 단계는 황산니켈 수화물(NiSO4·6H2O) 280g/L, 염화니켈 수화물(NiCl2·6H2O) 40 g/L, 시트르산나트륨 수화물(Na3C6H5O7·1.5H2O) 15g/L, 인산나트륨 수화물(NaH2PO2·2H2O) 100 g/L 를 포함하는 도금액을 사용하는 것을 특징으로 하는 전기전도성이 향상된 멜트블로운 섬유웹의 제조방법.

A pellet manufacturing step of producing a pellet by melt-extruding a polypropylene (PP) resin;
A spinning step of spinning the pellets into a hot air stream to produce a fibrous web;
An activation step of activating the fiber web surface with a metal chloride; And
And a plating step of nickel plating the surface-activated fibrous web,
The pellet-making step comprises melt-extruding the polypropylene resin at a temperature of 150 to 200 DEG C,
The hot air current is a high-speed hot air current having an air supply rate of 200 to 300 m / s and an air supply temperature of 250 to 350 DEG C,
The spinning step collecting the injected pellets with an aggregate having a rotation speed of 100 to 150 mm / s,
The metal chloride is stannous chloride (SnCl 2), and is 1 or more selected from palladium chloride (PdCl 2), the plating step of nickel sulfate hydrate (NiSO 4 · 6H 2 O) 280g / L, nickel chloride hydrate (NiCl 2 · 6H 2 O) 40 g / L, sodium citrate monohydrate (Na 3 C 6 H 5 O 7 · 1.5H 2 O) 15g / L, sodium phosphate monohydrate (NaH 2 PO 2 · 2H 2 O) to 100 g / L Wherein the plating liquid is a plating liquid containing a plating liquid.

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020170020932A 2017-02-16 2017-02-16 Melt-blown fiber web improved electrical conductivity and manufacturing method thereof KR101877730B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170020932A KR101877730B1 (en) 2017-02-16 2017-02-16 Melt-blown fiber web improved electrical conductivity and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170020932A KR101877730B1 (en) 2017-02-16 2017-02-16 Melt-blown fiber web improved electrical conductivity and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101877730B1 true KR101877730B1 (en) 2018-07-13

Family

ID=62913426

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170020932A KR101877730B1 (en) 2017-02-16 2017-02-16 Melt-blown fiber web improved electrical conductivity and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101877730B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102003061B1 (en) 2019-02-01 2019-07-24 주식회사 제타글로벌 Method for Manufacturing carbon nanofibers and carbon nanofibers manufactured by the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647514A (en) * 1968-08-28 1972-03-07 Knapsack Ag Surface-pretreatment of articles made from polyethylene or polypropylene or corresponding copolymers for chemical nickel-plating
KR100230219B1 (en) * 1991-12-31 1999-11-15 로날드 디. 맥크레이 Conductive fabric and method of producing same
KR20040054320A (en) * 2002-12-18 2004-06-25 권만천 Method for producing textiles of shielding electromagnetic wave and roller bar therefor
KR20050107995A (en) * 2004-05-11 2005-11-16 최철수 Plating process of condutivity fiber
KR20090049692A (en) * 2007-11-14 2009-05-19 (주)메인일렉콤 Method for manufacturing textile coated with conductive metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647514A (en) * 1968-08-28 1972-03-07 Knapsack Ag Surface-pretreatment of articles made from polyethylene or polypropylene or corresponding copolymers for chemical nickel-plating
KR100230219B1 (en) * 1991-12-31 1999-11-15 로날드 디. 맥크레이 Conductive fabric and method of producing same
KR20040054320A (en) * 2002-12-18 2004-06-25 권만천 Method for producing textiles of shielding electromagnetic wave and roller bar therefor
KR20050107995A (en) * 2004-05-11 2005-11-16 최철수 Plating process of condutivity fiber
KR20090049692A (en) * 2007-11-14 2009-05-19 (주)메인일렉콤 Method for manufacturing textile coated with conductive metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102003061B1 (en) 2019-02-01 2019-07-24 주식회사 제타글로벌 Method for Manufacturing carbon nanofibers and carbon nanofibers manufactured by the method

Similar Documents

Publication Publication Date Title
CN100404733C (en) Conductive polyvinyl alcohol fiber
CN102629679B (en) Nanofiber lithium ion battery diaphragm material with composite structure and preparation method thereof
CN106521805B (en) A kind of preparation method of conduction-toughening melt-blown compound nonwoven cloth
CN104420005B (en) A kind of composite conducting fiber and preparation method thereof
KR101247368B1 (en) Metal-deposited Nano Fiber Complex and Method of Manufacturing the Same
CN102121192A (en) Elastic conductive composite fiber and preparation method thereof
CN105002595A (en) Polymer composite function fibers containing partial graphene, and preparation method thereof
CN111484674A (en) Preparation method of polypropylene melt-blown electret master batch
Han et al. Consecutive large-scale fabrication of surface-silvered polyimide fibers via an integrated direct ion-exchange self-metallization strategy
KR101877730B1 (en) Melt-blown fiber web improved electrical conductivity and manufacturing method thereof
CN107938174A (en) A kind of method that method of electrostatic spinning prepares composite nano-fiber membrane
CN103451762A (en) Preparation method of amorphous-nanocrystal improved terylene self-cleaning shielding fiber
CN104695137A (en) Anti-static non-woven fabric and preparation method thereof
Liu et al. A review of multifunctional nanocomposite fibers: design, preparation and applications
CN103233358B (en) Preparation method of polylactic acid/sliver composite conductive fiber
KR20180077546A (en) Manufacturing method for polymer nanofiber composites fabric having improved electrical conductivity
CN105714404B (en) A kind of preparation method of cuprous sulfide/PET composite conducting fibers
CN102534860B (en) Antibacterial conductive polymer composite fiber and preparation method thereof
KR101383772B1 (en) Manufacturing method of fiber having a surface which functional fine particles adhere to
Xu et al. Gradient assembly of alginic acid/quaternary chitosan into biomimetic hidden nanoporous textiles for thermal management
CN113622089A (en) Polyimide/cerium dioxide composite nanofiber membrane and preparation method thereof
KR20190071149A (en) Method of coating for nanofiber using reduction of metalic salts and method for manufacturing transparent electrode
CN101205638A (en) Method for producing skin-core structure antibacterial fiber by melt direct spinning
CN101285219A (en) Technology for producing PLA microwave radiation shielding fiber by core-skin composite spinning
CN108570724A (en) A kind of protective fabric

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant