KR101862928B1 - Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same - Google Patents

Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same Download PDF

Info

Publication number
KR101862928B1
KR101862928B1 KR1020160113839A KR20160113839A KR101862928B1 KR 101862928 B1 KR101862928 B1 KR 101862928B1 KR 1020160113839 A KR1020160113839 A KR 1020160113839A KR 20160113839 A KR20160113839 A KR 20160113839A KR 101862928 B1 KR101862928 B1 KR 101862928B1
Authority
KR
South Korea
Prior art keywords
polyethylene resin
density polyethylene
medium density
resin composition
linear medium
Prior art date
Application number
KR1020160113839A
Other languages
Korean (ko)
Other versions
KR20180026909A (en
Inventor
김동진
박준려
박지용
이은웅
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020160113839A priority Critical patent/KR101862928B1/en
Publication of KR20180026909A publication Critical patent/KR20180026909A/en
Application granted granted Critical
Publication of KR101862928B1 publication Critical patent/KR101862928B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/656Pretreating with metals or metal-containing compounds with silicon or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density

Abstract

본 발명은 선형 중밀도 폴리에틸렌 수지 조성물 및 이로 제조된 성형품에 관한 것으로, 특히 회전성형에 사용되기에 바람직한 선형 중밀도 폴리에틸렌 수지 조성물 및 이로 제조된 성형품에 관한 것이다.
본 발명에 따른 선형 중밀도 폴리에틸렌 수지 조성물은, 실리콘, 티타늄, 마그네슘 및 폴리에틸렌 수지를 포함하는 선형 중밀도 폴리에틸렌 수지 조성물로서, 조성분포폭지수(CDBI)가 60% 이하이고, 상기 실리콘과 티타늄(Si/Ti)의 몰비가 0.01~1인 것을 특징으로 한다.
TECHNICAL FIELD The present invention relates to a linear medium density polyethylene resin composition and a molded article made therefrom, and more particularly to a linear medium density polyethylene resin composition suitable for use in rotational molding and a molded article made therefrom.
The linear medium density polyethylene resin composition according to the present invention is a linear medium density polyethylene resin composition comprising silicon, titanium, magnesium and a polyethylene resin, wherein the composition distribution width index (CDBI) is 60% or less, / Ti) is in the range of 0.01 to 1.

Description

선형 중밀도 폴리에틸렌 수지 조성물 및 이로부터 제조된 성형품{Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same}TECHNICAL FIELD [0001] The present invention relates to a linear medium density polyethylene resin composition and a molded article produced therefrom,

본 발명은 선형 중밀도 폴리에틸렌 수지 조성물 및 이로 제조된 성형품에 관한 것으로, 특히 회전성형에 사용되기에 바람직한 선형 중밀도 폴리에틸렌 수지 조성물 및 이로 제조된 성형품에 관한 것이다.TECHNICAL FIELD The present invention relates to a linear medium density polyethylene resin composition and a molded article made therefrom, and more particularly to a linear medium density polyethylene resin composition suitable for use in rotational molding and a molded article made therefrom.

회전성형은 안이 비어있는 대형용기나 복잡한 형태의 제품생산에 적용되는 성형방법으로, 화학 약품용 탱크, 오락용 수송매체, 컨테이너, 중대형 놀이기구 및 해양 구조물 등과 같이 다양한 제품의 제조에 유용하게 적용될 수 있는 방법이다. 이 방법은 금형의 제작에 따른 다양한 제품의 생산 및 교체가 손쉬워 소량 다품종 생산에 유리하고, 대형제품도 경제적으로 생산할 수 있다는 장점을 가지고 있다.Rotational molding is a molding method applied to the production of large-sized containers with empty spaces or complex shaped products. It can be applied to the manufacture of various products such as chemical tanks, recreational transportation vehicles, containers, medium-sized playground equipment and offshore structures There is a way. This method is advantageous in producing a small quantity of various products because it is easy to produce and replace various products according to the production of a mold, and also has a merit that a large product can be produced economically.

거의 모든 일반적인 열가소성 수지가 회전성형에 사용될 수 있으나 그중에서도 폴리에틸렌이 80% 이상으로 가장 많이 사용된다. 특히 용융상태에서 용기성형이 가능한 어느 정도의 흐름성을 가지고, 저온 충격강도 등의 기계적 물성도 양호한 선형 중밀도 폴리에틸렌이 많이 사용된다. Almost all common thermoplastic resins can be used for rotational molding, but polyethylene is the most used with more than 80%. Particularly, a linear medium density polyethylene having good flowability capable of forming a container in a molten state and having good mechanical properties such as low temperature impact strength is widely used.

압력 또는 전단응력이 없고 열과 2축방향 회전으로 가공하고 회전성형 방법에는 35 mesh를 통과하는 분쇄된 파우더형 폴리에틸렌이 사용되며, 가공특성상 분말간의 소결이 느리면 성형물의 외관에 핀홀 모양의 결함이 발생하기 때문에, 분말간의 소결이 빠를수록 외관을 개선할 수 있다. Crushed powder-type polyethylene which passes through 35 mesh is used for the rotation molding method without pressure or shear stress and heat and biaxial rotation. Pinhole-like defects are generated in the appearance of the molding when the sintering between the powders is slow Therefore, the faster the sintering between the powders, the better the appearance.

KP 10-2004-7017709에서는 본 발명과 동일한 기상반응기에서 에틸렌과 알파-올레핀을 공중합하여 제조되는 회전성형용 폴리에틸렌 및 그 제조방법을 제시하고 있으나, 핀홀 발생을 줄이기 위한 방안을 제시하지는 못하고 있고, Bharat Indu Chaudhary 등의 "Processing Enhancers for Rotational Molding of Polyethylene", Polymer Engineering and Science, October 2001, Vol. 41, No. 10에서는 분말 소결을 개선하기 위해 mineral oil, glycerol monostearate 등의 저분자량의 첨가제를 blend하는 방법이 소개되고 있으나, 기계적 물성과의 연관성은 검증되지 않았다. 또한 KP10-1011168에서는 개선된 메탈로센 촉매로 외관을 개선할 수 있다고 주장하고 있으나, 회전성형용의 대부분을 차지하는 지글러-나타 촉매계 선형 중밀도 폴리에틸렌 제품의 개선은 아니다.KP 10-2004-7017709 discloses a polyethylene for rotational molding which is produced by copolymerizing ethylene and an alpha-olefin in the same gas phase reactor as the present invention, and a method for producing the same, but does not suggest a method for reducing the occurrence of pinholes, Indu Chaudhary et al., &Quot; Processing Enhancers for Rotational Molding of Polyethylene ", Polymer Engineering and Science, October 2001, Vol. 41, No. 10, a blend of low molecular weight additives such as mineral oil and glycerol monostearate has been introduced to improve powder sintering, but its relation to mechanical properties has not been verified. In addition, KP10-1011168 claims to improve the appearance with an improved metallocene catalyst, but it is not an improvement of the Ziegler-Natta catalyst-based linear medium density polyethylene product, which accounts for most of the rotational molding.

상기와 문제점을 해결하기 위한 본 발명의 목적은 성형시 빠른 분말 소결 특성으로 표면 핀홀 발생이 적어 우수한 외관을 나타내는 선형 중밀도 폴리에틸렌 수지 조성물 및 성형품을 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide a linear medium density polyethylene resin composition and a molded article which exhibit excellent appearance due to less occurrence of surface pinholes due to powder sintering characteristics at the time of molding.

상기 문제점을 해결하기 위한 본 발명의 양상은, According to an aspect of the present invention,

실리콘, 티타늄, 마그네슘 및 폴리에틸렌 수지를 포함하는 선형 중밀도 폴리에틸렌 수지 조성물로서,1. A linear medium density polyethylene resin composition comprising silicon, titanium, magnesium and a polyethylene resin,

조성분포폭지수(CDBI)가 60% 이하이고,The composition distribution width index (CDBI) is 60% or less,

상기 실리콘과 티타늄(Si/Ti)의 몰비가 0.01~1인 것을 특징으로 하는 회전성형용 선형 중밀도 폴리에틸렌 수지 조성물에 관한 것이다.Wherein the molar ratio of the silicon to titanium (Si / Ti) is 0.01 to 1. The linear medium-density polyethylene resin composition for rotary molding according to claim 1,

본 발명의 다른 양상은, 상기 폴리에틸렌 수지 조성물로 제조된 성형품에 관한 것이다.Another aspect of the present invention relates to a molded article made of the polyethylene resin composition.

본 발명에 의한 폴리에틸렌 수지 조성물은 성형시 빠른 powder sintering 특성으로 표면 pinhole 발생이 적어 우수한 외관을 나타낸다.The polyethylene resin composition according to the present invention exhibits excellent powder sintering characteristics at the time of molding, resulting in less appearance of surface pinholes and excellent appearance.

특히, 회전 성형에 사용될 때 바람직한 결과를 나타내므로, 다양한 성형품 제조에 유용하게 사용될 수 있다.In particular, it exhibits the desired results when used in rotational molding, and thus can be usefully used in the production of various molded articles.

도 1은, 문헌 Bharat Indu Chaudhary 등의 "Processing Enhancers for Rotational Molding of Polyethylene", Polymer Engineering and Science, October 2001, Vol. 41, No. 10에 공개된 소결 시간 측정방법에 따라 소결 타입을 설정하는 방법을 설명하기 위한 개략도이다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a graphical illustration of a process for the preparation of a polymeric material according to the method of Bharat Indu Chaudhary et al., &Quot; Processing Enhancers for Rotational Molding of Polyethylene ", Polymer Engineering and Science, October 2001, 41, No. 10 is a schematic view for explaining a method of setting a sintering type according to a sintering time measuring method disclosed in Japanese Unexamined Patent Application,

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 성형시 빠른 분말 소결 특성으로 사이클 시간을 단축할 수 있는 선형 중밀도 폴리에틸렌 수지 조성물을 제공한다.The present invention provides a linear medium density polyethylene resin composition capable of shortening the cycle time by the powder sintering property at the time of molding.

본 발명의 일 실시예에 따른 폴리에틸렌 수지 조성물은, 실리콘, 티타늄, 마그네슘 및 폴리에틸렌 수지를 포함하는 선형 중밀도 폴리에틸렌 수지 조성물로서, 조성분포폭지수(CDBI, Composition Distribution Breadth Index)가 60% 이하이고, 상기 실리콘과 티타늄(Si/Ti)의 몰비가 0.01~1을 특징으로 한다. A polyethylene resin composition according to an embodiment of the present invention is a linear, medium-density polyethylene resin composition comprising silicon, titanium, magnesium and a polyethylene resin, wherein the composition distribution breadth index (CDBI) And the molar ratio of silicon to titanium (Si / Ti) is 0.01 to 1.

본 발명의 일 실시예에 의하면, Si, Ti 및 Mg를 포함하는 것이 바람직하다.According to one embodiment of the present invention, it is preferable to include Si, Ti, and Mg.

특히, Si가 포함되지 않으며, CDBI가 60% 이하이어도, 소결 특성이 좋아지지 않아, 최종적으로 성형품으로 제조되었을 때 외관에 핀홀 발생이 많아져서 바람직하지 않다.Particularly, even if Si is not contained and the CDBI is 60% or less, the sintering property is not improved, and pinholes are more likely to appear on the outer surface when the final product is molded, which is not preferable.

본 발명의 일 실시예에 의하면, Si/Ti의 몰비가 0.01~1이 바람직하다. 상기 폴리에틸렌 수지 조성물에서 Si/Ti의 몰비가 0.01보다 작아지는 경우, 외관 개선 효과가 낮아질 수 있으며, 1을 초과하는 경우 폴리에틸렌 수지 조성물의 성형화가 나빠질 수 있다.According to one embodiment of the present invention, the molar ratio of Si / Ti is preferably 0.01 to 1. If the molar ratio of Si / Ti in the polyethylene resin composition is less than 0.01, the effect of improving the appearance may be lowered. If the molar ratio of Si / Ti is more than 1, the molding of the polyethylene resin composition may be deteriorated.

본 발명에 따른 상기 조성분포폭지수는 CRTSTAF(Crystallization analysis Fractionation)을 이용하여 0.2/분의 결정화 속도로 측정한 데이타로부터 계산되었다. 여기서, 조성분포폭지수는 공중합체 분포곡선의 누적분율의 50% 지점에서의 mol%에서 좌우 50% 이내에 포함된 공중합체의 중량%를 나타낸다. 예를 들어, 비교적 높은 조성분포폭지수는 대부분의 중합체가 중간 공단량체 함량의 50% 이내에 있는 공단량체 함량을 가짐을 나타내고, 이것은 중합체가 비교적 균일함을 의미한다.The composition distribution width index according to the present invention was calculated from data measured at a crystallization rate of 0.2 / min using CRTSTAF (Crystallization analysis Fractionation). Here, the composition distribution width index represents the weight percentage of the copolymer contained within 50% of the mol% at 50% of the cumulative fraction of the copolymer distribution curve. For example, a relatively high compositional distribution width index indicates that most polymers have a comonomer content that is within 50% of the intermediate comonomer content, which means that the polymer is relatively uniform.

본 발명의 일 실시예에 의하면 상기 CDBI가 60% 이하가 바람직하며, 상기 CDBI가 60%를 초과하면, 소결 시간이 길어져서, 표면의 핀홀이 많아지게 된다.According to an embodiment of the present invention, the CDBI is preferably 60% or less, and when the CDBI is more than 60%, the sintering time becomes long and pinholes on the surface are increased.

본 발명의 일 실시예에 의하면, 상기 선형 중밀도 폴리에틸렌의 용융지수(ASTM D1238, 230℃, 2.16kg)가 1 내지 15 g/10min이고, 바람직하게는 3~10g/10분 이다. MI가 1g/10분 미만인 경우 흐름성이 저하되어 회전 성형이 어렵고, MI가 15g/10분 이상인 경우 저온충격강도 및 내환경응력균열저항성(ESCR)이 저하되어 성형품의 안정성에 문제가 있을 수 있다.According to one embodiment of the present invention, the melt index (ASTM D1238, 230 DEG C, 2.16 kg) of the linear medium density polyethylene is 1 to 15 g / 10 min, preferably 3 to 10 g / 10 min. When the MI is less than 1 g / 10 min, the flowability is lowered and rotational molding is difficult. When the MI is 15 g / 10 min or more, the low temperature impact strength and the environmental stress crack resistance (ESCR) .

본 발명의 일 실시예에 의하면, 상기 선형 중밀도 폴리에틸렌의 밀도(ASTM D1505, 23℃)가 0.930 내지 0.945g/cm3 이며, 바람직하게는 0.934~0.941g/cm3 이다. 상기 범위보다 낮을 경우 굴곡강도가 저하되어 일반적으로 물 등 내용물을 담는 회전성형품의 기본 요구물성을 부합할 수 없고, 상기 범위보다 높을 경우 저온충격강도 및 내환경응력균열저항성(ESCR)이 저하되어 성형품의 장기보관안정성에 문제가 있을 수 있다.According to an embodiment of the present invention, the density of the linear medium density polyethylene (ASTM D 1505, 23 ° C) is 0.930 to 0.945 g / cm 3 , preferably 0.934 to 0.941 g / cm 3 . When the amount is lower than the above range, the bending strength is lowered and generally the basic required physical properties of the rotary molded article containing the contents such as water can not be matched. When it is higher than the above range, the low temperature impact strength and the environmental stress crack resistance (ESCR) There may be a problem with the long-term storage stability.

본 발명의 일 실시예에 의하면, 상기 폴리에틸렌 수지 조성물 총 100중량부에 대하여 산화방지제 0.01~0.5중량부, 바람직하게는 0.05~0.2 중량부, 중화제 0.01~0.3중량부, 바람직하게는 0.05~0.2중량부, 및 UV안정제 0.01~0.5 중량부, 바람직하게는 0.1~0.3 중량부 중 선택된 적어도 1 종 이상을 더 포함할 수 있다.According to one embodiment of the present invention, 0.01 to 0.5 part by weight, preferably 0.05 to 0.2 part by weight, preferably 0.01 to 0.3 part by weight, preferably 0.05 to 0.2 part by weight of an antioxidant is added to 100 parts by weight of the total amount of the polyethylene resin composition And 0.01 to 0.5 parts by weight, preferably 0.1 to 0.3 parts by weight of a UV stabilizer.

상기 산화방지제 함량이 0.01중량부 미만이면 보관시 변색, 가공 중 점도 변화 등의 문제가 있고, 0.5중량부를 초과하면 수지의 기계적 물성을 저하시키는 문제가 있을 수 있다. 상기 중화제의 함량이 0.01중량부 미만이면 가공 중 변색 및 점도변화가 생기고, 0.3 중량부를 초과하면 장기 보관시 색상, 강도 등의 물성 변화가 발생할 수 있다. 상기 UV안정제 함량이 0.01 중량부 미만이며 야외보관시 변색, 충격강도 저하 등의 문제가 있고, 0.5 중량부를 초과하면 수지의 기계적 물성을 저하시키는 문제가 있을 수 있다.If the content of the antioxidant is less than 0.01 parts by weight, discoloration during storage and viscosity change during processing may occur. If the content of the antioxidant exceeds 0.5 parts by weight, the mechanical properties of the resin may be deteriorated. If the content of the neutralizing agent is less than 0.01 parts by weight, discoloration and viscosity change during processing may occur. If the amount of the neutralizing agent is more than 0.3 parts by weight, changes in physical properties such as color and strength may occur. The UV stabilizer content is less than 0.01 part by weight and there are problems such as color discoloration and impact strength lowering in outdoor storage, and if it exceeds 0.5 part by weight, the mechanical properties of the resin may be lowered.

상기 산화방지제의 대표적인 예로는 1,3,5-트리메틸-2,4,6-트리스(3,5-디-tert-부틸-4-히드록시벤질)벤젠(1,3,5-Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene), 1,6-비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미도]헥산(1,6-Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamido]hexane), 1,6-비스[3-(3,5-디-tert-부틸-4-히드록시페닐)프로피온아미도]프로판(1,6-Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamido]propane), 테트라키스[메틸렌(3,5-디-tert-부틸-4-히드록시히드로시나메이트)]메탄(tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane), 비스(2,6-디-tert-부틸-4-메틸페닐)펜타에리트리톨-디-포스파이트(Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol-di-phosphite), 비스 (2,4-디-tert-부틸페닐)펜타에리트리톨-디-포스파이트(Bis(2,4-di-tert-butylphenyl)Pentraerythritol-di-phosphite) 등을 예시할 수 있다.Representative examples of the antioxidant include 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene (1,3,5- , 4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 1,6-bis [3- (3,5- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamido] hexane), 1,6-bis [3- Butyl-4-hydroxyphenyl) propionamido] propane), tetrakis [methylene (3,5 4-hydroxyhydrocinnamate)] methane), bis (2,6-di-tert-butyl-4-hydroxyhydrocinnamate) Di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite), bis (2,4-di-tert- butylphenyl) pentaerythritol- Bis (2,4-di-tert-butylphenyl) pentraerythritol-di-phosphite) and the like.

상기 중화제의 대표적인 예로는 칼슘 스테아르산, 아연 스테아르산, 마그네슘 알루미늄 하이드록시 카보네이트, 산화아연, 마그네슘 하이드록시 스테아르산 또는 이들의 혼합물 등을 포함할 수 있다.Representative examples of the neutralizing agent may include calcium stearate, zinc stearate, magnesium aluminum hydroxycarbonate, zinc oxide, magnesium hydroxystearic acid, or a mixture thereof.

또한, 상기 성분 외에 필요에 따라 일반적으로 사용되고 있는 첨가제, 예를 들면 핵제, 내열안정제, 내후안정제, 대전방지제, 활제, 슬립제, 난연제, 안료, 염료 등을 그 목적에 따라 배합하는 것도 가능하다.In addition to the above components, other commonly used additives such as a nucleating agent, a heat stabilizer, a weather stabilizer, an antistatic agent, a lubricant, a slip agent, a flame retardant, a pigment and a dye may be blended according to the purpose.

본 발명의 일 실시예에 의하면, 상기 폴리에틸렌 수지는 기상중합용 고체 촉매를 사용하여 제조되며, 상기 기상중합용 고체 촉매는 다음의 단계들을 포함하여 이루어지는 것을 특징으로 하는 회전 성형용 중밀도 폴리에틸렌 수지 조성물을 제공한다:According to an embodiment of the present invention, the polyethylene resin is prepared using a solid catalyst for gas phase polymerization, and the solid catalyst for gas phase polymerization comprises the following steps: Lt; / RTI >

(1) 금속 마그네슘(Mg)을 하기 화학식 (A)로 표시되는 유기할라이드 화합물과 그리냐드 반응하여 유기마그네슘할라이드를 생성하는 단계,(1) reacting a metal magnesium (Mg) with an organic halide compound represented by the following formula (A) to produce an organic magnesium halide;

R1X .... (A)R 1 X (A)

(여기서 R1은 탄소수 1 내지 10의 알킬기, X는 염소, 브롬 또는 요오드);(Wherein R1 is an alkyl group having 1 to 10 carbon atoms, and X is chlorine, bromine or iodine);

(2) 상기 (1)단계의 반응중에 하기 화학식 (B)로 표시되는 산화수 4가의 티타늄 화합물을 반응시켜 촉매 중간체를 제조하는 단계,(2) a step of reacting the titanium tetravalent titanium compound represented by the following formula (B) in the reaction of the step (1) to prepare a catalyst intermediate,

Ti(OR2)mCl4 - m .... (B)Ti (OR 2 ) m Cl 4 - m (B)

(여기서, 여기서 R2는 탄소수 1 내지 10의 알킬기, m은 0~4의 정수 또는 소수);(Wherein R 2 is an alkyl group having 1 to 10 carbon atoms, and m is an integer or a number of 0 to 4);

(3) 상기 (2)단계의 반응 중에, 또는 (2)단계의 반응 완료 후에, 하기 화학식 (C)로 표시되는 알콕시실란계 화합물을 첨가하여 반응시켜 고체 촉매를 제조하는 단계,(3) adding an alkoxysilane compound represented by the following formula (C) during the reaction of the step (2) or after completing the reaction of the step (2)

R3 nSi(OR4)4 - n  .... (C)R 3 n Si (OR 4 ) 4 - n (C)

(여기서, R3 및 R4는 각각 탄소수 1 내지 10의 알킬기, n은 0, 1 또는 2의 정수, n이 2일 경우, 2개의 R4는 동일하거나 상이하다).(Wherein R 3 and R 4 are each an alkyl group having 1 to 10 carbon atoms, n is an integer of 0, 1 or 2, and when n is 2, two R 4 s are the same or different).

상기 (3)단계에서 전자공여체 물질로 사용되는 R3 nSi(OR4)4 - n 으로 표시되는 알콕시실란계 화합물의 예로는, 테트라메톡시실란, 메틸트리메톡시실란, 디메틸트디메톡시실란, 트리메틸메톡시실란, 에틸트리메톡시실란, 디에틸디메톡시실란, 트리에틸메톡시실란, 비닐트리메톡시실란, 디비닐디메톡시실란, 프로필트리메톡시실란, 디프로필디메톡시실란, 트리프로필메톡시실란, 이소프로필트리메톡시실란, 디이소프로필디메톡시실란, 트리이소프로필메톡시실란, 부틸트리메톡시실란, 디부틸디메톡시실란, 트리부틸메톡시실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 트리이소부틸메톡시실란, 시클로펜틸트리메톡시실란, 디시클로펜틸디메톡시실란, 시클로펜틸메틸디메톡시실란, 시클로헥실트리메톡시실란, 디시클로헥실디메톡시실란, 시클로헥실메틸디메톡시실란, 테트라에톡시실란, 메틸트리에톡시실란, 디메틸디에톡시실란, 트리메틸에톡시실란, 에틸트리에톡시실란, 디에틸디에톡시실란, 트리에틸메톡시실란, 비닐트리에톡시실란, 디비닐디에톡시실란, 프로필트리에톡시실란, 디프로필디에톡시실란, 트리프로필에톡시실란, 이소프로필트리에톡시실란, 디이소프로필디에톡시실란, 트리이소프로필에톡시실란, 부틸트리에톡시실란, 디부틸디에톡시실란, 트리부틸에톡시실란, 이소부틸트리에톡시실란, 디이소부틸디에톡시실란, 트리이소부틸에톡시실란, 시클로펜틸트리에톡시실란, 디시클로펜틸디에톡시실란, 시클로펜틸메틸디에톡시실란, 시클로헥실트리에톡시실란, 디시클로헥실디에톡시실란, 시클로헥실메틸디에톡시실란, 테트라프로폭시실란, 메틸트리프로폭시실란, 디메틸디프로폭시실란, 트리메틸프로폭시실란, 에틸트리프로폭시실란, 디에틸디프로폭시실란, 비닐트리프로폭시실란, 디비닐디프로폭시실란, 프로필트리프로폭시실란, 디프로필디프로폭시실란, 이소프로필트리프로폭시실란, 디이소프로필디프로폭시실란, 부틸트리프로폭시실란, 디부틸디프로폭시실란, 이소부틸트리프로폭시실란, 디이소부틸디프로폭시실란, 시클로펜틸트리프로폭시실란, 디시클로펜틸디프로폭시실란, 시클로펜틸메틸디프로폭시실란, 시클로헥실트리프로폭시실란, 디시클로헥실디프로폭시실란, 시클로헥실메틸디프로폭시실란 등이 있으며, 이들 중 1종 또는 2종 이상을 사용할 수 있다.Examples of the alkoxysilane compound represented by R 3 n Si (OR 4 ) 4 - n used as an electron donor material in the step (3) include tetramethoxysilane, methyltrimethoxysilane, dimethyltrimethoxysilane , Trimethylmethoxysilane, ethyltrimethoxysilane, diethyldimethoxysilane, triethylmethoxysilane, vinyltrimethoxysilane, divinyldimethoxysilane, propyltrimethoxysilane, dipropyldimethoxysilane, tripropyl But are not limited to, methoxysilane, isopropyltrimethoxysilane, diisopropyldimethoxysilane, triisopropylmethoxysilane, butyltrimethoxysilane, dibutyldimethoxysilane, tributylmethoxysilane, isobutyltrimethoxysilane, Diisobutyldimethoxysilane, diisobutyldimethoxysilane, triisobutylmethoxysilane, cyclopentyltrimethoxysilane, dicyclopentyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclohexyltrimethoxysilane, dicyclohexyldimethoxysilane , Cyclohexylmethyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, ethyltriethoxysilane, diethyldiethoxysilane, triethylmethoxysilane, vinyltriethoxysilane, Propyltriethoxysilane, dipropyldiethoxysilane, tripropylethoxysilane, isopropyltriethoxysilane, diisopropyldiethoxysilane, triisopropylethoxysilane, butyltriethoxysilane, dipropyltriethoxysilane, dipropyltriethoxysilane, But are not limited to, ethoxysilane, dibutyldiethoxysilane, tributylethoxysilane, isobutyltriethoxysilane, diisobutyldiethoxysilane, triisobutylethoxysilane, cyclopentyltriethoxysilane, dicyclopentyldiethoxysilane, Cyclopentylmethyldiethoxysilane, cyclohexyltriethoxysilane, dicyclohexyldiethoxysilane, cyclohexylmethyldiethoxysilane, tetrapropoxysilane, methyltripropoxysilane, methyltripropoxysilane, Methyldipropoxysilane, trimethylpropoxysilane, ethyltripropoxysilane, diethyldipropoxysilane, vinyltripropoxysilane, divinyldipropoxysilane, propyltripropoxysilane, dipropyldipropoxysilane, Isopropyltripropoxysilane, diisopropyldipropoxysilane, butyltripropoxysilane, dibutyldipropoxysilane, isobutyltripropoxysilane, diisobutyldipropoxysilane, cyclopentyltripropoxysilane, cyclopentyltripropoxysilane, , Dicyclopentyldipropoxysilane, cyclopentylmethyldipropoxysilane, cyclohexyltripropoxysilane, dicyclohexyldipropoxysilane, and cyclohexylmethyldipropoxysilane. Of these, one or two of them Or more can be used.

본 발명에 있어서, 상기 (1)단계, 상기 (2)단계 및 상기 (3)단계의 각 반응들은 유기용매의 존재하에 수행되는데, 이때 사용가능한 유기용매로는, 헥산, 헵탄, 시클로헥산, 메틸시클로펜탄, 옥탄, 이소옥탄, 노난, 데칸, 케로신 등과 같은 지방족 탄화수소는 물론, 톨루엔, 크실렌 등과 같은 방향족 탄화수소를 사용할 수 있으며, 더욱 바람직하게는 헥산, 헵탄, 시클로헥산, 메틸시클로펜탄, 옥탄, 이소옥탄 등을 사용할 수 있다.In the present invention, each of the reactions of steps (1), (2) and (3) is carried out in the presence of an organic solvent. Examples of the organic solvent include hexane, heptane, cyclohexane, methyl Aliphatic hydrocarbons such as cyclopentane, octane, isooctane, nonane, decane and kerosene may be used as well as aromatic hydrocarbons such as toluene and xylene. More preferred are aromatic hydrocarbons such as hexane, heptane, cyclohexane, methylcyclopentane, Etc. may be used.

상기 (1)단계, 상기 (2)단계 및 상기 (3)단계의 각 반응들은, 효율적인 반응을 위하여 20~150℃, 더 유리하게는 60~90℃의 온도에서 수행된다.Each of the reactions of steps (1), (2) and (3) is performed at a temperature of 20 to 150 ° C, more advantageously 60 to 90 ° C, for efficient reaction.

본 발명에 따라 제조되는 고체 촉매는, 중합시에 조촉매의 존재 하에 중합 반응기에 직접 투입되거나, 또는 지방족 탄화수소와 같은 불활성 액체 내에서 조촉매의 존재 하에 하나 또는 그 이상의 올레핀의 전중합에 의해 제조된 전중합체(prepolymer)의 형태로 반응기에 도입될 수도 있다.The solid catalyst prepared according to the present invention may be directly added to the polymerization reactor in the presence of a cocatalyst during polymerization or may be prepared by prepolymerization of one or more olefins in the presence of a cocatalyst in an inert liquid such as an aliphatic hydrocarbon Or may be introduced into the reactor in the form of a prepolymer.

상기 조촉매는 AlR5 3 (여기서 R5는 탄소수 1 내지 16, 더 바람직하게는 2 내지 12의 알킬기)의 구조를 갖는 트리알킬알루미늄화합물이 사용될 수 있다. 이러한 트리알킬알루미늄화합물의 예로는, 트리에틸알루미늄, 트리메틸알루미늄, 트리노말프로필알루미늄, 트리노말부틸알루미늄, 트리이소부틸알루미늄, 트리노말헥실알루미늄, 트리노말옥틸알루미늄, 트리-2-메틸펜틸알루미늄 등이 있다. 이중 바람직한 것은 트리에틸알루미늄, 트리이소부틸알루미늄, 트리노말헥실알루미늄, 트리노말옥틸알루미늄 등이 있다.The cocatalyst may be a trialkylaluminum compound having a structure of AlR 5 3 (wherein R 5 is an alkyl group having 1 to 16 carbon atoms, more preferably 2 to 12 carbon atoms). Examples of such a trialkylaluminum compound include triethylaluminum, trimethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctalaluminum, tri-2-methylpentylaluminum and the like have. Of these, triethylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum and the like are preferable.

본 발명에서, 에틸렌과 알파-올레핀 공중합은 일반적으로 30bar 이하의 압력 및 40~120℃ 사이의 온도에서 실시된다. 이 중합반응은 기체상태의 에틸렌으로 채워진 반응기내에 에틸렌 또는 다른 알파-올레핀으로 구성된 모노머를 연속적으로 도입함으로써, 기체상의 모노머를 직접 촉매 시스템과 접촉시켜 수행된다. 알파-올레핀은 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐 등이 바람직하다. 중합은 일반적으로 중합체의 분자량을 조절하기 위하여 수소와 같은 사슬성장 억제제의 존재하에 수행되며, 반응에 사용되는 올레핀에 대한 사용되는 수소의 부피비는 1~10%의 범위인 것이 바람직하다.In the present invention, ethylene and alpha-olefin copolymerization is generally carried out at a pressure of 30 bar or less and at a temperature between 40 and 120 < 0 > C. This polymerization reaction is carried out by continuously introducing monomers composed of ethylene or other alpha-olefins into the reactor filled with gaseous ethylene, by bringing gaseous monomers directly into contact with the catalyst system. The alpha-olefin is preferably propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and the like. The polymerization is generally carried out in the presence of a chain growth inhibitor such as hydrogen to control the molecular weight of the polymer, and it is preferable that the volume ratio of hydrogen used for the olefin used in the reaction ranges from 1 to 10%.

본 발명에 따라 제조되는 회전성형용 선형 중밀도 폴리에틸렌의 제반 물성의 측정법은 다음과 같다.The method for measuring the physical properties of the linear medium density polyethylene for rotational molding produced according to the present invention is as follows.

각 금속 조성의 함량의 측정Measurement of the content of each metal composition

본 발명에 따라 제조된 수지 조성물에서의 금속 성분의 함량을 XRF(X-ray fluorescence) 방법으로 측정하였으며 그 결과는 표 2와 같다. The content of the metal component in the resin composition prepared according to the present invention was measured by an X-ray fluorescence (XRF) method. The results are shown in Table 2 .

용융흐름지수Melt flow index (melt index, MI)(melt index, MI)

ASTM D1238에 따라서 190℃에서 2.16kg 하중으로 측정하였다.Lt; RTI ID = 0.0 > 190 C < / RTI > according to ASTM D1238.

밀도density

ASTM D1505에 준하여 측정하였다.Measured according to ASTM D1505.

MFRRMFRR (( MFRRMFRR - Melt Flow Rate Ratio, - Melt Flow Rate Ratio, 용융유동율비Melt flow rate ratio ))

MI21.6(21.6kg 하중, 190℃에서의 용융흐름지수) / MI2.16(2.16kg 하중, 190℃에서의 용융흐름지수)MI21.6 (21.6 kg load, melt flow index at 190 DEG C) / MI2.16 (2.16 kg load, melt flow index at 190 DEG C)

Flexural modulus(Flexural modulus ( 굴곡탄성율Flexural modulus ))

ASTM D790에 준하여 측정하였다.ASTM D790.

IzodIzod impact strength( impact strength ( IzodIzod 충격강도) Impact strength)

ASTM D256에 준하여 측정하였다.And measured according to ASTM D256.

FNCTFNCT (Full Notched Creep Test)(Full Notched Creep Test)

iPT사 Tensile Creep Tester, MOD1719 모델로 ISO 16770에 준하여 측정하였다. Igepal 2% solution, 온도는 50℃로 설정하였다.iPT Tensile Creep Tester, Model MOD1719, and measured in accordance with ISO 16770. Igepal 2% solution, and the temperature was set at 50 ° C.

Shore hardness(D scale)Shore hardness (D scale)

ASTM D2240에 준하여 측정하였다.And measured according to ASTM D2240.

TmTm (용융온도), (Melting temperature), TcTc (( 결정화온도Crystallization temperature ))

DSC(Differential Scanning Calorimeter)를 이용하여 10℃/분의 승온 및 냉각속도에서 측정하였다.Was measured at a heating rate of 10 DEG C / min and a cooling rate using DSC (Differential Scanning Calorimeter).

소결 시간Sintering time

문헌 Bharat Indu Chaudhary 등의 "Processing Enhancers for Rotational Molding of Polyethylene", Polymer Engineering and Science, October 2001, Vol. 41, No. 10에 공개된 방법을 참고하여 측정하였다. 0.5mm 직경, 0.5mm 높이의 mold와 hot press를 활용하여 원통형으로 micro-pellet를 제작하였다. 이 micro-pellet을 hot stage로 130℃로 설정된 유리판 위에 도면 1과 같이 올려놓고 광학 현미경으로 측정하였다. 본 발명에서는 neck radius/particles radius(Y/A)가 0.8에 도달하는 시점을 소결 시간으로 설정하였다.Bharat Indu Chaudhary et al., &Quot; Processing Enhancers for Rotational Molding of Polyethylene ", Polymer Engineering and Science, October 2001, Vol. 41, No. 10 < / RTI > A micro-pellet was produced in a cylindrical shape using 0.5 mm diameter, 0.5 mm height mold and hot press. The micro-pellet was placed on a glass plate set at 130 ° C as a hot stage as shown in Fig. 1 and measured with an optical microscope. In the present invention, the time when the neck radius / particle radius (Y / A) reaches 0.8 is set as the sintering time.

도 1에서 부호는 각각 다음과 같다:The symbols in FIG. 1 are as follows:

a: 입자반경(particle radius), a: particle radius,

a0: 초기 입자 반경(initial particle radius), a0: initial particle radius,

y: 넥 반경(neck radius), y: neck radius,

L: 소결 입자들의 길이(length of the 소결 particles), L is the length of the sintered particles,

W: 소결 입자들의 폭(width of the 소결 particles)W: width of the sintered particles (width of the sintered particles)

핀홀의Pinhole  Number

펠렛화된 수지를 분쇄기에서 35메쉬로 분쇄한 후 15.24cm x 15.24cm x 20.32cm 형태의 박스 몰드를 이용하여 회전성형하였다. 사용된 박스 벽의 두께는 3mm였다. 시험평가용 샘플은 성형된 후 몰드로부터 다이-컷(DIE-CUT)하여 채취하였다. 광학현미경(배율 10배)을 이용해 5cm x 5cm 넓이 내의 핀홀 수를 확인하고, cm2당 핀홀수로 계산하였다.The pelletized resin was pulverized into a 35 mesh in a pulverizer, and then subjected to rotational molding using a box mold of 15.24 cm x 15.24 cm x 20.32 cm. The thickness of the box wall used was 3 mm. The test sample was molded and die-cut (DIE-CUT) from the mold. The number of pinholes within a 5 cm x 5 cm area was confirmed using an optical microscope (magnification: 10 times), and the number of pinholes per cm 2 was calculated.

이하, 당업자가 용이하게 실시할 수 있도록 본 발명을 하기의 실시예 및 비교예에 의하여 보다 구체적으로 설명한다. 하기의 실시예는 본 발명을 예시하기 위한 예에 지나지 않으며, 본 발명의 보호범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples and comparative examples so that those skilled in the art can easily carry out the present invention. The following examples are only illustrative of the present invention and do not limit the scope of protection of the present invention.

실시예Example 1~4,  1 to 4, 비교예Comparative Example 1~2 1-2

[촉매의 제조][Production of catalyst]

마그네슘 47.8g(1.968 몰)과 요오드 5.0g(0.02몰)을 기계식 교반기가 장착된 5리터의 유리반응기 내에서 2400ml의 정제된 헵탄에 현탁시켰다. 이 혼합물의 온도를 85로 올려서 테트라부톡시티타늄 44.9ml(0.165몰)과 티타늄테트라클로라이드 22.8ml(0.205몰)를 주입하여 혼합한 다음, 1-클로로부탄 318ml(3.05몰)을 4시간에 걸쳐 적가하였다. 주입 완료 후 2시간의 추가반응을 실시한 다음, 충분한 량의 헥산으로 4회 세척을 하였다. 여기에 테트라에톡시실란 8.240ml(0.037몰)을 주입하여 60에서 1시간 추가 반응시켰다. 이렇게 얻어진 촉매는 정제된 헥산에 슬러리 상태로 보관하였다.47.8 g (1.968 moles) of magnesium and 5.0 g (0.02 moles) of iodine were suspended in 2400 ml of purified heptane in a 5 liter glass reactor equipped with a mechanical stirrer. 44.9 ml (0.165 mole) of tetrabutoxy titanium and 22.8 ml (0.205 mole) of titanium tetrachloride were poured into the mixture, and then 318 ml (3.05 mole) of 1-chlorobutane was added dropwise over 4 hours Respectively. After the completion of the addition, a further reaction was carried out for 2 hours, followed by washing with a sufficient amount of hexane four times. Then, 8.240 ml (0.037 mol) of tetraethoxysilane was added thereto, followed by further reaction at 60 for 1 hour. The catalyst thus obtained was stored in purified hexane in a slurry state.

[에틸렌 및 알파-올레핀 공중합][Ethylene and alpha-olefin copolymerization]

상기 제조된 촉매와 조촉매 트리노말옥틸알루미늄(TnOA) 및 하기 표 1의 중합조건으로 기상 유동층 반응기에서 폴리에틸렌을 중합하였다.Polyethylene was polymerized in the gas-phase fluidized bed reactor with the catalyst prepared above, the co-catalyst trinuclear octylaluminum (TnOA) and the polymerization conditions shown in Table 1 below.

[[ 제립Granulation ]]

상기에서 얻어진 파우더형의 공중합체에 Irganox-1010 0.05중량부, Irgafos-168 0.1 중량부, calcium stearate 0.1 중량부, Chimassorb 944FDL 0.2중량부를 헨셀믹서로 혼합한 후, 이축압출기를 사용하여 펠렛 형태로 제립하였다.0.05 parts by weight of Irganox-1010, 0.1 parts by weight of Irgafos-168, 0.1 parts by weight of calcium stearate and 0.2 parts by weight of Chimassorb 944FDL were mixed in a Henschel mixer and then granulated in a pelletizer using a twin screw extruder Respectively.

비교예Comparative Example 3 3

[촉매의 제조][Production of catalyst]

마그네슘 47.8g(1.968 몰)과 요오드 5.0g(0.02몰)을 기계식 교반기가 장착된 5리터의 유리반응기 내에서 2400ml의 정제된 헵탄에 현탁시켰다. 이 혼합물의 온도를 85로 올려서 테트라부톡시티타늄 44.9ml(0.165몰)과 티타늄테트라클로라이드 22.8ml(0.205몰)를 주입하여 혼합한 다음, 1-클로로부탄 318ml(3.05몰)을 4시간에 걸쳐 적가하였다. 주입 완료 후 2시간의 추가반응을 실시한 다음, 충분한 량의 헥산으로 4회 세척을 하였다. 이렇게 얻어진 촉매는 정제된 헥산에 슬러리 상태로 보관하였다.47.8 g (1.968 moles) of magnesium and 5.0 g (0.02 moles) of iodine were suspended in 2400 ml of purified heptane in a 5 liter glass reactor equipped with a mechanical stirrer. 44.9 ml (0.165 mole) of tetrabutoxy titanium and 22.8 ml (0.205 mole) of titanium tetrachloride were poured into the mixture, and then 318 ml (3.05 mole) of 1-chlorobutane was added dropwise over 4 hours Respectively. After the completion of the addition, a further reaction was carried out for 2 hours, followed by washing with a sufficient amount of hexane four times. The catalyst thus obtained was stored in purified hexane in a slurry state.

