KR101871735B1 - Steel sheet for crown cap, method for manufacturing same, and crown cap - Google Patents

Steel sheet for crown cap, method for manufacturing same, and crown cap Download PDF

Info

Publication number
KR101871735B1
KR101871735B1 KR1020167026089A KR20167026089A KR101871735B1 KR 101871735 B1 KR101871735 B1 KR 101871735B1 KR 1020167026089 A KR1020167026089 A KR 1020167026089A KR 20167026089 A KR20167026089 A KR 20167026089A KR 101871735 B1 KR101871735 B1 KR 101871735B1
Authority
KR
South Korea
Prior art keywords
crown cap
steel sheet
less
temperature
annealing
Prior art date
Application number
KR1020167026089A
Other languages
Korean (ko)
Other versions
KR20160126014A (en
Inventor
토모나리 히라구치
카츠미 고지마
히로키 나카마루
마사미 츠지모토
토시히로 기쿠치
Original Assignee
제이에프이 스틸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에프이 스틸 가부시키가이샤 filed Critical 제이에프이 스틸 가부시키가이샤
Publication of KR20160126014A publication Critical patent/KR20160126014A/en
Application granted granted Critical
Publication of KR101871735B1 publication Critical patent/KR101871735B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D41/00Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
    • B65D41/02Caps or cap-like covers without lines of weakness, tearing strips, tags, or like opening or removal devices
    • B65D41/10Caps or cap-like covers adapted to be secured in position by permanent deformation of the wall-engaging parts
    • B65D41/12Caps or cap-like covers adapted to be secured in position by permanent deformation of the wall-engaging parts made of relatively stiff metallic materials, e.g. crown caps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Closures For Containers (AREA)
  • Metal Rolling (AREA)

Abstract

(과제) 본 발명은, 크라운 캡의 형상 불량, 내압 강도 부족의 문제를 해소하는, 가공성이 우수한 크라운 캡용 강판 및 그의 제조 방법, 및 크라운 캡용 강판을 성형하여 이루어지는 크라운 캡을 제공하는 것을 목적으로 한다.
(해결 수단) 크라운 캡용 강판은, C: 0.0005∼0.0050%, Si: 0.020% 이하, Mn: 0.10∼0.60%, P: 0.020% 이하, S: 0.020% 이하, Al: 0.01∼0.10%, N: 0.0050% 이하, Nb: 0.010∼0.050%를 함유하고, 잔부는 Fe 및 불가피적 불순물로 이루어지며, 평균 r값이 1.30 이상, YP가 450㎫ 이상 650㎫ 이하이다. 강(鋼) 슬래브를, 슬래브 재가열 온도가 1150℃ 이상, 마무리 온도가 870℃ 이상인 열간 압연을 행한 후, 권취 온도 600℃ 이상에서 권취하고, 산세정 후, 1차 냉간 압연 하고, 재결정 온도 이상 790℃ 이하의 어닐링 온도로 어닐링하고, 그 후, 압하율 10% 이상 50% 이하의 2차 냉간 압연을 행함으로써 얻어진다.
It is an object of the present invention to provide a steel sheet for a crown cap excellent in workability, which solves the problem of defective shape of a crown cap and insufficient strength of a pressure resistance, a method of producing the same, and a crown cap formed by molding a steel sheet for a crown cap .
The steel sheet for a crown cap according to claim 1, wherein the steel sheet for a crown cap comprises 0.0005 to 0.0050% of C, 0.020% or less of Si, 0.10 to 0.60% of Mn, 0.020% or less of P, 0.0050% or less, Nb: 0.010 to 0.050%, the balance being Fe and inevitable impurities, and having an average r value of 1.30 or more and YP of 450 to 650 MPa. The steel slabs were hot rolled at a slab reheating temperature of 1150 DEG C or higher and a finishing temperature of 870 DEG C or higher, rolled at a coiling temperature of 600 DEG C or higher, washed with acid, subjected to primary cold rolling, Annealing at an annealing temperature of not higher than 50 占 폚, and then performing secondary cold rolling at a reduction ratio of 10% or higher and 50% or lower.

Description

크라운 캡용 강판 및 그의 제조 방법 및 크라운 캡{STEEL SHEET FOR CROWN CAP, METHOD FOR MANUFACTURING SAME, AND CROWN CAP}STEEL SHEET FOR CROWN CAP, METHOD FOR MANUFACTURING SAME, AND CROWN CAP}

본 발명은, 맥주병 등에 이용되는, 크라운 캡(crown cap) 성형시의 형상 균일성이 우수한 크라운 캡용 강판 및 그의 제조 방법 및 크라운 캡에 관한 것이다.The present invention relates to a steel sheet for a crown cap, which is excellent in shape uniformity at the time of forming a crown cap, used for beer bottles and the like, a method for producing the same, and a crown cap.

최근의 환경 부하 저감 및 비용 저하의 관점에서, 맥주병 뚜껑 등에 사용되는 크라운 캡용 강판의 박육화가 진행되고 있다. 일반적으로, 박육화된 강판으로서 이하의 2종류가 있다. 즉, 열간 압연, 냉간 압연, 어닐링에 이어, 조질 압연(temper rolling)을 행하는 SR(Single Reduce)재와, 2차 냉간 압연을 행하는 DR(Double Reduce)재이다. 크라운 캡용 강판의 경우, 판두께는, 0.20㎜ 이하의 수요가 확대되고 있어, 박육화에 수반하는 내압 강도 저하를 보충하는 가공 경화를 이용할 수 있는 2차 냉간 압연을 실시하는 DR재가 바람직하다. 그러나, DR재는, 일반적으로 SR재에 비해 경질이 되기 때문에 가공성이 낮다는 문제가 있다. From the viewpoint of recent environmental load reduction and cost reduction, a steel sheet for a crown cap used for a beer bottle lid is becoming thinner. Generally, there are the following two kinds of thinned steel sheets. That is, SR (Single Reduce) material subjected to temper rolling followed by hot rolling, cold rolling and annealing, and DR (Double Reduce) material subjected to secondary cold rolling. In the case of a steel sheet for a crown cap, the plate thickness is in a demand of 0.20 mm or less, and it is preferable to use a DR material that performs secondary cold rolling which can utilize work hardening to compensate for the decrease in strength of pressure resistance accompanying thinning. However, since the DR material is generally harder than the SR material, there is a problem that the workability is low.

크라운 캡 성형에서는, 성형 초기에 중앙부가 어느 정도 조여지고, 그 후, 외연부가 습곡 형상(fluted shape)으로 성형된다. 가공성이 낮은 강판의 경우, 습곡 형상이 불균일해지는 형상 불량이 발생하는 경우가 있다. 습곡 형상이 불균일한 크라운 캡은, 병에 타전(打栓;put on)되어도 내압 강도가 얻어지지 않아 내용물의 누설이 발생하고, 뚜껑으로서의 역할을 다하지 않는다는 문제가 있다. 또한, 습곡 형상이 균일하더라도, 강판 강도가 낮은 경우에는, 내압 강도 부족에 의해 크라운 캡이 어긋날 위험성이 있다. In the crown cap molding, the center portion is tightened to some extent at the initial stage of molding, and then the outer edge portion is formed into a fluted shape. In the case of a steel sheet having a low workability, there may be a case where a shape defect in which the shape of a fold is uneven may occur. The crown cap having a non-uniformly folded shape has a problem in that when the bottle is put on, the pressure resistance is not obtained and leakage of the contents occurs and the cap does not function as a lid. Further, even if the shape of the folded portion is uniform, when the strength of the steel sheet is low, there is a risk that the crown cap is displaced due to insufficient strength of the internal pressure.

양호한 가공성을 갖는 강판으로서는, 극저탄소 IF(Interstitial Free)강(steel sheet)이 잘 알려져 있다. 극저탄소강을 이용한 DR재에서는, 가공성 향상과 박육화의 양립을 지향한 수많은 검토가 있다(예를 들면, 특허 문헌 1∼3). Extremely low carbon IF (Interstitial Free) steel sheet is well known as a steel sheet having good workability. In the DR material using ultra-low carbon steel, there are a number of studies aiming at compatibility between workability improvement and thinning (for example, Patent Documents 1 to 3).

일본공개특허공보 평7-11333호Japanese Patent Application Laid-Open No. 7-11333 일본공개특허공보 평5-287445호Japanese Patent Application Laid-Open No. 5-287445 일본공개특허공보 2010-255021호Japanese Laid-Open Patent Publication No. 2010-255021

그러나, 상기 종래 기술을 크라운 캡에 적용한 경우는, 모두 크라운 캡으로서의 성능을 확보할 수 없는 문제점을 안고 있다. However, when the above-described conventional technique is applied to a crown cap, the performance as a crown cap can not be secured.

본 발명은 상기 사정을 감안하여 이루어진 것으로, 전술한 종래 기술의 문제를 해결하고, 가공성이 우수한 크라운 캡용 강판 및 그의 제조 방법 및 크라운 캡을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steel sheet for a crown cap excellent in workability, a method of manufacturing the same, and a crown cap.

발명자들은, 상기 과제를 해결하기 위해, 예의 연구를 행했다. 극저탄소강을 베이스로, 화학 성분, 열간 압연 조건, 냉간 압연 조건(1차, 2차), 연속 어닐링 조건을 검토하여, 평균 r값을 향상시키고, 또한 YP를 적절한 값으로 제어함으로써, 크라운 캡의 형상 불량률의 감소와 내압 강도의 확보를 가능하게 하는 것을 발견했다. In order to solve the above-described problems, the inventors have conducted extensive research. By studying the chemical composition, the hot rolling condition, the cold rolling condition (primary and secondary) and the continuous annealing conditions on the basis of the extremely low carbon steel, the average r value is improved and the YP is controlled to an appropriate value, And it is possible to secure the withstand pressure strength.

본 발명은, 이상의 인식에 기초하여 이루어진 것으로, 그 요지는 이하와 같다. The present invention has been made on the basis of the above-described recognition, and its main points are as follows.

[1] 질량%로, C: 0.0005∼0.0050%, Si: 0% 초과~0.020% 이하, Mn: 0.10∼0.60%, P: 0% 초과~0.020% 이하, S: 0% 초과~0.020% 이하, Al: 0.01∼0.10% 이하, N: 0% 초과~0.0050% 이하, Nb: 0.010∼0.050%를 함유하고, 잔부는 Fe 및 불가피적 불순물로 이루어지며, 평균 r값이 1.30 이상, YP가 450㎫ 이상 650㎫ 이하인 크라운 캡용 강판. [1] A steel according to [1], wherein C is 0.0005 to 0.0050%, Si is more than 0 to 0.020%, Mn is 0.10 to 0.60%, P is more than 0 and less than 0.020%, S is more than 0 and less than 0.020% , Al: 0.01 to 0.10% or less, N: more than 0 to 0.0050%, Nb: 0.010 to 0.050%, the balance being Fe and inevitable impurities and having an average r value of 1.30 or more, YP of 450 ㎫ to 650 MPa.

[2] 페라이트 전신도(elongation rate)가 4.2 이하인 상기 [1]에 기재된 크라운 캡용 강판. [2] The steel sheet for a crown cap according to the above [1], wherein the ferrite elongation rate is 4.2 or less.

[3] 상기 [1]에 기재된 화학 성분을 갖는 강 슬래브(steel slabe)를, 슬래브 재가열 온도가 1150℃ 이상, 마무리 온도가 870℃ 이상인 열간 압연을 시행한 후, 권취 온도 600℃ 이상에서 권취하고, 산세정 후, 1차 냉간 압연하고, 재결정 온도 이상 790℃ 이하의 어닐링 온도로 어닐링하고, 그 후 압하율 10% 이상 50% 이하의 2차 냉간 압연을 행하는 크라운 캡용 강판의 제조 방법. [3] A steel slab having the chemical composition described in the above [1] is subjected to hot rolling at a slab reheating temperature of 1150 ° C or higher and a finishing temperature of 870 ° C or higher, followed by winding at a coiling temperature of 600 ° C or higher , Followed by primary cold rolling, annealing at an annealing temperature of not lower than 790 占 폚 and recrystallization temperature not higher than 10% and not higher than 50%, followed by secondary cold rolling.

[4] 상기 [1] 또는 [2]에 기재된 크라운 캡용 강판을 성형하여 이루어지는 크라운 캡. [4] A crown cap formed by molding the steel sheet for a crown cap according to the above [1] or [2].

또한, 본 발명에 있어서, 성분 조성의 비율을 나타내는 %는 모두 질량%이다. Further, in the present invention, the percentages indicating the proportions of the component compositions are all% by mass.

본 발명에 의하면, 평균 r값이 1.30 이상이며, YP가 450㎫ 이상 650㎫ 이하인 가공성이 우수한 크라운 캡용 강판이 얻어진다. 본 발명의 크라운 캡용 강판을 이용함으로써, 맥주병 등에 이용되는 크라운 캡의 형상 균일성을 높이고, 또한 충분한 내압 강도를 얻는 것이 가능해진다. According to the present invention, a steel sheet for a crown cap excellent in workability having an average r value of 1.30 or more and YP of 450 MPa to 650 MPa is obtained. By using the steel sheet for a crown cap of the present invention, it is possible to enhance the uniformity of shape of a crown cap used for beer bottles and to obtain a sufficient pressure resistance strength.

도 1은 크라운 캡의 주름 형상을 나타내는 도면이다. 1 is a view showing a corrugated shape of a crown cap.

(발명을 실시하기 위한 형태)(Mode for carrying out the invention)

이하, 본 발명을 상세하게 설명한다. 우선, 성분 조성에 대해서 설명한다. Hereinafter, the present invention will be described in detail. First, the composition of the components will be described.

[C: 0.0005∼0.0050%][C: 0.0005 to 0.0050%]

C는 강의 강도를 높이는 원소이지만 가공성을 저하시킨다. 강판 중의 고용 C의 양이 많으면, 항복 연신이 커져, 시효 경화나, 가공시의 스트레처 스트레인(stretcher strain)의 원인이 되기 쉽다. 그 때문에, 연속 어닐링법을 이용하는 본 발명에 있어서는, 제강 단계에 있어서 C의 함유량을 최대한 낮게 억제하도록 제어할 필요가 있다. 또한, 잔존 고용 C량이 증가하면, 강판이 경질화하여 크라운 캡 성형 초기에 주름(wrinkles)이 발생하기 쉬워져, 형상 불량률이 높아진다. 또한, C는 재결정 집합 조직에 영향을 미치는 원소이다. C량이 적을수록, 어닐링판의 집합 조직은, <111> 방향이 판면 법선 방향에 평행한 결정 방위군(crystal orientation group)으로의 집적이 높아져, 평균 r값이 향상된다. 평균 r값이 향상됨으로써, 드로잉성(drawability)이 향상되고, 크라운 캡의 형상 불량이 개선된다. 이상으로부터, C 함유량은 0.0050% 이하로 한다. 보다 형상 균일성을 높이기 위해, 0.0035% 이하가 바람직하고, 0.0023% 이하가 더욱 바람직하다. 한편, 과도한 탈탄은 제강시의 비용 상승을 초래하기 때문에, 0.0005%를 하한으로 한다. C is an element that increases the strength of steel, but deteriorates workability. If the amount of solid solution C in the steel sheet is large, yield elongation becomes large, and it tends to cause age hardening and stretcher strain at the time of processing. Therefore, in the present invention using the continuous annealing method, it is necessary to control the content of C to be as low as possible in the steelmaking step. In addition, if the amount of the remaining solid solution C is increased, the steel sheet becomes hard and wrinkles are easily generated in the initial stage of forming the crown cap, and the shape defect rate is increased. Also, C is an element that influences the structure of the recrystallized set. As the amount of C is smaller, the texture of the annealing plate increases in the crystal orientation group in which the <111> direction is parallel to the plane normal direction, and the average r value is improved. The improvement of the average r value improves the drawability and improves the shape defects of the crown cap. From the above, the C content is set to 0.0050% or less. In order to enhance the shape uniformity, it is preferably 0.0035% or less, more preferably 0.0023% or less. On the other hand, excessive decarburization causes a rise in the cost of steelmaking, so 0.0005% is the lower limit.

[Si: 0.020% 이하],[Si: 0.020% or less],

Si는 다량으로 첨가하면, 강판의 표면 처리성의 열화 및 내식성의 저하를 초래하기 때문에, 0.020% 이하로 한다. When a large amount of Si is added, the surface treatment property of the steel sheet is deteriorated and the corrosion resistance is lowered. Therefore, the content of Si is 0.020% or less.

[Mn: 0.10∼0.60%],[Mn: 0.10 to 0.60%],

Mn은 열간 취성의 방지를 목적으로 첨가된다. 강 중에 포함되는 S에 기인하는 열간 연성의 저하를 방지하는 효과도 있다. 이들 효과를 얻기 위해서는, 0.10% 이상의 첨가가 필요하다. 한편, JIS G 3303에 규정된 레이들(ladle) 분석값이나 아메리카 합중국 재료 시험 협회 규격(ASTM A623M-11)에 규정된 레이들 분석값에 있어서, 통상의 식품 용기에 이용되는 블리크 원판(tin mill black plates)의 Mn의 상한은 0.60% 이하로 규정되어 있다. 이상으로부터, 본 발명의 Mn의 상한은 0.60% 이하로 한다. 가공성의 관점에서는, Mn은 0.45% 이하가 바람직하다. Mn is added for the purpose of preventing hot brittleness. There is also an effect of preventing deterioration of hot ductility due to S contained in the steel. In order to obtain these effects, it is necessary to add 0.10% or more. On the other hand, in terms of the ladle analysis value defined in JIS G 3303 or the ladle analysis value defined in the United States of America Material Test Association Standard (ASTM A623M-11), a tin mill black plates) has an upper limit of Mn of 0.60% or less. From the above, the upper limit of Mn of the present invention is set to 0.60% or less. From the viewpoint of workability, Mn is preferably 0.45% or less.

[P: 0.020% 이하][P: 0.020% or less]

P는, 다량으로 첨가하면, 강이 경질화하고 가공성이 저하되는 것에 더하여, 내식성의 저하를 일으킨다. 따라서, P의 상한은 0.020%로 한다. When P is added in a large amount, the steel is hardened and the workability is lowered, and the corrosion resistance is lowered. Therefore, the upper limit of P is 0.020%.

[S: 0.020% 이하][S: 0.020% or less]

S는, 강 중에서 Fe와 결합하여 FeS를 형성하고, 강의 열간 연성을 저하시킨다. 이를 방지하기 위해, S는 0.020% 이하로 한다. 한편, S가 지나치게 낮으면 공식(pitting corrosion)의 발생 리스크가 높아지기 때문에, 0.008% 이상이 바람직하다. S combines with Fe in the steel to form FeS, which lowers the hot ductility of the steel. To prevent this, S should be 0.020% or less. On the other hand, if S is too low, the risk of occurrence of pitting corrosion increases, so that it is preferably 0.008% or more.

[Al: 0.01∼0.10%][Al: 0.01 to 0.10%]

Al은, 탈산제로서 첨가되는 원소이다. 또한, N과 AlN을 형성함으로써, 강 중의 고용 N을 감소시키는 효과를 갖는다. 그러나, Al의 함유량이 0.01% 미만에서는, 충분한 탈산 효과나 고용 N 저감 효과가 얻어지지 않는다. 한편, 0.10%를 초과하면, 상기 효과가 포화할 뿐만 아니라, 알루미나 등의 개재물이 증가하기 때문에 바람직하지 않다. 따라서, Al의 함유량은 0.01% 이상 0.10% 이하의 범위로 한다. Al is an element added as a deoxidizer. Further, by forming N and AlN, the effect of reducing the solid solution N in the steel is obtained. However, when the content of Al is less than 0.01%, sufficient deoxidizing effect and solid solution N reducing effect can not be obtained. On the other hand, if it exceeds 0.10%, this effect is not only saturated but also inclusions such as alumina are increased. Therefore, the content of Al is set in the range of 0.01% or more and 0.10% or less.

[N: 0.0050% 이하][N: 0.0050% or less]

N이 증가하면, 변형 시효 경화(strain age hardening)에 의해, 강이 경질화하여 가공성이 저하된다. 또한, 고용 N을 고정하기 위해 첨가하는 원소를 늘려야 하기 때문에, 비용 상승으로 연결된다. 따라서, N의 상한은 0.0050% 이하로 한다. 한편, N을 안정적으로 0.0010% 미만으로 하는 것은 어렵고, 제조 비용도 상승하기 때문에, 0.0010% 이상이 바람직하다. When N is increased, strain hardening causes strain hardening and deteriorates workability. In addition, since the element to be added is fixed in order to fix the solid solution N, the cost is increased. Therefore, the upper limit of N is 0.0050% or less. On the other hand, it is difficult to stably reduce N to less than 0.0010%, and the manufacturing cost also increases, so that 0.0010% or more is preferable.

[Nb: 0.010∼0.050%][Nb: 0.010 to 0.050%]

Nb는 강판 중의 고용 C를 NbC로서 고정하고, 고용 C를 감소시킴으로써, 평균 r값을 향상시키는 것이 가능한 원소이다. 평균 r값이 높아짐으로써, 드로잉성이 향상되어, 형상 불량의 억제에 효과가 있다. Nb량이 적으면 평균 r값을 높이는 효과가 희미해져 버리기 때문에, 하한을 0.010%로 한다. 한편, Nb 첨가량이 증가하면, 재결정 온도가 상승하기 때문에, 어닐링 후, 미(未)재결정이 발생할 가능성이 있다. 이는 재질 불균일의 원인이 되기 때문에, 0.050% 이하로 한다. Nb is an element capable of improving the average r value by fixing the solid solution C in the steel sheet as NbC and decreasing the solid solution C. As the average r value increases, the drawability improves, which is effective in suppressing the defective shape. When the amount of Nb is small, the effect of raising the average r value becomes faint, so the lower limit is set to 0.010%. On the other hand, if the amount of Nb added increases, the recrystallization temperature rises, and there is a possibility that unrecrystallization occurs after annealing. Since this causes material unevenness, it should be 0.050% or less.

잔부는 Fe 및 불가피적 불순물로 한다. The remainder is Fe and inevitable impurities.

또한, Cu, Ni, Cr, Mo는, 본 발명의 효과를 해치지 않는 범위에서 함유해도 좋다. Further, Cu, Ni, Cr, and Mo may be contained in a range that does not impair the effect of the present invention.

ASTM A623M-11로부터 Cu는 0.2% 이하, Ni는 0.15% 이하, Cr은 0.10% 이하, Mo는 0.05% 이하로 한다. 그 외 원소는 0.02% 이하로 한다. From ASTM A623M-11, Cu is 0.2% or less, Ni is 0.15% or less, Cr is 0.10% or less, and Mo is 0.05% or less. Other elements should be 0.02% or less.

또한, 본 발명의 효과를 해치지 않는 범위에서 Sn을 함유해도 좋다. In addition, Sn may be contained within a range that does not impair the effect of the present invention.

[Sn: 0.0050% 미만][Sn: less than 0.0050%]

Sn은 다량으로 존재하면, 평균 r값을 내리기 때문에, 0.0050% 미만이 바람직하다. When Sn exists in a large amount, the average r value is lowered, so that it is preferably less than 0.0050%.

[강판의 조직][Structure of steel sheet]

본 발명의 크라운 캡용 강판의 조직은, 재결정 조직으로 한다. 어닐링 후에 미재결정이 있으면, 재질이 불균일하게 되어 기계 특성에 불균일이 발생하기 때문이다. 단, 미재결정 면적률이 5% 이하이면, 재질 불균일에 거의 영향을 주지 않기 때문에 허용할 수 있다. 또한, 재결정 조직은, 페라이트상(相)인 것이 바람직하고, 페라이트상 이외의 상은 1.0% 미만으로 하는 것이 바람직하다. 그리고, 2차 냉간 압연시의 이방성을 억제하는 관점에서, 페라이트 전신도는 4.2 이하가 바람직하다. 강판의 페라이트립의 전신도가 4.2를 초과하면 둘레방향(circumferential direction)으로 형상 균일한 습곡을 얻는 것이 어려운 경우가 있다. 또한, 페라이트 전신도는, 후술하는 제조 방법 중, 2차 냉간 압연의 압연율을 50% 이하로 함으로써 4.2 이하로 할 수 있다. 또한, 페라이트 전신도는, 후술의 실시예 기재의 방법에 의해 측정할 수 있다. The structure of the steel sheet for a crown cap of the present invention is a recrystallized structure. If there is non-recrystallization after annealing, the material becomes uneven and unevenness occurs in the mechanical characteristics. However, if the non-recrystallized area ratio is 5% or less, it can be accepted because it hardly affects the material unevenness. The recrystallized structure is preferably a ferrite phase, and the phase other than the ferrite phase is preferably less than 1.0%. From the viewpoint of suppressing the anisotropy during the secondary cold rolling, the ferrite system is preferably 4.2 or less. When the whole body of the ferrite grains of the steel sheet exceeds 4.2, it may be difficult to obtain a uniformly shaped fold in the circumferential direction. The ferrite system can be set to 4.2 or less by setting the rolling rate of the secondary cold rolling to 50% or less in the manufacturing method described later. Further, the ferrite system can be measured by the method described in the following example.

다음으로 본 발명의 가공성이 우수한 크라운 캡용 강판을 얻기 위한 제조 방법의 일 예에 대해서 설명한다. Next, an example of a production method for obtaining a steel sheet for a crown cap excellent in workability of the present invention will be described.

상기 조성을 갖는 슬래브에, 슬래브 재가열 온도가 1150℃ 이상, 마무리 온도가 870℃ 이상인 열간 압연을 행한 후, 권취 온도 600℃ 이상에서 권취하고, 산세정 후, 1차 냉간 압연하고, 재결정 온도 이상 790℃ 이하의 어닐링 온도로 어닐링하고, 그 후, 압하율 10% 이상 50% 이하의 2차 냉간 압연을 행함으로써 가공성이 우수한 크라운 캡용 강판이 얻어진다. The slab having the above composition was subjected to hot rolling at a slab reheating temperature of 1150 DEG C or higher and a finishing temperature of 870 DEG C or higher, followed by winding at a coiling temperature of 600 DEG C or higher, acid washing, primary cold rolling, , And then subjected to secondary cold rolling at a reduction ratio of 10% or more and 50% or less to obtain a steel sheet for a crown cap excellent in workability.

[슬래브 재가열 온도: 1150℃ 이상], [Reheating temperature of slab: 1150 DEG C or more],

열간 압연 전의 슬래브 재가열 온도는, 지나치게 낮으면, 최종 마무리 압연 온도의 확보가 어려워지기 때문에, 1150℃ 이상으로 한다. 한편, 가열 온도가 지나치게 높으면 제품 표면의 결함이나, 에너지 비용이 상승하는 등의 문제가 발생하기 때문에, 1300℃ 이하로 하는 것이 바람직하다. If the reheating temperature of the slab before the hot rolling is too low, it becomes difficult to secure the final finish rolling temperature, and therefore, it is set to 1150 占 폚 or higher. On the other hand, if the heating temperature is excessively high, problems such as defects on the surface of the product, energy cost increase, and the like arise.

[열간 압연 마무리 온도: 870℃ 이상][Hot rolling finish temperature: 870 DEG C or more]

열간 압연 마무리 온도가 지나치게 낮으면, 강판 표층에서 α립의 조대화를 초래하여, 재질 불균일의 원인이 된다. 따라서, 열간 압연 마무리 온도는 870℃ 이상으로 한다. 또한, 열간 압연 마무리 온도가 지나치게 높으면 열연 스케일이 두꺼워져, 산세정성이 떨어진다. 따라서, 열연 마무리 온도는 910℃ 이하가 바람직하다. 또한, 본 발명에서는, Nb에 의한 IF화로 고용 원소가 감소되어 있기 때문에, 마무리 압연까지 탄화물 등의 석출 처리 등을 행할 필요는 없다. 그 때문에, 통상의 마무리 압연으로 압연할 수 있다. If the hot rolling finishing temperature is too low, coarsening of the? -Lip is caused in the surface layer of the steel sheet, which causes material unevenness. Therefore, the hot rolling finishing temperature should be 870 DEG C or higher. If the hot rolling finishing temperature is too high, the hot rolling scale becomes thick and the pickling performance deteriorates. Therefore, the hot rolling finishing temperature is preferably 910 占 폚 or lower. Further, in the present invention, since the solid-dissolved element is reduced by IF-induced Nb, it is not necessary to carry out precipitation treatment of carbide or the like to finish rolling. Therefore, it can be rolled by ordinary finish rolling.

[열간 압연 후의 권취 온도: 600℃ 이상][Coiling temperature after hot rolling: 600 占 폚 or more]

열간 압연 후의 권취 온도가 지나치게 낮으면, 열연 형상 불량이 발생한다. 따라서, 열간 압연 후의 권취 온도는 600℃ 이상으로 한다. 강판의 균일성을 고려하여, 권취 온도는 700℃ 초과가 바람직하다. 한편, 권취 온도가 지나치게 높으면, 열연 스케일이 두꺼워져, 산세정성이 떨어지기 때문에, 열간 압연 후의 권취 온도는 730℃ 이하가 바람직하다. If the coiling temperature after hot rolling is too low, hot rolled shape defects will occur. Therefore, the coiling temperature after hot rolling is set to 600 ° C or higher. In consideration of the uniformity of the steel sheet, the coiling temperature is preferably higher than 700 deg. On the other hand, if the coiling temperature is too high, the hot rolling scale becomes thick and the pickling property deteriorates. Therefore, the coiling temperature after hot rolling is preferably 730 캜 or lower.

산세정 조건은 표층 스케일을 제거할 수 있으면 좋고, 특별히 조건은 규정하지 않는다. 통상 행해지는 방법에 의해, 산세정할 수 있다. 또한, 스케일 제거 방법으로서 산세정을 예시했지만, 스케일을 제거할 수 있으면 산세정 이외의 방법을 이용해도 좋다. 예를 들면, 기계적인 제거 등이라도 좋다. Acid cleansing conditions are not particularly limited as long as the surface scale can be removed. It is possible to determine the acidity by a method usually performed. Although acid cleaning is exemplified as a scale removal method, a method other than acid cleaning may be used as long as the scale can be removed. For example, mechanical removal may be used.

[1차 냉간 압연의 압하율: 86∼89%(적합 조건)][Reduction ratio of primary cold rolling: 86 to 89% (suitable conditions)]

1차 냉간 압연의 압하율은, 지나치게 높으면, 압연시에, 압연 롤에 과대한 하중이 걸려, 설비에 큰 부하가 된다. 한편, 지나치게 낮으면, 그만큼 열연 강판을 얇게 제조해야 하기 때문에, 재질 제어가 곤란해진다. 따라서, 1차 냉간 압연의 압하율은 86∼89%가 바람직하다. If the reduction rate of the primary cold rolling is too high, an excessive load is applied to the rolling roll at the time of rolling, resulting in a large load on the equipment. On the other hand, if it is too low, it is necessary to manufacture the hot-rolled steel sheet as thin as possible, so that it becomes difficult to control the material. Therefore, the reduction ratio of the primary cold rolling is preferably 86 to 89%.

[어닐링 온도: 재결정 온도 이상 790℃ 이하][Annealing temperature: recrystallization temperature or more and 790 DEG C or less]

어닐링 방법은, 재질의 균일성과 생산성의 관점에서 연속 어닐링법이 바람직하다. 연속 어닐링에 있어서의 어닐링 온도는, 재결정 온도 이상인 것이 필수이다. 그러나, 어닐링 온도가 지나치게 높으면 결정립이 조대화하고, 강판 강도가 저하되어, 본 발명 규정의 범위의 YP가 얻어지지 않을 가능성이 있다. 또한, 박물재(薄物材)에서는, 로(furnace) 내 파단이나 버클링(buckling)의 발생의 위험이 커진다. 이 때문에, 어닐링 온도는, 790℃ 이하로 한다. 어닐링시의 균열 시간(soaking time)은 생산성의 관점에서 10초 이상 90초 이하로 하는 것이 바람직하다. The annealing method is preferably a continuous annealing method in terms of uniformity of material and productivity. The annealing temperature in the continuous annealing is required to be not lower than the recrystallization temperature. However, if the annealing temperature is excessively high, the crystal grains become coarse, the strength of the steel sheet lowers, and there is a possibility that the YP within the range specified in the present invention may not be obtained. Further, in a thin material, the risk of breakage or buckling in the furnace is increased. For this reason, the annealing temperature is set to 790 캜 or lower. The soaking time at the time of annealing is preferably 10 seconds or more and 90 seconds or less from the viewpoint of productivity.

[2차 냉간 압연의 압하율: 10% 이상 50% 이하][Reduction ratio of secondary cold rolling: 10% or more and 50% or less]

어닐링 후, 강판의 박육화와 강도 증가를 도모하기 위해, 2차 냉간 압연을 행한다. 2차 냉간 압연은 본 발명에 있어서 특히 중요한 제조 조건이다. 압하율이 50%를 초과하면, 강판이 과도하게 경질화하여, 가공성이 저하된다. 또한, 평균 r값의 저하, Δr값의 증가를 일으킨다. 따라서, 2차 냉간 압연의 압하율은 50% 이하로 한다. 한편, 내압 강도 확보를 위해, 10% 이상의 압하율로 2차 압연한다. 추가로 내압 강도를 확보하기 위해서는, 압하율은 30% 초과가 바람직하다. After the annealing, secondary cold rolling is carried out in order to reduce the thickness and strength of the steel sheet. Secondary cold rolling is a particularly important production condition in the present invention. When the reduction rate exceeds 50%, the steel sheet is excessively hardened and the workability is lowered. Further, a decrease in the average r value and an increase in the? R value are caused. Therefore, the reduction rate of the secondary cold rolling is set to 50% or less. On the other hand, in order to secure pressure resistance, secondary rolling is performed at a reduction ratio of 10% or more. In order to further secure the withstand pressure, the reduction rate is preferably more than 30%.

상기와 같이 하여 얻은 냉연 강판은, 크라운 캡으로 성형되기 전에, 하기 표면 처리를 행하는 것이 바람직하다. 하기 표면 처리를 행한 강판도 본 발명의 크라운 캡용 강판이다. The cold-rolled steel sheet obtained as described above is preferably subjected to the following surface treatment before being molded into a crown cap. The steel sheet subjected to the surface treatment described below is also a steel sheet for a crown cap of the present invention.

[표면 처리] [Surface treatment]

상기 2차 냉간 압연 후의 강판의 강판 표면에, 각종 표면 처리를 행해도 좋다. 예를 들면 전기 도금 등의 일반적인 도금 방법에 의해, 주석 도금, 크롬 도금 및 니켈 도금 중 어느 1종 이상의 도금을 형성하는 방법을 들 수 있다. The surface of the steel sheet after the secondary cold rolling may be subjected to various surface treatments. Chromium plating, and nickel plating may be formed by a general plating method such as electroplating, for example.

또한, 도금 등의 표면 처리의 막두께는, 판두께에 관하여 충분히 작기 때문에, 크라운 캡용 강판의 기계 특성에의 영향은 무시할 수 있는 레벨이다. Further, since the film thickness of the surface treatment such as plating is sufficiently small with respect to the plate thickness, the influence on the mechanical characteristics of the steel sheet for crown cap is negligible.

다음으로, 본 발명의 크라운 캡용 강판의 재질 특성에 대해서 설명한다. Next, the material properties of the steel sheet for a crown cap of the present invention will be described.

[평균 r값: 1.30 이상][Average r value: 1.30 or more]

크라운 캡의 형상 불량은, 크라운 캡 성형 초기 단계의 드로잉 성형에 수반하는 주름의 발생이 원인이다. 그래서, 주름의 발생을 회피하기 위해, 드로잉성을 높이는 것, 즉 고(高)평균 r값을 지향할 필요가 있다. 평균 r값이 낮으면, 드로잉성이 낮고, 크라운 캡 성형 초기 단계에서 주름이 발생하여 형상 불량이 발생하기 때문에, 평균 r값은 1.30 이상으로 한다. 성형 초기의 드로잉성 향상을 위해, 평균 r값 1.40 이상이 바람직하다. 또한, 평균 r값 2.00이 현실적인 상한이다. The defective shape of the crown cap is caused by the occurrence of wrinkles accompanying the drawing molding at the initial stage of crown cap molding. Therefore, in order to avoid the occurrence of wrinkles, it is necessary to increase the drawability, that is, to aim at a high average r value. When the average r value is low, the drawability is low, and wrinkles are generated in the initial stage of forming the crown cap, resulting in defective shape. Therefore, the average r value is 1.30 or more. In order to improve the drawability at the initial stage of molding, an average r value of 1.40 or more is preferable. Also, an average r value of 2.00 is a practical upper limit.

[|Δr|≤0.5(적합 조건)][|? R |? 0.5 (conformance condition)]

크라운 캡을 성형하는 데에 있어서 둘레 방향에 대하여 균일하게 습곡을 성형하기 위해 |Δr|≤0.5가 바람직하다. 더욱 바람직하게는, |Δr|≤0.4이며, 보다 바람직하게는, |Δr|≤0.3이다. Δr(면내 이방성)의 측정은 JIS Z 2254 부속서 JA에 규정되는 고유 진동법을 이용할 수 있다. 즉, 압연 방향에 대하여 0°, 45° 및 90° 방향의 강판의 공진 주파수를 측정하고, 영률의 이방성 ΔE를 산출하여, Δr과 ΔE의 상관을 나타내는 실험식으로부터 Δr값을 산출한다. In molding the crown cap, it is preferable that | DELTA r | &amp;le; 0.5 for forming a fold uniformly in the circumferential direction. More preferably, |? R |? 0.4, and more preferably |? R |? 0.3. The measurement of? R (in-plane anisotropy) can be performed using the natural vibration method specified in JIS Z 2254 Annex JA. That is, the resonance frequency of the steel sheet in the directions of 0 deg., 45 deg. And 90 deg. Relative to the rolling direction is measured, and the anisotropy? E of the Young's modulus is calculated to calculate the value? R from the empirical formula showing the correlation between? R and? E.

[YP: 450㎫ 이상 650㎫ 이하][YP: 450MPa or more and 650MPa or less]

용기의 내압 강도는, 뚜껑재의 YP와 비례 관계에 있다. 강판의 강도가 부족하면 충분한 내압 강도가 얻어지지 않기 때문에, YP의 하한을 450㎫로 한다. 또한, YP가 지나치게 높으면, 크라운 캡 습곡 부분의 둘레 방향의 압축 응력이 높아져, 크라운 캡 성형 초기에 임계 좌굴 응력을 상회하기 때문에, 주름이 발생하기 쉬워진다. 이러한 형상 불량을 방지하기 위해, 상한은 650㎫로 한다. 인장 시험은, JIS Z 2241에 준거하여, JIS 5호 사이즈의 인장 시험편을 이용하여 행한다. 인장 방향은 압연 방향(L 방향)으로 한다. The pressure-proof strength of the container is proportional to the YP of the lid. If the strength of the steel sheet is insufficient, sufficient strength of pressure resistance can not be obtained, so the lower limit of YP is set to 450 MPa. If the YP is too high, the compressive stress in the circumferential direction of the crown cap folded portion becomes higher and exceeds the critical buckling stress at the initial stage of forming the crown cap, so that wrinkles tend to occur. In order to prevent such a defective shape, the upper limit is set to 650 MPa. The tensile test is conducted using a tensile test piece of JIS No. 5 in accordance with JIS Z 2241. The tensile direction is the rolling direction (L direction).

[판두께: 0.13㎜ 이상 0.18㎜ 이하(적합 조건)][Plate thickness: 0.13 mm or more and 0.18 mm or less (preferable conditions)]

용기의 내압 강도는 뚜껑재의 판두께의 제곱에 비례한다. 판두께가 지나치게 얇으면, 내압 강도가 저하되어, 뚜껑으로서의 역할을 완수하지 않게 된다. 따라서, 판두께는 0.13㎜ 이상이 바람직하고, 0.16㎜ 이상이 더욱 바람직하다. 한편, 크라운 캡용 강판의 박육화에 의한 자원 절약화, 환경 부하의 저감, 소재 비용 저감의 관점에서, 강판의 판두께는 현상의 크라운 캡용 강판의 판두께인 0.22㎜보다도 얇게 하는 것이 바람직하다. 이러한 효과를 얻기 위해, 바람직하게는, 판두께는 0.18㎜ 이하이다. The pressure resistance of the container is proportional to the square of the plate thickness of the lid. If the plate thickness is too thin, the pressure resistance strength is lowered and the function as a lid is not fulfilled. Therefore, the plate thickness is preferably 0.13 mm or more, more preferably 0.16 mm or more. On the other hand, from the viewpoints of resource saving due to thinning of the steel sheet for a crown cap, reduction of environmental load, and reduction of material cost, it is preferable that the thickness of the steel sheet is made thinner than the thickness of 0.22 mm which is the thickness of the current steel sheet for crown cap. In order to obtain such an effect, the plate thickness is preferably 0.18 mm or less.

이상에 의해, 본 발명의 가공성이 우수한 크라운 캡용 강판이 얻어진다. Thus, a steel sheet for a crown cap excellent in workability of the present invention can be obtained.

또한, 본 발명의 크라운 캡용 강판을 성형함으로써, 형상 균일성이 우수하고, 또한 충분한 내압 강도를 가진 크라운 캡이 얻어진다. 크라운 캡이란 음료용 병 등에 이용되는 뚜껑재이며, 크라운 캡 측면에 습곡 형상의 돌기를 구비하고(일반적으로 습곡의 개수는 21개), 습곡 형상의 홈을 병 등의 취음구에 고정함으로써 내용물을 밀폐한다. 크라운 캡 뚜껑의 내면에는 밀봉성을 높이기 위해 패킹을 구비하고 있다. 패킹의 소재에는, 코르크 시트, PVC(폴리 염화 비닐), PE(폴리에틸렌) 등이 이용된다. Further, by forming the steel sheet for a crown cap of the present invention, a crown cap having excellent shape uniformity and sufficient pressure-proof strength can be obtained. The crown cap is a lid member used for a beverage bottle and the like. The crown cap is provided with projections (generally, the number of folds is 21) on the side of the crown cap. Seal it. On the inner surface of the lid of the crown cap, a packing is provided to improve the sealing property. Cork sheets, PVC (polyvinyl chloride), PE (polyethylene) and the like are used as the material of the packing.

실시예 1Example 1

표 1에 나타내는 성분 조성을 함유하고, 잔부가 Fe 및 불가피적 불순물로 이루어지는 강을 용제하여, 강 슬래브를 얻었다. 여기에서 Sn량은, 모든 수준에서 0.0050% 미만인 것을 확인했다. 얻어진 강 슬래브를 표 2에 나타내는 온도로 재가열한 후, 표 2에 나타내는 마무리 압연 온도, 권취 온도로 열간 압연을 행했다. 이어서, 산세정 후, 표 2에 나타내는 압하율로 1차 냉간 압연하여, 얻어진 박강판을, 연속 어닐링로에서 표 2에 나타내는 어닐링 온도(재결정 온도)로 어닐링을 행하고, 표 2에 나타내는 압하율로 2차 냉간 압연을 행하여, 표 2에 나타내는 최종 마무리 판두께의 박강판을 제조했다. A steel containing the composition shown in Table 1 and containing the remainder Fe and inevitable impurities was dissolved to obtain a steel slab. Here, the amount of Sn was confirmed to be less than 0.0050% at all levels. After the obtained steel slabs were reheated to the temperatures shown in Table 2, hot rolling was carried out at the finish rolling temperature and the coiling temperature shown in Table 2. Subsequently, the steel sheet was annealed at the annealing temperature (recrystallization temperature) shown in Table 2 in a continuous annealing furnace and subjected to annealing at a reduction ratio shown in Table 2, Followed by secondary cold rolling to produce a thin steel sheet having a final finish thickness shown in Table 2. [

Figure 112016091733970-pct00001
Figure 112016091733970-pct00001

Figure 112016091733970-pct00002
Figure 112016091733970-pct00002

상기 제조 방법에 의해 얻어진 강판에 대하여, 조직 관찰을 행했다. The steel sheet obtained by the above-mentioned production method was subjected to observation of the structure.

조직 관찰은 「JIS G 0551」에 준거하여, 나이탈(nital)에 의해 페라이트립을 현출(appear)시키고, 광학 현미경을 이용하여 400배로 촬영하여 행했다. 미재결정의 유무는, 광학 현미경에 의해 육안으로 확인하고, 재결정에 이르지 않은 결정립을 미재결정으로 판단했다. 또한, 광학 현미경을 이용하여 촬영한 사진을 화상 처리하여, 미재결정부와 재결정 완료부를 구별함으로써 미재결정립의 면적률을 산출하고, 미재결정 0%를 ◎, 미재결정 0% 초과 5% 이하를 ○, 미재결정 5% 초과를 ×로 했다. 페라이트립의 전신도는, 「JIS G 0202」에 나타나는 수법으로 산출했다. According to JIS G 0551, the ferrite grains appeared by nital and were photographed at 400 times using an optical microscope. The presence or absence of non-recrystallization was visually confirmed by an optical microscope, and the crystal grains that did not reach recrystallization were judged to be non-recrystallized. The area ratio of the non-recrystallized grains is calculated by distinguishing the non-recrystallized portion from the recrystallized finished portion by image processing of a photographed image using an optical microscope. ○, and non-recrystallization exceeding 5% was evaluated as x. The whole body of the ferrite lips was calculated by the technique shown in &quot; JIS G 0202 &quot;.

상기 제조 방법에 의해 얻어진 강판에, 표면 처리로서 크롬(틴 프리) 도금을 행한 후, 도장(소성 처리 조건: 210℃로 20분의 열처리)을 하고, 크라운 캡의 형상으로 프레스 가공했다. 하기 시험 조건으로 기계적 특성과 성형성에 대해서 조사했다. The steel sheet obtained by the above production method was subjected to chrome (tin free) plating as a surface treatment, followed by coating (baking treatment conditions: 210 ° C for 20 minutes) and press processing in the shape of a crown cap. The mechanical properties and formability were examined under the following test conditions.

평균 r값(평균 소성 변형비(比))는, JIS Z 2254 부속서 JA에 규정되는 고유 진동법을 이용했다. 즉, 압연 방향에 대하여 0°, 45° 및 90° 방향의 강판의 공진 주파수, 평균 영률을 구하여, 평균 r값을 산출했다. Δr(면내 이방성)은, JIS Z 2254 부속서 JA에 규정되는 고유 진동법을 이용했다. 즉, 압연 방향에 대하여 0°, 45° 및 90° 방향의 강판의 공진 주파수를 측정하고, 영률의 이방성 ΔE를 산출하여, Δr과 ΔE의 상관을 나타내는 실험식으로부터 Δr값을 산출했다. The average r value (average plastic deformation ratio (ratio)) was determined by the natural vibration method specified in JIS Z 2254 Annex JA. That is, the resonance frequency and the average Young's modulus of the steel sheet in the directions of 0 deg., 45 deg. And 90 deg. Relative to the rolling direction were determined, and the average r value was calculated. ? R (in-plane anisotropy) was determined by the natural vibration method specified in JIS Z 2254 Annex JA. That is, the resonance frequencies of the steel plates in the directions of 0 deg., 45 deg. And 90 deg. Relative to the rolling direction were measured, and the anisotropy? E of the Young's modulus was calculated, and the value? R was calculated from the empirical formula showing the correlation between? R and? E.

YP 측정을 위한 인장 시험은, JIS Z 2241에 준거하여, JIS 5호 사이즈의 인장 시험편을 이용하여 행했다. 인장 방향은 압연 방향(L 방향)으로 했다. The tensile test for the YP measurement was conducted using a tensile test piece of JIS No. 5 in accordance with JIS Z 2241. The tensile direction was the rolling direction (L direction).

또한, 크라운 캡을 성형하여, 크라운 캡의 습곡 형상의 균일성을 평가했다. 크라운 캡 성형시에 파단한 것은 불합격(표 3에 있어서 「×」)으로 하고, 파단 없이 성형할 수 있었던 것은, 크라운 캡의 각 습곡의 길이(도 1 중의 L)를 측정하여, L값의 표준 편차σ를 0.1 이하의 것을 합격(표 3에 있어서 「○」)으로 하고, L값의 표준 편차σ가 0.1을 초과하는 것도 불합격(표 3에 있어서 「×」)으로 했다. Further, the crown cap was molded to evaluate the uniformity of the shape of the crown cap. What was broken at the time of forming the crown cap was rejected (&quot; x &quot; in Table 3), and the length of each crown of the crown cap (L in Fig. 1) (&Quot;? &Quot; in Table 3) and a standard deviation? Of L value exceeding 0.1 were also rejected ("?" In Table 3).

또한, 내압성(내압 강도)은, JIS S 9017에 준거하여, 병에 크라운 캡을 타전 후에 내압 시험을 행하고, 115PSI 이상의 것을 합격(표 3에 있어서 「○」)으로 하고, 115PSI 미만의 것을 불합격(표 3에 있어서 「×」)으로 했다. The pressure resistance (withstand pressure strength) was measured in accordance with JIS S 9017 by placing a crown cap on the bottle and measuring the pressure resistance after passing the test piece. The pressure of 115 PSI or higher was judged as " Quot; in Table 3).

결과를 표 3에 나타낸다. 또한, 형상 균일성이 뒤떨어지는 크라운 캡은, 병에 타전이 불가능하기 때문에, 내압 시험은 행하지 않았다. The results are shown in Table 3. In addition, since the crown cap having poor shape uniformity can not be wound, the pressure resistance test is not performed.

Figure 112016091733970-pct00003
Figure 112016091733970-pct00003

표 3으로부터, 본 발명예는, 평균 r값이 1.30 이상, YP가 450㎫ 이상 650㎫ 이하이며, 재질 불균일의 원인이 될 수 있는 미재결정도 존재하지 않고, 형상 균일성과 내압성이 우수한 것을 알 수 있다. From Table 3, it can be seen that the present invention has excellent shape uniformity and pressure resistance without an average r value of 1.30 or more, YP of 450 MPa to 650 MPa, no unrecrystallization which may cause material unevenness have.

한편, 비교예는, 형상 균일성, 내압성 중 어느 1개 이상이 뒤떨어져 있거나, 재질 불균일의 원인이 될 수 있는 면적률 5% 초과의 미재결정이 존재하고 있다. On the other hand, in the comparative example, there is a non-recrystallization in which at least one of the shape uniformity and the pressure resistance is inferior or the area ratio exceeds 5%, which may cause material unevenness.

1 : 크라운 캡 상면
2 : 습곡 부분
L : 습곡의 높이
1: Crown cap top surface
2:
L: height of fold

Claims (4)

질량%로, C: 0.0005∼0.0050%, Si: 0% 초과~0.020% 이하, Mn: 0.10∼0.45%, P: 0% 초과~0.020% 이하, S: 0% 초과~0.020% 이하, Al: 0.01∼0.10%, N: 0% 초과~0.0050% 이하, Nb: 0.010∼0.050%를 함유하고, 잔부는 Fe 및 불가피적 불순물로 이루어지며, 평균 r값이 1.30 이상, YP가 450㎫ 이상 650㎫ 이하인 크라운 캡용 강판. P: not less than 0% to not more than 0.020%, S: not less than 0% to not more than 0.020%, and Al: not less than 0.0005 to 0.0050% 0.01 to 0.10%, N: more than 0 to 0.0050%, Nb: 0.010 to 0.050%, the balance being Fe and inevitable impurities, and having an average r value of 1.30 or more, YP of 450 to 650 MPa Or less. 제1항에 있어서,
페라이트 전신도가 4.2 이하인 크라운 캡용 강판.
The method according to claim 1,
A steel plate for a crown cap having a ferrite total body strength of 4.2 or less.
제1항에 기재된 화학 성분을 갖는 강(鋼) 슬래브를, 슬래브 재가열 온도가 1150℃ 이상, 마무리 온도가 870℃ 이상인 열간 압연을 행한 후, 권취 온도 600℃ 이상에서 권취하고, 산세정 후, 1차 냉간 압연하고, 재결정 온도 이상 790℃ 이하의 어닐링 온도로 어닐링하고, 그 후, 압하율 10% 이상 50% 이하의 2차 냉간 압연을 행하는 크라운 캡용 강판의 제조 방법. A steel slab having the chemical composition according to claim 1 is subjected to hot rolling at a slab reheating temperature of not lower than 1150 DEG C and a finishing temperature of not lower than 870 DEG C and then wound up at a coiling temperature of 600 DEG C or higher, Subjecting the steel sheet to cold cold rolling, annealing the steel sheet at an annealing temperature of not lower than 790 占 폚, and then performing a secondary cold rolling at a reduction ratio of 10% to 50%. 제1항 또는 제2항에 기재된 크라운 캡용 강판을 성형하여 이루어지는 크라운 캡. A crown cap formed by molding the steel sheet for a crown cap according to claim 1 or 2.
KR1020167026089A 2014-02-25 2015-02-13 Steel sheet for crown cap, method for manufacturing same, and crown cap KR101871735B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-033851 2014-02-25
JP2014033851 2014-02-25
PCT/JP2015/000684 WO2015129191A1 (en) 2014-02-25 2015-02-13 Steel plate for crown cap, method for manufacturing same, and crown cap

Publications (2)

Publication Number Publication Date
KR20160126014A KR20160126014A (en) 2016-11-01
KR101871735B1 true KR101871735B1 (en) 2018-06-27

Family

ID=54008529

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167026089A KR101871735B1 (en) 2014-02-25 2015-02-13 Steel sheet for crown cap, method for manufacturing same, and crown cap

Country Status (8)

Country Link
US (1) US20160362761A1 (en)
JP (1) JP6195012B2 (en)
KR (1) KR101871735B1 (en)
CN (1) CN106029926B (en)
BR (1) BR112016019612A2 (en)
MY (1) MY174492A (en)
TW (1) TWI541363B (en)
WO (1) WO2015129191A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335968A (en) * 2016-11-19 2017-11-10 张红伟 Bottle cap manufacture craft
CN107335967A (en) * 2016-11-19 2017-11-10 张红伟 Seal bottle cap manufacture craft
CN106868400A (en) * 2017-03-21 2017-06-20 德龙钢铁有限公司 A kind of bottle cap steel and its manufacture method
KR102259719B1 (en) * 2017-03-31 2021-06-01 제이에프이 스틸 가부시키가이샤 Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing(drd) can
KR102288712B1 (en) * 2017-03-31 2021-08-10 제이에프이 스틸 가부시키가이샤 Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing(drd) can
JP6465265B1 (en) * 2017-07-31 2019-02-06 Jfeスチール株式会社 Crown steel plate, crown, and method for producing crown steel plate
BR112020001841A2 (en) * 2017-07-31 2020-07-28 Jfe Steel Corporation steel plate for crown cover, crown cover and method for producing steel plate for crown cover
WO2023217382A1 (en) * 2022-05-12 2023-11-16 Actega Ds Gmbh Sealing insert for crown corks with reduced sheet thickness

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247669A (en) * 1992-03-06 1993-09-24 Toyo Kohan Co Ltd Manufacture of high strength steel sheet for thinned and deep-drawn can
JP3331504B2 (en) 1992-04-13 2002-10-07 新日本製鐵株式会社 Non-aging steel plate for container with excellent necked-in workability
JP2980486B2 (en) 1993-06-24 1999-11-22 新日本製鐵株式会社 Manufacturing method of steel plate for non-aging low earring container
JPH07228921A (en) * 1993-12-20 1995-08-29 Kawasaki Steel Corp Production of starting sheet for surface treated steel sheet, excellent in workability
JPH08218146A (en) * 1995-02-08 1996-08-27 Kawasaki Steel Corp Steel sheet for welded can excellent in flange workability and neck formability and production thereof
JP4045602B2 (en) * 1995-10-05 2008-02-13 Jfeスチール株式会社 Manufacturing method of steel sheet for cans with excellent drawability
JPH11209845A (en) * 1998-01-28 1999-08-03 Kawasaki Steel Corp Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture
JP4635525B2 (en) * 2003-09-26 2011-02-23 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability and manufacturing method thereof
CN101563475B (en) * 2006-12-20 2011-05-11 杰富意钢铁株式会社 Cold-rolled steel sheet and process for producing the same
JP5076544B2 (en) * 2007-02-21 2012-11-21 Jfeスチール株式会社 Manufacturing method of steel sheet for cans
JP5463720B2 (en) 2009-04-22 2014-04-09 Jfeスチール株式会社 Cold rolled steel sheet for can steel sheet, steel sheet for can and manufacturing method thereof
JP5056863B2 (en) * 2010-01-15 2012-10-24 Jfeスチール株式会社 Cold rolled steel sheet and method for producing the same
JP5051247B2 (en) * 2010-01-15 2012-10-17 Jfeスチール株式会社 Cold-rolled steel sheet excellent in formability and shape freezing property and its manufacturing method
JP5794004B2 (en) * 2011-07-12 2015-10-14 Jfeスチール株式会社 Steel sheet for high strength can excellent in flange workability and manufacturing method thereof

Also Published As

Publication number Publication date
TWI541363B (en) 2016-07-11
CN106029926B (en) 2018-10-02
TW201536930A (en) 2015-10-01
JP6195012B2 (en) 2017-09-13
JPWO2015129191A1 (en) 2017-03-30
MY174492A (en) 2020-04-23
CN106029926A (en) 2016-10-12
WO2015129191A1 (en) 2015-09-03
BR112016019612A2 (en) 2018-10-23
KR20160126014A (en) 2016-11-01
US20160362761A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
KR101871735B1 (en) Steel sheet for crown cap, method for manufacturing same, and crown cap
US9034119B2 (en) Steel sheet for cans with excellent surface properties after drawing and ironing and method for producing the same
TWI643964B (en) Two-piece can steel plate and manufacturing method thereof
KR101994914B1 (en) Steel sheet for can and method for manufacturing the same
KR101923839B1 (en) Steel sheets for cans and methods for manufacturing the same
KR101264537B1 (en) Method for manufacturing steel plate for can-making
US20140034195A1 (en) Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
KR20160027163A (en) Steel sheet for can, and method for manufacturing same
US9315877B2 (en) Steel sheet for bottom covers of aerosol cans and method for producing same
WO2012124823A1 (en) Steel sheet for aerosol can bottom having high pressure resistance and excellent workability and method for producing same
AU2017227455B2 (en) Steel Sheet for Can and Method for Manufacturing the Same
KR101921595B1 (en) Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
KR101891427B1 (en) Steel sheet for cans and manufacturing method thereof
JP6198011B2 (en) Manufacturing method of steel plate for hard container
US20220018003A1 (en) Steel sheet for cans and method for manufacturing the same
JP6123735B2 (en) Crown steel sheet, method for producing the same, and crown
JP5713146B2 (en) Steel plate for 3-piece can and manufacturing method thereof
KR20130087597A (en) Steel sheet for can, and process for producing same
KR101543834B1 (en) Thin, hot-rolled steel sheet having excellnet workability and anti-aging properties, and method for manufacturing the same
JP5929739B2 (en) Steel plate for aerosol can bottom and manufacturing method thereof
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
KR102549938B1 (en) Steel sheet for cans and its manufacturing method
US20180112295A1 (en) Steel sheet for can lid and method for producing the same (as amended)
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP2023507805A (en) High-strength tin-plated base plate and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant