KR101872588B1 - Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans - Google Patents

Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans Download PDF

Info

Publication number
KR101872588B1
KR101872588B1 KR1020160076558A KR20160076558A KR101872588B1 KR 101872588 B1 KR101872588 B1 KR 101872588B1 KR 1020160076558 A KR1020160076558 A KR 1020160076558A KR 20160076558 A KR20160076558 A KR 20160076558A KR 101872588 B1 KR101872588 B1 KR 101872588B1
Authority
KR
South Korea
Prior art keywords
protein
cncap6
cnktr3
seq
gene
Prior art date
Application number
KR1020160076558A
Other languages
Korean (ko)
Other versions
KR20170143110A (en
Inventor
강현아
이동직
탁은정
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020160076558A priority Critical patent/KR101872588B1/en
Publication of KR20170143110A publication Critical patent/KR20170143110A/en
Application granted granted Critical
Publication of KR101872588B1 publication Critical patent/KR101872588B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56961Plant cells or fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Botany (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 크립토코쿠스 네오포만스(Cryptococcus neoformans)에 의한 진균 감염 또는 뇌수막염 치료에 활용하기 위한 당전이효소 유전자 CnCAP6의 용도에 관한 것이다. 본 발명은 CnCAP6 단백질을 포함하는 세포에 시험물질을 접촉시키는 단계; 상기 시험물질을 접촉한 세포에서 CnCAP6 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 대조구 시료와 비교하여 상기 CnCAP6 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 항진균제 또는 뇌수막염 치료제의 스크리닝 방법을 제공한다. 또한 본 발명은 CnCAP6 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 항진균용 또는 뇌수막염 치료용 약학 조성물을 제공한다. 본 발명의 CnCAP6 단백질에 대한 상동체가 인체에는 존재하지 않으므로 진균 특이적 α1,2- 및 α1,3-만노실 전이효소는 항진균제 또는 뇌수막염 치료제 개발에 매우 유용한 타겟으로 활용될 수 있다. The present invention relates to the use of Cryptococcus The present invention relates to the use of the glycosyltransferase gene CnCAP6 for use in the treatment of fungal infections or meningitis by neoformans . The present invention provides a method for producing a CnCAP6 protein comprising contacting a test substance with a cell comprising a CnCAP6 protein; Measuring the level of expression or activity of the CnCAP6 protein in cells in contact with the test substance; And a step of selecting a test substance in which the degree of expression or activity of the CnCAP6 protein is decreased as compared with a control sample, to thereby screen for a therapeutic agent for an antifungal agent or meningitis. The present invention also provides a pharmaceutical composition for treating an antifungal agent or meningococcus comprising an expression or activity inhibitor of CnCAP6 protein as an active ingredient. Since homologues to the CnCAP6 protein of the present invention are not present in the human body, fungal-specific α1,2- and α1,3-mannosyltransferases can be very useful targets for the development of antifungal agents or agents for treating meningitis.

Description

크립토코쿠스 네오포만스에 의한 진균 감염 또는 뇌수막염 치료를 위한 당전이효소 유전자 CnCAP6의 용도 {Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans}Use of the glycosyltransferase gene CnCAP6 for the treatment of fungal infections or meningitis caused by Cryptococcus neoformans. ≪ Desc / Clms Page number 2 > Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycobacterial or meningitis by Cryptococcus neoformans.

본 발명은 크립토코쿠스 네오포만스(Cryptococcus neoformans)에 의한 진균 감염 또는 뇌수막염 치료에 활용하기 위한 당전이효소 유전자 CnCAP6의 용도에 관한 것이다.The present invention relates to the use of Cryptococcus The present invention relates to the use of the glycosyltransferase gene CnCAP6 for use in the treatment of fungal infections or meningitis by neoformans .

기회감염성 인체 병원균인 크립토코쿠스 네오포만스(Cryptococcus neoformans)는 이형 담자균 강에 속하는 진균의 하나로 주로 전 세계 대부분 지역의 해수와 담수, 토양, 나무, 축산동물 및 조류의 배설물 등 다양한 자연환경에서 광범위하게 발견된다. 크립토코쿠스속은 Cryptococcus neoformansCryptococcus gatti(혈청형 B, C)로 분류되며 C. neoformansC. neoformans var. neoformans(혈청형 D), C. neoformans var. grubii(혈청형 A)로 나뉜다. 인체에 감염된 것은 1894년에 처음 보고되었으며 급성, 아급성 및 만성으로 폐, 뇌수막 및 전신에 감염을 일으키는 것으로 알려져 있다. 크립토코쿠스 네오포만스의 감염은 자연환경에서 효모 형태의 세포가 폐로 흡입되어 일어나며 면역저하 환자에 흔히 감염되지만, 선행질환이 없는 환자도 감염될 수 있다. 정상적인 면역성을 가진 숙주에서 초기 감염은 폐 육아종(granuloma)을 생성하며 항체 반응을 일으키는 반면, 장기 이식 또는 후천성면역결핍증(Acquired immunodeficiency syndrome, AIDS) 등으로 인하여 면역 기능이 저하된 환자에서는 중추 신경계(Central nervous system, CNS)를 감염시켜 뇌수막염을 일으키는 것으로 알려져 있고, 특히 전 세계적으로 AIDS의 주요 사망 원인으로 밝혀졌다. Cryptococcus neoformans , an opportunistic infectious human pathogen, is one of the fungi belonging to the heterotrophic bacillus. It is widely used in a variety of natural environments such as seawater, fresh water, soil, trees, livestock, . The genus Cryptococcus is Cryptococcus neoformans and Cryptococcus gatti (serotype B, C), and C. neoformans is classified as C. neoformans var. neoformans (serotype D), C. neoformans var. grubii (serotype A). Infected persons were first reported in 1894 and are known to cause acute, subacute, and chronic lung, meningitis, and systemic infections. Cryptococcus neoformans infections are caused by inhalation of yeast-shaped cells into the lungs in the natural environment, and are often infected with immunocompromised patients, but patients without prior disease can also become infected. In a host with normal immunity, the initial infection produces granuloma and causes an antibody response, whereas in patients with impaired immunity due to organ transplantation or acquired immunodeficiency syndrome (AIDS), the central nervous system nervous system (CNS), causing meningitis, and has been found to be the leading cause of AIDS death worldwide.

크립토코쿠스 네오포만스의 주요 병원성 인자(virulence factor)로는 멜라닌 합성 능력, 인체 온도인 37℃에서 생장할 수 있는 능력, 그리고 올리고사카라이드(oligosaccharide)로 이루어진 캡슐이 있으며, 특히 캡슐은 다른 효모에서는 거의 나타나지 않는 특이한 특성으로 숙주의 면역 시스템에 대한 방어 작용 등 병원성에 중요한 기능을 하는 것으로 알려져 있다. 이러한 캡슐을 생합성하는데 관여하는 CAP 유전자군(gene family)에는 다양한 당전이 효소가 속해 있으며 CAP1, CAP4, CAP5및 CAP10은 β-1,2-자일로실 전이효소(β-1,2-xylosyltransferase)인 CXT1의 상동체이며 캡슐의 만노오스(mannose)에 자일로오스(xylose)를 결합시키는 기능과 관련이 있다. 또한, CAP6와 CAP59는 α1,3-만노실 전이효소(α1,3-mannosyltransferase)인 CMT1의 상동체이며, CAP59 유전자가 파쇄(disruption)된 돌연변이의 경우 캡슐을 형성하지 못하는 것으로 보고되었다. 이 밖에도 CAP2, CAP60 및 CAP64와 같은 여러 CAP 유전자군이 존재하나 그 기능이 확실히 밝혀지지 않은 유전자들이 많으며 캡슐형성이 아닌 다른 기능을 가지고 있을 가능성도 제시되고 있다.The major virulence factors of Cryptococcus neoformans include melanin synthesis ability, ability to grow at 37 ° C body temperature, and oligosaccharide capsules. In particular, It is known to play an important role in pathogenicity, such as defense against the immune system of the host, due to its unusual characteristics. The CAP gene family involved in the biosynthesis of these capsules contains various glycosylation enzymes, and CAP1, CAP4, CAP5 and CAP10 belong to the β-1,2-xylosyltransferase (β-1,2-xylosyltransferase) Is the homologue of CXT1 and is involved in the function of binding xylose to the mannose of the capsule. In addition, CAP6 and CAP59 are homologues of CMT1, an α1,3-mannosyltransferase, and CAP59 gene has been reported to fail to form capsules in the case of disrupted mutants. In addition, several CAP genes such as CAP2, CAP60 and CAP64 exist, but there are many genes whose functions are not clearly known, and it is suggested that they have other functions than capsule formation.

진균의 세포벽은 숙주의 면역체계로부터 진균의 생존에 필수적이며, 숙주에는 존재하지 않는 구조적인 특성을 가지고 있어 진균 감염 치료제 개발의 좋은 타겟이 된다. 세포벽의 가장 바깥쪽에는 여러 단백질이 존재하며 이 단백질들은 세포 밖으로 분비되는 단백질들과 마찬가지로 대부분 N-결합 또는 O-결합 당사슬(N- or O-linked glycan)이 부착된다. 특히 미생물의 세포 상호 간 교신(intercellular communication)이나 병원성에 중요한 기능을 담당하는 당단백질은 다량의 O-당사슬 수식이 일어난다.The cell wall of fungi is essential for the survival of fungi from the host's immune system and has a structural characteristic that does not exist in the host, making it a good target for the development of therapeutic agents for fungal infections. At the outermost part of the cell wall are several proteins that are mostly attached to N-linked or O-linked glycans as well as proteins secreted out of the cell. In particular, glycoproteins that play an important role in the intercellular communication or pathogenicity of microorganisms are subject to large amounts of O-glycosylation.

크립토코쿠스 네오포만스의 O-당화(glycosylation)는 소포체(Endoplasmic reticulum, ER) 루멘(lumen)에서 PMT 유전자군인 PMT1, PMT2 및 PMT4 에 의해 시작된다. 이후, 골지체(Golgi apparatus)로 이동하여 당사슬의 연장이 일어나는데, 만노오스 만으로 이루어진 짧은 당사슬이 주된 O-당사슬의 형태이며, 일부 O-당사슬의 경우 1개의 자일로오스가 결합된 구조를 지닌다. 흥미롭게도 O-당사슬의 두번째 만노오스를 α1,2-연결 형태로 붙이는 α1,2 만노실 전이효소인 CnKTR3의 유전자를 파쇄한 돌연변이 균주의 O-당사슬 프로파일에서 자일로오스가 부착된 당사슬이 남아 있음이 관찰되었다. 이는 만노오스만으로 이루어진 당사슬과 만노오스 당사슬에 자일로오스가 결합된 당사슬의 생합성 과정은 서로 독립적으로 일어나는 것을 시사한다. 이 CnKTR3 유전자를 파쇄한 크립토코쿠스 네오포만스 균주의 경우 마우스를 이용한 실험에서 야생형보다 병원성이 감소한 양상을 나타내었으나 자일로오스가 부착된 당사슬의 연장에 관여하는 유전자와 병원성과의 관계는 아직 밝혀지지 않았다. O-glycosylation of Cryptococcus neoformans is initiated by the PMT gene families PMT1, PMT2 and PMT4 in the endoplasmic reticulum (ER) lumen. Thereafter, the oligosaccharide is transferred to the Golgi apparatus to elongate the oligosaccharide. The short oligosaccharide consisting of only mannose is in the form of the main O-oligosaccharide. In the case of some O-oligosaccharides, one oligosaccharide is bonded. Interestingly, the oligosaccharide-linked oligosaccharide remains in the O-linked oligosaccharide of the mutant strain in which the gene of CnKTR3 , which is an α1,2- nosyltransferase that attaches the second mannose of the oligosaccharide to the α1,2- Respectively. This suggests that the biosynthetic processes of oligosaccharide-bound oligosaccharide and mannose oligosaccharide-linked oligosaccharide are independent of each other. In the case of Cryptococcus neoformans strain in which the CnKTR3 gene was disrupted, the pathogenicity of the strain was lower than that of the wild type in the mouse test, but the relationship between the gene involved in the extension of the xylose- .

대한민국 등록특허 제 10-1526054호 (2015.05.29. 등록)Korean Registered Patent No. 10-1526054 (Registered on May 29, 2015)

본 발명의 목적은 CnCAP6 단백질을 포함하는 세포에 시험물질을 접촉시키는 단계; 상기 시험물질을 접촉한 세포에서 CnCAP6 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 대조구 시료와 비교하여 상기 CnCAP6 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 항진균제 또는 뇌수막염 치료제의 스크리닝 방법을 제공하는 데에 있다.It is an object of the present invention to provide a method for screening a test substance comprising contacting a test substance with a cell comprising a CnCAP6 protein; Measuring the level of expression or activity of the CnCAP6 protein in cells in contact with the test substance; And a step of screening a test substance in which the degree of expression or activity of the CnCAP6 protein is decreased as compared with a control sample.

본 발명의 또 다른 목적은 CnCAP6 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 항진균용 또는 뇌수막염 치료용 약학 조성물을 제공하는 데에 있다.It is still another object of the present invention to provide a pharmaceutical composition for treating an antifungal agent or for the treatment of meningitis comprising an inhibitor of CnCAP6 protein expression or activity as an active ingredient.

상기 목적을 달성하기 위하여, 본 발명은 CnCAP6 단백질을 포함하는 세포에 시험물질을 접촉시키는 단계; 상기 시험물질을 접촉한 세포에서 CnCAP6 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 대조구 시료와 비교하여 상기 CnCAP6 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 항진균제 또는 뇌수막염 치료제의 스크리닝 방법을 제공한다.In order to accomplish the above object, the present invention provides a method for producing a test sample, comprising: contacting a test substance with a cell containing a CnCAP6 protein; Measuring the level of expression or activity of the CnCAP6 protein in cells in contact with the test substance; And a step of selecting a test substance in which the degree of expression or activity of the CnCAP6 protein is decreased as compared with a control sample, to thereby screen for a therapeutic agent for an antifungal agent or meningitis.

또한, 본 발명은 CnCAP6 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 항진균용 또는 뇌수막염 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for treating an antifungal agent or meningococcus comprising the CnCAP6 protein expression or activity inhibitor as an active ingredient.

본 발명은 크립토코쿠스 네오포만스에 의한 진균 감염 또는 뇌수막염 치료를 위한 당전이효소 유전자 CnCAP6의 용도에 관한 것으로서, 진균 특이적 O-당사슬의 연장에 관여하는 당전이효소의 활성을 억제함으로써 진균 감염 또는 뇌수막염을 치료하는 방법을 제공할 수 있다. CAP 유전자군 산물인 α1,2- 및 α1,3-만노실 전이효소에 대한 상동체가 인체에는 존재하지 않으므로 진균 특이적 α1,2- 및 α1,3-만노실 전이효소는 항진균제 또는 뇌수막염 치료제 개발에 매우 유용한 타겟으로 활용될 것으로 사료된다.The present invention relates to the use of the glycosyltransferase gene CnCAP6 for the treatment of fungal infections or meningitis caused by cryptococcus neoformans, which comprises inhibiting the activity of a glycosyltransferase involved in prolonging fungal-specific O- Or a method of treating meningitis. Since the homologues for the α1,2- and α1,3-mannosyltransferases, products of the CAP gene cluster, are not present in the human body, the fungal-specific α1,2- and α1,3-mannosyltransferases have been used in the development of antifungal agents or meningitis treatments It will be used as a very useful target.

도 1은 크립토코쿠스 네오포만스의 O-당사슬 생합성 과정 모식도와 CnKTR3 유전자가 파쇄된 형질전환 균주(ktr3Δ)의 O-당사슬 프로파일 중 만노오스 2개로 이루어진 peak 만을 모아서 α-연결의 종류를 분석한 것이다. ktr3ΔM2는 ktr3Δ 균주의 O-당사슬 프로파일에서 만노오스 2개로 이루어진 peak를 모아 TSKgel Amide-80 column으로 분석한 결과이고, ktr3ΔM2+2αM2는 이 peak와 2개의 만노오스가 α 1,2-연결로 결합된 2α-Mannobiose를 섞어 분석한 결과이며, ktr3ΔM2+3αM2는 2개의 만노오스가 α 1,3-연결로 결합된 3α-Mannobiose와 섞어 HPLC 분석한 결과이다.
도 2A는 크립토코쿠스 네오포만스의 α1,3-만노실 전이효소들의 아미노산 서열 상동성을 비교 분석한 것이다.
도 2B는 크립토코쿠스 네오포만스의 단백질 당화 관련 만노실 전이효소들의 아미노산 서열을 비교분석하여 계통수로 나타낸 것이다. CnMnn2p와 CnOch1p 단백질은 N-당사슬 합성에 관여하는 α1,2-만노실 전이효소와 α1,6-만노실 전이효소이며, CnKtr3p는 O-당사슬 합성에 관여하는 α1,2-만노실 전이효소이며, CnHoc1p 와 CnHoc3p는 O-당사슬 합성에 관여하는 α1,6-만노실 전이효소이다. 반면, CnHoc2p와 CnHoc4p의 기능은 아직 밝혀지지 않았다.
도 3A는 크립토코쿠스 네오포만스 CnCAP6 유전자 파쇄를 위한 DNA 카세트와 세포 내 유전자 상동 재조합에 의한 유전자 파쇄 카세트 도입에 관한 모식도를 나타낸다.
도 3B는 유전자 파쇄 카세트 도입에 의한 CnCAP6 유전자의 파쇄 여부와 NAT marker의 삽입 여부를 중합효소 연쇄반응(Polymerase chain reaction, PCR)로 확인한 결과이다. ORF(Open Reading Frame)의 파쇄여부는 CN_6016_orf_F와 CN_6016_orf_B 프라이머(primer)를, NAT marker의 삽입 여부는 CN_6016_sc_F와 B79 프라이머를 이용하여 PCR을 수행하였다. ORF는 mRNA로 전사되어 단백질이 될 가능성이 있는 염기서열들을 의미한다.
도 4는 크립토코쿠스 네오포만스 야생형(H99), CnKTR3 유전자 결손 변이주(ktr3Δ), CnCAP6 유전자 결손 변이주(cap6Δ), CnCAP6 유전자가 재도입된 cap6Δ 변이주(cap6Δ::CAP6), CnKTR3 유전자와 CnCAP6 유전자가 동시에 결손된 변이주(ktr3Δcap6Δ), CnCAP6 유전자가 재도입된 ktr3Δcap6Δ 변이주(ktr3Δcap6Δ::CAP6) 유래의 O-당사슬 프로파일을 액체 크로마토그래프(High rerformance liquid chromatograph, HPLC)로 비교 분석한 도식이다. 작은 peak들의 구별을 위해 X축 23~35분에 해당하는 구간을 확대하여 오른쪽에 나타내었다. 화살표는 유전자의 파쇄에 의해 사라진 당사슬 peak를 나타낸다.
도 5는 크립토코쿠스 네오포만스 O-당사슬 생합성 관련 유전자 결손 변이주들의 분비단백질 당화 패턴 분석 결과이다. 야생형(H99), ktr3Δ, ktr3Δ/KTR3 , cap6Δ, cap6Δ::CAP6, ktr3Δcap6Δ, ktr3Δcap6Δ::CAP6 균주들을 20 ml의 최소 영양배지(synthetic complete media, 0.67% yeast nitrogen base without amino acids, 2% 포도당, 복합 아미노산)에서 24시간 동안 배양하고 배양액만을 분리하여 트라이클로로아세트산(trichloroacetic acid)을 이용하여 분비 단백질을 농축한 뒤, 크립토코쿠스 네오포만스의 분비 단백질들을 인지하는 항체를 이용하여 웨스턴 블롯을 수행하였다.
도 6A는 CnWml1p 및 CnWSc1p 단백질과 아미노산 서열 상동성을 가지는 단백질을 비교 분석한 계통수와 Pfam(http://pfam.janelia.org/search), SignalP(www.cbs.dtu.dk/services/SignalP), TMHMM(http://www.cbs.dtu.dk/services/TMHMM-2.0/), YinOYang(www.cbs.dtu.dk/services/YinOYang) 등의 도메인 예측 프로그램을 이용해 분석한 도메인 모식도를 나타낸다.
도 6B는 O-당화 예측 프로그램(http://www.cbs.dtu.dk/services/YinOYang/)을 이용하여 분석한 CnWml1p 및 CnWSc1p 단백질의 O-당화 위치를 나타낸다.
도 7A는 크립토코쿠스 네오포만스의 CnWML1CnWSC1 유전자 파쇄를 위한 DNA 카세트와 세포 내 유전자 상동 재조합에 의한 유전자 파쇄 카세트 도입에 관한 모식도를 나타낸다.
도 7B는 크립토코쿠스 네오포만스의 CnWML1CnWSC1 유전자 결손 변이주들의 생리학적 특징을 분석한 결과이다. 실험에 사용한 배지는 YPD(1% 효모 추출물, 2% 박토-펩톤, 2% 포도당) 배지, 1M NaCl, 1M NaCl + 1M sorbitol이 각각 첨가된 YPD 배지이며 실험에 사용된 균주는 야생형(WT), wml1Δ, wsc1Δ, wsc1Δwml1Δ, wsc1Δwml1Δ::WSC1이다.
도 8은 크립토코쿠스 네오포만스의 야생형 균주와 O-당사슬 합성에 관여된 유전자가 파쇄된 다양한 균주(ktr3Δ, cap6Δ, ktr3Δcap6Δ)내에서 HA(hemagglutinin)가 태깅(tagging)된 CnWML1 및 CnWSC1 단백질의 발현 양상을 나타낸다. 제작된 균주들을 YPD 배지에서 8시간 동안 배양한 후, 세포벽 분획(cell wall fractionation)실험을 수행하여 세포질 분획(soluble)과 세포벽, 세포막 분획(insoluble)으로 구별하여 단백질을 추출하였고 HA를 인지하는 항체를 이용하여 웨스턴 블롯을 수행하였다.
도 9는 크립토코쿠스 네오포만스 O-당사슬 생합성 관련 유전자 결손 변이주들의 생리학적 특징을 분석한 결과이다. 실험에 사용한 배지는 0.05% SDS(sodium dodecyl sulfate), 0.05% SDS + 1M sorbitol, 1M NaCl, 1M NaCl + 1M sorbitol이 각각 첨가된 YPD 배지이다. 실험에 사용된 균주는 야생형(WT), ktr3Δ, cap6Δ, cap6Δ::CAP6, ktr3Δcap6Δ, ktr3Δcap6Δ::CAP6이다.
도 10은 O-당사슬의 연장에 관여하는 유전자들의 결손이 in vivo 상의 병원성에 미치는 영향을 모델 마우스에 감염시켜 생존률을 분석한 도식이다. 실험에 사용된 균주는 야생형(WT), ktr3Δ, cap6Δ, cap6Δ::CAP6, ktr3Δcap6Δ, ktr3Δcap6Δ::CAP6이다.
FIG. 1 is a graph showing the O-chain biosynthetic process diagram of Cryptococcus neoformans and the peak of two mannose among the O-sugar profile of the transformant strain ( ktr3 ?) In which the CnKTR3 gene was disrupted will be. ktr3 ΔM2 is the result obtained by collecting peaks consisting of two mannos in the O-oligosaccharide profile of ktr3 Δ strain and analyzing it by TSKgel Amide-80 column. ktr3 ΔM2 + 2αM2 indicates that this peak and two mannose are bound to α 1,2- And 2α-Mannobiose, and ktr3 ΔM2 + 3αM2 is the result of HPLC analysis with 3α-Mannobiose combined with α-1,3-linkage of two mannose.
FIG. 2A is a comparative analysis of amino acid sequence homology between the .alpha.1,3-mannosyltransferases of Cryptococcus neoformans.
FIG. 2B shows the amino acid sequence of the protein glycosyltransferase-related nosyltransferases of Cryptococcus neoformans as a phylogenetic tree. The CnMnn2p and CnOch1p proteins are α1,2-mannosyltransferase and α1,6-mannosyltransferase involved in N-oligosaccharide synthesis, CnKtr3p is an α1,2-mannosyltransferase involved in O- CnHoc1p and CnHoc3p are α1,6-mannosyltransferases involved in O-oligosaccharide synthesis. On the other hand, the functions of CnHoc2p and CnHoc4p have not yet been clarified.
FIG. 3A shows a schematic diagram of the introduction of a gene disruption cassette by DNA cassette and intracellular gene homologous recombination for Cryptococcus neoformans CnCAP6 gene disruption.
FIG. 3B is a graph Whether or not the CnCAP6 gene was disrupted and whether the NAT marker was inserted was confirmed by polymerase chain reaction (PCR). PCR was performed using CN_6016_orf_F and CN_6016_orf_B primers for ORF (open reading frame) and CN_6016_sc_F and B79 primers for insertion of NAT markers. ORF means nucleotide sequences that are transcribed into mRNA and are likely to become proteins.
Figure 4 is a graph showing the distribution of Cryptococcus neoformans wild type ( H99 ), CnKTR3 The gene deletion mutant ( ktr3 ?), CnCAP6 The gene deletion mutant ( cap6 ?), CnCAP6 The cap6 [ Delta] mutant ( cap6 [ Delta] :: CAP6 ), the CnKTR3 gene and CnCAP6 Mutants in which genes are simultaneously deficient ( ktr3 ? Cap6 ?), CnCAP6 It is a comparison diagram of ktr3 cap6 Δ Δ mutant (ktr3 cap6 Δ Δ :: CAP6) O- oligosaccharide profile of the resulting gene is re-introduced to the liquid chromatograph (High rerformance liquid chromatograph, HPLC) . To distinguish small peaks, the section corresponding to 23 to 35 minutes on the X axis is enlarged and shown on the right. The arrow shows the peak of oligosaccharide disappeared by fragmentation of the gene.
FIG. 5 shows the results of analysis of secretory protein glycation patterns of Cryptococcus neoformans O-chain biosynthesis-associated gene deletion mutants. Wild-type (H99), ktr3 Δ, Δ ktr3 / KTR3, cap6 Δ, Δ :: cap6 CAP6, ktr3 cap6 Δ Δ, Δ ktr3 cap6 Δ :: minimum nutrient medium of the strain CAP6 20 ml (synthetic complete media, 0.67 % yeast 2% glucose, complex amino acid) for 24 hours. The culture medium was separated, and the secreted proteins were concentrated using trichloroacetic acid. The secreted proteins of Cryptococcus neoformans ≪ / RTI > Western blot was performed.
FIG. 6A is a graph showing the results of a comparison between CnWml1p and CnWSc1p proteins having a homology to amino acid sequence homology, Pfam (http://pfam.janelia.org/search), SignalP ( www.cbs.dtu.dk/services/SignalP ) , TMHMM ( http://www.cbs.dtu.dk/services/TMHMM-2.0/ ), and YinOyang (www.cbs.dtu.dk/services/YinOYang). .
FIG. 6B shows the O-glycosylation sites of the CnWml1p and CnWSc1p proteins analyzed using the O-saccharification prediction program (http://www.cbs.dtu.dk/services/YinOYang/).
7A shows a schematic diagram of the introduction of a gene disruption cassette by DNA cassette and intracellular gene homologous recombination for CnWML1 and CnWSC1 gene disruption of Cryptococcus neoformans.
FIG. 7B is a result of analysis of physiological characteristics of CnWML1 and CnWSC1 gene deletion mutants of Cryptococcus neoformans. The culture medium used was YPD medium supplemented with YPD (1% yeast extract, 2% bacto-peptone, 2% glucose) medium, 1M NaCl and 1M NaCl + 1M sorbitol. The strains used in the experiments were wild type (WT) wml1 ?, wsc1 ?, wsc1 ? wml1 ?, wsc1 ? wml1 ? :: WSC1 .
Figure 8 is a Cryptococcal kusu neo satiety's of the wild type strain and O- linked sugar chains with a variety of genes involved in the synthesis disrupted strain (ktr3 Δ, Δ cap6, ktr3 cap6 Δ Δ) is tagged (tagging) HA (hemagglutinin) in CnWML1 < / RTI > and CnWSC1 protein. The prepared strains were cultured in YPD medium for 8 hours and cell wall fractionation experiments were conducted to distinguish the cytosolic fractions as soluble, cell wall, and insoluble proteins. To perform Western blotting.
FIG. 9 shows the results of analysis of physiological characteristics of mutants of Cryptococcus neoformans O-chain biosynthetic gene deletion mutants. The medium used was YPD medium supplemented with 0.05% SDS (sodium dodecyl sulfate), 0.05% SDS + 1M sorbitol, 1M NaCl, 1M NaCl + 1M sorbitol. The strains used in the experiments are wild type (WT), ktr3 ?, cap6 ?, cap6 ? :: CAP6 , ktr3 ? Cap6 ?, ktr3 ? Cap6 ? :: CAP6 .
Fig. 10 is a schematic diagram showing the survival rate of a model mouse by infecting the effect of deletion of genes involved in extension of O-oligosaccharide on virulence in vivo. The strains used in the experiments are wild type (WT), ktr3 ?, cap6 ?, cap6 ? :: CAP6 , ktr3 ? Cap6 ?, ktr3? Cap6 ? :: CAP6 .

본 발명자들은 크립토코쿠스 네오포만스의 O-당사슬 생합성 과정에서 자일로오스가 부착되는 O-당사슬의 생합성에 관여하는 당 전이효소를 찾고 병원성과의 관계를 밝히기 위해 연구를 수행하였다. 그 결과, 크립토코쿠스 네오포만스의 주요 병원성 인자인 캡슐 생합성에 관여할 것으로 추정되었던 CnCAP6가 크립토코쿠스 네오포만스의 자일로오스가 부착되는 O-당사슬의 생합성에 관여하는 α1,3-만노실 전이효소 유전자임을 최초로 규명하고 CAP6에 의한 O-당질화의 타겟이 되는 표면 단백질 타겟들을 동정하였으며, α1,3-만노실 전이효소 유전자인 CnCAP6와 α1,2-만노실 전이효소 유전자인 CnKTR3 유전자를 동시에 결손시키면 거의 대부분의 O-당사슬이 연장되지 못하고 크립토코쿠스 네오포만스의 병원성이 매우 현저하게 감소함을 확인하고 본 발명을 완성하였다.The present inventors carried out a study to find a glycosyltransferase involved in the biosynthesis of O-oligosaccharide to which xylose is attached in the process of O-glycosylation of Cryptococcus neoformans and to investigate the relationship between the hospital performance. As a result, CnCAP6 , which was presumed to be involved in capsular biosynthesis, which is a major pathogenic factor of Cryptococcus neoformans, was found to be involved in the biosynthesis of O-glycosides attached to xylose of Cryptococcus neoformans The surface protein targets of O-glycosylation by CAP6 were identified for the first time, and CnCAP6, an α1,3 - nuclosyltransferase gene, and CnKTR3 gene, α1,2 - mannosyltransferase gene , It was confirmed that almost all of the O-oligosaccharide was not prolonged and the virulence of Cryptococcus neoformans was remarkably decreased. Thus, the present invention was completed.

상기 기술적 과제를 달성하기 위하여, 본 발명은 CnCAP6 단백질을 포함하는 세포에 시험물질을 접촉시키는 단계; 상기 시험물질을 접촉한 세포에서 CnCAP6 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 대조구 시료와 비교하여 상기 CnCAP6 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 항진균제 스크리닝 방법을 제공한다. 바람직하게는, 상기 CnCAP6 단백질은 서열번호 1로 표시될 수 있으나, 이에 제한되는 것은 아니다.According to an aspect of the present invention, there is provided a method for screening a test specimen comprising contacting a cell comprising a CnCAP6 protein with a test substance; Measuring the level of expression or activity of the CnCAP6 protein in cells in contact with the test substance; And selecting a test substance having a reduced degree of expression or activity of the CnCAP6 protein as compared to a control sample. Preferably, the CnCAP6 protein may be represented by SEQ ID NO: 1, but is not limited thereto.

바람직하게는 상기 CnCAP6 단백질의 발현 또는 활성 정도는 역전사 중합효소 연쇄반응(Reverse transcription-polymerase chain reaction, RT-PCR), 효소면역분석법(Enzyme-linked lmmunosorbent assay, ELISA), 면역조직화학, 웨스턴 블랏(Western blotting) 또는 유세포 분석법(FACS)으로 측정할 수 있지만, 이에 제한되는 것은 아님을 명시한다.Preferably, the expression or activity level of the CnCAP6 protein is determined by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, Western blotting Western blotting, or flow cytometry (FACS).

상세하게는 상기 진균은 크립토코쿠스 네오포만스(Cryptococcus neoformans)일 수 있다.Specifically, the fungus may be Cryptococcus neoformans .

본 발명은 CnCAP6 단백질을 포함하는 세포에 시험물질을 접촉시키는 단계; 상기 시험물질을 접촉한 세포에서 CnCAP6 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 대조구 시료와 비교하여 상기 CnCAP6 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 뇌수막염 치료제 스크리닝 방법을 제공한다. 바람직하게는, 상기 CnCAP6 단백질은 서열번호 1로 표시될 수 있으나, 이에 제한되는 것은 아니다.The present invention provides a method for producing a CnCAP6 protein comprising contacting a test substance with a cell comprising a CnCAP6 protein; Measuring the level of expression or activity of the CnCAP6 protein in cells in contact with the test substance; And a step of selecting a test substance in which the degree of expression or activity of the CnCAP6 protein is decreased as compared with a control sample. Preferably, the CnCAP6 protein may be represented by SEQ ID NO: 1, but is not limited thereto.

본 발명의 스크리닝 방법을 언급하면서 사용되는 용어 "시험물질"은 유전자의 발현량에 영향을 미치거나, 단백질의 발현 또는 활성에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 후보 물질을 의미한다. 상기 시료는 화학물질, 뉴클레오타이드, 안티센스-RNA, siRNA(small interference RNA) 및 천연물 추출물을 포함하나, 이에 한정되는 것은 아님을 명시한다.The term " test substance " used in reference to the screening method of the present invention refers to an unknown candidate substance used in screening in order to examine whether it affects the expression amount of a gene or affects the expression or activity of a protein. do. Such samples include, but are not limited to, chemicals, nucleotides, antisense-RNA, small interference RNA (siRNA), and natural extracts.

본 발명은 CnCAP6 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 항진균용 약학 조성물을 제공한다. 바람직하게는 상기 CnCAP6 단백질은 서열번호 1로 표시될 수 있으나, 이에 제한되는 것은 아니다.The present invention provides a pharmaceutical composition for an antifungal agent comprising, as an active ingredient, a CnCAP6 protein expression or activity inhibitor. Preferably, the CnCAP6 protein may be represented by SEQ ID NO: 1, but is not limited thereto.

상세하게는, 상기 CnCAP6 단백질 발현 억제제는 CnCAP6 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 작은 간섭 RNA(small interfering RNA; siRNA) 및 짧은 헤어핀 RNA(short hairpin RNA; shRNA)로 구성된 군으로부터 선택된 어느 하나일 수 있으며, 상기 CnCAP6 단백질 활성 억제제는 CnCAP6 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 및 천연물로 구성된 군으로부터 선택된 어느 하나인 것일 수 있다. 바람직하게는 상기 CnCAP6 유전자는 서열번호 2로 표시할 수 있다. Specifically, the CnCAP6 protein expression inhibitor may be selected from the group consisting of an antisense nucleotide complementary to mRNA of CnCAP6 gene, a small interfering RNA (siRNA) and a short hairpin RNA (shRNA) And the CnCAP6 protein activity inhibitor may be any one selected from the group consisting of a compound that specifically binds to the CnCAP6 protein, a peptide, a peptide mimetic, an aptamer, an antibody, and a natural product. Preferably, the CnCAP6 gene can be represented by SEQ ID NO: 2.

상세하게는 상기 진균은 크립토코쿠스 네오포만스(Cryptococcus neoformans)일 수 있다.Specifically, the fungus may be Cryptococcus neoformans .

본 발명은 CnCAP6 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 뇌수막염 예방 또는 치료용 약학 조성물을 제공한다. 바람직하게는 상기 CnCAP6 단백질은 서열번호 1로 표시될 수 있으나, 이에 제한되는 것은 아니다.The present invention provides a pharmaceutical composition for the prevention or treatment of meningitis comprising the CnCAP6 protein expression or activity inhibitor as an active ingredient. Preferably, the CnCAP6 protein may be represented by SEQ ID NO: 1, but is not limited thereto.

본 발명에서 용어 "안티센스(anti-sense) 뉴클레오타이드"란 특정 mRNA의 서열에 상보적인 핵산 서열을 함유하고 있는 DNA 또는 RNA 또는 이들의 유도체를 의미하고, mRNA내의 상보적인 서열에 결합하여 mRNA의 단백질로의 번역을 저해하는 작용을 한다.The term " anti-sense nucleotide " in the present invention means DNA or RNA or a derivative thereof containing a nucleic acid sequence complementary to the sequence of a specific mRNA, and binds to a complementary sequence in mRNA, And it acts to inhibit the translation of.

본 발명에서 용어 "작은 간섭 RNA(small interfering RNA; siRNA)"는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 핵산 분자를 의미한다. siRNA는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운(knock-down) 방법으로서 또는 유전자치료 방법으로 제공된다.The term " small interfering RNA (siRNA) " in the present invention means a nucleic acid molecule capable of mediating RNA interference or gene silencing. siRNA is provided as an efficient gene knock-down method or gene therapy method since it can inhibit the expression of a target gene.

본 발명에서 용어 "짧은 헤어핀 RNA(short hairpin RNA; shRNA)"는 목적유전자 siRNA 염기서열의 센스(sense)와 상보적인 논센스(nonsense) 사이에 3-10개의 염기 linker를 연결하는 올리고 DNA를 합성한 후 프라스미드 벡터에 클로닝하거나 또는 shRNA를 레트로바이러스(letrovirus)인 렌티바이러스(lentivirus) 및 아데노바이러스(adenovirus)에 삽입하여 발현시키면 loop가 있는 헤어핀 구조의 shRNA가 만들어지고 세포 내의 Dicer에 의해 siRNA로 전환되어 RNAi(RNA interference) 효과를 나타내는 것을 말한다. 상기 shRNA는 siRNA에 비해 비교적 장기간 RNAi 효과를 나타낸다.The term " short hairpin RNA (shRNA) " in the present invention refers to an oligonucleotide synthesizing oligonucleotide linking 3-10 base linkers between the sense of the target gene siRNA sequence and the complementary nonsense After cloning into a plasmid vector, or shRNA inserted into a retrovirus lentivirus and adenovirus, a hairpin shRNA with a loop is formed and the siRNA is generated by Dicer in the cell. (RNA interference) effect. The shRNA shows a relatively long-term RNAi effect as compared to siRNA.

본 발명에서 용어 "펩티드 미메틱스(Peptide minetics)"는 CnCAP6 활성을 이끄는 CnCAP6 단백질의 결합 도메인을 억제하는 펩티드 또는 비펩티드이다.The term " peptide mimetics " in the present invention is a peptide or nonpeptide that inhibits the binding domain of the CnCAP6 protein leading to CnCAP6 activity.

본 발명에서 용어 "앱타머(Aptamer)"는 그 자체로 안정된 삼차구조를 가지면서 표적분자에 높은 친화성과 특이성으로 결합할 수 있는 특징을 가진 단일가닥 핵산(DNA, RNA 또는 변형핵산)이다. 앱타머는 고유의 높은 친화성(보통 pM 수준)과 특이성으로 표적분자에 결합할 수 있다는 특성 때문에 단일 항체와 비교가 되고, 특히 "화학 항체"라고 할 만큼 대체 항체로서의 높은 가능성이 있다.In the present invention, the term " Aptamer " is a single-stranded nucleic acid (DNA, RNA or modified nucleic acid) having a stable tertiary structure and capable of binding to a target molecule with high affinity and specificity. Aptamers are comparable to monoclonal antibodies due to their inherent high affinity (usually pM levels) and their ability to bind to target molecules with specificity, and there is a high likelihood of being an alternative antibody, especially as a "chemoantibody".

본 발명의 "항체"는 CnCAP6 주입을 통해 제조된 것 또는 시판되어 구입한 것이 모두 사용 가능하다. 또한, 상기 항체는 다클론 항체, 단클론 항체 및 에피토프(epitope)와 결합할 수 있는 단편 등을 포함한다. &Quot; Antibody " of the present invention can be prepared either through CnCAP6 injection or commercially available. In addition, the antibody includes a polyclonal antibody, a monoclonal antibody, and a fragment capable of binding to an epitope.

다클론 항체는 상기 CnCAP6을 동물에 주사하고, 해당 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 종래의 방법에 의해 생산할 수 있다. 이러한 다클론 항체는 당업계에 알려진 어떠한 방법에 의해서든 정제될 수 있고, 염소, 토끼, 양, 원숭이, 말, 돼지, 소, 개 등의 임의의 동물 종 숙주로부터 만들어질 수 있다.The polyclonal antibody can be produced by a conventional method of injecting the CnCAP6 into an animal and collecting blood from the animal to obtain serum containing the antibody. Such polyclonal antibodies can be purified by any method known in the art and can be made from any animal species host such as goats, rabbits, sheep, monkeys, horses, pigs, cows, dogs and the like.

단클론 항체는 연속 세포주의 배양을 통한 항체 분자의 생성을 제공하는 어떠한 기술을 사용하여도 제조할 수 있다. 이러한 기술로는 이들로 한정되는 것은 아니지만 하이브리도마 기술, 사람 B-세포주 하이브리도마 기술 및 EBV-하이브리도마 기술이 포함된다.Monoclonal antibodies can be prepared using any technique that provides for the generation of antibody molecules through the cultivation of continuous cell lines. Such techniques include, but are not limited to, hybridoma technology, human B-cell line hybridoma technology, and EBV-hybridoma technology.

본 발명의 약학 조성물은 화학물질, 뉴클레오타이드, 안티센스, siRNA 올리고뉴클레오타이드 및 천연물 추출물을 유효성분으로 포함할 수 있다. 본 발명의 항진균용 의약 조성물 또는 항진균 복합 제제는 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다. 본 발명의 항진균용 의약 조성물은 투여를 위해서 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1 종 이상 포함하여 의약 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. The pharmaceutical composition of the present invention may contain a chemical substance, a nucleotide, an antisense, an siRNA oligonucleotide and a natural product extract as an active ingredient. The pharmaceutical composition or the combined preparation of antifungal compounds of the present invention may be prepared by using pharmaceutically acceptable and physiologically acceptable adjuvants in addition to the active ingredients. Examples of the adjuvants include excipients, disintegrants, sweeteners, binders, A solubilizing agent such as a lubricant, a lubricant, or a flavoring agent may be used. The antifungal drug composition of the present invention may be formulated into a pharmaceutical composition containing at least one pharmaceutically acceptable carrier in addition to the active ingredient for administration. Acceptable pharmaceutical carriers for compositions that are formulated into a liquid solution include sterile water and sterile water suitable for the living body such as saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, One or more of these components may be mixed and used. If necessary, other conventional additives such as an antioxidant, a buffer, and a bacteriostatic agent may be added. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate into injectable solutions, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.

본 발명의 의약 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다. 본 발명의 의약 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. 본 발명의 의약 조성물의 유효성분의 유효량은 질환의 예방 또는 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 이에 제한되는 것은 아니나, 예컨대, 성인의 경우, 1일 1회 내지 수회 투여 시, 본 발명의 저해제는 1일 1회 내지 수회 투여 시, 화합물일 경우 0.1ng/kg~10g/kg, 폴리펩타이드, 단백질 또는 항체일 경우 0.1ng/kg~10g/kg, 안티센스 뉴클레오타이드, siRNA, shRNAi, miRNA일 경우 0.01ng/kg~10g/kg의 용량으로 투여할 수 있다. The pharmaceutical preparation forms of the pharmaceutical composition of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions, . The pharmaceutical composition of the present invention can be administered orally, intravenously, intramuscularly, intraarterally, intraperitoneally, intrasternally, transdermally, intranasally, by inhalation, topically, rectally, ≪ / RTI > The effective amount of the active ingredient of the pharmaceutical composition of the present invention means the amount required for prevention or treatment of the disease. Accordingly, the present invention is not limited to the particular type of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the type of formulation and the patient's age, body weight, general health status, sex and diet, Rate of administration, duration of treatment, concurrent medication, and the like. For example, in the case of an adult, the inhibitor of the present invention may be administered at a dose of 0.1 ng / kg to 10 g / kg when the compound is administered once to several times a day, a polypeptide, In the case of protein or antibody, 0.1 ng / kg to 10 g / kg, antisense nucleotide, siRNA, shRNAi or miRNA can be administered at a dose of 0.01 ng / kg to 10 g / kg.

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example 1 :  One : α1alpha 1 ,3-연결로 , 3- 결합된Combined 두번째second 만노오스Mannoose 확인 Confirm

본 연구팀의 크립토코쿠스 네오포만스의 N-당사슬에 대한 선행연구 결과는 자일로오스가 α1,3-형태로 연결되어 있는 만노오스 잔기에 부착됨을 시사하였다. 이에 크립토코쿠스 네오포만스의 O-당사슬에서 α1,3-연결로 결합된 만노오스를 확인하기 위하여 ktr3Δ 돌연변이 균주의 O-당사슬 프로파일 중 2개의 만노오스가 결합된 구조의 peak(M2)를 받아 Asahipak NH2P-50 4E column(0.46 X 25 cm, 5 μm; Shodex)으로 분석하였다. 만노오스 2개가 각각 다른 결합으로 연결된 2α-Mannobiose(Sigma Aldrich)와 3α-Mannobiose(Santa Cruz)를 샘플과 비교하여 결합의 종류를 구별하였다. Previous work on the N-glycosylation of Cryptococcus neoformans by the team suggested that xylose is attached to the mannose residue linked to the α1,3-form. In order to identify the mannose bound to the α1,3-linkage from the O-oligosaccharide of the cryptococcus neoformans , two peaks (M2) of the O-oligosaccharide profile of the ktr3 Δ mutant strain, NH2P-50 4E column (0.46 X 25 cm, 5 μm; Shodex). 2α-Mannobiose (Sigma Aldrich) and 3α-Mannobiose (Santa Cruz), in which two mannose are connected by different bonds, were compared with samples to distinguish the types of binding.

ktr3Δ 돌연변이 균주의 M2 peak를 2α-Mannobiose 및 3α-Mannobiose와 비교 분석한 결과 HPLC 분석결과에서 2개의 peak가 나타났으나 그 중 하나의 peak가 3α-Mannobiose와 동일한 시간에 검출이 되었기에 ktr3Δ 돌연변이 균주 O-당사슬의 M2에 존재하는 두번째 만노오스의 결합은 α1,3-연결도 존재한다는 것을 확인하였다(도 1). In comparison with 2α-Mannobiose and 3α-Mannobiose, the M2 peak of the ktr3 Δ mutant strain was analyzed. Two peaks were observed in the HPLC analysis. One of the peaks was detected at the same time as 3α-Mannobiose and the ktr3 Δ mutation The binding of the second mannose present in the M2 of the strain O-oligosaccharide was also confirmed to have an? 1,3-linkage (Fig. 1).

실시예 2 : Example 2: in silicoin silico 분석을 통한 O-당사슬 생합성 경로 관련 α1,3-만노실 전이효소 유전자 동정 Identification of α1,3-mannosyltransferase gene related to O-glycosylation pathway through analysis

크립토코쿠스 네오포만스에서 O-당사슬의 생합성에 관련된 α1,3-만노실 전이효소 유전자를 찾기 위하여 캡슐 생합성과 연관된 α1,3-만노실 전이효소 CnCAP59 유전자와 상동성을 보이는 유전자를 혈청형 A 균주인 H99의 유전자 데이터베이스In order to find an α1,3- mannosyltransferase gene involved in the biosynthesis of O-glycosyltransferase in Cryptococcus neoformans , a gene having homology with the α1,3-mannosyltransferase CnCAP59 gene associated with capsular biosynthesis was identified as serotype A The gene database of the strain H99

(http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html)에서 탐색한 결과 CnCMT1CnCAP6 유전자를 선별하였다(도 2). 이 유전자들은 α1,3-만노실 전이효소 도메인(α1,3-mannosyltransferase domain)에 해당하는 서열이 있으나 캡슐형성에는 관여하지 않는 것으로 알려져 있다(도 2A).(http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html) CnCMT1 and CnCAP6 genes were selected (Fig. 2). These genes have a sequence corresponding to the? 1,3-mannosyltransferase domain but are not involved in capsule formation (FIG. 2A).

실시예Example 3 : O- 3: O- 당사슬Sugar chain 생합성 경로 관련 유전자들의 파쇄 균주 제작 Production of disruption strains of biosynthetic pathway-related genes

본 발명에서는 하기 표 1에 나타낸 다양한 크립토코쿠스 네오포만스 변이 균주들을 제작하여 사용하였다. 액체 배지로는 이스트 추출물-펩톤-덱스트로스(YPD)를 이용하였고, 30℃에서 220 rpm으로 상기 균주들을 배양하였다.In the present invention, various Cryptococcus neoformans mutants shown in Table 1 were prepared and used. As the liquid medium, yeast extract-peptone-dextrose (YPD) was used and the strains were cultured at 30 DEG C at 220 rpm.

본 발명에 사용한 균주The strain used in the present invention 균주Strain 유전형Genotype 참고문헌references C. neoformans
H99
C. neoformans
H99
항원형 A MATαAnti-circular A MAT α J. Clin. Microbiol.
31(12), 3305-3309
J. Clin. Microbiol.
31 (12), 3305-3309
ktr3Δ ktr3 ? MATαCn03832::NAT#159 MAT αCn03832 :: NAT # 159 J Biol Chem.
287, 19501-19515
J Biol Chem.
287 , 19501-19515
ktr3Δ/KTR3 ktr3 ? / KTR3 MATαCn03832::NAT#159/ Cn03832-NEO MAT αCn03832 :: NAT # 159 / Cn03832- NEO J Biol Chem.
287, 19501-19515
J Biol Chem.
287 , 19501-19515
cap6Δ cap6 ? MATαCn06016::NAT#159 MAT αCn06016 :: NAT # 159 본발명Invention cap6Δ::CAP6 cap6 Δ :: CAP6 MATαCn06016::NAT#159 Cn06016-NEO MAT αCn06016 :: NAT # 159 Cn06016- NEO 본발명Invention ktr3Δcap6Δ ktr3 ? cap6 ? MATαCn03832::NAT#159 Cn06016::NEO MAT αCn03832 :: NAT # 159 Cn06016 :: NEO 본발명Invention ktr3Δcap6Δ::CAP6 ktr3 ? cap6 ? :: CAP6 MATαCn03832::NAT#159 Cn06016::NEO Cn6016-HYG MAT αCn03832 :: NAT # 159 Cn06016 :: NEO Cn6016 -HYG 본발명Invention wml1Δ wml1 ? MATα Cn01255::NAT#159 MATα Cn01255 :: NAT # 159 본발명Invention wsc1Δ wsc1 ? MATα Cn03328::NAT#159 MATα Cn03328 :: NAT # 159 본발명Invention wml1Δwsc1Δ wml1 ? wsc1 ? MATα Cn01255::NAT#159 Cn03328::NEO MATα Cn01255 :: NAT # 159 Cn03328 :: NEO 본발명Invention wml1Δwsc1Δ::WSC1 wml1 ? wsc1 ? :: WSC1 MATα Cn01255::NAT#159 Cn03328::NEO
Cn03328-HYG
MATα Cn01255 :: NAT # 159 Cn03328 :: NEO
Cn03328 -HYG
본발명Invention
H99/Wml1_NHAH99 / Wml1_NHA MATα Cn01255-6HA MATα Cn01255-6HA 본발명Invention ktr3Δ/Wml1_NHA ktr3 ? / Wml1_NHA MATα Cn03832::NAT#159 Cn01255-6HA MATα Cn03832 :: NAT # 159 Cn01255-6HA 본발명Invention cap6Δ/Wml1_NHA cap6 ? / Wml1_NHA MATα Cn06016::NAT#159 Cn01255-6HA MATα Cn06016 :: NAT # 159 Cn01255-6HA 본발명Invention ktr3Δcap6Δ/Wml1_NHA ktr3 ? cap6 ? / Wml1_NHA MATα Cn03832::NAT#159 Cn06016::NEO Cn01255-6HA MATα Cn03832 :: NAT # 159 Cn06016 :: NEO Cn01255 - 6HA 본발명Invention ktr3Δ/Wsc1_CHA ktr3 ? / Wsc1_CHA MATα Cn03832::NAT#159 Cn03328-6HA MATα Cn03832 :: NAT # 159 Cn03328- 6HA 본발명Invention cap6Δ/Wsc1_CHA cap6 Δ / Wsc1 _ CHA MATα Cn06016::NAT#159 Cn03328-6HA MATα Cn06016 :: NAT # 159 Cn03328 - 6HA 본발명Invention ktr3Δcap6Δ/Wsc1_CHA ktr3 ? cap6 ? / Wsc1_CHA MATα Cn03832::NAT#159 Cn06016::NEO Cn03328-6HA MATα Cn03832 :: NAT # 159 Cn06016 :: NEO Cn03328-6HA 본발명Invention

*각 NAT#는 고유 서명 태그(unique signature tag)를 가진 Nat 마커를 의미함.* Each NAT # signifies a Nat marker with a unique signature tag.

CnCAP6 유전자 결손이 야기하는 성장특징 및 병원성 분석하기 위해 기존에 보고된 방법에 따라서, 스플릿마커(split-marker)와 유전자주입 형질전환(biolistic transformation)을 통해 이중 연결 PCR(double joint PCR)에 의해 C. neoformans 항원 A H99균주에서 CnCAP6 유전자를 파쇄하였다(도 3A). 유전자 파쇄에 필요한 프라이머는 하기 표 2에 나타내었다. 금 마이크로캐리어비드(0.6 μm [Bio-Rad])에 이중 연결 PCR에 의해 제작한 후 분리정제한 CnCAP6 유전자 파쇄 카세트를 코팅하고 항원 A H99균주와 ktr3Δ 돌연변이 균주를 형질전환시켰다. 100 μg/ml 농도의 노르세오트리신(Nourseothricin)을 포함하는 YPD 배지와 200 μg/ml 농도의 게네티신(geneticin) G418에서 성장이 잘 되는 균주를 선택하여 진단용 PCR을 통해 CnCAP6 유전자가 파쇄된 형질전환 균주(cap6Δ, ktr3Δcap6Δ)를 선별하였다.According to the procedure reported in CnCAP6 conventional to genetic defects are caused growth characteristics and pathogenic analysis, split marker (split-marker) and the genetic injected transgenic (biolistic transformation) of C by the double connecting PCR (double joint PCR) using . The CnCAP6 gene was disrupted in a strain of neoformans antigen A H99 (Fig. 3A). Primers necessary for gene disruption are shown in Table 2 below. A double-coupled PCR was performed on gold microcarrier beads (0.6 μm [Bio-Rad]), and the CnCAP6 gene disruption cassette was purified and transformed with the antigen A H99 and ktr3 Δ mutants. A YPD medium containing 100 μg / ml of Nourseothricin and a strain capable of growing in a geneticin G418 at a concentration of 200 μg / ml were selected and the CnCAP6 gene was disrupted by a diagnostic PCR Transformant strains ( cap 6 Δ, ktr 3 Δcap 6 Δ) were selected.

본 발명에 사용한 프라이머The primer used in the present invention 프라이머primer 서열 (5' to 3')The sequence (5 'to 3') 목적purpose M13FeM13Fe GTAAAACGACGGCCAGTGAGC (서열번호 3)GTAAAACGACGGCCAGTGAGC (SEQ ID NO: 3) 유전자 파쇄
카세트제작
Gene fragmentation
Cassette making
M13ReM13Re CAGGAAACAGCTATGACCATG (서열번호 4)CAGGAAACAGCTATGACCATG (SEQ ID NO: 4) 유전자 파쇄
카세트제작
Gene fragmentation
Cassette making
NSL2NSL2 AACTCCGTCGCGAGCCCCATCAAC (서열번호 5)AACTCCGTCGCGAGCCCCATCAAC (SEQ ID NO: 5) 유전자 파쇄
카세트제작
Gene fragmentation
Cassette making
NSR2NSR2 AAGGTGTTCCCCGACGACGAATCG (서열번호 6)AAGGTGTTCCCCGACGACGAATCG (SEQ ID NO: 6) 유전자 파쇄
카세트제작
Gene fragmentation
Cassette making
CN_6016D_L1CN_6016D_L1 GTAATGACGAGTGCGAGA (서열번호 7)GTAATGACGAGTGCGAGA (SEQ ID NO: 7) CnCAP6 파쇄
카세트제작
CnCAP6 disruption
Cassette making
CN_6016D_L2CN_6016D_L2 GCTCACTGGCCGTCGTTTTACATCCGATGGGCTATACAG
(서열번호 8)
GCTCACTGGCCGTCGTTTTACATCCGATGGGCTATACAG
(SEQ ID NO: 8)
CnCAP6 파쇄
카세트제작
CnCAP6 disruption
Cassette making
CN_6016D_R1CN_6016D_R1 CATGGTCATAGCTGTTTCCTGCTTCCGCTTCTGAGACTA
(서열번호 9)
CATGGTCATAGCTGTTTCCTGCTTCCGCTTCTGAGACTA
(SEQ ID NO: 9)
CnCAP6 파쇄
카세트제작
CnCAP6 disruption
Cassette making
CN_6016D_R2CN_6016D_R2 GCAAGGTACTCTGACATG (서열번호 10)GCAAGGTACTCTGACATG (SEQ ID NO: 10) CnCAP6 파쇄
카세트제작
CnCAP6 disruption
Cassette making
CN_6016D_Sc_FCN_6016D_Sc_F GTGTCCGTGCTTGTAATG (서열번호 11)GTGTCCGTGCTTGTAATG (SEQ ID NO: 11) CnCAP6
파쇄 진단
CnCAP6
Fracture diagnosis
CnD-ACTsqB(B79y)CnD-ACTsqB (B79y) TGTGGATGCTGGCGGAGGATA (서열번호 12)TGTGGATGCTGGCGGAGGATA (SEQ ID NO: 12) CnCAP6
파쇄 진단
CnCAP6
Fracture diagnosis
CN_6016D_Sc_F2CN_6016D_Sc_F2 GTCCCATCTGATGTTTCG (서열번호 13)GTCCCATCTGATGTTTCG (SEQ ID NO: 13) CnCAP6
재도입 진단
CnCAP6
Re-introduction diagnosis
CN_06016_cp_F_Xho1CN_06016_cp_F_Xho1 CCACTCGAGGTGTCCGTGCTTGTAATG (서열번호 14)CCACTCGAGGTGTCCGTGCTTGTAATG (SEQ ID NO: 14) CnCAP6
재도입
CnCAP6
Reintroduction
CN_06016_cp_B_EcoRVCN_06016_cp_B_EcoRV TACGATATCTCGCACAACGACTTAGCA (서열번호 15)TACGATATCTCGCACAACGACTTAGCA (SEQ ID NO: 15) CnCAP6
재도입
CnCAP6
Reintroduction
CN_6016_orf_FCN_6016_of_F GGTCAGAGTGCTACTGAT (서열번호 16)GGTCAGAGTGCTACTGAT (SEQ ID NO: 16) CnCAP6
확인
CnCAP6
Confirm
CN_6016_orf_BCN_6016_orf_B AACTCACCAGCAACCTGA (서열번호 17)AACTCACCAGCAACCTGA (SEQ ID NO: 17) CnCAP6
확인
CnCAP6
Confirm
CN_01255D_L1
CN_01255D_L1
caaagcaccaagccatac (서열번호 18)
caaagcaccaagccatac (SEQ ID NO: 18)
CnWML1 파쇄
카세트제작
CnWML1 shredding
Cassette making
CN_01255D_L2
CN_01255D_L2
GCTCACTGGCCGTCGTTTTACggtggagggattgtaaag
(서열번호 19)
GCTCACTGGCCGTCGTTTTACggtggagggattgtaaag
(SEQ ID NO: 19)
CnWML1 파쇄
카세트제작
CnWML1 shredding
Cassette making
CN_01255D_R1CN_01255D_R1 CATGGTCATAGCTGTTTCCTGtgtacccaggagaattgc
(서열번호 20)
CATGGTCATAGCTGTTTCCTGtgtacccaggagaattgc
(SEQ ID NO: 20)
CnWML1 파쇄
카세트제작
CnWML1 shredding
Cassette making
CN_01255D_R2
CN_01255D_R2
tatgcgctgagcaaggaa (서열번호 21)tatgcgctgagcaaggaa (SEQ ID NO: 21) CnWML1 파쇄
카세트제작
CnWML1 shredding
Cassette making
CNWML1D-confirmFCNWML1D-confirmF tcgacttctatctcgtcc (서열번호 22)
tcgacttctatctcgtcc (SEQ ID NO: 22)
CnWML1 파쇄
진단
CnWML1 shredding
Diagnosis
CNWML1D-confirmBCNWML1D-confirmB ccatactcgtatccatgc (서열번호 23)
ccatactcgtatccatgc (SEQ ID NO: 23)
CnWML1 파쇄
진단
CnWML1 shredding
Diagnosis
CN_03328D_L1
CN_03328D_L1
agcttagtgggtgactca (서열번호 24)
agcttagtgggtgactca (SEQ ID NO: 24)
CnWSC1 파쇄
카세트제작
CnWSC1 shredding
Cassette making
CN_03328D_L2
CN_03328D_L2
GCTCACTGGCCGTCGTTTTACgatgatgagtgactgacc
(서열번호 25)
GCTCACTGGCCGTCGTTTTACgatgatgagtgactgacc
(SEQ ID NO: 25)
CnWSC1 파쇄
카세트제작
CnWSC1 shredding
Cassette making
CN_03328D_R1
CN_03328D_R1
CATGGTCATAGCTGTTTCCTGcgccatcttggctttgat
(서열번호 26)
CATGGTCATAGCTGTTTCCTGcgccatcttggctttgat
(SEQ ID NO: 26)
CnWSC1 파쇄
카세트제작
CnWSC1 shredding
Cassette making
CN_03328D_R2CN_03328D_R2 aaaggctaatcggcccat (서열번호 27)aaaggctaatcggcccat (SEQ ID NO: 27) CnWSC1 파쇄
카세트제작
CnWSC1 shredding
Cassette making
CNWSC1D-confrimFCNWSC1D-confrimF ctcttgctcatgtcgatc (서열번호 28)ctcttgctcatgtcgatc (SEQ ID NO: 28) CnWSC1 파쇄
진단
CnWSC1 shredding
Diagnosis
CNWSC1D-confrimBCNWSC1D-confrimB aggtagatgaagcggtag (서열번호 29)aggtagatgaagcggtag (SEQ ID NO: 29) CnWSC1 파쇄
진단
CnWSC1 shredding
Diagnosis
Not1CnWSC1D_FNot1CnWSC1D_F aagcggccgcccggtttggggttgttta (서열번호 30)aagcggccgcccggtttgggttttta (SEQ ID NO: 30) CnWSC1
재도입
CnWSC1
Reintroduction
CnWSC1D_BCnWSC1D_B accctcactaaagggaac (서열번호 31)accctcactaaagggaac (SEQ ID NO: 31) CnWSC1
재도입
CnWSC1
Reintroduction
Not1CnWSC1D_FNot1CnWSC1D_F aagcggccgcccggtttggggttgttta (서열번호 32)aagcggccgcccggtttgggttttta (SEQ ID NO: 32) CnWSC1
도입
CnWSC1
Introduction
CnWSC1D_BCnWSC1D_B accctcactaaagggaac (서열번호 33)accctcactaaagggaac (SEQ ID NO: 33) CnWSC1
재도입
CnWSC1
Reintroduction
CN1255OF_Sal1CN1255OF_Sal1 ccacgtcgactatcctccacgacttcga (서열번호 34)ccacgtcgactatcctccacgacttcga (SEQ ID NO: 34) Wml1_NHA
vector제작
Wml1_NHA
vector production
CN1255OB_Sma1
CN1255OB_Sma1
GACCCGGGCTAGTGGTGGTGGTGGTGGTGATACCGGAAATTGGCAGC (서열번호 35)GACCCGGGCTAGTGGTGGTGGTGGTGGTGATACCGGAAATTGGCAGC (SEQ ID NO: 35) Wml1_NHA
vector제작
Wml1_NHA
vector production
CN1255TF_Sma1
CN1255TF_Sma1
gacccgggactgtcgtttcatcttaggct (서열번호 36)
gacccgggactgtcgtttcatcttaggct (SEQ ID NO: 36)
Wml1_NHA
vector제작
Wml1_NHA
vector production
CN1255TB_Xba1
CN1255TB_Xba1
AGTTCTAGATACTATACGCCCGACAAC (서열번호 37)
AGTTCTAGATACTATACGCCCGACAAC (SEQ ID NO: 37)
Wml1_NHA
vector제작
Wml1_NHA
vector production
CN3328OF_Kpn1
CN3328OF_Kpn1
ctcggtaccggacgatctgagtggttt (서열번호 38)ctcggtaccggacgatctgagtggttt (SEQ ID NO: 38) Wsc1_CHA
vector제작
Wsc1_CHA
vector production
CN3328OB_Sma1
CN3328OB_Sma1
GACCCGGGTTAGTGGTGGTGGTGGTGGTGCCTGTAGTCATGAGGATTGG (서열번호 39)GACCCGGGTTAGTGGTGGTGGTGGTGGTGCCTGTAGTCATGAGGATTGG (SEQ ID NO: 39) Wsc1_CHA
vector제작
Wsc1_CHA
vector production
CN3328TF_Sma1
CN3328TF_Sma1
gacccggggaatagtctggggcacgt (서열번호 40)
gacccggggaatagtctggggcacgt (SEQ ID NO: 40)
Wsc1_CHA
vector제작
Wsc1_CHA
vector production
CN3328TB_Xba1
CN3328TB_Xba1
AGTTCTAGATATCGTCGAGTACGCAAG (서열번호 41)
AGTTCTAGATATCGTCGAGTACGCAAG (SEQ ID NO: 41)
Wsc1_CHA
vector제작
Wsc1_CHA
vector production
EcoRV-HAm_F
EcoRV-HAm_F
ccgatatcgtacccatacgatgttcctg (서열번호 42)
ccgatatcgtacccatacgatgttcctg (SEQ ID NO: 42)
N-말단
HAtagging
N-terminal
HAtagging
HAm-EcoRV_B
HAm-EcoRV_B
ccgatatcttagcgtaatctggaacgtc (서열번호 43)
ccgatatcttagcgtaatctggaacgtc (SEQ ID NO: 43)
N-말단
HAtagging
N-terminal
HAtagging
EcoRV-3HA_F
EcoRV-3HA_F
ccgatatctacccatacgatgttcctg (서열번호 44)
ccgatatctacccatacgatgttcctg (SEQ ID NO: 44)
C-말단
HAtagging
C-terminus
HAtagging
3HA-EcoRV_B
3HA-EcoRV_B
ccgatatcagcgtaatctggaacgtc (서열번호 45)
ccgatatcagcgtaatctggaacgtc (SEQ ID NO: 45)
C-말단
HAtagging
C-terminus
HAtagging
Cn1255t_IdenB
Cn1255t_IdenB
atggcctatctattgcgg (서열번호 46)
atggcctatctattgcgg (SEQ ID NO: 46)
Wml1_NHA 도입
진단
Introduced Wml1_NHA
Diagnosis
Cn3328p_IdenF
Cn3328p_IdenF
catgatgctgttacacgc (서열번호 47)catgatgctgttacacgc (SEQ ID NO: 47) Wsc1_CHA 도입
진단
Introduced Wsc1_CHA
Diagnosis

상기 제작된 cap6Δ 및 ktr3Δcap6Δ 돌연변이에 활성을 지닌 CnCAP6 유전자가 재도입된 균주들 (cap6Δ:: CAP6 , ktr3Δcap6Δ:: CAP6)를 제조하기 위하여, 1 kb의 프로모터, 2 kb의 ORF(Open Reading Frame), 및 0.5 kb의 터미네이터(terminator)를 포함하는 CnCAP6 유전자 단편을 제한효소 사이트가 포함된 프라이머 CN_06016_cp_F_Xho1와 CN_06016_cp_B_EcoRV를 이용하여 PCR을 통해 증폭하고 NEO 마커(Neomycin/G418-resistant marker)를 가지고 있는 pJAFS1 벡터(James A. Fraser 제공, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia)에 서브클로닝하여 pJAFS1-CnCAP6를 제작하였다. 또한 pJAFS1-CnCAP6에서 NEO 마커를 잘라낸 뒤 pJAF-HYG에서 HYG 마커 (Hygromycin B resistant marker)를 가져와 서브클로닝 하여 pJAFS1-CnCAP6-HYG를 제작하였다. 염기서열 분석을 통해 확인된 pJAFS1-CnCAP6와 pJAFS1-CnCAP6-HYG를 EcoN1 제한 효소로 절단 한 후 cap6Δ균주와 ktr3Δcap6Δ 균주에 형질전환시켜 CnCAP6 재도입 균주들(cap6Δ::CAP6, ktr3Δcap6Δ::CAP6)을 제작하였다.The prepared cap6 [ Delta] and ktr3 [ Delta] cap6 [ Delta] mutants have activity To prepare the strains into which the CnCAP6 gene was reintroduced ( cap6 [ Delta] :: CAP6 , ktr3 [ Delta] cap6 [ Delta] :: CAP6 ), a 1 kb promoter, 2 kb ORF (Open Reading Frame), and a 0.5 kb terminator ) Was amplified by PCR using primers CN_06016_cp_F_Xho1 and CN_06016_cp_F_Xho1 containing restriction enzyme sites and pJAFS1 vector with NEO marker (Neomycin / G418-resistant marker, provided by James A. Fraser, Center for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia) to prepare pJAFS1-CnCAP6. In addition, NEO markers were cut out from pJAFS1-CnCAP6, and pJAFS1-CnCAP6-HYG was prepared by subcloning HyGromycin B resistant marker from pJAF-HYG. Sequencing of the pJAFS1-CnCAP6 and pJAFS1-CnCAP6-HYG and then digested with restriction enzymes EcoN1 cap6 Δ strain and ktr3 Δ Δ cap6 by transforming the strain CnCAP6 re-introduced strain (Δ cap6 confirmed by :: CAP6, ktr3 DELTA cap6 DELTA :: CAP6 ).

실시예Example 4 : O- 4: O- 당사슬Sugar chain 생합성 관련 유전자 결손 변이주들의  Biosynthetic gene deletion mutants 당사슬Sugar chain 프로파일 분석 Profile Analysis

각 균주들을 100 ml YPD 배지에서 220 rpm으로 30℃에서 24시간 동안 배양한 뒤 DMSO(dimethyl sulfoxide, Sigma)에 현탁하여 캡슐 다당류를 제거하고 세척하여 10 ml citrate buffer(0.1M, pH 7.0)에 재현탁하였다. 121℃에서 1시간 30분 동안 고압증기 멸균을 수행하여 세포표면 단백질들을 유리하고 Concanavalin A로 정제하여 만노오스가 결합 된 단백질을 얻은 뒤 건조 후 Hydrazine monohydrate(TCI)를 첨가하여 60℃에서 4시간 동안 반응시켜 O-당사슬을 분리하였다. 분리한 당사슬은 2-aminobenzoic acid(2-AA)와 80℃에서 45분간 반응하여 환원 말단에 표지하고 TSKgel amide(4.6 * 250mm, 5 um) 컬럼과 용매 A(2% acetic acid, 1% tetrahydrofuran in acetonitrile)와 용매 B(5% acetic acid, 3% triethylamine, 1% tetrahydrofuran in water)를 사용하여 HPLC(Waters 2690)로 검출하였다.Each strain was cultured in 100 ml of YPD medium at 220 rpm at 30 ° C for 24 hours, and then suspended in DMSO (dimethyl sulfoxide, Sigma) to remove the capsular polysaccharide. The cells were washed and resuspended in 10 ml citrate buffer (0.1 M, pH 7.0) . After incubation at 121 ° C for 1 hour and 30 minutes, high pressure steam sterilization was carried out to purify cell surface proteins and purified with Concanavalin A to obtain mannose-bound proteins. After drying, hydrazine monohydrate (TCI) The O-oligosaccharide was isolated. The separated oligosaccharides were labeled with 2-aminobenzoic acid (2-AA) at 80 ° C for 45 min and labeled at the reducing end. TSKgel amide (4.6 × 250 mm, 5 μm) column and solvent A (2% acetic acid, 1% tetrahydrofuran in acetonitrile) and solvent B (5% acetic acid, 3% triethylamine, 1% tetrahydrofuran in water).

크립토코쿠스 네오포만스에서 CnCAP6의 기능이 O-당사슬 생합성에 α1,3-만노실 전이효소로써 관여하는지를 분석하기 위해, cap6Δ 균주와 ktr3Δcap6Δ 균주의 세포벽 단백질에 부착된 O-당사슬 프로파일을 분석하였다. 야생형 균주에서 추출한 O-당사슬과 비교하였을 때 cap6Δ 균주의 O-당사슬은 자일로오스 잔기가 결합된 비주류(minor) 당사슬의 peak가 나타나지 않았으며 ktr3Δcap6Δ 균주의 O-당사슬은 1개의 만노오스에 해당하는 peak 이외의 다른 peak들이 나타나지 않는 양상을 보였다. 두 균주 모두 CnCAP6 유전자를 재도입시킨 균주들(cap6Δ:: CAP6 , ktr3Δcap6Δ::CAP6)에서 비주류 당사슬의 연장이 회복하는 양상을 보였다. 이는 자일로오스가 결합하는 비주류 당사슬의 두번째 만노오스 잔기는 CnCAP6에 의해 α1,3-연결로 결합한다는 것을 나타낸다(도 5).Cryptococcal kusu to the functionality of the neo CnCAP6 in satiety's involvement to analyze whether as nosil transferase α1,3- only O- sugar chain biosynthesis, cap6 Δ strain and ktr3 Δ Δ cap6 O- cell wall of a sugar chain attached to the protein profile of the strain Respectively. As compared to the sugar chain derived from the wild type strain O- O- oligosaccharide of cap6 Δ strains were Giles agarose residue is combined non-alcoholic (minor) peak did not appear in the sugar chain to the sugar chain of O- ktr3 cap6 Δ Δ strain is one mannose And the other peaks except for the corresponding peak were not observed. Both strains were CnCAP6 ( Cap6 [ Delta] :: CAP6 , ktr3 [ Delta] cap6 [ Delta] :: CAP6 ) showed the recovery of the extension of the non-mainstream oligosaccharide. This indicates that the second mannose residue of the non-mainstream oligosaccharide to which xylose is bound is bound by? 1,3-linkage by CnCAP6 (Fig. 5).

실시예 5 : O-당사슬 생합성 관련 유전자 결손 변이주들에서 분비 단백질의 당화 패턴 분석Example 5: Analysis of glycation pattern of secretory proteins in O-oligosaccharide-related gene deletion mutants

야생형 (H99), ktr3Δ, ktr3Δ/ KTR3 cap6Δ, cap6Δ:: CAP6 , ktr3Δcap6Δ, ktr3Δcap6Δ::CAP6 균주들을 20 ml의 최소영양배지(synthetic complete media, 0.67% yeast nitrogen base without amino acids, 2% 포도당, 복합 아미노산)에서 24시간 동안 배양하고 배양액만을 분리하여 트라이클로로아세트산(trichloroacetic acid)을 이용하여 분비단백질을 농축하였다. 이후, 크립토코쿠스 네오포만스의 분비단백질들을 인지하는 항체를 이용하여 웨스턴 블랏을 수행하였다.Wild type ( H99 ), ktr3 ?, Ktr3 ? / KTR3 cap6 Δ, cap6 Δ :: CAP6 , ktr3 Δcap6 Δ, ktr3 Δcap6 Δ :: CAP6 were cultured in 20 ml of synthetic complete media (0.67% yeast nitrogen base without amino acids, 2% glucose, For 24 hours. Only the culture medium was separated and the secreted protein was concentrated using trichloroacetic acid. Then, Western blotting was performed using an antibody recognizing the secretory proteins of Cryptococcus neoformans.

ktr3Δ 균주의 분비 단백질의 양은 야생형에 비해 상대적으로 감소한 경향을 보이는 반면 cap6Δ 균주의 분비단백질은 변화를 보이지 않았으며 ktr3Δcap6Δ 균주의 분비 단백질에서는 O-당화가 감소되어 크기가 감소한 것으로 여겨지는 단백질이 나타났다. 이러한 결과는 크립토코쿠스 네오포만스의 분비단백질 중 O-당사슬이 수식되는 단백질이 존재하며 적어도 하나의 단백질은 CnKTR3와 CnCAP6에 의해 코딩되는 당전이 효소에 의해 O-당사슬이 수식됨을 시사한다.The secretory protein of the ktr3 Δ strain tended to decrease relative to that of the wild type, whereas the secretory protein of the cap6 Δ strain did not change, and the secretory protein of the ktr3 Δcap6 Δ strain showed a decrease in O-saccharification The protein appeared. These results suggest that the secretory protein of Cryptococcus neoformans exists in a protein in which the O-sugar is modified, and at least one of the proteins is modified by the sugar-transferase encoded by CnKTR3 and CnCAP6.

실시예 6 : O-당사슬 생합성 관련 유전자 결손 변이주들에서 세포 표면 단백질의 당화 패턴 분석Example 6: Analysis of glycation pattern of cell surface proteins in O-oligosaccharide biosynthetic gene deletion mutants

크립토코쿠스 네오포만스 혈청형 A 균주의 아미노산 서열 데이터베이스로부터 얻은 7,946개 단백질 중에서, 일차적으로 40개 염기서열 안에서 세린/트레오닌 잔기가 40% 이상 존재하는 것들을 추출한 결과, 958개 단백질 후보를 확보하였고 이 중에서 C-말단 쪽에 하나의 막관통 영역(transmembrane domain)을 갖는 단백질만을 이차적으로 선별한 결과, 80개의 단백질 후보를 얻었다. 이 중에서도 GPI-anchor 도메인은 가지고 있지 않으면서 시그날 펩타이드(signal peptide)를 가진 단백질만을 추가로 선별한 결과, 12개의 센서 단백질 후보를 확보하였고, 마지막으로 O-당질화가 일어날 수 있는지에 대한 여부를 NetOGlyc(http://www.cbs.dtu. dk/services/NetOGlyc/) 프로그램을 통하여 분석함으로써 최종적으로 2개의 세포벽 유지 센서 단백질을 선별하였다. Of the 7,946 proteins obtained from the amino acid sequence database of the Cryptococcus neoformans serotype A strain, 958 protein candidates were obtained as a result of the presence of more than 40% of the serine / threonine residues in the first 40 base sequences, , Only 80 proteins were selected by secondary selection of proteins having a transmembrane domain at the C-terminus. Among them, only the protein having the signal peptide without the GPI-anchor domain was further selected. As a result, 12 sensor protein candidates were obtained. Finally, whether or not O-glycosylation can occur was confirmed by NetOGlyc (http: //www.cbs.dtu.dk/services/NetOGlyc/) program to finally select two cell wall retaining sensor proteins.

크립토코쿠스에서 선별한 2개의 CWI 신호전달경로 센서 단백질(CnWml1p, CnWsc1p)을 Pfam(http://pfam.janelia.org/search), SignalP(www.cbs.dtu.dk/services/SignalP), TMHMM(http://www.cbs.dtu.dk/services/TMHMM-2.0/), YinOYang(www.cbs.dtu.dk/services/YinOYang) 등의 다양한 프로그램을 이용하여 도메인 분석을 수행한 결과, N-말단에 신호서열(signal sequence, SS), 고도로 O-당화 수식을 받는 세린/트레오닌 풍부 영역(S/T-rich domain)과 C-말단에 막관통 영역(transmembrane domain, TM)을 공유하고 있음을 확인할 수 있다(도 6).Two CWI signaling pathway sensor proteins (CnWml1p, CnWsc1p) screened in Cryptococcus were obtained from Pfam (http://pfam.janelia.org/search), SignalP (www.cbs.dtu.dk/services/SignalP) As a result of domain analysis using various programs such as TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) and YinOyang (www.cbs.dtu.dk/services/YinOYang) The signal sequence (SS) at the N-terminus and the transmembrane domain (TM) at the C-terminus share a serine / threonine rich domain (S / T-rich domain) (Fig. 6).

CnWML1CnWSC1 유전자 결손이 야기하는 생리학적 특성을 분석하기 위해 스플릿마커(split-marker)와 유전자주입 형질전환(biolistic transformation)을 통해 이중 연결 PCR(double joint PCR)을 이용하여 크립토코쿠스 혈청형 A H99균주에서 CnWML1CnWSC1 유전자를 각각 파쇄하였다. CnWML1CnWSC1 유전자 파쇄 카세트를 항원 A H99균주에 도입하여 형질전환시킨 후, 100 μg/ml 농도의 노르세오트리신(Nourseothricin)을 포함하는 YPD 배지에 성장이 잘 되는 균주를 선택하여 진단용 PCR을 통해 CnWML1CnWSC1 유전자가 파쇄된 형질전환 균주(wml1Δ, wsc1Δ)를 선별하였다. 또한 CnWML1CnWSC1 유전자가 동시에 파쇄된 wml1Δwsc1Δ균주와 CnWSC1 유전자가 재도입된 wml1Δwsc1Δ::WSC1 균주를 제작하기 위해 형질전환 후 각각 200 μg/ml 농도의 게네티신(geneticin) G418, HYG 마커(Hygromycin B resistant marker)를 이용하여 선별하였다(도 7A). CnWML1 and CnWSC1 In order to analyze the physiological characteristics caused by the gene deletion, double-junction PCR was performed using split-marker and biolistic transformation to detect the presence of Cryptococcus serotype A H99 strain CnWML1 and CnWSC1 genes, respectively. CnWML1 and CnWSC1 gene disruption cassettes were transfected into the antigen A H99 strain and transformed with YPD medium containing 100 μg / ml of Nourseothricin. Transformant strains ( wml1 ?, Wsc1 ?) In which CnWML1 and CnWSC1 genes were disrupted were selected. Also CnWML1 and CnWSC1 gene the wml1 wsc1 Δ Δ strain and CnWSC1 crushed at the same time To prepare the wml1 Δ wsc1 Δ :: WSC1 strain into which the gene had been re-introduced, the transformants were screened using geneticin G418 and Hygromycin B resistant marker at 200 μg / ml, respectively 7A).

상기 제작된 wml1Δ, wsc1Δ 각 균주들을 2 ml YPD배지에 220 rpm으로 30℃에서 16시간 동안 전 배양하여, 무균물 100 ㎕에 처음 OD600 값을 1.0으로 시작하여 연속적으로 1/10 비율로 희석하여 1M NaCl, 1M NaCl + 1M sorbitol이 각각 첨가된 YPD 배지에 2 ㎕씩 접종하고 30℃에서 3일 동안 배양하였다.Each of the wml1Δ and wsc1Δ strains prepared above was pre-cultured in 2 ml of YPD medium at 220 rpm at 30 ° C. for 16 hours, and then 100 μl of sterile water was added to 100 μl of the sterilized water at an initial OD 600 value of 1.0, The cells were inoculated with 2 쨉 l of YPD medium supplemented with 1 M NaCl, 1 M NaCl and 1 M sorbitol, respectively, and cultured at 30 째 C for 3 days.

크립토코쿠스 네오포만스에서 야생형, O-당사슬 생합성 유전자의 타겟이 되는 유전자 결손 변이주인 wml1Δ, wsc1Δ, wsc1Δwml1Δ와 CnWSC1 재도입 시킨 균주의 표현형 분석 결과 1M NaCl 배지에서 wml1Δ 균주는 야생형과 비교했을 때 확연한 성장의 차이는 보이지 않았으나 wsc1Δ, wsc1Δwml1Δ 균주는 확연히 성장이 느려짐을 확인할 수 있었다. 1M NaCl 배지에 sorbitol을 첨가해 줌으로써 성장이 회복되었으며 wsc1Δwl1Δ 균주에 CnWSC1을 재도입시킨 균주의 경우에도 성장이 회복됨을 나타냈다(도 7B). 이러한 사실은 O-당사슬 생합성 유전자의 타겟이 되는 CnWSC1 단백질이 세포벽과 세포막의 유지에 중요함을 시사한다. Cryptococcal kusu neo's satiety in wild-type, O- oligosaccharide biosynthesis phenotype which strain is genetically deficient mutant of wml1 Δ, Δ wsc1, wsc1 Δ Δ wml1 CnWSC1 and reintroduced is the target of the gene results in 1M NaCl medium wml1 Δ strain Compared with the wild-type strain, there was no significant difference in growth, but wsc1Δ and wsc1Δwml1 Δ strains were obviously slower growth. Growth was restored by the addition of sorbitol to the 1M NaCl medium and growth was restored in the case of strains reintroduced with CnWSC1 into wsc1 ? Wl1 ? Strain (Fig. 7B). This suggests that the CnWSC1 protein, which is the target of the O-chain biosynthetic gene, is important for cell wall and cell membrane retention.

크립토코쿠스 네오포만스 혈청형 A H99균주와 O-당사슬 생합성 경로에 관련된 유전자가 결손된 ktr3Δ, cap6Δ, ktr3Δcap6Δ 균주에서 고도로 O-당화되는 CnWML1CnWSC1 유전자의 단백질 발현 양상을 비교 분석하기 위해 표에 나타난 프라이머를 이용하여 HA(hemagglutinin)이 태깅(tagging)된 CnWML1과 CnWSC1 단백질을 발현하는 vector를 제작한 후 각 결손 균주에 형질전환시켰다. CnWML1, CnWSC1 단백질의 발현 위치를 검증하고자 상기 제작된 균주들을 대상으로 세포벽 분획(cell wall fractionation)실험을 수행하였다(도 8). Comparison of Protein Expression Patterns of CnWML1 and CnWSC1 Gene Highly O-Saccharified in Ktr3 Δ, cap6 Δ, ktr3 Δcap6 Δ Strain with Cryptococcus neoformans serotype A H99 and O-glycosylation pathway For analysis, vectors expressing CnWML1 and CnWSC1 proteins tagged with HA (hemagglutinin) were prepared using the primers shown in the table, and transformed into each defective strain. Cell wall fractionation experiments were performed on the strains prepared above to examine the expression positions of CnWML1 and CnWSC1 proteins (FIG. 8).

웨스턴 분석 결과, 야생형, CnKTR3 CnCAP6 유전자가 각각 파쇄된 균주에서 CnWML1과 CnWSC1 단백질은 예상된 크기(56 kDa)보다 더 증가한 단백질 크기(140 kDa)를 나타내며 공통적으로 세포질 분획(soluble)에서 단백질이 극미량 검출된 데 반해, 세포벽, 세포막 분획(insoluble)에서 많은 양의 단백질이 검출된 것을 볼 수 있다(도 9). 이러한 결과는 CnWML1과 CnWSC1 단백질이 고도로 O-당질화되어 크기가 증가한 것이며 세포 표면에서 발현됨을 시사한다. CnWSC1 단백질은 CnKTR3CnCAP6 유전자가 각각 파쇄된 균주에서 O-당사슬에 mannose 부가가 일어나지 않아 크기가 증가하지 않은 본래의 예측된 단백질 크기(56kDa)를 나타내며 특히 CnKTR3 유전자가 파쇄된 균주에서 더 많은 양의 단백질이 O-당질화되지 않음을 확인할 수 있다. 반면 CnWML1 단백질은 야생형과 비교했을 때 CnKTR3 유전자가 파쇄된 균주에서 보다 CnCAP6 유전자가 파쇄된 균주에서 더 발현양이 감소한 것을 확인할 수 있는데 이는 O-당질화가 일어나지 않으면 단백질의 안정성이 감소하며 CnWML1 단백질이 CnKTR3 단백질인 α1,2-만노실 전이효소보다 CnCAP6 단백질인 α1,2-만노실 전이효소에 의해 더 많은 O-당질화가 일어남을 나타낸다. 특히 CnWML1과 CnWSC1 단백질 모두 CnKTR3CnCAP6 유전자가 동시에 파쇄되어 O-당질화가 거의 일어날 수 없는 균주에서 발현이 급격히 감소함을 보였는데 이는 CnKTR3와 CnCAP6 만노실 전이 효소에 의한 O-당사슬의 연장이 단백질의 안정성에 영향을 미치는 중요한 요소임을 나타낸다.Western analysis showed that wild type, CnKTR3 CnWML1 and CnWSC1 proteins showed higher protein sizes (140 kDa) than the predicted size (56 kDa) in the strains isolated from CnCAP6 and CnCAP6 genes, respectively. A large amount of protein was detected in the cell membrane fraction (insoluble) (Fig. 9). These results suggest that the CnWML1 and CnWSC1 proteins are highly O-glycosylated and increased in size and are expressed on the cell surface. CnWSC1 protein in a larger amount in the original shows the predicted protein size (56kDa) gene disrupted strain is not particularly CnKTR3 increased because the mannose sugar chain addition will not occur in a O- size in each shredded strains CnKTR3 and CnCAP6 gene It can be confirmed that the protein is not O-glycosylated. On the other hand, the CnWML1 protein showed a lower expression level in the strain in which the CnCAP6 gene was disrupted than in the case of the CnKTR3 gene disrupted strain compared with the wild-type strain. If O-glycosylation did not occur, the stability of the protein decreased and the CnWML1 protein became CnKTR3 Glucosyltransferase by the? 1,2-mannosyltransferase, which is a CnCAP6 protein, than the? 1,2-mannosyltransferase which is a protein. In particular, both CnWML1 and CnWSC1 proteins showed that the expression of CnKTR3 and CnCAP6 was disrupted at the same time and that O-glycosylation was rarely observed. This suggests that CnKTR3 and CnCAP6 only prolonged the O- Indicating an important factor affecting stability.

실시예Example 7 : O- 7: O- 당사슬Sugar chain 생합성 관련 유전자 결손 변이주들의 생리적 특징 분석 및 in vivo 병원성 분석 Analysis of physiological characteristics and in vivo pathogenicity of gene mutation mutants related to biosynthesis

각 균주들을 2 ml YPD 배지에 220 rpm으로 30℃에서 16시간 동안 전 배양하여, 무균물 100 ㎕에 처음 OD600 값을 1.0으로 시작하여 연속적으로 1/10 비율로 희석하여 0.05% 도데실 황산나트륨(sodium dodecyl sulfate, SDS), 0.05% SDS + 1M sorbitol, 1M NaCl, 1M NaCl + 1M sorbitol이 각각 첨가된 YPD 배지에 2 ㎕씩 접종하고 30℃와 39℃에서 3일 동안 배양하였다.Each strain was preincubated in 2 ml of YPD medium at 220 rpm at 30 ° C for 16 hours, and 100 μl of sterile water was continuously diluted 1/10 in the first OD600 starting at 1.0, followed by addition of 0.05% sodium dodecylsulfate 2 μl each of the cells was inoculated into YPD medium supplemented with dodecyl sulfate (SDS), 0.05% SDS + 1 M sorbitol, 1 M NaCl, 1 M NaCl + 1 M sorbitol and cultured at 30 ° C and 39 ° C for 3 days.

비주류 O-당사슬 생합성 결손을 보이는 크립토코쿠스 네오포만스 cap6Δ 균주의 표현형 분석 결과, 39℃에서는 ktr3Δ 균주와 비슷하게 성장이 느려졌으나 SDS와 NaCl에서는 야생형보다는 높고 ktr3Δ 균주보다는 낮은 민감성을 보였다. ktr3Δcap6Δ 균주는 39℃에서 성장이 매우 저해되었으며 SDS와 NaCl에서도 가장 높은 민감성을 보였다. SDS를 제외한 스트레스에 대해 sorbitol을 첨가해 줌으로써 성장이 회복되었으며 CAP6 유전자를 재도입해 준 경우에도 성장이 회복되는 것을 확인하였다(도 9). 이러한 사실은 세포벽 단백질의 O-당사슬 연장에 관여하는 CnKTR3CnCAP6 유전자들과 이들에 의해 코딩되는 만노실 전이효소의 타겟이 되는 단백질들이 세포벽과 세포막의 합성과 유지에 중요함을 시사한다.As a result of phenotypic analysis of Cryptococcus neoformans cap6 Δ strain, which has a non - mainstream O - oligosaccharide deficiency, the growth was slowed at 39 ℃ similar to that of ktr3 Δ, but it was higher than that of wild type and lower than that of ktr3 Δ strain in SDS and NaCl. ktr3 Δ cap6 Δ strain was highly inhibited at 39 ℃ and showed the highest sensitivity in SDS and NaCl. It was confirmed that growth was restored by adding sorbitol to stress except SDS, and growth was restored even when CAP6 gene was reintroduced (FIG. 9). This suggests that the CnKTR3 and CnCAP6 genes involved in the O-chain extension of cell wall proteins and the proteins that are targeted by the mannosyltransferases encoded by them are important for the synthesis and maintenance of cell walls and cell membranes.

크립토코쿠스 마우스 모델을 통한 O-당사슬 생합성 관련 유전자 결손 돌연변이의 병원성 분석 수행하기 위해, 야생형, ktr3Δ, cap6Δ, cap6Δ::CAP6, ktr3Δcap6Δ 및 ktr3Δcap6Δ::CAP6 균주를 YPD 배지에 30℃에서 16시간 동안 배양한 후, PBS(phosphate buffered saline) 버퍼 용액을 이용하여 세척 한 다음 ml 당 2 X 106cell이 되도록 효모 세포 수를 맞추어 주었다. 각 균주 당 10마리씩 4-6 주의 A/J 마우스(Jackson Laboratory, 18-22g)의 비강 안쪽에 105세포 수만큼 주입시키는 방법으로 감염을 시킨 후 8주 동안 관찰하였다.To perform a pathogenic analysis of O-chain biosynthesis-related gene deletion mutations via the Cryptococcus mouse model, wild type, ktr3 ?, cap6 ?, cap6 ? :: CAP6 , ktr3 ? Cap6 ? And ktr3 ? Cap6 ? :: CAP6 strains The cells were cultured in YPD medium at 30 ° C for 16 hours, washed with PBS (phosphate buffered saline) buffer solution, and the number of yeast cells was adjusted to 2 × 10 6 cells per ml. Ten infected mice were infected by intravenous infusion of 10 5 cells into each nasal cavity of an A / J mouse (Jackson Laboratory, 18-22 g) of 10 mice per each strain for 8 weeks.

세포벽 단백질의 O-당사슬 연장에 관여하는 유전자인 CnKTR3CnCAP6의 파쇄에 의한 당사슬 구조의 변화가 in vivo 상의 병원성에 어떠한 영향을 미치는지 알아보기 위해, cap6Δ와 ktr3Δcap6Δ 균주의 병원성을 마우스 모델을 통해 조사하였다. In order to investigate the effect of the oligosaccharide structure change by the disruption of CnKTR3 and CnCAP6 , which are involved in the O-chain extension of the cell wall protein, on the pathogenicity in vivo, the pathogenicity of the cap6 Δ and ktr3 Δcap6 Δ strains was examined using a mouse model Respectively.

cap6Δ 균주의 병원성은 야생형과 비교하여 차이를 나타내지 않았으나 ktr3Δcap6Δ의 병원성은 ktr3Δ 균주보다 눈에 띄게 감소하여 마우스에서는 병원성이 거의 나타나지 않는 것으로 여겨진다. 상기 결과는 세포벽 단백질에 존재하는 O-당사슬 생합성의 연장과 이에 관여하는 CnCAP6CnKTR3 유전자가 크립토코쿠스의 병원성에 매우 큰 영향을 끼치고 있음을 보여준다(도 10). CnCAP6 유전자 산물인 α1,3-만노실 전이효소에 대한 상동체가 인체에는 존재하지 않으므로 이와 같은 병원성에 중요한 영향을 미치는 진균 특이적 α1,3-만노실 전이효소는 항진균제 개발에 매우 유용한 타겟으로 활용될 것이다.The virulence of cap6 Δ strain did not show any difference compared to wild type, but the virulence of ktr3 Δcap6 Δ was considerably lower than that of ktr3 Δ strain, so that the virulence of the ktr3 Δcap6 Δ was not observed in the mouse. These results show that the prolongation of O-chain biosynthesis in the cell wall protein and the CnCAP6 and CnKTR3 genes involved therein have a great influence on the pathogenicity of Cryptococcus (Fig. 10). Since the homologous to the CnCAP6 gene product, α1,3-mannosyltransferase, is not present in the human body, the fungal-specific α1,3-mannosyltransferase, which has an important effect on the pathogenicity, is a useful target for the development of antifungal agents will be.

이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included within the scope of the present invention.

<110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans <130> ADP-2016-0171 <160> 48 <170> KopatentIn 2.0 <210> 1 <211> 575 <212> PRT <213> Cryptococcus neoformans <400> 1 Met Pro Pro Asp Ile Pro Lys Arg Lys Glu Ser Leu Pro Gln Tyr Ile 1 5 10 15 Ser Ser Gln Arg Ala Pro His Ile Arg Thr Pro Leu Ser Ser Ser Ser 20 25 30 Phe Phe Asn Thr Asn Phe Lys Val Pro Gly Arg Asn Met Ser Asn Ser 35 40 45 Arg Leu Arg Ile Ser Leu Ser Lys Pro Leu Val Arg Val Leu Leu Ile 50 55 60 Gly Ser Leu Leu Ile Ser Leu Val Leu Leu Ser Arg Ile Gly Asn Arg 65 70 75 80 Glu Asp Asp Gly Ala Trp Asp Ala Ser Ser Trp Ser Asp Arg His Gly 85 90 95 Gly Gly Arg Thr Val Ser Arg Gly Gln Arg Lys Gly Trp Ser Leu Trp 100 105 110 Asn Asn Thr Pro Lys Ile Arg Thr Asp Gln Arg Ile Pro Arg Pro Ile 115 120 125 Leu Thr Arg Gln Asn Ala Thr Leu Pro Pro Pro Thr His Pro Gly Arg 130 135 140 Ser Arg Arg Leu Lys Pro Gly Ser Asp Pro Glu Asn Pro Glu Tyr Ile 145 150 155 160 Glu Gly Pro Leu Pro Thr Leu Asp Glu Ala Trp Glu Phe Leu His Pro 165 170 175 Leu Leu Arg Glu Ile Lys Ser Arg Thr Pro Ser Val Pro Arg Glu His 180 185 190 Glu Leu Thr Glu Pro Ile Phe Pro Pro Phe Leu Arg Asp Asp Leu Lys 195 200 205 Glu Arg Tyr Arg His Leu Arg Asp Val Phe Asp Glu Glu Thr Gly Glu 210 215 220 Trp Val Arg Gly Pro Glu Arg Arg Trp Phe Leu Val Thr Val Cys Arg 225 230 235 240 Gln Val Ala Gly Met Leu Ala Asp Trp Phe Ala Ala Trp Thr Val Leu 245 250 255 Ala Asp Phe Leu Gly Pro Glu Ser Leu Val Phe Ser Leu Phe Glu Gly 260 265 270 Asp Ser Ala Asp Gly Ser Gly Glu Ile Leu Ala Tyr Ala Met Arg Ala 275 280 285 His Leu Leu Asn Ile Gly Val Pro Pro Ser Asn Ile His Ile Gln Thr 290 295 300 Gln Leu Pro Ala Val Asp Trp Asp Asn His His Arg Ile Glu Leu Leu 305 310 315 320 Ala Glu Met Arg Asn Ser Gly Met Gln Pro Phe Tyr Asp Thr Ala Ala 325 330 335 Thr Gly Leu Ser Pro Asp Gly His Ser Trp Thr Gly Ile Val Phe Tyr 340 345 350 Asn Asp Val Tyr Leu Ser Ala Thr His Phe Leu Glu Leu Met His Gln 355 360 365 His Leu Lys Gln Asp Ala Asp Met Thr Cys Gly Trp Asp His Ala Gly 370 375 380 Lys Trp Phe Tyr Asp Gly Trp Val Ala Arg Asp Met Ser Gly Asp Leu 385 390 395 400 Phe Thr Pro Phe Pro Val Arg Glu Glu Asp Lys Asp Leu Pro Gln Lys 405 410 415 Leu Phe Pro Ser Ser Pro Glu Thr Leu Lys Arg Tyr Asn Arg Leu Leu 420 425 430 Pro Phe Gln Ala Phe Ala Ala Trp Asn Gly Ile Thr Val Met Ser Pro 435 440 445 Glu Pro Phe Leu Pro Pro Tyr Asn Val Arg Phe Arg Arg Gly Thr Pro 450 455 460 Arg Thr Asp Asp Phe Trp Glu Cys Gln Ala Ser Glu Ser Ser Phe Ile 465 470 475 480 Ser Trp Asp Phe Trp Lys Tyr Gly Phe Gly Arg Ile Ala Val Val Pro 485 490 495 Gly Val His Ala Thr Tyr Gly Lys Gly Asp Ala Met Leu Arg Gly Trp 500 505 510 Val Glu Trp Pro Ser Glu Glu Asp Ser Tyr Gly Glu Thr Ile Trp Trp 515 520 525 Asp Pro Asn Pro Pro His Lys Ile Arg Cys His Asp Trp Pro Asp Lys 530 535 540 Leu Gly Lys Gly Tyr Trp Ala Trp Asp Thr Val Arg Trp Val Lys Pro 545 550 555 560 Pro Lys Leu Glu Ile Pro Ser Ala Ser Glu Thr Thr Val Gln Ser 565 570 575 <210> 2 <211> 2025 <212> DNA <213> Cryptococcus neoformans <400> 2 atgcctcccg acatacctaa acgaaaggag tctcttcccc aatacatctc gtcacaacga 60 gcacctcaca tccggacgcc cctctcctct tcgtcattct ttaataccaa tttcaaagta 120 ccaggacgaa acatgtcaaa ctcaaggcta cgaatatcat tatcaaagcc actggtcaga 180 gtgctactga taggaagcct gttgatcagc ttggtattac tgtcaagaat aggtaacaga 240 gaagacgatg gcgcatggga cgcgtcgagc tggtcagacc gccatggagg tgggagaacg 300 gtttcgcgag gacaacgaaa aggatggtcg ctatggaata atactccaaa aatacggaca 360 gaccaacgca tacctcgtcc catccttacc agacagaatg ctacattacc cccgccaacc 420 catcctggta gatcacggcg cctgaaaccc ggttcagatc cagaaaaccc agagtatatc 480 gaaggtcctt taccgacatt ggatgaagct tgggagtttc tacatccttt gctgcgggag 540 atcaagtcgc gcacaccgtc ggtgccccgg gagcatgagc taacagagcc gatatttcct 600 ccttttctta gggatgattt gaaggagagg tatagacatc tgagggatgt gtttgacgag 660 gagacgggtg aatgggtgag agggcctgag cggaggtggt ttttggttac ggtatgccgt 720 caggttgctg gtgagttcta atttatacat gggttcgtaa aacgcatgcg ctgagtttgt 780 gtaggtatgc ttgccgactg gttcgctgca tggactgtcc tcgctgactt cttgggcccc 840 gaatcactcg tcttttcgct tttcgagggt gactctgcag acggaaggta cgttttcaca 900 tacagagtgc ggtctagagc tagctaaaac cccatttttt gcacagcggt gaaatcctcg 960 catatgctat gcgtgctcac cttcttaaca tcggcgtacc cccttctaac attcacatcc 1020 aaacccagct ccccgctgta gattgggata atcaccatcg tatcgagctc ctggcagaga 1080 tgcgcaattc gggtatgcag ccgttctacg acactgccgc gacaggtttg tctcccgacg 1140 gccattcttg gacaggtatc gtgttttata acgatgtata cctttcggcg acgcactttt 1200 tggagttgat gcatcagcat ttgaaacagg atgcggatat gacttgtgga tgggatcatg 1260 cgggcaagtg gttctatgat ggatgggttg cgagagatat gagtggagat ctgttcacgc 1320 cgttccctgt cagagaagag gataaggatc tacctcaaaa agtgagtcca tgcccatcct 1380 tatcttttca caagagtcat cccccatttg acacttaaat cagctcttcc cttcctcacc 1440 cgaaacgctc aaacgctaca accgtctgct ccccttccaa gcctttgcag cttggaacgg 1500 tatcaccgtc atgtctcccg aacccttcct ccccccatac aacgtccgtt tccgtcgagg 1560 tacccctcgc acggacgatt tctgggaatg tcaggcgtcg gagagttcct tcatttcgtg 1620 ggacttttgg aaatatggat ttggcaggat agcggtggtt cctggggtgc atgcgacgta 1680 tgggaagggg gatgcgatgc tgagaggttg ggtggagtgg ccctcagagg aggattcgta 1740 tggggaaact atttggtggg atccaaagtg ggtagttttc gcatcattac ttaacgagaa 1800 agttacttat atggttttga tagcccacca cacaaaatta gatgtcatga ctggccggat 1860 aaacttggga aaggttattg ggcatgggta agctataagt cttgcgagac ggacacccca 1920 tcaagctagg atattcgtta actactctcc caggataccg ttcgttgggt caaacctcct 1980 aagctggaga tcccttccgc ttctgagact acagttcaat cttaa 2025 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> M13Fe <400> 3 gtaaaacgac ggccagtgag c 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> M13Re <400> 4 caggaaacag ctatgaccat g 21 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NSL2 <400> 5 aactccgtcg cgagccccat caac 24 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NSR2 <400> 6 aaggtgttcc ccgacgacga atcg 24 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_L1 <400> 7 gtaatgacga gtgcgaga 18 <210> 8 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_L2 <400> 8 gctcactggc cgtcgtttta catccgatgg gctatacag 39 <210> 9 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_R1 <400> 9 catggtcata gctgtttcct gcttccgctt ctgagacta 39 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_R2 <400> 10 gcaaggtact ctgacatg 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_Sc_F <400> 11 gtgtccgtgc ttgtaatg 18 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CnD-ACTsqB(B79y) <400> 12 tgtggatgct ggcggaggat a 21 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_Sc_F2 <400> 13 gtcccatctg atgtttcg 18 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN_06016_cp_F_Xho1 <400> 14 ccactcgagg tgtccgtgct tgtaatg 27 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN_06016_cp_B_EcoRV <400> 15 tacgatatct cgcacaacga cttagca 27 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016_orf_F <400> 16 ggtcagagtg ctactgat 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016_orf_B <400> 17 aactcaccag caacctga 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_L1 <400> 18 caaagcacca agccatac 18 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_L2 <400> 19 gctcactggc cgtcgtttta cggtggaggg attgtaaag 39 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_R1 <400> 20 catggtcata gctgtttcct gtgtacccag gagaattgc 39 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_R2 <400> 21 tatgcgctga gcaaggaa 18 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWML1D-confirmF <400> 22 tcgacttcta tctcgtcc 18 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWML1D-confirmB <400> 23 ccatactcgt atccatgc 18 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_L1 <400> 24 agcttagtgg gtgactca 18 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_L2 <400> 25 gctcactggc cgtcgtttta cgatgatgag tgactgacc 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_R1 <400> 26 catggtcata gctgtttcct gcgccatctt ggctttgat 39 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_R2 <400> 27 aaaggctaat cggcccat 18 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWSC1D-confrimF <400> 28 ctcttgctca tgtcgatc 18 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWSC1D-confrimB <400> 29 aggtagatga agcggtag 18 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Not1CnWSC1D_F <400> 30 aagcggccgc ccggtttggg gttgttta 28 <210> 31 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CnWSC1D_B <400> 31 accctcacta aagggaac 18 <210> 32 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Not1CnWSC1D_F <400> 32 aagcggccgc ccggtttggg gttgttta 28 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CnWSC1D_B <400> 33 accctcacta aagggaac 18 <210> 34 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> CN1255OF_Sal1 <400> 34 ccacgtcgac tatcctccac gacttcga 28 <210> 35 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> CN1255OB_Sma1 <400> 35 gacccgggct agtggtggtg gtggtggtga taccggaaat tggcagc 47 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> CN1255TF_Sma1 <400> 36 gacccgggac tgtcgtttca tcttaggct 29 <210> 37 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN1255TB_Xba1 <400> 37 agttctagat actatacgcc cgacaac 27 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN3328OF_Kpn1 <400> 38 ctcggtaccg gacgatctga gtggttt 27 <210> 39 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> CN3328OB_Sma1 <400> 39 gacccgggtt agtggtggtg gtggtggtgc ctgtagtcat gaggattgg 49 <210> 40 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CN3328TF_Sma1 <400> 40 gacccgggga atagtctggg gcacgt 26 <210> 41 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN3328TB_Xba1 <400> 41 agttctagat atcgtcgagt acgcaag 27 <210> 42 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> EcoRV-HAm_F <400> 42 ccgatatcgt acccatacga tgttcctg 28 <210> 43 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HAm-EcoRV_B <400> 43 ccgatatctt agcgtaatct ggaacgtc 28 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> EcoRV-3HA_F <400> 44 ccgatatcta cccatacgat gttcctg 27 <210> 45 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> 3HA-EcoRV_B <400> 45 ccgatatcag cgtaatctgg aacgtc 26 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Cn1255t_IdenB <400> 46 atggcctatc tattgcgg 18 <210> 47 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Cn3328p_IdenF <400> 47 aagcggccgc ccggtttggg gttgttta 28 <210> 48 <211> 374 <212> PRT <213> Cryptococcus neoformans <400> 48 Met Ala Gly Gly Leu Val Phe Leu Leu His Val Leu Leu Ser Val His 1 5 10 15 Pro Thr Tyr Arg Glu Lys Thr Ser Ile Leu Asn Leu Leu Pro Gln Gln 20 25 30 Asp Gly Trp Arg Glu Gly Gln Pro Pro Pro Asn Ser Ala Ile Pro Pro 35 40 45 Val Val Gly Asp Leu Ala Glu Asn Glu Ala Ala Leu Glu Gly Arg Arg 50 55 60 Lys Ala Asn Ala Val Phe Val Val Leu Ala Arg Asn Ser Asp Leu Trp 65 70 75 80 Pro Phe Leu Asp Ser Met Arg Gln Met Glu Asp Arg Phe Asn His Trp 85 90 95 Ala Lys Tyr Asp Tyr Val Phe Leu Asn Glu Glu Asp Phe Ser Asp Glu 100 105 110 Phe Lys Arg Tyr Thr Gln Ser Met Thr Lys Ala Lys Cys Tyr Tyr Gly 115 120 125 Lys Ile Asp Pro Glu His Trp Tyr Gln Pro Glu Trp Ile Asp Glu Asp 130 135 140 Lys Ala Ser Lys Ala Arg Glu Glu Met Ile Arg Lys Lys Val Ile Tyr 145 150 155 160 Gly His Ser Val Pro Tyr Arg Asn Met Cys Arg Phe Asn Ser Gly Phe 165 170 175 Phe Phe Arg His Pro Leu Leu Ala Asn Tyr Asp Tyr Tyr Trp Arg Ile 180 185 190 Glu Pro Ser Val Lys Phe Phe Cys Asp Leu Ala Tyr Asp Pro Phe Leu 195 200 205 Val Met Gln Asp Gln Asn Lys Val Tyr Gly Phe Thr Leu Ser Leu Phe 210 215 220 Glu Tyr Ile Glu Thr Ile Pro Thr Leu Trp Asp Ala Val Lys Glu Phe 225 230 235 240 Ile Gly Glu His Pro Asp Tyr Leu Pro Glu Gly Asn Ala Met Gln Phe 245 250 255 Leu Ser Asp Asp Gly Gly Glu Thr Tyr Asn Lys Cys His Phe Trp Ser 260 265 270 Asn Phe Glu Ile Gly Asp Leu Asn Phe Trp Arg Ser Gln Pro Tyr Met 275 280 285 Glu Phe Phe Asp Phe Leu Asp Lys Lys Gly Gly Phe Tyr Tyr Glu Arg 290 295 300 Trp Gly Asp Ala Pro Val His Ser Ile Gly Ala Ala Leu Phe Ala Lys 305 310 315 320 Lys Glu Gln Ile His Phe Phe Asp Asp Ile Gly Tyr Arg His Glu Pro 325 330 335 Phe Gln His Cys Pro Gln Gly Asp Ala His Thr Arg Gly Asn Cys Trp 340 345 350 Cys Asp Gln Ala Asn Asn Phe Asp Trp Glu Trp Tyr Ser Cys Thr Lys 355 360 365 Lys Tyr Thr Glu Met Phe 370 <110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Use of the CnCAP6 gene encoding a mannoslytransferase for          treating mycoses or meningitis by Cryptococcus neoformans <130> ADP-2016-0171 <160> 48 <170> Kopatentin 2.0 <210> 1 <211> 575 <212> PRT <213> Cryptococcus neoformans <400> 1 Met Pro Pro Asp Ile Pro Lys Arg Lys Glu Ser Leu Pro Gln Tyr Ile   1 5 10 15 Ser Ser Gln Arg Ala Pro His Ile Arg Thr Pro Leu Ser Ser Ser Ser              20 25 30 Phe Phe Asn Thr Asn Phe Lys Val Pro Gly Arg Asn Met Ser Asn Ser          35 40 45 Arg Leu Arg Ile Ser Leu Ser Lys Pro Leu Val Arg Val Leu Leu Ile      50 55 60 Gly Ser Leu Leu Ile Ser Leu Val Leu Leu Ser Arg Ile Gly Asn Arg  65 70 75 80 Glu Asp Asp Gly Ala Trp Asp Ala Ser Ser Trp Ser Asp Arg Gly                  85 90 95 Gly Gly Arg Thr Val Ser Arg Gly Gln Arg Lys Gly Trp Ser Leu Trp             100 105 110 Asn Asn Thr Pro Lys Ile Arg Thr Asp Gln Arg Ile Pro Arg Pro Ile         115 120 125 Leu Thr Arg Gln Asn Ala Thr Leu Pro Pro Thr His Pro Gly Arg     130 135 140 Ser Arg Arg Leu Lys Pro Gly Ser Asp Pro Glu Asn Pro Glu Tyr Ile 145 150 155 160 Glu Gly Pro Leu Pro Thr Leu Asp Glu Ala Trp Glu Phe Leu His Pro                 165 170 175 Leu Leu Arg Glu Ile Lys Ser Arg Thr Pro Ser Val Pro Arg Glu His             180 185 190 Glu Leu Thr Glu Pro Ile Phe Pro Pro Phe Leu Arg Asp Asp Leu Lys         195 200 205 Glu Arg Tyr Arg His Leu Arg Asp Val Phe Asp Glu Glu Thr Gly Glu     210 215 220 Trp Val Arg Gly Pro Glu Arg Arg Trp Phe Leu Val Thr Val Cys Arg 225 230 235 240 Gln Val Ala Gly Met Leu Ala Asp Trp Phe Ala Ala Trp Thr Val Leu                 245 250 255 Ala Asp Phe Leu Gly Pro Glu Ser Leu Val Phe Ser Leu Phe Glu Gly             260 265 270 Asp Ser Ala Asp Gly Ser Gly Glu Ile Leu Ala Tyr Ala Met Arg Ala         275 280 285 His Leu Leu Asn Ile Gly Val Pro Pro Ser Asn Ile His Ile Gln Thr     290 295 300 Gln Leu Pro Ala Val Asp Trp Asp His His His Arg Ile Glu Leu Leu 305 310 315 320 Ala Glu Met Arg Asn Ser Gly Met Gln Pro Phe Tyr Asp Thr Ala Ala                 325 330 335 Thr Gly Leu Ser Pro Asp Gly His Ser Trp Thr Gly Ile Val Phe Tyr             340 345 350 Asn Asp Val Tyr Leu Ser Ala Thr His Phe Leu Glu Leu Met His Gln         355 360 365 His Leu Lys Gln Asp Ala Asp Met Thr Cys Gly Trp Asp His Ala Gly     370 375 380 Lys Trp Phe Tyr Asp Gly Trp Val Ala Arg Asp Met Ser Gly Asp Leu 385 390 395 400 Phe Thr Pro Phe Pro Val Arg Glu Glu Asp Lys Asp Leu Pro Gln Lys                 405 410 415 Leu Phe Pro Ser Ser Pro Glu Thr Leu Lys Arg Tyr Asn Arg Leu Leu             420 425 430 Pro Phe Gln Ala Phe Ala Ala Trp Asn Gly Ile Thr Val Met Ser Pro         435 440 445 Glu Pro Phe Leu Pro Pro Tyr Asn Val Arg Phe Arg Arg Gly Thr Pro     450 455 460 Arg Thr Asp Phe Trp Glu Cys Gln Ala Ser Glu Ser Ser Phe Ile 465 470 475 480 Ser Trp Asp Phe Trp Lys Tyr Gly Phe Gly Arg Ile Ala Val Val Pro                 485 490 495 Gly Val His Ala Thr Tyr Gly Lys Gly Asp Ala Met Leu Arg Gly Trp             500 505 510 Val Glu Trp Pro Ser Glu Glu Asp Ser Tyr Gly Glu Thr Ile Trp Trp         515 520 525 Asp Pro Asn Pro Pro His Lys Ile Arg Cys His Asp Trp Pro Asp Lys     530 535 540 Leu Gly Lys Gly Tyr Trp Ala Trp Asp Thr Val Arg Trp Val Lys Pro 545 550 555 560 Pro Lys Leu Glu Ile Pro Ser Ala Ser Glu Thr Thr Val Gln Ser                 565 570 575 <210> 2 <211> 2025 <212> DNA <213> Cryptococcus neoformans <400> 2 atgcctcccg acatacctaa acgaaaggag tctcttcccc aatacatctc gtcacaacga 60 gcacctcaca tccggacgcc cctctcctct tcgtcattct ttaataccaa tttcaaagta 120 ccaggacgaa acatgtcaaa ctcaaggcta cgaatatcat tatcaaagcc actggtcaga 180 gtgctactga taggaagcct gttgatcagc ttggtattac tgtcaagaat aggtaacaga 240 gaagacgatg gcgcatggga cgcgtcgagc tggtcagacc gccatggagg tgggagaacg 300 gtttcgcgag gacaacgaaa aggatggtcg ctatggaata atactccaaa aatacggaca 360 gaccaacgca tacctcgtcc catccttacc agacagaatg ctacattacc cccgccaacc 420 catcctggta gatcacggcg cctgaaaccc ggttcagatc cagaaaaccc agagtatatc 480 gaaggtcctt taccgacatt ggatgaagct tgggagtttc tacatccttt gctgcgggag 540 atcaagtcgc gcacaccgtc ggtgccccgg gagcatgagc taacagagcc gatatttcct 600 ccttttctta gggatgattt gaaggagagg tatagacatc tgagggatgt gtttgacgag 660 gagacgggtg aatgggtgag agggcctgag cggaggtggt ttttggttac ggtatgccgt 720 caggttgctg gtgagttcta atttatacat gggttcgtaa aacgcatgcg ctgagtttgt 780 gtaggtatgc ttgccgactg gttcgctgca tggactgtcc tcgctgactt cttgggcccc 840 gaatcactcg tcttttcgct tttcgagggt gactctgcag acggaaggta cgttttcaca 900 tacagagtgc ggtctagagc tagctaaaac cccatttttt gcacagcggt gaaatcctcg 960 catatgctat gcgtgctcac cttcttaaca tcggcgtacc cccttctaac attcacatcc 1020 aaacccagct ccccgctgta gattgggata atcaccatcg tatcgagctc ctggcagaga 1080 tgcgcaattc gggtatgcag ccgttctacg acactgccgc gacaggtttg tctcccgacg 1140 gccattcttg gacaggtatc gtgttttata acgatgtata cctttcggcg acgcactttt 1200 tggagttgat gcatcagcat ttgaaacagg atgcggatat gacttgtgga tgggatcatg 1260 cgggcaagtg gttctatgat ggatgggttg cgagagatat gagtggagat ctgttcacgc 1320 cgttccctgt cagagaagag gataaggatc tacctcaaaa agtgagtcca tgcccatcct 1380 tatcttttca caagagtcat cccccatttg acacttaaat cagctcttcc cttcctcacc 1440 cgaaacgctc aaacgctaca accgtctgct ccccttccaa gcctttgcag cttggaacgg 1500 tatcaccgtc atgtctcccg aacccttcct ccccccatac aacgtccgtt tccgtcgagg 1560 tacccctcgc acggacgatt tctgggaatg tcaggcgtcg gagagttcct tcatttcgtg 1620 ggacttttgg aaatatggat ttggcaggat agcggtggtt cctggggtgc atgcgacgta 1680 tgggaagggg gatgcgatgc tgagaggttg ggtggagtgg ccctcagagg aggattcgta 1740 tggggaaact atttggtggg atccaaagtg ggtagttttc gcatcattac ttaacgagaa 1800 agttacttat atggttttga tagcccacca cacaaaatta gatgtcatga ctggccggat 1860 aaacttggga aaggttattg ggcatgggta agctataagt cttgcgagac ggacacccca 1920 tcaagctagg atattcgtta actactctcc caggataccg ttcgttgggt caaacctcct 1980 aagctggaga tcccttccgc ttctgagact acagttcaat cttaa 2025 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> M13Fe <400> 3 gtaaaacgac ggccagtgag c 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> M13Re <400> 4 caggaaacag ctatgaccat g 21 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NSL2 <400> 5 aactccgtcg cgagccccat caac 24 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NSR2 <400> 6 aaggtgttcc ccgacgacga atcg 24 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_L1 <400> 7 gtaatgacga gtgcgaga 18 <210> 8 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_L2 <400> 8 gctcactggc cgtcgtttta catccgatgg gctatacag 39 <210> 9 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_R1 <400> 9 catggtcata gctgtttcct gcttccgctt ctgagacta 39 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_R2 <400> 10 gcaaggtact ctgacatg 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_Sc_F <400> 11 gtgtccgtgc ttgtaatg 18 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > CnD-ACTsqB (B79y) <400> 12 tgtggatgct ggcggaggat a 21 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016D_Sc_F2 <400> 13 gtcccatctg atgtttcg 18 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN_06016_cp_F_Xho1 <400> 14 ccactcgagg tgtccgtgct tgtaatg 27 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN_06016_cp_B_EcoRV <400> 15 tacgatatct cgcacaacga cttagca 27 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016_of_F <400> 16 ggtcagagtg ctactgat 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_6016_orf_B <400> 17 aactcaccag caacctga 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_L1 <400> 18 caaagcacca agccatac 18 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_L2 <400> 19 gctcactggc cgtcgtttta cggtggaggg attgtaaag 39 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_R1 <400> 20 catggtcata gctgtttcct gtgtacccag gagaattgc 39 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_01255D_R2 <400> 21 tatgcgctga gcaaggaa 18 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWML1D-confirmF <400> 22 tcgacttcta tctcgtcc 18 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWML1D-confirmB <400> 23 ccatactcgt atccatgc 18 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_L1 <400> 24 agcttagtgg gtgactca 18 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_L2 <400> 25 gctcactggc cgtcgtttta cgatgatgag tgactgacc 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_R1 <400> 26 catggtcata gctgtttcct gcgccatctt ggctttgat 39 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CN_03328D_R2 <400> 27 aaaggctaat cggcccat 18 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWSC1D-confrimF <400> 28 ctcttgctca tgtcgatc 18 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CNWSC1D-confrimB <400> 29 aggtagatga agcggtag 18 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Not1CnWSC1D_F <400> 30 aagcggccgc ccggtttggg gttgttta 28 <210> 31 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CnWSC1D_B <400> 31 accctcacta aagggaac 18 <210> 32 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Not1CnWSC1D_F <400> 32 aagcggccgc ccggtttggg gttgttta 28 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CnWSC1D_B <400> 33 accctcacta aagggaac 18 <210> 34 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> CN1255OF_Sal1 <400> 34 ccacgtcgac tatcctccac gacttcga 28 <210> 35 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> CN1255OB_Sma1 <400> 35 gacccgggct agtggtggtg gtggtggtga taccggaaat tggcagc 47 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> CN1255TF_Sma1 <400> 36 gacccgggac tgtcgtttca tcttaggct 29 <210> 37 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN1255TB_Xba1 <400> 37 agttctagat actatacgcc cgacaac 27 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN3328OF_Kpn1 <400> 38 ctcggtaccg gacgatctga gtggttt 27 <210> 39 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> CN3328OB_Sma1 <400> 39 gacccgggtt agtggtggtg gtggtggtgc ctgtagtcat gaggattgg 49 <210> 40 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CN3328TF_Sma1 <400> 40 gacccgggga atagtctggg gcacgt 26 <210> 41 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CN3328TB_Xba1 <400> 41 agttctagat atcgtcgagt acgcaag 27 <210> 42 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> EcoRV-HAm_F <400> 42 ccgatatcgt acccatacga tgttcctg 28 <210> 43 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HAm-EcoRV_B <400> 43 ccgatatctt agcgtaatct ggaacgtc 28 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> EcoRV-3HA_F <400> 44 ccgatatcta cccatacgat gttcctg 27 <210> 45 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> 3HA-EcoRV_B <400> 45 ccgatatcag cgtaatctgg aacgtc 26 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Cn1255t_IdenB <400> 46 atggcctatc tattgcgg 18 <210> 47 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Cn3328p_IdenF <400> 47 aagcggccgc ccggtttggg gttgttta 28 <210> 48 <211> 374 <212> PRT <213> Cryptococcus neoformans <400> 48 Met Ala Gly Gly Leu Val Phe Leu Leu His Val Leu Leu Ser Val His   1 5 10 15 Pro Thr Tyr Arg Glu Lys Thr Ser Ile Leu Asn Leu Leu Pro Gln Gln              20 25 30 Asp Gly Trp Arg Glu Gly Gln Pro Pro Pro Asn Ser Ala Ile Pro Pro          35 40 45 Val Val Gly Asp Leu Ala Glu Asn Glu Ala Ala Leu Glu Gly Arg Arg      50 55 60 Lys Ala Asn Ala Val Phe Val Val Leu Ala Arg Asn Ser Asp Leu Trp  65 70 75 80 Pro Phe Leu Asp Ser Met Arg Gln Met Glu Asp Arg Phe Asn His Trp                  85 90 95 Ala Lys Tyr Asp Tyr Val Phe Leu Asn Glu Glu Asp Phe Ser Asp Glu             100 105 110 Phe Lys Arg Tyr Thr Gln Ser Met Thr Lys Ala Lys Cys Tyr Tyr Gly         115 120 125 Lys Ile Asp Pro Glu His Trp Tyr Gln Pro Glu Trp Ile Asp Glu Asp     130 135 140 Lys Ala Ser Lys Ala Arg Glu Glu Met Ile Arg Lys Lys Val Ile Tyr 145 150 155 160 Gly His Ser Val Pro Tyr Arg Asn Met Cys Arg Phe Asn Ser Gly Phe                 165 170 175 Phe Phe Arg His Pro Leu Leu Ala Asn Tyr Asp Tyr Tyr Trp Arg Ile             180 185 190 Glu Pro Ser Val Lys Phe Phe Cys Asp Leu Ala Tyr Asp Pro Phe Leu         195 200 205 Val Met Gln Asp Gln Asn Lys Val Tyr Gly Phe Thr Leu Ser Leu Phe     210 215 220 Glu Tyr Ile Glu Thr Ile Pro Thr Leu Trp Asp Ala Val Lys Glu Phe 225 230 235 240 Ile Gly Glu His Pro Asp Tyr Leu Pro Glu Gly Asn Ala Met Gln Phe                 245 250 255 Leu Ser Asp Asp Gly Gly Glu Thr Tyr Asn Lys Cys His Phe Trp Ser             260 265 270 Asn Phe Glu Ile Gly Asp Leu Asn Phe Trp Arg Ser Gln Pro Tyr Met         275 280 285 Glu Phe Phe Asp Phe Leu Asp Lys Lys Gly Gly Phe Tyr Tyr Glu Arg     290 295 300 Trp Gly Asp Ala Pro Val His Ser Ile Gly Ala Ala Leu Phe Ala Lys 305 310 315 320 Lys Glu Gln Ile His Phe Phe Asp Asp Ile Gly Tyr Arg His Glu Pro                 325 330 335 Phe Gln His Cys Pro Gln Gly Asp Ala His Thr Arg Gly Asn Cys Trp             340 345 350 Cys Asp Gln Ala Asn Asn Phe Asp Trp Glu Trp Tyr Ser Cys Thr Lys         355 360 365 Lys Tyr Thr Glu Met Phe     370

Claims (14)

서열번호 1로 표시된 CnCAP6 단백질 및 서열번호 48로 표시된 CnKTR3 단백질을 포함하는 세포에 시험물질을 접촉시키는 단계;
상기 시험물질을 접촉한 세포에서 CnCAP6 단백질 및 CnKTR3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및
대조구 시료와 비교하여 상기 CnCAP6 단백질 및 CnKTR3 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 항진균제 스크리닝 방법.
Contacting the test substance to a cell comprising the CnCAP6 protein represented by SEQ ID NO: 1 and the CnKTR3 protein represented by SEQ ID NO: 48;
Measuring the level of expression or activity of CnCAP6 protein and CnKTR3 protein in the cells to which the test substance is contacted; And
Selecting a test substance having a decreased degree of expression or activity of the CnCAP6 protein and the CnKTR3 protein as compared with a control sample.
삭제delete 제 1항에 있어서, 상기 CnCAP6 단백질 및 CnKTR3 단백질의 발현 또는 활성 정도는 역전사 중합효소 연쇄반응(Reverse Transcription-Polymerase chain Reaction, RT-PCR), 효소면역분석법(ELISA), 면역조직화학, 웨스턴 블랏(Western Blotting) 및 유세포 분석법(FACS)으로 구성된 군으로부터 선택된 어느 하나로 측정하는 것을 특징으로 하는 항진균제 스크리닝 방법.The method according to claim 1, wherein the level of expression or activity of the CnCAP6 protein and the CnKTR3 protein is determined by reverse transcription-polymerase chain reaction (RT-PCR), enzyme immunoassay (ELISA), immunohistochemistry, Western blotting Western blotting, and flow cytometry (FACS). &Lt; Desc / Clms Page number 19 &gt; 제 1항에 있어서, 상기 진균은 크립토코쿠스 네오포만스(Cryptococcus neoformans)인 것을 특징으로 하는 항진균제 스크리닝 방법.The antifungal agent screening method according to claim 1, wherein the fungus is Cryptococcus neoformans . 서열번호 1로 표시된 CnCAP6 단백질 및 서열번호 48로 표시된 CnKTR3 단백질을 포함하는 세포에 시험물질을 접촉시키는 단계;
상기 시험물질을 접촉한 세포에서 CnCAP6 단백질 및 CnKTR3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및
대조구 시료와 비교하여 상기 CnCAP6 단백질 및 CnKTR3 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 뇌수막염 치료제 스크리닝 방법.
Contacting the test substance to a cell comprising the CnCAP6 protein represented by SEQ ID NO: 1 and the CnKTR3 protein represented by SEQ ID NO: 48;
Measuring the level of expression or activity of CnCAP6 protein and CnKTR3 protein in the cells to which the test substance is contacted; And
Selecting a test substance having decreased expression or activity level of the CnCAP6 protein and the CnKTR3 protein as compared with a control sample.
삭제delete 서열번호 1로 표시된 CnCAP6 단백질 및 서열번호 48로 표시된 CnKTR3 단백질의 발현 또는 활성 억제제를 유효성분으로 포함하는 항진균용 약학 조성물.48. A pharmaceutical composition for an antifungal agent comprising as an active ingredient an expression or activity inhibitor of a CnCAP6 protein represented by SEQ ID NO: 1 and a CnKTR3 protein represented by SEQ ID NO: 48. 삭제delete 제 7항에 있어서, 상기 CnCAP6 단백질 및 CnKTR3 단백질의 발현 억제제는 CnCAP6 유전자 및 CnKTR3 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 작은 간섭 RNA(small interfering RNA; siRNA) 및 짧은 헤어핀 RNA(short hairpin RNA; shRNA)로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 항진균용 약학 조성물.8. The method according to claim 7, wherein the CnCAP6 protein and CnKTR3 protein expression inhibitor is selected from the group consisting of an antisense nucleotide complementary to mRNA of CnCAP6 gene and CnKTR3 gene, a small interfering RNA (siRNA) and a short hairpin RNA ; shRNA). &lt; / RTI &gt; 제 7항에 있어서, 상기 CnCAP6 단백질 및 CnKTR3 단백질의 활성 억제제는 CnCAP6 단백질 및 CnKTR3 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머 및 항체로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 항진균용 약학 조성물.The method of claim 7, wherein the activity inhibitor of CnCAP6 protein and CnKTR3 protein is any one selected from the group consisting of a compound specifically binding to CnCAP6 protein and CnKTR3 protein, a peptide, a peptide mimetic, an aptamer, and an antibody Or a pharmaceutically acceptable salt thereof. 제 9항에 있어서, 상기 CnCAP6 유전자는 서열번호 2인 것을 특징으로 하는 항진균용 약학 조성물.10. The pharmaceutical composition according to claim 9, wherein the CnCAP6 gene is SEQ ID NO: 2. 제 7항에 있어서, 상기 진균은 크립토코쿠스 네오포만스(Cryptococcus neoformans)인 것을 특징으로 하는 항진균용 약학 조성물.8. The pharmaceutical composition according to claim 7, wherein the fungus is Cryptococcus neoformans . 서열번호 1로 표시된 CnCAP6 단백질 및 서열번호 48로 표시된 CnKTR3 단백질의 발현 또는 활성 억제제를 유효성분으로 포함하는 뇌수막염 예방 또는 치료용 약학 조성물.48. A pharmaceutical composition for preventing or treating meningitis comprising the CnCAP6 protein represented by SEQ ID NO: 1 and the CnKTR3 protein represented by SEQ ID NO: 48 as an active ingredient. 삭제delete
KR1020160076558A 2016-06-20 2016-06-20 Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans KR101872588B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160076558A KR101872588B1 (en) 2016-06-20 2016-06-20 Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160076558A KR101872588B1 (en) 2016-06-20 2016-06-20 Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans

Publications (2)

Publication Number Publication Date
KR20170143110A KR20170143110A (en) 2017-12-29
KR101872588B1 true KR101872588B1 (en) 2018-07-02

Family

ID=60939069

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160076558A KR101872588B1 (en) 2016-06-20 2016-06-20 Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans

Country Status (1)

Country Link
KR (1) KR101872588B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061724A (en) * 2019-11-20 2021-05-28 충남대학교산학협력단 Screening methods of anti-fungal agents targeting Eif3b

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI GenBank Accession No. XP_012053086(공개일: 2015. 4. 1.)*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061724A (en) * 2019-11-20 2021-05-28 충남대학교산학협력단 Screening methods of anti-fungal agents targeting Eif3b
KR102272985B1 (en) 2019-11-20 2021-07-02 충남대학교산학협력단 Screening methods of anti-fungal agents targeting Eif3b

Also Published As

Publication number Publication date
KR20170143110A (en) 2017-12-29

Similar Documents

Publication Publication Date Title
Futagami et al. Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans
Chaffin Candida albicans cell wall proteins
Knauer et al. The oligosaccharyltransferase complex from Saccharomyces cerevisiae: isolation of the OST6 gene, its synthetic interaction with OST3, and analysis of the native complex
Lee et al. Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation
Munro et al. Mnt1p and Mnt2p of Candida albicans are partially redundant α-1, 2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence
Chaffin et al. Cell wall and secreted proteins of Candida albicans: identification, function, and expression
Schmalhorst et al. Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus
Olson et al. Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neoformans
Banerjee et al. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization
Alberti‐Segui et al. Identification of potential cell‐surface proteins in Candida albicans and investigation of the role of a putative cell‐surface glycosidase in adhesion and virulence
Komachi et al. gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O‐glycan in A spergillus nidulans and A spergillus fumigatus
Bowman et al. Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa
US9399764B2 (en) Fusion enzymes
Southard et al. Molecular analysis of the Candida albicans homolog of Saccharomyces cerevisiae MNN9, required for glycosylation of cell wall mannoproteins
US6399571B1 (en) Chitinase chitin-binding fragments
JPH10513343A (en) Telomerase protein components
Zucchi et al. A Candida albicans cell wall‐linked protein promotes invasive filamentation into semi‐solid medium
JP2014529396A (en) Pasteurella vaccine
Alam et al. Aspergillus nidulans galactofuranose biosynthesis affects antifungal drug sensitivity
CN1705679A (en) Nucleic acids coding for adhesion factor of group B streptococcus, adhesion factors of group b streptococcus and further uses thereof
Lozoya-Pérez et al. Silencing of OCH1 unveils the role of Sporothrix schenckii N-linked glycans during the host–fungus interaction
Goto et al. Protein O-mannosyltransferases B and C support hyphal development and differentiation in Aspergillus nidulans
KR101872588B1 (en) Use of the CnCAP6 gene encoding a mannoslytransferase for treating mycoses or meningitis by Cryptococcus neoformans
US6582911B1 (en) Candida albicans KRE9 and uses thereof
WO1997047752A1 (en) Chitinase materials and methods

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right