[에틸렌 및 알파-올레핀 공중합][Ethylene and alpha-olefin copolymerization]

상기 제조된 촉매와 조촉매 트리노말옥틸알루미늄(TnOA) 및 하기 표 1의 중합조건으로 기상 유동층 반응기에서 폴리에틸렌을 중합하였다.Polyethylene was polymerized in the gas-phase fluidized bed reactor with the catalyst prepared above, the co-catalyst trinuclear octylaluminum (TnOA) and the polymerization conditions shown in Table 1 below.

[[ 제립Granulation ]]

상기에서 얻어진 파우더형의 공중합체에 Irganox-1010 0.05중량부, Irgafos-168 0.1 중량부, calcium stearate 0.1 중량부, Chimassorb 944FDL 0.2중량부를 헨셀믹서로 혼합한 후, 이축압출기를 사용하여 펠렛 형태로 제립하였다.0.05 parts by weight of Irganox-1010, 0.1 parts by weight of Irgafos-168, 0.1 parts by weight of calcium stearate and 0.2 parts by weight of Chimassorb 944FDL were mixed in a Henschel mixer and then granulated in a pelletizer using a twin screw extruder Respectively.

비교예Comparative Example 4 4

Versalis사의 선형 중밀도 폴리에틸렌 RP50UVersalis's linear medium density polyethylene RP50U

비교예Comparative Example 5 5

Qenos사의 선형 중밀도 폴리에틸렌 LL711UVQenos's linear medium density polyethylene LL711UV

  단위unit 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 중합온도Polymerization temperature 9090 9090 9090 9090 9090 9090 9090 중합압력Polymerization pressure kgf/cm2kgf / cm2 19.519.5 19.519.5 19.519.5 19.519.5 19.519.5 19.519.5 19.519.5 에틸렌Ethylene mol%mol% 37.637.6 40.440.4 30.330.3 52.052.0 41.241.2 51.651.6 45.645.6 수소Hydrogen mol%mol% 13.813.8 11.211.2 18.618.6 9.59.5 10.810.8 9.49.4 9.99.9 1-butene1-butene mol%mol% 3.93.9 3.43.4 3.03.0 00 3.33.3 00 3.63.6 1-hexene1-hexene mol%mol% 00 00 00 1.91.9 00 22 00 Bed 무게Bed Weight kgkg 7070 7070 7070 7070 3535 3535 3535 체류시간Residence time hrhr 7.47.4 7.47.4 7.47.4 7.47.4 3.73.7 3.73.7 7.47.4 생산량output kg/hrkg / hr 9.49.4 9.49.4 9.49.4 9.49.4 9.49.4 9.49.4 9.49.4

  단위unit 실시예Example 비교예Comparative Example 1One 22 33 44 1One 22 33 44 55 MIMI g/10min.g / 10 min. 5.5 5.5 3.8 3.8 10.3 10.3 3.1 3.1 3.7 3.7 3.0 3.0 3.4 3.4 9.5 9.5 3.13.1 MFRRMFRR - - 27 27 29 29 30 30 28 28 26 26 25 25 27 27 25 25 2323 DensityDensity g/㎤g / cm3 0.934 0.934 0.936 0.936 0.934 0.934 0.938 0.938 0.936 0.936 0.938 0.938 0.937 0.937 0.935 0.935 0.9380.938 TmTm 124 124 125 125 124 124 127 127 125 125 127 127 126 126 124 124 127 127 TcTc 114 114 114 114 113 113 117 117 114 114 117 117 116 116 113 113 115 115 CDBICDBI   54.354.3 58.158.1 48.648.6 56.956.9 62.162.1 63.563.5 61.561.5 61.261.2 65.465.4 Flexural modulusFlexural modulus kgf/cm2 kgf / cm 2 4,400 4,400 4,900 4,900 4,300 4,300 5,100 5,100 5,000 5,000 5,200 5,200 5,100 5,100 4,5004,500 51005100 Shore hardnessShore hardness D scaleD scale 54 54 55 55 54 54 55 55 55 55 55 55 55 55 5454 5555 Izod impact strength, 23℃Izod impact strength, 23 캜 kgcm/cmkgcm / cm No breakNo break No breakNo break No breakNo break No breakNo break No breakNo break No breakNo break No breakNo break No breakNo break No breakNo break Izod impact strength, -20℃Izod impact strength, -20 ° C kgcm/cmkgcm / cm 11.4 11.4 9.5 9.5 9.6 9.6 7.6 7.6 9.8 9.8 7.7 7.7 8.6 8.6 8.98.9 7.77.7 FNCT, 50℃, 5MPaFNCT, 50 DEG C, 5 MPa hrhr 21 21 43 43 7 7 86 86 36 36 87 87 30 30 7 7 65 65 소결 시간Sintering time secsec 210210 230230 160160 240240 280280 340340 300300 270270 370370 핀홀의 수Number of pin holes holes/cm2 holes / cm 2 1One 22 00 44 88 3838 1212 77 4848 Si/Ti 몰비Si / Ti molar ratio 0.080.08 0.10.1 0.090.09 0.110.11 0.080.08 0.10.1 -- -1) - 1) -2) - 2)

1) 2)는 타사 제품으로 확인 불가능함. 1) and 2) can not be confirmed by third-party products.

상기 표 2와 같이 제조된 수지 조성물에서 Si/Ti 몰비가 본 발명의 범위에 속하면서, 조성분포폭지수(CDBI)가 60% 이하일 경우 빠른 분말 소결 특성으로 표면 핀홀 발생이 적은 특성을 나타내는 것을 알 수 있다. 그러나, 같은 Si/Ti 몰비의 범위에 속할지라도, 비교예 1 및 2의 경우 CDBI가 60%를 초과하는 경우 바람직한 결과를 얻지 못하며, Si를 포함하지 않는 경우, 또한 바람직한 결과를 얻지 못한다.When the Si / Ti molar ratio of the resin composition prepared as shown in Table 2 falls within the range of the present invention, when the composition distribution width index (CDBI) is 60% or less, have. However, even though they belong to the same range of Si / Ti molar ratios, in the case of Comparative Examples 1 and 2, when the CDBI exceeds 60%, a desired result is not obtained.

Claims (8)

실리콘, 티타늄, 마그네슘 및 폴리에틸렌 수지를 포함하는 선형 중밀도 폴리에틸렌 수지 조성물로서,
조성분포폭지수(CDBI)가 60% 이하이고,
상기 실리콘과 티타늄(Si/Ti)의 몰비가 0.01~1이고,
상기 선형 중밀도 폴리에틸렌의 용융지수(ASTM D1238, 190℃, 2.16kg)가 1 내지 15 g/10min이고,
상기 선형 중밀도 폴리에틸렌의 밀도(ASTM D1505, 23℃)가 0.930 내지 0.945 g/cm3인 것을 특징으로 하는 선형 중밀도 폴리에틸렌 수지 조성물.
1. A linear medium density polyethylene resin composition comprising silicon, titanium, magnesium and a polyethylene resin,
The composition distribution width index (CDBI) is 60% or less,
Wherein the molar ratio of silicon to titanium (Si / Ti) is 0.01 to 1,
The linear medium density polyethylene has a melt index (ASTM D 1238, 190 캜, 2.16 kg) of 1 to 15 g / 10 min,
Wherein the linear medium density polyethylene has a density (ASTM D 1505, 23 캜) of 0.930 to 0.945 g / cm 3 .
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 선형 중밀도 폴리에틸렌 수지 조성물 총 100중량부에 대하여 산화방지제 0.01~0.5중량부, 중화제 0.01~0.3중량부 및 UV안정제 0.01~0.5 중량부 중 선택된 적어도 1 종 이상을 더 포함하는 것을 특징으로 하는 선형 중밀도 폴리에틸렌 수지 조성물.
The method according to claim 1,
Characterized by further comprising at least one selected from the group consisting of 0.01 to 0.5 parts by weight of an antioxidant, 0.01 to 0.3 parts by weight of a neutralizing agent and 0.01 to 0.5 parts by weight of a UV stabilizer based on 100 parts by weight of the total of the linear medium density polyethylene resin composition. Medium density polyethylene resin composition.
제1항에 있어서,
상기 폴리에틸렌 수지는 기상중합용 고체 촉매를 사용하여 제조되며,
상기 기상중합용 고체 촉매는
다음의 단계들을 포함하여 이루어지는 것을 특징으로 하는 선형 중밀도 폴리에틸렌 수지 조성물:
(1) 금속 마그네슘(Mg)을 하기 화학식 (A)로 표시되는 유기할라이드 화합물과 그리냐드 반응하여 유기마그네슘할라이드를 생성하는 단계,
R1X .... (A)
(여기서 R1은 탄소수 1 내지 10의 알킬기, X는 염소, 브롬 또는 요오드);
(2) 상기 (1)단계의 반응중에 하기 화학식 (B)로 표시되는 산화수 4가의 티타늄 화합물을 반응시켜 촉매 중간체를 제조하는 단계,
Ti(OR2)mCl4-m .... (B)
(여기서, 여기서 R2는 탄소수 1 내지 10의 알킬기, m은 0~4의 정수 또는 소수);
(3) 상기 (2)단계의 반응 중에, 또는 (2)단계의 반응 완료 후에, 하기 화학식 (C)로 표시되는 알콕시실란계 화합물을 첨가하여 반응시켜 고체 촉매를 제조하는 단계,
R3 nSi(OR4)4-n  .... (C)
(여기서, R3 및 R4는 각각 탄소수 1 내지 10의 알킬기, n은 0, 1 또는 2의 정수, n이 2일 경우, 2개의 R4는 동일하거나 상이하다).
The method according to claim 1,
The polyethylene resin is prepared using a solid catalyst for gas phase polymerization,
The solid catalyst for gas phase polymerization
A linear medium density polyethylene resin composition comprising the steps of:
(1) reacting a metal magnesium (Mg) with an organic halide compound represented by the following formula (A) to produce an organic magnesium halide;
R 1 X (A)
(Wherein R 1 is an alkyl group having 1 to 10 carbon atoms, and X is chlorine, bromine or iodine);
(2) a step of reacting the titanium tetravalent titanium compound represented by the following formula (B) in the reaction of the step (1) to prepare a catalyst intermediate,
Ti (OR 2 ) m Cl 4-m (B)
(Wherein R 2 is an alkyl group having 1 to 10 carbon atoms, and m is an integer or a number of 0 to 4);
(3) adding an alkoxysilane compound represented by the following formula (C) during the reaction of the step (2) or after completing the reaction of the step (2)
R 3 n Si (OR 4 ) 4-n (C)
(Wherein R 3 and R 4 are each an alkyl group having 1 to 10 carbon atoms, n is an integer of 0, 1 or 2, and when n is 2, two R 4 s are the same or different).
제1항에 있어서, 상기 선형 중밀도 폴리에틸렌 수지 조성물은 회전 성형에 사용되는 것을 특징으로 하는 선형 중밀도 폴리에틸렌 수지 조성물.The linear medium density polyethylene resin composition according to claim 1, wherein the linear medium density polyethylene resin composition is used for rotational molding. 제1항 및 제5항 내지 제7항 중 어느 한 항에 따른 선형 중밀도 폴리에틸렌 수지 조성물로 제조된 성형품.A molded article made from the linear medium density polyethylene resin composition according to any one of claims 1 to 7.
KR1020160113839A 2016-09-05 2016-09-05 Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same KR101862928B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160113839A KR101862928B1 (en) 2016-09-05 2016-09-05 Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160113839A KR101862928B1 (en) 2016-09-05 2016-09-05 Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same

Publications (2)

Publication Number Publication Date
KR20180026909A KR20180026909A (en) 2018-03-14
KR101862928B1 true KR101862928B1 (en) 2018-05-30

Family

ID=61660142

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160113839A KR101862928B1 (en) 2016-09-05 2016-09-05 Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same

Country Status (1)

Country Link
KR (1) KR101862928B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011168B1 (en) 2002-04-26 2011-01-26 토탈 페트로케미칼스 리서치 펠루이 Rotomoulded articles prepared with polyethylene
KR101272391B1 (en) 2005-06-14 2013-06-07 유니베이션 테크놀로지즈, 엘엘씨 Single catalyst low, medium and high density polyethylenes
KR101434633B1 (en) 2012-11-05 2014-08-26 주식회사 엔에스오 Filler composition and electric wire manufactured by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011168B1 (en) 2002-04-26 2011-01-26 토탈 페트로케미칼스 리서치 펠루이 Rotomoulded articles prepared with polyethylene
KR101272391B1 (en) 2005-06-14 2013-06-07 유니베이션 테크놀로지즈, 엘엘씨 Single catalyst low, medium and high density polyethylenes
KR101434633B1 (en) 2012-11-05 2014-08-26 주식회사 엔에스오 Filler composition and electric wire manufactured by using the same

Also Published As

Publication number Publication date
KR20180026909A (en) 2018-03-14

Similar Documents

Publication Publication Date Title
EP2451851B1 (en) Caps and closures
US11299610B2 (en) Heterophasic copolymer
CN101965368B (en) Ethylene-based polymer compositions, methods of making the same, and articles prepared from the same
US9932469B2 (en) Heterophasic polypropylene polymer
JP2018021213A (en) Resin with novel composition distribution and processes for making the same
JP4942525B2 (en) Polyethylene resin composition for bottle caps
US11952445B2 (en) Ethylene/alpha-olefin copolymers for better optical and mechanical properties and processability of film made therefrom
US7582712B1 (en) Alpha-olefins polymerization catalyst
CN103476854A (en) Novel polymer composition for use in blow moulding
EP2360192A1 (en) Caps and closures
EP1002013B1 (en) Olefin (co)polymer composition
EP2681273B1 (en) Process for preparing polyethylene blend comprising metallocene produced resins and ziegler-natta produced resins
KR101862928B1 (en) Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same
US7307036B2 (en) Highly active alpha-olefin polymerization catalyst
JP6900922B2 (en) A modifier for polyethylene resin, and a polyethylene resin composition and molded product using the same.
JP6878942B2 (en) Polyethylene resin composition, its molded article and container
JP6794867B2 (en) Polyethylene resin composition, its molded article and container
JP6331899B2 (en) Ethylene polymer composition for thin-walled container and molded body comprising the same
US20190040160A1 (en) Process for Making Polyethylene Copolymers with a Reversed Comonomer Distribution
US20220176599A1 (en) Injection molded caps or closures, and methods thereof
US11208504B2 (en) Injection-molded articles comprising metallocene-catalyzed polyethylene resin
JP6128032B2 (en) Polyethylene resin composition for container lid
JP2020164693A (en) Polyethylene resin composition, molded body, and container
JP2020164813A (en) Polyethylene resin composition, molded body, and container

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant